JP2012163201A - Expansion pipe - Google Patents

Expansion pipe Download PDF

Info

Publication number
JP2012163201A
JP2012163201A JP2011037653A JP2011037653A JP2012163201A JP 2012163201 A JP2012163201 A JP 2012163201A JP 2011037653 A JP2011037653 A JP 2011037653A JP 2011037653 A JP2011037653 A JP 2011037653A JP 2012163201 A JP2012163201 A JP 2012163201A
Authority
JP
Japan
Prior art keywords
pattern
isosceles trapezoid
mirror image
folds
telescopic tube
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2011037653A
Other languages
Japanese (ja)
Inventor
Koryo Miura
公亮 三浦
Tomohiro Tate
知宏 舘
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP2011037653A priority Critical patent/JP2012163201A/en
Publication of JP2012163201A publication Critical patent/JP2012163201A/en
Withdrawn legal-status Critical Current

Links

Images

Landscapes

  • Joints Allowing Movement (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an expansion pipe which has a sufficiently large amount of expansion, has wide flexibility in design, allows easy processing method, and can be applied to various materials.SOLUTION: The expansion pipe employs a tubular development structure which can be molded only by bending a flat plate and minimum welding based on a shape formed by combining two polyhedral faces comprising a trapezoid and a parallelogram, and allows a large amount of expansion, does not require complicated plastic work and can be applied to various materials.

Description

本発明は、伸縮管に関するものである。さらに詳細には、広義の伸縮可能な管あるいは筒構造一般に関するものであり、機械工業、化学工業、建築、土木等の分野に関係する。The present invention relates to a telescopic tube. More specifically, the present invention relates generally to a telescopic tube or tube structure in a broad sense, and relates to fields such as the machine industry, chemical industry, architecture, and civil engineering.

伸縮管の製造における現行技術の問題点は、大きな塑性変形加工が必要なことである。本来薄肉円柱は極めて安定な構造であるから、それを軸方向に伸縮させるために、現行の技術では、その管壁を軸方向に沿って深いジグザグ(波型あるいは鋸刃型)状にする。素材としての板から、このような複雑な形状を製造するには必然的に大きな塑性加工が必要なのである。またその結果得られたこのジグザグは、軸方向に縮むことによって、よりフラットになり、その結果内壁と外壁の外部にはみ出そうとする。しかし内壁と外壁はそれぞれ閉じた周を形成しているので拘束され、得られる伸縮量は限られる。従って、大きな塑性加工と、それにより得られる伸縮量の限界が、必然的にコスト、材料の選択の制限、大きさの制限、等の問題点をもたらしている。The problem with current technology in the production of telescopic tubes is that a large plastic deformation process is required. Since a thin-walled cylinder is inherently a very stable structure, in order to expand and contract it in the axial direction, in the current technology, the tube wall is formed into a deep zigzag (wave shape or saw blade type) shape along the axial direction. In order to manufacture such a complicated shape from a plate as a raw material, a large plastic working is inevitably required. Further, the zigzag obtained as a result of the zigzag contracts in the axial direction to become flatter, and as a result, tries to protrude outside the inner wall and the outer wall. However, since the inner wall and the outer wall each form a closed circumference, the inner wall and the outer wall are restrained, and the amount of expansion and contraction obtained is limited. Therefore, large plastic working and the limit of the amount of expansion and contraction obtained thereby inevitably lead to problems such as cost, material selection limitation, size limitation, and the like.

伸縮管の利用が、比較的狭い範囲に限られているのは、前記のような問題点があるためと思われる。金属等の剛性のある材料を用いて、比較的容易に、安価に製造できるコンセプトがあれば、伸縮管の利用できる分野はひろがり、有益であろう。以上の理由から、大きな塑性変形加工をともなわない、新しい伸縮管の構成原理が求められていた。最近になって、この問題に深く関係する発明が提案された(特許文献1)。これは、新しい進展をこの分野にもたらす可能性をもっている。The reason why the use of the telescopic tube is limited to a relatively narrow range seems to be due to the above-mentioned problems. If there is a concept that can be manufactured relatively easily and inexpensively using a rigid material such as metal, the fields in which the telescopic tube can be used will be widened and beneficial. For the above reasons, there has been a demand for a new expansion tube construction principle that does not involve large plastic deformation. Recently, an invention deeply related to this problem has been proposed (Patent Document 1). This has the potential to bring new progress in this area.

特許出願2009−239831Patent application 2009-239831

本発明の課題は、十分に大きな伸縮量、広範な設計の自由度、容易な加工方法、多様な素材に適用できる新規な伸縮管を提供することにある。An object of the present invention is to provide a sufficiently large expansion / contraction amount, a wide range of design freedom, an easy processing method, and a novel expansion / contraction tube applicable to various materials.

本発明の請求項1に示されるように、伸縮管11とジョイント・ブロック12を構成要素とするものであって、該伸縮管の形状は、折り設計図に示すパターンAとパターンBに基づき、パターンAは、XY面において、X軸方向の二つの平行線1で規定される帯状の領域2内において、該平行線に上底下底3−1を置く等脚台形3を配し、該等脚台形の両側に対称的に、該等脚台形の斜辺3−2と等しい傾斜角3−3をもちかつ該平行線を二辺とする平行四辺形4を複数かつ偶数個を隙間無く配し、これを基本領域A1とし、該基本領域A1から始めて、該基本領域の一つの平行線を鏡とする鏡像A2を形成し、さらに同様の操作で鏡像A2の鏡像である鏡像A3を形成し、順次これを繰り返すことで形成されたものをパターンAとし、パターンBは、XY面上で、前記第一の鏡像A2をB1とし、B1から始めて、前記パターンAと同様の操作を順次繰り返すことで形成されたものをパターンBとし、パターンAおよびパターンBについて、それらに含まれる等脚台形および平行四辺形のすべての辺を折り目とし、該折り目の山折り谷折りは該等脚台形の斜辺の折り目を山折りとして決定し、前記平行線上の折り目を挟むすべての二面角βを等しくし、パターンAとパターンBのそれぞれの基本領域がA1とB1、A2とB2、A3とB3・・・のように背面で対置させて合わせ、前記偶数番目でかつ端部の対応する平行四辺形5の相接する部分5−1で結合して伸縮管の形状とし、該形状を板材で実体化して伸縮管とし、該伸縮管の端部にジョイント・ブロックを結合して拘束し、一定の範囲で伸縮することを特徴とする伸縮管アセンブリー10により前記課題を解決しようとするものである。As shown in claim 1 of the present invention, the telescopic tube 11 and the joint block 12 are constituent elements, and the shape of the telescopic tube is based on the pattern A and the pattern B shown in the folding design drawing, The pattern A has an isosceles trapezoid 3 in which an upper base and a lower base 3-1 are placed on the parallel lines in the band-like region 2 defined by two parallel lines 1 in the X-axis direction on the XY plane. Symmetrically on both sides of the trapezoidal trapezoid, a plurality of parallelograms 4 having an inclination angle 3-3 equal to the hypotenuse 3-2 of the isosceles trapezoid and having the parallel lines as two sides are arranged without gaps. This is the basic area A1, and starting from the basic area A1, a mirror image A2 having one parallel line of the basic area as a mirror is formed, and a mirror image A3 that is a mirror image of the mirror image A2 is formed by a similar operation. The pattern A is formed by repeating this process sequentially, and the pattern On the XY plane, the first mirror image A2 is set as B1, and the pattern B is formed by sequentially repeating the same operation as the pattern A, starting from B1, and the pattern A and the pattern B. All the sides of the isosceles trapezoid and the parallelogram included in the folds are creased, and the mountain folds and folds of the creases are determined as the folds of the oblique sides of the isosceles trapezoids, and the folds on the parallel lines are sandwiched All the dihedral angles β are made equal, and the basic regions of the patterns A and B are matched to each other on the back side such as A1 and B1, A2 and B2, A3 and B3, etc. It joins with the corresponding part 5-1 of the parallelogram 5 of an edge part, and makes it the shape of an expansion-contraction pipe | tube, materializes this shape with a board | plate material, and makes a joint block in the edge part of this expansion-contraction pipe | tube. Bind and restrain The above-mentioned problem is to be solved by the telescopic tube assembly 10 that expands and contracts within a certain range.

また、本発明の請求項2に示されるように、請求項1において、二面角βを60度以下とすることを特徴とする伸縮管アセンブリー10により前記課題を解決しようとするものである。Further, as shown in claim 2 of the present invention, in the claim 1, the expansion tube assembly 10 is characterized in that the dihedral angle β is 60 degrees or less.

また、本発明の請求項3に示されるように、折り設計図に示すパターンAとパターンBに基づく伸縮管11の製造方法であり、パターンAは、XY面において、X軸方向の二つの平行線1で規定される帯状領域2内において、該平行線に上底下底3−1を置く等脚台形3を配し、該等脚台形の両側に対称的に、該等脚台形の斜辺3−2と等しい傾斜角3−3をもちかつ該平行線を二辺とする平行四辺形4を複数かつ偶数個を隙間無く配し、これを基本領域A1とし、該基本領域A1から始めて、該基本領域の一つの平行線を鏡とする鏡像A2を形成し、さらに同様の操作で鏡像A2の鏡像である鏡像A3を形成し、順次これを繰り返すことで形成されたものをパターンAとし、パターンBは、XY面上で、前記第一の鏡像A2をB1とし、B1から始めて、前記パターンAと同様の操作を順次繰り返すことで形成されたものをパターンBとしパターンAおよびパターンBについて、それらに含まれる等脚台形および平行四辺形のすべての辺を折り目とし、該折り目の山折り谷折りは該等脚台形の斜辺の折り目を山折りとして決定し、前記平行線上の折り目を挟むすべての二面角βを等しくし、板材の曲げ加工によって、パターンA部材、パターンB部材を製作し、パターンA部材およびパターンB部材の、それぞれの基本領域がA1とB1、A2とB2、A3とB3・・・のように背面で対置させて合わせ、前記偶数番目でかつ端部の対応する平行四辺形の相接する部分で結合加工することを特徴とする伸縮管の製造方法により、前記課題を解決しようとするものである。According to a third aspect of the present invention, there is provided a method of manufacturing the telescopic tube 11 based on the pattern A and the pattern B shown in the folding design drawing. The pattern A is two parallel in the X axis direction on the XY plane. An isosceles trapezoid 3 in which the upper and lower bases 3-1 are placed on the parallel lines is arranged in the belt-like region 2 defined by the line 1, and the hypotenuse 3 of the isosceles trapezoid is symmetrical on both sides of the isosceles trapezoid. -2 having an inclination angle 3-3 equal to -2 and having parallel lines as two sides, and arranging a plurality of even numbers without gaps, this is defined as a basic region A1, starting from the basic region A1, A mirror image A2 is formed with one parallel line in the basic region as a mirror, and further, a mirror image A3 that is a mirror image of the mirror image A2 is formed by a similar operation. B represents the first mirror image A2 on the XY plane as B1, and B The pattern A is formed by repeating the same operation as the pattern A, and the pattern A and the pattern B are all creased in the sides of the isosceles trapezoid and the parallelogram included therein. The crease mountain fold valley fold is determined as a fold on the hypotenuse of the isosceles trapezoid, and all dihedral angles β sandwiching the folds on the parallel lines are made equal to each other. The B member is manufactured, and the basic areas of the pattern A member and the pattern B member are aligned on the back such as A1 and B1, A2 and B2, A3 and B3. It is an object of the present invention to solve the above-mentioned problem by a method for manufacturing a telescopic tube, characterized in that the joining process is performed at the corresponding parallelogram contact portions of the portions.

また、本発明の請求項4に示すように、請求項3において、パターンAとパターンBと、総和は等しく分割は異なる部材により、加工することを特徴とする伸縮管の製造方法により、前記課題を解決しようとするものである。According to a fourth aspect of the present invention, there is provided a method for producing an expansion tube according to the third aspect, wherein the pattern A and the pattern B are processed by members having the same total sum but different divisions. Is to solve.

また、本発明の請求項5に示すように、請求項3および4において、二面角βで製造したものを、軸方向の荷重によって二面角β1とすることを特徴とする伸縮管の製造方法により、前記課題を解決しようとするものである。Further, as shown in claim 5 of the present invention, in the third and fourth aspects, the tube manufactured with a dihedral angle β is changed to a dihedral angle β1 by an axial load. The method is intended to solve the problem.

本発明の原理は、従来の技術とは全く異なるものであるので、発明の効果の説明に先立ち、これを説明する。本発明の第一の基本原理は、前記特許文献1の利用に基づいている。図2は、筒型伸縮構造として提案されたものの、展開・収縮過程を示したものである。該構造の構成は、多面体の面と、その稜にあたる折り目(ヒンジ)からなる。概念的には二つの多面体面を組み合わせて、一つの筒型を構成していると考えるとよい。図2(a)は、その二つの多面体面が背面で合わされ殆どフラットな状態にある。このとき図に見る一対の台形面の間の二面角βはほとんど180度に近い。この二面角βは、構成要素が与えられていれば、この形状の唯一の可変パラメータであり、すべての対となる台形、平行四辺形に適用し、勿論一義的に全形状を決定する。以後このパラメータβの縮小に従って、形状が次第に変化する。βがほとんどゼロに近づく図2(e)では、再び別のフラットな状態に畳みこまれる。Since the principle of the present invention is completely different from the prior art, this will be described prior to the description of the effects of the invention. The first basic principle of the present invention is based on the use of Patent Document 1. FIG. 2 shows the expansion / contraction process, which has been proposed as a cylindrical expansion / contraction structure. The structure is composed of a polyhedral surface and a fold (hinge) corresponding to the ridge. Conceptually, it may be considered that two cylindrical faces are combined to form one cylindrical shape. In FIG. 2A, the two polyhedron surfaces are in a substantially flat state with the back surfaces being combined. At this time, the dihedral angle β between the pair of trapezoidal surfaces shown in the drawing is almost 180 degrees. This dihedral angle β is the only variable parameter of this shape if a component is given, and applies to all pairs of trapezoids and parallelograms, and of course uniquely determines the entire shape. Thereafter, the shape gradually changes as the parameter β decreases. In FIG. 2 (e), where β is almost zero, it is folded back into another flat state.

さて、伸縮管について最も注目されるのは、図2(d)、(e)の間であろう。この近傍では、形状が常識的に管として考えられる範囲であり、しかも内包する空間の形状には大きな変化がないという特徴がある。それを、図2に対応する、管の軸と垂直な断面積Sと前記二面角βとの関係として、図3に示す。これを観察すると、断面積Sは図2(d)、(e)の区間で僅かな変動しかないことが確かめられる。このことを見る限り、この区間の構造は伸縮管として利用しやすい性質を持つ様に思われる。Now, the most notable point about the telescopic tube will be between FIGS. In this vicinity, there is a feature that the shape is a range that can be considered as a tube in common sense, and that the shape of the enclosed space is not significantly changed. This is shown in FIG. 3 as the relationship between the cross-sectional area S perpendicular to the tube axis and the dihedral angle β corresponding to FIG. By observing this, it is confirmed that the cross-sectional area S has a slight fluctuation in the sections of FIGS. 2 (d) and 2 (e). As far as this is seen, it seems that the structure of this section has the property that it can be easily used as a telescopic tube.

一つの問題は、このような一見複雑な構造を製造する方法を求めることにある。これは、多数の平行四辺形、台形の面板と、多数の折り目(ヒンジ)から構成され、またその局部には、角錐状の形状もある。しかし、その構成の幾何学を検討すると、一つの基本的性質が浮かびあがり、それを利用することで、この問題を解決することができる。One problem lies in seeking a method for manufacturing such seemingly complex structures. This is composed of a large number of parallelogram and trapezoidal face plates and a large number of folds (hinges), and there are also pyramid shapes in the local area. However, considering the geometry of its composition, one basic property emerges and can be used to solve this problem.

図2(d)のあたりの構造を分解すると、実は単純な面板13と折り目14からなる単位構造の繰り返しでできていることがわかる。図4(a)に示すのは、パターンAとパターンBの平面の単位部材である。これには折り目が示されていて、台形の斜辺は山折りと指定すると他の折り目は自動的に決まる。こうして立体化したパターンAとパターンBの部材は、図4(b)(平面図、正面図)のように結合して一つのリング構造を作る。該リング構造は、中心軸に沿って伸縮できて、例えば、図4(c)にように約半分に縮む。When the structure around FIG. 2D is disassembled, it can be seen that the unit structure consisting of a simple face plate 13 and a crease 14 is actually repeated. FIG. 4A shows a planar unit member of the pattern A and the pattern B. FIG. This shows a crease, and if the hypotenuse of the trapezoid is designated as a mountain fold, the other creases are automatically determined. The three-dimensional pattern A and pattern B members are combined as shown in FIG. 4B (plan view, front view) to form one ring structure. The ring structure can be expanded and contracted along the central axis and, for example, contracts by about half as shown in FIG.

ここで重要なのは、面板は剛で、折り目が完全なヒンジとしており、この変形は、全く歪なしで行われることである。周を構成する面板が変形しないと言うことは、これで形成される周長が不変であることを意味する。従って、伸縮にあたって、周長の拘束は全くなく、自由におこなわれる。この事実は、従来の伸縮管において、前記のように伸縮にともなう周長の拘束が問題であるのとは全く違う。換言すれば、周の独特の変形によって、拘束をなくしていることと理解される。これが本発明の第一の基本概念である。What is important here is that the face plate is rigid and the fold is a perfect hinge, and this deformation is done without any distortion. The fact that the face plate constituting the circumference is not deformed means that the circumference formed thereby is unchanged. Therefore, there is no restriction on the circumference in expansion and contraction, and it is performed freely. This fact is completely different from the conventional expansion tube in which the restriction of the circumferential length accompanying expansion and contraction is a problem as described above. In other words, it is understood that the restraint is eliminated by the unique deformation of the circumference. This is the first basic concept of the present invention.

なお、図4(b)、(c)の単位構造では、パターンAとパターンBの部材の結合は稜線5−3となり、筒としては5−2を含む単壁の構造となる。図4(a))には、これらの稜線から延長した面5−1が破線で示されており、この場合はこの面あるいはその更なる延長面で相互に面結合することができる。両者の基本的性質はほとんど変わらないが、後者では面結合することで、製作上有利な場合もある。In the unit structures shown in FIGS. 4B and 4C, the connection between the members of the pattern A and the pattern B is the ridge line 5-3, and the cylinder has a single wall structure including 5-2. In FIG. 4 (a)), the surface 5-1 extended from these ridgelines is indicated by a broken line, and in this case, the surfaces can be connected to each other on this surface or a further extended surface thereof. The basic properties of both are almost the same, but in the latter case, surface bonding may be advantageous in manufacturing.

本発明の第二の基本原理を以下に説明する。これはより実際的な実施形態に関係する。前記筒型伸縮構造は明らかに、前記図2に示されるように、展開構造物である。従ってメカニズムを持っていて、形状は不定である。しかし、現実的に薄板の曲げ加工で作るとすれば、面も折り目のヒンジも弾性であり、弾性構造物としての性質も保持している。具体的には、面はほぼ剛性を保つが、弾性ヒンジの角度は変化しやすく、その形状は容易に変化する。また、実施形態として、これを伸縮管を利用する場合には、その端部を他の部材例えばカラー等と結合固定して使用する。そのことは、少なくとも理論的には展開構造物としての自由度を失い、剛体となる。従って、その固定と伸縮管の伸縮性との実際的な関係を調べる必要がある。The second basic principle of the present invention will be described below. This relates to a more practical embodiment. The tubular telescopic structure is obviously a deployed structure as shown in FIG. Therefore, it has a mechanism and its shape is indefinite. However, if it is actually made by bending a thin plate, both the surface and the hinge of the crease are elastic, and the property as an elastic structure is maintained. Specifically, the surface remains substantially rigid, but the angle of the elastic hinge is likely to change and its shape changes easily. Moreover, as an embodiment, when an expansion tube is used, the end portion thereof is used by being coupled and fixed to another member such as a collar. That is, at least theoretically, it loses the degree of freedom as a deployment structure and becomes a rigid body. Therefore, it is necessary to investigate a practical relationship between the fixation and the stretchability of the telescopic tube.

図1は、実際に前記伸縮管11をジョイント・ブロック12に固定した伸縮管アセンブリー10の例であり、前記実際的関係を示す目的に適当である。図1(a)は、ある基準値(β=20度)の値で、伸縮管11の両端をジョイント・ブロック12と結合したものである。図1(b)は、少し伸長した状態(β=60度)である。明らかに、両端部近傍では、伸長が小さいが、端部から離れるにしたがって略均一な伸展状態になることがわかる。このような性質は、材料力学におけるサン・ヴナンの法則で説明できる現象で、弾性体端部の局部的影響の減衰を示すものである。FIG. 1 shows an example of a telescopic tube assembly 10 in which the telescopic tube 11 is actually fixed to a joint block 12, and is suitable for the purpose of showing the practical relationship. FIG. 1A shows a value of a certain reference value (β = 20 degrees) in which both ends of the telescopic tube 11 are coupled to the joint block 12. FIG. 1B shows a slightly expanded state (β = 60 degrees). Obviously, the elongation is small in the vicinity of both ends, but it becomes clear that the stretched state becomes substantially uniform as the distance from the ends increases. Such a property is a phenomenon that can be explained by Saint-Venant's law in material mechanics, and shows the attenuation of the local influence at the end of the elastic body.

本発明の場合は、上記の現象が重要な二つの意味を持っている。まず端部を除く部分が基準値βを中心として展開構造のような挙動することにより、低反力で高い伸縮量が得られること。次に端部において面板の弾性変形(面内変形を含む)を行い、これにより弾性ばねとして作用することである。以上ようするに、本発明の基幹部分は本来の展開構造物に準拠しており、管の端末近傍を除く主要部分は略展開構造として機能する。従って大きな伸縮量を得ることが容易である。以上が実際に利用する場合についての、本発明の第二の基本概念である。In the case of the present invention, the above phenomenon has two important meanings. First, the part excluding the end part behaves like a developed structure around the reference value β, so that a high expansion / contraction amount can be obtained with a low reaction force. Next, elastic deformation (including in-plane deformation) of the face plate is performed at the end portion, thereby acting as an elastic spring. As described above, the basic portion of the present invention conforms to the original expanded structure, and the main portion excluding the vicinity of the end of the tube functions as a substantially expanded structure. Therefore, it is easy to obtain a large expansion / contraction amount. The above is the second basic concept of the present invention when actually used.

本発明の第一の効果は、従来の伸縮管と比較して、大きな伸縮量を得られることである。その理由は、前記の通り、管の端末近傍を除く主要部分は略展開構造として機能することにある。The first effect of the present invention is that a large amount of expansion and contraction can be obtained as compared with a conventional expansion tube. The reason is that, as described above, the main part except the vicinity of the end of the tube functions as a substantially expanded structure.

本発明の第二の効果は、複雑な形状の構造を、平面材から主として曲げ加工によって製造することにある。なぜそれが可能なのかは、筒型伸縮構造の成り立ちの基本原理に立ち返ると、その答えがみえてくる。該構造は、元来平板からの不伸長変形を用いて定義される。平板からの不伸長変形というのは、板面内の一切の伸び縮みがなくて、板面外の曲げのみで変形が行われることである。最も近いイメージとしては、紙を折ることであり、このとき紙は面内に伸び縮みがない。不伸長変形の性質があると、原理的に平板から折り曲げの工程で作ることができる。現行の伸縮管が板面内の大きな変形を要し、そのため大きな塑性加工を必要とするのとは全く異なる。The second effect of the present invention is that a structure having a complicated shape is produced from a flat material mainly by bending. Returning to the basic principle of the formation of the cylindrical stretchable structure, the answer can be seen why this is possible. The structure is originally defined using inextensible deformation from a flat plate. The non-extension deformation from the flat plate means that the deformation is performed only by bending outside the plate surface without any expansion or contraction in the plate surface. The closest image is to fold the paper. At this time, the paper does not stretch or shrink in the plane. If it has the property of non-extensional deformation, it can be made by a process of bending from a flat plate in principle. This is quite different from current expansion tubes that require large deformations in the plate surface and therefore require large plastic working.

第三の効果は、素材の選択の自由度が大きいことである。前記のように、その加工方法が曲げを主体とすることであるから、材料の延性にはあまり依存しない。伸縮管は、多種の流体材料、多様な温度環境、などで、使用できる素材は限られてくる。さらにその材料の加工性が加わると、現状では選択の範囲は著しく狭められるのである。The third effect is that the degree of freedom of material selection is large. As described above, since the processing method is mainly bending, it does not depend much on the ductility of the material. The materials that can be used for the expansion tube are limited by various fluid materials and various temperature environments. In addition, if the workability of the material is added, the range of selection is significantly narrowed at present.

第四の効果は、比較的簡単な製造方法、素材の選択の多様性、サイズの限度がないこと、これらは結果として従来使われなかった分野に利用を広める可能性がある。例をあげると、これは管状のばねでもあるから、ばね一般として使える。それ自体のばね特性によらず、伸縮できる筒型ケーシングとして、管内部に弾塑性材料等を充填する複合構造により、制振や衝撃エネルギー吸収要素としても使える。要するに、これまで特殊な用途に限られていた伸縮管を、より一般的な使い方にまで広げることが可能となる。The fourth effect is a relatively simple manufacturing method, a variety of raw material selections, and no size limit. As a result, there is a possibility of spreading the use to fields that have not been used before. For example, since this is a tubular spring, it can be used as a general spring. Regardless of its own spring characteristics, it can be used as a damping or shock energy absorbing element as a cylindrical casing that can be expanded and contracted by a composite structure in which an elastic-plastic material is filled inside the pipe. In short, it is possible to expand the telescopic tube, which has been limited to special applications, to more general usage.

実施例1はパイプライン等に用いるいわゆる伸縮管アセンブリーであり、図1に示す。10は伸縮管アセンブリーを示し、内11は伸縮管、12はカラー(COLLAR)、13は面板、14は折り目である。正確に述べるならば、面板13は弾性平板、折り目14は弾性ヒンジである。前記の原理により、この構造は、弾性面と弾性ヒンジからできており、弾性ヒンジ14の角度(代表的に台形の間の二面角β)が小さくなるほど、柔軟な構造となる。柔軟な構造については、サン・ヴナンの原理が良く適合し、端末の影響は急速に減衰することが知られている。図1aは初期の状態で、図1bは、図1aから約50%伸長した状態を示す。観察すると、端部の拘束の影響が急速に減衰して、中央部分ではほぼ定常の形となることが示される。Example 1 is a so-called telescopic tube assembly used in a pipeline or the like, and is shown in FIG. Reference numeral 10 denotes a telescopic tube assembly, of which 11 is a telescopic tube, 12 is a collar, 13 is a face plate, and 14 is a fold. To be precise, the face plate 13 is an elastic flat plate and the fold line 14 is an elastic hinge. Based on the principle described above, this structure is made up of an elastic surface and an elastic hinge. The smaller the angle of the elastic hinge 14 (typically, the dihedral angle β between trapezoids), the more flexible the structure. For flexible structures, Saint-Venant's principle is well adapted and the effects of the terminal are known to decay rapidly. FIG. 1a shows the initial state, and FIG. 1b shows the state extended about 50% from FIG. 1a. Observations show that the effect of the end restraint decays rapidly, resulting in a nearly steady shape at the center.

繰り返すが、本発明の場合は、上記の現象が特に重要な二つの意味を持っている。まず端部を除く部分が基準値βを中心として展開構造のような挙動することにより、低反力で高い伸縮量が得られること。次に端部において面板の弾性変形(面内変形を含む)を行い、これにより弾性ばねとして作用することである。以上ようするに、本発明の基幹部分は本来の展開構造物に準拠しており、管の端末近傍を除く主要部分は略展開構造として機能する。従って大きな伸縮量を得ることが容易である。Again, in the case of the present invention, the above phenomenon has two important meanings. First, the part excluding the end part behaves like a developed structure around the reference value β, so that a high expansion / contraction amount can be obtained with a low reaction force. Next, elastic deformation (including in-plane deformation) of the face plate is performed at the end portion, thereby acting as an elastic spring. As described above, the basic portion of the present invention conforms to the original expanded structure, and the main portion excluding the vicinity of the end of the tube functions as a substantially expanded structure. Therefore, it is easy to obtain a large expansion / contraction amount.

また、本発明を実施するにあたって、前記図1、2、3について観察されたように、二面角βについて、通常の伸縮管として利用しやすい範囲があることが示された。これを受けて、二面角βの基準値は60度以下が、最も適当であるとする(図3)。もちろん、その利用様態によっては、この範囲以外で使うことを排除するわけではない。Moreover, in carrying out the present invention, as observed with respect to FIGS. 1, 2, and 3, it was shown that there is a range in which the dihedral angle β can be easily used as a normal telescopic tube. In view of this, it is assumed that the reference value of the dihedral angle β is most preferably 60 degrees or less (FIG. 3). Of course, depending on the mode of use, use outside this range is not excluded.

実施例2は、伸縮管の製造方法である。製造は、折り設計図(図5)に示すパターンAとパターンBに基づく製造方法である。パターンAは、XY面において、X軸方向の二つの平行線1で規定される帯状の領域2内において、該平行線に上底3−1、下底3−1を置く等脚台形3を配し、該等脚台形の両側に対称的に、該等脚台形の斜辺3−2と等しい傾斜角3−3をもちかつ該平行線を二辺とする平行四辺形4,5、6・・・を複数かつ偶数個を隙間無く配し、これを基本領域A1とし、該基本領域A1から始めて、該基本領域の一つの平行線を鏡とする鏡像A2を形成し、さらに同様の操作で鏡像A2の鏡像である鏡像A3を形成し、順次これを繰り返すことで形成されたものをパターンAとする。Example 2 is a method for manufacturing a telescopic tube. Manufacture is a manufacturing method based on the pattern A and the pattern B shown in the folding design drawing (FIG. 5). In the pattern A, an isosceles trapezoid 3 in which an upper base 3-1 and a lower base 3-1 are placed on the parallel lines in a band-like region 2 defined by two parallel lines 1 in the X-axis direction on the XY plane. Arranged parallel to both sides of the isosceles trapezoid and having an inclination angle 3-3 equal to the hypotenuse 3-2 of the isosceles trapezoid and having the parallel lines as two sides, parallelograms 4, 5, 6. .. and a plurality of even numbers are arranged without gaps, and this is used as a basic area A1, and a mirror image A2 is formed starting from the basic area A1 with one parallel line of the basic area as a mirror, and the same operation is performed. A mirror image A3 that is a mirror image of the mirror image A2 is formed, and the pattern A is formed by repeating this sequentially.

パターンBは、XY面上で、前記第一の鏡像A2をB1とし、B1から始めて、前記パターンAと同様の操作を順次繰り返すことで形成されたものをパターンBとする。The pattern B is a pattern B formed by repeating the same operations as those of the pattern A, starting from B1, on the XY plane, with the first mirror image A2 being B1.

パターンAおよびパターンBについて、それらに含まれる等脚台形および平行四辺形のすべての辺を折り目とし、該折り目の山折り谷折りは該等脚台形の斜辺の折り目を山折りとして決定し、X軸に平行な折り目を挟むすべての二面角βを等しくし、板材の曲げ加工によって、パターンA部材、パターンB部材を製作し、パターンA部材およびパターンB部材の、それぞれの基本領域がA1とB1、A2とB2、A3とB3・・・のように背面で対置させて合わせ、前記偶数番目でかつ端部の対応する平行四辺形の相接する部分で結合加工することで、伸縮管を製造する。For pattern A and pattern B, all sides of the isosceles trapezoid and parallelogram included in the pattern A and pattern B are defined as folds, and the folds and folds of the folds are determined as folds on the hypotenuses of the isosceles trapezoids, and X All dihedral angles β across the fold line parallel to the axis are made equal, and the pattern A member and the pattern B member are manufactured by bending the plate material. The basic areas of the pattern A member and the pattern B member are A1 and A1, respectively. B1, A2 and B2, A3 and B3, etc. are arranged facing each other on the back surface, and by joining and processing at the contact portions of the even-numbered parallelogram corresponding to the ends, the expansion tube is To manufacture.

そのルールを下記の通りである。 これらに含まれる等脚台形および平行四辺形のすべての辺を折り目とし、かつ該等脚台形の斜辺の折り目は山折りとし、他の折り目はそれと適合する折り目とする。なお、4個の折り目が集中する頂点について、山折りと谷折りの折り目の数は3と1か1と3に限られる。対峙する等脚台形および同平行四辺形の間の二面角βをすべて等しく与える。これらはすべて折り変形であり、面内歪を必要としないから、折り曲げ加工だけで実行できる。また、折り目相互は互いに関係しているので、折り加工は、部材に含まれる折り目を同時に行う必要がある。The rules are as follows. All the sides of the isosceles trapezoid and the parallelogram included in these are folds, and the folds of the hypotenuses of the isosceles trapezoid are folds, and the other folds are folds that match them. In addition, about the vertex where four folds concentrate, the number of folds of a mountain fold and a valley fold is limited to 3 and 1 or 1 and 3. All the dihedral angles β between the opposite isosceles trapezoid and the parallelogram are given equally. Since these are all fold deformations and do not require in-plane distortion, they can be performed only by bending. Further, since the creases are related to each other, the folding process needs to be performed at the same time as the folds included in the member.

図6は、平板素材から、折り曲げ加工により、目的の折板伸縮管を製造する工程を示す(斜視図)。図6(a)は、パターンAを参考のため折り目を転写した板を示す。図6(b)は、折り曲げ加工で、二面角βを中間値程度与えた状態である)。図6(c)は、二面角βを与えた状態である。図6は、図6(c)のパターンAの折り曲げ部材と、同様に製造されたパターンBの折り曲げ部材の結合を示す(斜視図)。この際、両者は、それぞれの各等脚台形を通る対称面が同一面上にあるように背面であわせる。FIG. 6 shows a process of manufacturing a target folded plate telescopic tube from a flat plate material by bending (perspective view). FIG. 6A shows a plate on which a crease is transferred for reference to the pattern A. FIG. FIG. 6B shows a state in which the dihedral angle β is given an intermediate value by bending. FIG. 6C shows a state in which a dihedral angle β is given. FIG. 6 shows the coupling between the bending member of the pattern A in FIG. 6C and the bending member of the pattern B manufactured in the same manner (perspective view). At this time, the two are aligned on the back so that the planes of symmetry passing through the respective isosceles trapezoids are on the same plane.

また、請求項5に述べたように、パターンAとパターンBを結合して二面角βとした管状の形態は、これを軸方向に荷重をかけて伸縮して、二面角β1と加工することができる。例えばβが大きい値では、パターンA,Bともに比較的フラットな状態であり、結合(溶接など)作業のための空間が広い。このことを利用して、結合後に所定の二面角とすればよい。In addition, as described in claim 5, the tubular form in which the pattern A and the pattern B are combined to form the dihedral angle β is expanded and contracted by applying a load in the axial direction to form the dihedral angle β1. can do. For example, when β is large, both patterns A and B are relatively flat, and a space for joining (welding, etc.) work is wide. Using this fact, a predetermined dihedral angle may be obtained after the coupling.

実施例3は、本発明の伸縮管が、軸線が平面曲線である場合にも、適応できることを示す。図7には、曲がり伸縮管アセンブリー15を示した。なお、本発明の伸縮管の曲げ剛性は、直交異方性があり、図示の例は曲りやすい方向をとっている。逆にこの性質を利用して、直線的に使う場合には、重力にたいして曲げ剛性の大きい方向を配置する利用も可能である。Example 3 shows that the telescopic tube of the present invention can be applied even when the axis is a plane curve. FIG. 7 shows a bent telescopic tube assembly 15. In addition, the bending rigidity of the expansion-contraction pipe | tube of this invention has orthogonal anisotropy, and the example of illustration has taken the direction which is easy to bend. On the other hand, in the case of using the property in a straight line, it is possible to use a direction in which the bending rigidity is large with respect to the gravity.

実施例4として、これは一種の管状のばねであるから、ばね一般として使うことができる。管状の形は一般に安定したかたちであること、素材の選択の多様性、が注目される。また、それ自体のばね特性によらず、伸縮できる管型ケーシングとして、管内部に弾塑性材料等を充填する複合構造により、制振や衝撃エネルギー吸収要素としても使える。要するに、これまで特殊な用途に限られていた伸縮管を、より一般的な使い方にまで広げることが可能となる。As Example 4, since this is a kind of tubular spring, it can be used as a spring in general. In general, the tubular shape is a stable shape, and the variety of choice of materials is noted. Moreover, it can be used as a damping or impact energy absorbing element by a composite structure in which an elastic-plastic material or the like is filled inside the pipe as a tubular casing that can be expanded and contracted regardless of its own spring characteristics. In short, it is possible to expand the telescopic tube, which has been limited to special applications, to more general usage.

本発明は、伸縮管および伸縮管アセンブリーに関する新規な原理と応用を提起するものである。The present invention proposes novel principles and applications for telescoping tubes and telescoping tube assemblies.

伸縮管アセンブリー(正面図) (a)基準状態 (b)伸長状態Telescopic tube assembly (front view) (a) Reference state (b) Extended state 筒型伸縮構造の変形過程(斜視図)(a)、(b)、(c)、(d)、(e)Deformation process of cylindrical telescopic structure (perspective view) (a), (b), (c), (d), (e) 図2の筒型伸縮構造に対応する断面積Sと二面角βの関係グラフ記号は図2(a)、(b)、(c)、(d)、(e)に対応。The relationship graph symbols of the cross-sectional area S and the dihedral angle β corresponding to the cylindrical expansion / contraction structure of FIG. 2 correspond to FIGS. 2 (a), (b), (c), (d), and (e). 伸縮管の原理 (a)単位部材(平面図) (b)リング構造(平面図、正面図) (c)縮小時のリング構造(平面図、正面図)Principle of telescopic tube (a) Unit member (plan view) (b) Ring structure (plan view, front view) (c) Ring structure at the time of reduction (plan view, front view) 伸縮管の設計図 (a)パターンA (b)パターンBBlueprint of telescopic tube (a) Pattern A (b) Pattern B 伸縮管の製造工程(斜視図) (a)初期状態 (b)折り曲げ加工中途 (c)折り曲げ加工終了 (d)パターンAとパターンBの組み合わせ結合Stretch tube manufacturing process (perspective view) (a) Initial state (b) Bending process in progress (c) End of bending process (d) Combination of pattern A and pattern B combined 曲り伸縮管アセンブリー(正面図)Curved telescopic tube assembly (front view)

1 平行線
2 帯状領域
3 等脚台形
3−1 等脚台形の底
3−2 等脚台形の斜辺
3−3 等脚台形の斜辺の傾斜角(等脚台形の内角)
4 中心から奇数番目の平行四辺形
5 中心から偶数番目で且つ端部の平行四辺形
5−1 中心から偶数番目で且つ端部の平行四辺形の接合部分
5−2 中心から偶数番目で且つ端部の平行四辺形の必要最小限の部分
5−3 中心から偶数番目で且つ端部の平行四辺形の必要最小限の部分と平行四辺形4の稜線の結合線
6 等脚台形(3と対となる)
10 伸縮管アセンブリー
11 伸縮管
12 ジョイント・ブロックまたはカラー
13 面板
14 折り目(ヒンジ)
15 曲り伸縮管アセンブリー
A パターン、及びその形状の部材
B パターン、及びその形状の部材
A1、A2、A3、A4,... 基本領域(図5(a))
B1、B2、B3、B4,... 基本領域(図5(b))
S 伸縮管断面積
X,Y 直交座標系
β、β1 平行線1を挟む二面角(台形面(3と6)間の二面角)
・・・・・・・図5(a)(b)平行四辺形5の余剰部分の削除線
DESCRIPTION OF SYMBOLS 1 Parallel line 2 Band-like area | region 3 Isosceles trapezoid 3-1 Isosceles trapezoid bottom 3-2 Isosceles trapezoid hypotenuse 3-3 Inclined angle of equilateral trapezoid hypotenuse
4 Odd-numbered parallelograms from the center 5 Even-numbered and end-side parallelograms 5-1 Even-numbered and end-sided parallelogram junctions 5-2 Even-numbered and end-side from the center Necessary minimum part of the parallelogram 5-3 The connecting line 6 between the minimum part of the parallelogram that is even from the center and the edge of the parallelogram 4 and the ridgeline of the parallelogram 4 Become)
10 Stretch tube assembly 11 Stretch tube 12 Joint block or collar 13 Face plate 14 Crease (hinge)
15 Curved telescopic tube assembly A pattern, and member B of its shape, and members A1, A2, A3, A4,. . . Basic area (Figure 5 (a))
B1, B2, B3, B4,. . . Basic area (Fig. 5 (b))
S Stretchable tube cross section X, Y Cartesian coordinate system β, β1 Dihedral angle across parallel line 1 (dihedral angle between trapezoidal surfaces (3 and 6))
····················· FIG.

Claims (5)

伸縮管とジョイント・ブロックを構成要素とするものであって、該伸縮管の形状は、折り設計図に示すパターン(A)とパターン(B)に基づき、パターン(A)は、(XY)面において、(X)軸方向の二つの平行線で規定される帯状の領域内において、該平行線に上底下底を置く等脚台形を配し、該等脚台形の両側に対称的に、該等脚台形の斜辺と等しい傾斜角をもちかつ該平行線を二辺とする平行四辺形を複数かつ偶数個を隙間無く配し、これを基本領域(A1)とし、該基本領域(A1)から始めて、該基本領域の一つの平行線を鏡とする鏡像(A2)を形成し、さらに同様の操作で鏡像(A2)の鏡像である鏡像(A3)を形成し、順次これを繰り返すことで形成されたものをパターン(A)とし、パターン(B)は、(XY)面上で、前記第一の鏡像(A2)を(B1)とし、(B1)から始めて、前記パターン(A)と同様の操作を順次繰り返すことで形成されたものをパターン(B)とし、パターン(A)およびパターン(B)について、それらに含まれる等脚台形および平行四辺形のすべての辺を折り目とし、該折り目の山折り谷折りは該等脚台形の斜辺の折り目を山折りとして決定し、前記平行線上の折り目を挟むすべての二面角(β)を等しくし、パターン(A)とパターン(B)のそれぞれの基本領域が(A1)と(B1)、(A2)と(B2)、(A3)と(B3)・・・のように背面で対置させて合わせ、前記偶数番目でかつ端部の対応する平行四辺形の相接する部分で結合して伸縮管の形状とし、該形状を板材で実体化して伸縮管とし、該伸縮管の端部にジョイント・ブロックを結合して拘束し、一定の範囲で伸縮することを特徴とする伸縮管アセンブリー。The telescopic tube and the joint block are constituent elements, and the shape of the telescopic tube is based on the pattern (A) and the pattern (B) shown in the folding design drawing, and the pattern (A) is the (XY) plane. (X) In the band-shaped region defined by two parallel lines in the axial direction, an isosceles trapezoid with the upper and lower bases placed on the parallel lines is disposed symmetrically on both sides of the isosceles trapezoid, A plurality of parallelograms having an inclination angle equal to the hypotenuse of the isosceles trapezoid and having the parallel lines as two sides and an even number of parallelograms are arranged without gaps, and this is defined as a basic region (A1). For the first time, a mirror image (A2) is formed by using one parallel line of the basic region as a mirror, and a mirror image (A3) that is a mirror image of the mirror image (A2) is formed by the same operation. The pattern is (A), and the pattern (B) is the (XY) plane. Then, the first mirror image (A2) is set to (B1), and the pattern (B) is formed by sequentially repeating the same operation as the pattern (A) starting from (B1). ) And the pattern (B), all the sides of the isosceles trapezoid and parallelogram included in the pattern (B) are creased, and the mountain fold valley fold of the crease is determined as the fold of the hypotenuse of the isosceles trapezoid, All dihedral angles (β) sandwiching the folds on the parallel lines are made equal, and the basic regions of the patterns (A) and (B) are (A1) and (B1), (A2) and (B2), As shown in (A3) and (B3)..., They are arranged to face each other on the back, and are combined at the even-numbered and corresponding parallelograms at the ends of the parallelograms to form a telescopic tube. Materialized with a plate material to form a telescopic tube, the end of the telescopic tube A telescopic tube assembly characterized by connecting and constraining a joint block to a section and expanding and contracting within a certain range. 請求項1において、二面角(β)を60度以下とすることを特徴とする伸縮管アセンブリー。2. The telescopic tube assembly according to claim 1, wherein the dihedral angle (β) is 60 degrees or less. 折り設計図に示すパターン(A)とパターン(B)に基づく製造方法であり、パターン(A)は、(XY)面において、(X)軸方向の二つの平行線で規定される帯状の領域内において、該平行線に上底下底を置く等脚台形を配し、該等脚台形の両側に対称的に、該等脚台形の斜辺と等しい傾斜角をもちかつ該平行線を二辺とする平行四辺形を複数かつ偶数個を隙間無く配し、これを基本領域(A1)とし、該基本領域(A1)から始めて、該基本領域の一つの平行線を鏡とする鏡像(A2)を形成し、さらに同様の操作で鏡像(A2)の鏡像である鏡像(A3)を形成し、順次これを繰り返すことで形成されたものをパターン(A)とし、パターン(B)は、(XY)面上で、前記第一の鏡像(A2)を(B1)とし、(B1)から始めて、前記パターン(A)と同様の操作を順次繰り返すことで形成されたものをパターン(B)としパターン(A)およびパターン(B)について、それらに含まれる等脚台形および平行四辺形のすべての辺を折り目とし、該折り目の山折り谷折りは該等脚台形の斜辺の折り目を山折りとして決定し、前記平行線上の折り目を挟むすべての二面角(β)を等しくし、板材の曲げ加工によって、パターン(A)部材、パターン(B)部材を製作し、パターン(A)部材およびパターン(B)部材の、それぞれの基本領域が(A1)と(B1)、(A2)と(B2)、(A3)と(B3)・・・のように背面で対置させて合わせ、前記偶数番目でかつ端部の対応する平行四辺形の相接する部分で結合加工することを特徴とする伸縮管の製造方法。This is a manufacturing method based on the pattern (A) and the pattern (B) shown in the folded design drawing. The pattern (A) is a band-shaped region defined by two parallel lines in the (X) axis direction on the (XY) plane. An isosceles trapezoid having an upper base and a lower base on the parallel line, symmetrically on both sides of the isosceles trapezoid, having an inclination angle equal to the hypotenuse of the isosceles trapezoid and the parallel lines as two sides A plurality of parallelograms are arranged without any gaps, and this is used as a basic region (A1). Starting from the basic region (A1), a mirror image (A2) having one parallel line of the basic region as a mirror is obtained. Then, a mirror image (A3) that is a mirror image of the mirror image (A2) is formed by the same operation, and the pattern (A) is formed by repeating this sequentially, and the pattern (B) is (XY) On the surface, the first mirror image (A2) is (B1) and starts from (B1) The pattern (B) is formed by sequentially repeating the same operation as the pattern (A), and all the sides of the isosceles trapezoid and parallelogram included in the pattern (A) and the pattern (B) Folds, and the folds and folds of the folds are determined as folds of the hypotenuses of the isosceles trapezoid, and all dihedral angles (β) sandwiching the folds on the parallel lines are made equal, and the plate material is bent The pattern (A) member and the pattern (B) member are manufactured by the above, and the basic areas of the pattern (A) member and the pattern (B) member are (A1) and (B1), (A2) and (B2), respectively. , (A3) and (B3)..., An expansion tube characterized by being combined at the back side and joined at the even-numbered and corresponding parallelogram contact portions at the ends. Manufacturing method. 請求項3において、パターン(A)とパターン(B)を、総和は等しく分割は異なる部材により、加工することを特徴とする伸縮管の製造方法。4. A method for manufacturing an expandable tube according to claim 3, wherein the pattern (A) and the pattern (B) are processed by members having the same sum but different divisions. 請求項3および請求項4において、二面角(β)で製造した伸縮管を、軸方向の荷重によって二面角(β1)とすることを特徴とする伸縮管の製造方法。5. A method of manufacturing an expansion / contraction tube according to claim 3 or 4, wherein the expansion / contraction tube manufactured at a dihedral angle ([beta]) is converted into a dihedral angle ([beta] 1) by an axial load.
JP2011037653A 2011-02-04 2011-02-04 Expansion pipe Withdrawn JP2012163201A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011037653A JP2012163201A (en) 2011-02-04 2011-02-04 Expansion pipe

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011037653A JP2012163201A (en) 2011-02-04 2011-02-04 Expansion pipe

Publications (1)

Publication Number Publication Date
JP2012163201A true JP2012163201A (en) 2012-08-30

Family

ID=46842774

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011037653A Withdrawn JP2012163201A (en) 2011-02-04 2011-02-04 Expansion pipe

Country Status (1)

Country Link
JP (1) JP2012163201A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115183756A (en) * 2022-09-10 2022-10-14 山东博远视讯信息技术有限公司 Image control point device based on unmanned aerial vehicle remote sensing monitoring

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115183756A (en) * 2022-09-10 2022-10-14 山东博远视讯信息技术有限公司 Image control point device based on unmanned aerial vehicle remote sensing monitoring

Similar Documents

Publication Publication Date Title
Lang et al. A review of thickness-accommodation techniques in origami-inspired engineering
US10850406B2 (en) Non-planar shearing auxetic structures, devices, and methods
Hunt et al. Twist buckling and the foldable cylinder: an exercise in origami
Cai et al. Geometric design and mechanical behavior of a deployable cylinder with Miura origami
US8652602B1 (en) Rotational expansion auxetic structures
JP6417578B2 (en) Foldable structure, foldable structure manufacturing method, foldable structure manufacturing apparatus, and program
Chen et al. An extended family of rigidly foldable origami tubes
CA3097190A1 (en) Lattice metamaterial having programed thermal expansion
CN111186175B (en) Foldable membrane rod structure
Li et al. A novel variable stiffness mechanism for dielectric elastomer actuators
Oppenheim et al. Tensegrity prisms as adaptive structures
JP7039092B2 (en) Flexible hinge with a large spatial stroke in a planar composite structure
Ma et al. Modelling of the waterbomb origami pattern and its applications
JP2012163201A (en) Expansion pipe
Rohmer et al. An experimental and numerical study of shape memory alloy-based tensegrity/origami structures
Hu et al. Toward actuation of Kresling pattern-based origami robots
JP2011068328A (en) Cylindrical expansion structure
US11193551B2 (en) Stable shape-reconfigurable structures and mechanisms
US10422124B1 (en) Bistable collapsible compliant mechanisms and shape-changing structures that comprise them
JP7164169B2 (en) Deployable structure
JP6707992B2 (en) Damper structure and damper manufacturing method
JP7216236B1 (en) Folding structure, rigid folding structure and method of manufacturing folding structure
Wang et al. A theoretical design of a bellow-shaped statically balanced compliant mechanism
Devi et al. Anti-Bourdon tube pressure gauge
JP2020186801A (en) Actuator

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20140513