JP2012163058A - Catalytic converter device and method for energizing catalyst carrier - Google Patents

Catalytic converter device and method for energizing catalyst carrier Download PDF

Info

Publication number
JP2012163058A
JP2012163058A JP2011024866A JP2011024866A JP2012163058A JP 2012163058 A JP2012163058 A JP 2012163058A JP 2011024866 A JP2011024866 A JP 2011024866A JP 2011024866 A JP2011024866 A JP 2011024866A JP 2012163058 A JP2012163058 A JP 2012163058A
Authority
JP
Japan
Prior art keywords
energization
catalyst carrier
power
time
catalyst
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2011024866A
Other languages
Japanese (ja)
Other versions
JP5659836B2 (en
Inventor
Keita Hashimoto
慶太 橋元
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2011024866A priority Critical patent/JP5659836B2/en
Publication of JP2012163058A publication Critical patent/JP2012163058A/en
Application granted granted Critical
Publication of JP5659836B2 publication Critical patent/JP5659836B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Exhaust Gas After Treatment (AREA)
  • Exhaust Gas Treatment By Means Of Catalyst (AREA)

Abstract

PROBLEM TO BE SOLVED: To obtain a catalytic converter device that can prevent a damage caused by a local overheat of a catalyst carrier.SOLUTION: The catalyst carrier has a property the electrical resistance decreases as the temperature rises. An energization power applied to the catalyst carrier is gradually reduced at an end stage of energization TE' including at least an end of energization TE.

Description

本発明は、内燃機関の排気管に設けられる触媒コンバータ装置と、触媒担体に通電するための触媒担体通電方法に関する。   The present invention relates to a catalytic converter device provided in an exhaust pipe of an internal combustion engine and a catalyst carrier energization method for energizing a catalyst carrier.

内燃機関で生じた排気を浄化するために排気管に設けられる触媒コンバータ装置では、触媒を担持する触媒担体を通電して昇温させ、十分な触媒効果が得られるようにすることが望まれる。しかし、触媒担体の内部に局所的な過熱部分が生じると、触媒担体の破損を招くことがある。   In a catalytic converter device provided in an exhaust pipe for purifying exhaust gas generated in an internal combustion engine, it is desirable to energize a catalyst carrier carrying a catalyst to raise the temperature so that a sufficient catalytic effect can be obtained. However, if a locally overheated portion is generated inside the catalyst carrier, the catalyst carrier may be damaged.

これに対し、特許文献1では、触媒担体に配置された温度センサからの情報に基づいて、触媒担体への通電制御を行う通電加熱式触媒装置の通電制御システムが記載されている。   On the other hand, Patent Document 1 describes an energization control system for an electrically heated catalyst device that performs energization control on a catalyst carrier based on information from a temperature sensor disposed on the catalyst carrier.

特許文献1に記載の通電制御システムは、触媒担体への通電と非通電とを切り替えるものであり、実際に触媒担体の破損を抑制するには、さらなる対策が望まれる。   The energization control system described in Patent Document 1 switches between energization and non-energization of the catalyst carrier, and further measures are desired to actually suppress the damage of the catalyst carrier.

特開2009−189921号公報JP 2009-189921 A

本発明は上記事実を考慮し、触媒担体の局所過熱に起因する破損を抑制可能な触媒コンバータ装置を得ることを課題とする。   In view of the above facts, an object of the present invention is to obtain a catalytic converter device capable of suppressing breakage due to local overheating of a catalyst carrier.

請求項1に記載の発明では、温度上昇に伴って電気抵抗が低下する特性を備え、内燃機関から排出される排気を浄化するための触媒を担持すると共に通電によって加熱される触媒担体と、前記触媒担体に対し通電電力を制御して通電可能な通電手段と、を有し、前記通電手段が、前記触媒担体への通電終了時を含む少なくとも通電終了段階では通電終了時に向けて通電電力を漸減させる。   In the first aspect of the present invention, the catalyst carrier is provided with a characteristic that the electric resistance decreases as the temperature rises, carries a catalyst for purifying exhaust gas discharged from the internal combustion engine, and is heated by energization, An energization means capable of energizing the catalyst carrier by controlling the energization power, and the energization means gradually reduces the energization power toward the end of energization at least at the energization end stage including the end of energization to the catalyst carrier. Let

この触媒コンバータ装置では、触媒担体が通電手段によって通電されると、触媒担体は加熱されて昇温されるので、担持された触媒による浄化効果をより高く発揮させることができる。   In this catalytic converter device, when the catalyst carrier is energized by the energizing means, the catalyst carrier is heated and heated up, so that the purification effect by the supported catalyst can be exhibited more highly.

触媒担体は、温度上昇に伴って電気抵抗が低下する特性を備えているため、触媒担体への通電の時間経過と共に、触媒担体の局所過熱に起因する温度ムラが大きくなりがちであるが、通電手段による触媒担体への通電電力は、通電終了時を含む少なくとも通電終了段階では通電終了時に向けて漸減される。すなわち、通電電力が徐々に低くなりながら、通電が終了される。したがって、通電終了段階で通電電力が漸増する構成や通電電力が一定である構成と比較して、触媒担体の局所過熱が抑制される。これにより、触媒担体の温度ムラも小さくなるので、触媒担体の破損を抑制できる。   Since the catalyst carrier has the characteristic that the electric resistance decreases as the temperature rises, the temperature unevenness due to local overheating of the catalyst carrier tends to increase with the passage of time to the catalyst carrier. The power supplied to the catalyst carrier by the means is gradually reduced toward the end of energization at least in the energization end stage including the end of energization. That is, energization is terminated while the energization power gradually decreases. Therefore, local overheating of the catalyst carrier is suppressed as compared with a configuration in which the energized power gradually increases at the end of energization or a configuration in which the energized power is constant. Thereby, the temperature unevenness of the catalyst carrier is also reduced, so that damage to the catalyst carrier can be suppressed.

なお、ここでいう「漸減」には、通電終了段階において、通電電力が全く上昇することなく単調に低下するものが含まれるのはもちろんであるが、たとえば、触媒担体の温度上昇に実質的に寄与しない程度の短時間で通電電力が極大値をとるような構成や、通電終了段階における一定時間で通電電力が一定値をとる構成であっても、通電終了段階を全体として見たときに通電電力が徐々に低下していれば、ここでいう「漸減」に含まれる。   The “gradual decrease” mentioned here includes, of course, those in which the energization power decreases monotonically without increasing at the end of energization, but for example, substantially increases in the temperature of the catalyst carrier. Even if the configuration is such that the energization power takes a maximum value in a short time that does not contribute, or the energization power takes a constant value for a certain time in the energization end stage, the energization is performed when the energization end stage is viewed as a whole. If the electric power gradually decreases, it is included in the “gradual decrease” here.

請求項2に記載の発明では、請求項1に記載の発明において、前記通電手段が、前記触媒担体への通電開始時以降で前記通電終了時よりも前に通電電力を最大値とし、この最大値の時点から通電終了時までに記通電終了段階を設定して通電電力を漸減させる。   In the invention according to claim 2, in the invention according to claim 1, the energization means sets the energization power to a maximum value after the start of energization to the catalyst carrier and before the end of energization. The energization end stage is set from the time of the value to the end of energization to gradually decrease the energization power.

このように、触媒担体への通電開始時以降で通電終了時よりも前に通電電力を最大値とすることで、触媒担体を効果的に加熱できる。   Thus, the catalyst carrier can be effectively heated by setting the energization power to the maximum value after the start of energization to the catalyst carrier and before the end of energization.

しかも、最大値の時点(以下「電力最大時」という)から通電終了時までは、通電終了段階として通電電力が漸減されるので、触媒担体の局所過熱が抑制される。   Moreover, since the energized power is gradually reduced as the energization end stage from the time of the maximum value (hereinafter referred to as “maximum power”) to the end of energization, local overheating of the catalyst carrier is suppressed.

請求項3に記載の発明では、請求項2に記載の発明において、前記最大値の時点が、通電開始から全通電時間の(3/4)よりも前に設定されている。   In the invention according to claim 3, in the invention according to claim 2, the time point of the maximum value is set before (3/4) of the total energization time from the energization start.

すなわち、電力最大時が、通電開始時から全通電時間の(3/4)よりも前なので、全通電時間の(3/4)よりも後では、確実に通電電力が漸減される。このため、より確実に、触媒担体への通電終了前(特に通電終了直前)における破損を抑制できる。   That is, since the maximum power is before (3/4) of the total energization time from the start of energization, the energized power is surely gradually reduced after (3/4) of the total energization time. For this reason, it is possible to more reliably suppress damage before the end of energization of the catalyst carrier (particularly immediately before the end of energization).

請求項4に記載の発明では、温度上昇に伴って電気抵抗が低下する特性を備え、内燃機関から排出される排気を浄化するための触媒を担持した触媒担体を、通電によって加熱する触媒担体通電方法であって、前記触媒担体への通電終了時を含む少なくとも通電終了段階では通電終了時に向けて通電電力を漸減させる。   According to the fourth aspect of the present invention, the catalyst carrier energization is performed by heating the catalyst carrier carrying the catalyst for purifying the exhaust gas discharged from the internal combustion engine with the characteristic that the electrical resistance decreases as the temperature rises. In the method, the energization power is gradually reduced toward the end of energization at least in the energization end stage including the end of energization of the catalyst carrier.

この触媒担体通電方法では、触媒担体は通電されると加熱されて昇温されるので、担持された触媒による浄化効果をより高く発揮させることができる。   In this catalyst carrier energization method, when the catalyst carrier is energized, the catalyst carrier is heated and raised in temperature, so that the purification effect by the supported catalyst can be exhibited more highly.

触媒担体は、温度上昇に伴って電気抵抗が低下する特性を備えているため、触媒担体への通電の時間経過と共に、触媒担体の局所過熱に起因する温度ムラが大きくなりがちであるが、触媒担体への通電電力は、通電終了時を含む少なくとも通電終了段階では通電終了時に向けて漸減される。すなわち、通電電力が徐々に低くなりながら、通電が終了される。したがって、通電終了段階で通電電力が漸増する構成や、通電電力が一定である構成と比較して、触媒担体の局所過熱が抑制される。これにより、触媒担体の温度ムラも小さくなるので、触媒担体の破損を抑制できる。   Since the catalyst carrier has a characteristic that the electric resistance decreases as the temperature rises, the temperature unevenness due to local overheating of the catalyst carrier tends to increase with the passage of time to the catalyst carrier. The energization power to the carrier is gradually reduced toward the end of energization at least at the energization end stage including the end of energization. That is, energization is terminated while the energization power gradually decreases. Therefore, local overheating of the catalyst carrier is suppressed as compared with a configuration in which the energized power gradually increases at the end of energization or a configuration in which the energized power is constant. Thereby, the temperature unevenness of the catalyst carrier is also reduced, so that damage to the catalyst carrier can be suppressed.

本発明は上記構成としたので、触媒担体の局所過熱に起因する破損を抑制可能となる。   Since the present invention is configured as described above, it is possible to suppress breakage due to local overheating of the catalyst carrier.

本発明の第1実施形態の触媒コンバータ装置を示し、(A)は排気の流れ方向に沿った断面図、(B)は排気の流れ方向と直交する方向での断面図である。1 shows a catalytic converter device according to a first embodiment of the present invention, in which (A) is a cross-sectional view along the flow direction of exhaust gas, and (B) is a cross-sectional view in a direction orthogonal to the flow direction of exhaust gas. 本発明の第1実施形態の触媒コンバータ装置を図1(B)と同様の断面で示し、(A)は触媒担体の電流の大きさを概念的に示す説明図、(B)は触媒担体の温度分布を示す説明図である。The catalytic converter device of the first embodiment of the present invention is shown in the same cross section as FIG. 1B, (A) is an explanatory diagram conceptually showing the magnitude of the current of the catalyst carrier, and (B) is the catalyst carrier. It is explanatory drawing which shows temperature distribution. 本発明の実施パターンA及び比較例のパターンEにおいて、(A)は通電電力の時間変化を、(B)は触媒担体の温度の時間変化をそれぞれを示すグラフである。In the embodiment pattern A of the present invention and the pattern E of the comparative example, (A) is a graph showing the time change of the energized power, and (B) is a graph showing the time change of the temperature of the catalyst carrier. 本発明の実施パターンA、B、C及び比較例のパターンにおいて、触媒担体に作用させた熱エネルギーの時間変化を示すグラフである。It is a graph which shows the time change of the thermal energy made to act on a catalyst support | carrier in the pattern of the implementation pattern A, B, C of this invention, and a comparative example. 本発明の実施パターンB、Cにおける通電電力の時間変化を示すグラフである。It is a graph which shows the time change of the electricity supply in the implementation patterns B and C of this invention. 本発明の実施パターンDにおける通電電力の時間変化を示すグラフである。It is a graph which shows the time change of the energization electric power in the implementation pattern D of this invention.

図1(A)には、本発明の第1実施形態の触媒コンバータ装置12が示されている。触媒コンバータ装置12は、排気管の途中に装着されるようになっている。排気管内には、エンジンからの排気が流れるが、図1(B)は、この排気の流れ方向と直交する方向の断面(図1(A)のB−B線断面)にて、触媒コンバータ装置12を示したものである。   FIG. 1A shows a catalytic converter device 12 according to a first embodiment of the present invention. The catalytic converter device 12 is mounted in the middle of the exhaust pipe. Exhaust gas from the engine flows in the exhaust pipe. FIG. 1B shows a catalytic converter device in a cross-section in the direction orthogonal to the flow direction of the exhaust gas (cross-section BB in FIG. 1A). 12 is shown.

図1に示すように、触媒コンバータ装置12は、導電性及び剛性を有する材料によって形成された触媒担体14を有している。触媒担体14は、たとえばハニカム状とすることで材料の表面積が増大されている。触媒担体14の表面には触媒(白金、パラジウム、ロジウム等)が付着された状態で担持されている。触媒は、排気管内を流れる排気(流れ方向を矢印F1で示す)中の有害物質を浄化する作用を有している。なお、触媒担体14の表面積を増大させる構造は、上記したハニカム状に限定されるものではなく、たとえば格子状や波状等であってもよい。   As shown in FIG. 1, the catalytic converter device 12 includes a catalyst carrier 14 formed of a material having conductivity and rigidity. The surface area of the material is increased by making the catalyst carrier 14 into a honeycomb shape, for example. A catalyst (platinum, palladium, rhodium, etc.) is supported on the surface of the catalyst carrier 14 in an attached state. The catalyst has an action of purifying harmful substances in the exhaust gas flowing in the exhaust pipe (the flow direction is indicated by an arrow F1). The structure for increasing the surface area of the catalyst carrier 14 is not limited to the above honeycomb shape, and may be, for example, a lattice shape or a wave shape.

触媒担体14を構成する材料としては、導電性セラミック、導電性樹脂や金属等を適用可能であるが、本実施形態では特に、SiC(炭化珪素)を含む材料を用いている。このSiCは、温度上昇に伴って電気抵抗が減少する特性(NTC特性)を持つ材料の一例である。本実施形態ではこのように、触媒担体14を構成する材料が炭化珪素を含んでいるので、高い強度や耐熱性を得られる。   As a material constituting the catalyst carrier 14, a conductive ceramic, a conductive resin, a metal, or the like can be applied. In the present embodiment, a material containing SiC (silicon carbide) is particularly used. This SiC is an example of a material having a characteristic (NTC characteristic) in which the electrical resistance decreases as the temperature rises. In this embodiment, since the material constituting the catalyst carrier 14 contains silicon carbide, high strength and heat resistance can be obtained.

さらに、触媒担体14の電気抵抗率としては、10〜200Ω・cmとすれば、後述するように通電したときに、担持した触媒を効率的に温度上昇させることができるので好ましい。触媒担体14の気孔率としては、30〜60%の範囲とすることが好ましい。気孔率を30%以上とすると、必要な表面積を確保して多くの触媒を担持可能となる。また、気孔率を60%以下とすることで、触媒担体14として求められる強度を維持することが可能となる。   Furthermore, if the electrical resistivity of the catalyst carrier 14 is 10 to 200 Ω · cm, the temperature of the supported catalyst can be increased efficiently when energized as described later, which is preferable. The porosity of the catalyst carrier 14 is preferably in the range of 30 to 60%. When the porosity is 30% or more, a necessary surface area is secured and a large amount of catalyst can be supported. Moreover, it becomes possible to maintain the intensity | strength calculated | required as the catalyst support | carrier 14 by making a porosity into 60% or less.

触媒担体14には、2枚の電極16A、16Bが貼着され、さらに電極16A、16Bの中心にはそれぞれ端子18A、18Bが接続されている。電極16A、16Bは、触媒担体14の外周面に沿って所定の広がりをもった範囲で触媒担体14に接触配置されており、端子18A、18Bから電極16A、16Bを通じて触媒担体14に通電することで、触媒担体14を加熱できる。そして、この加熱により、触媒担体14に担持された触媒を昇温させることで、触媒が有する排気の浄化作用をより高く発揮させることができるようになっている。   Two electrodes 16A and 16B are attached to the catalyst carrier 14, and terminals 18A and 18B are connected to the centers of the electrodes 16A and 16B, respectively. The electrodes 16A and 16B are arranged in contact with the catalyst carrier 14 in a range having a predetermined spread along the outer peripheral surface of the catalyst carrier 14, and the catalyst carrier 14 is energized from the terminals 18A and 18B through the electrodes 16A and 16B. Thus, the catalyst carrier 14 can be heated. Then, by heating, the temperature of the catalyst carried on the catalyst carrier 14 is raised, so that the exhaust gas purifying action of the catalyst can be exhibited to a higher degree.

触媒担体14の断面形状(排気の流れ方向と直交する断面の形状)は特に限定されないが、本実施形態では円形としている。そして、この円形の中心をはさんで対向する位置に、電極16A、16Bを配置している。   The cross-sectional shape of the catalyst carrier 14 (the cross-sectional shape orthogonal to the exhaust flow direction) is not particularly limited, but is circular in this embodiment. The electrodes 16A and 16B are arranged at positions facing each other across the center of the circle.

触媒担体14の外周には、絶縁性材料によって円筒状に形成された保持部材24が配置されている。さらに、保持部材24の外周には、ステンレス等の金属で円筒状に成形されたケース筒体28が配置されている。すなわち、円筒状のケース筒体28の内部に、触媒担体14が収容されると共に、ケース筒体28と触媒担体14との間に配置された保持部材24により、触媒担体14がケース筒体28の内部に隙間なく保持されている。そして、絶縁性を有する保持部材24が触媒担体14とケース筒体28との間に配置されているので、触媒担体14からケース筒体28への電気の流れが阻止されている。   A holding member 24 formed in a cylindrical shape by an insulating material is disposed on the outer periphery of the catalyst carrier 14. Further, a case cylinder 28 formed in a cylindrical shape with a metal such as stainless steel is disposed on the outer periphery of the holding member 24. That is, the catalyst carrier 14 is accommodated inside the cylindrical case cylinder 28, and the catalyst carrier 14 is placed in the case cylinder 28 by the holding member 24 disposed between the case cylinder 28 and the catalyst carrier 14. It is held without gaps inside. Since the insulating holding member 24 is disposed between the catalyst carrier 14 and the case cylinder 28, the flow of electricity from the catalyst carrier 14 to the case cylinder 28 is prevented.

電極16A、16Bには、触媒担体14に電力を供給可能な電源装置30が接続されている。電源装置30は制御装置32によって制御されるようになっており、所定のタイミングで電力供給の開始時間及び終了時間を設定でき、さらに供給電力量を調整可能とされている。電源装置30及び制御装置32は、本発明の通電手段を構成している。   A power supply device 30 capable of supplying power to the catalyst carrier 14 is connected to the electrodes 16A and 16B. The power supply device 30 is controlled by a control device 32. The power supply start time and end time can be set at a predetermined timing, and the power supply amount can be adjusted. The power supply device 30 and the control device 32 constitute the energizing means of the present invention.

次に、本実施形態の触媒コンバータ装置12の作用を説明する。   Next, the operation of the catalytic converter device 12 of this embodiment will be described.

触媒コンバータ装置12は、ケース筒体28が排気管の途中に取り付けられており、触媒担体14の内部を排気が矢印F1方向に通過する。このとき、触媒担体14に担持された触媒により、排気中の有害物質が浄化される。本実施形態の触媒コンバータ装置12では、端子18A、18B及び電極16A、16Bによって触媒担体14に通電し、触媒担体14を加熱することで、触媒担体14に担持された触媒を昇温させ、浄化作用をより早期に発揮させることができる。たとえば、エンジンの始動直後等、排気の温度が低い場合には、あらかじめ触媒担体14への通電加熱を行うことで、エンジン始動初期における触媒の浄化性能を確保できる。   In the catalytic converter device 12, the case cylinder 28 is attached in the middle of the exhaust pipe, and the exhaust passes through the inside of the catalyst carrier 14 in the direction of the arrow F1. At this time, harmful substances in the exhaust gas are purified by the catalyst supported on the catalyst carrier 14. In the catalytic converter device 12 of the present embodiment, the catalyst carrier 14 is energized by the terminals 18A and 18B and the electrodes 16A and 16B, and the catalyst carrier 14 is heated, whereby the temperature of the catalyst supported on the catalyst carrier 14 is raised and purified. The effect can be exhibited earlier. For example, when the temperature of the exhaust gas is low, such as immediately after starting the engine, the catalyst purification performance in the initial stage of engine starting can be ensured by conducting energization heating to the catalyst carrier 14 in advance.

ここで、図3(A)には、触媒担体14への供給電力の時間変化のパターン例(実施パターンA及び比較例のパターンE)が示されている。また、図3(B)には、実施パターンA及び比較例のパターンEにおける触媒担体の最高温度部位及び最低温度部位での温度変化が示されている(このグラフでは触媒担体14の温度を「EHC温度」と記している)。また、図4には、実施パターンA及び比較例のパターンEに加えて、後述する実施パターンB及びCにおける、触媒担体14に付与する熱エネルギーの量の時間変化が示されている。これらの電力供給のパターンは、供給電力の時間積分値が略同一となるように設定されている。このため、図4に示すように、通電終了時TEまでに触媒担体14に付与する熱エネルギーの総量ESは略同一となっている。   Here, FIG. 3 (A) shows a pattern example of change in power supplied to the catalyst carrier 14 over time (example pattern A and pattern E of the comparative example). Further, FIG. 3B shows temperature changes at the highest temperature portion and the lowest temperature portion of the catalyst carrier in Example Pattern A and Pattern E of Comparative Example (in this graph, the temperature of the catalyst carrier 14 is expressed as “ EHC temperature ”). Further, FIG. 4 shows a temporal change in the amount of heat energy applied to the catalyst carrier 14 in Example Patterns B and C described later in addition to Example Pattern A and Comparative Example Pattern E. These power supply patterns are set so that the time integration values of the supplied power are substantially the same. For this reason, as shown in FIG. 4, the total amount ES of heat energy applied to the catalyst carrier 14 by the end of energization TE is substantially the same.

そして、本発明の各実施パターンについては、触媒担体14の局所過熱(温度ムラ)を抑制し、この局所過熱に起因する触媒担体14の破損も抑制可能な電力供給パターンとされている。以下に詳述する。   And about each embodiment pattern of this invention, it is set as the electric power supply pattern which can suppress the local overheating (temperature nonuniformity) of the catalyst support | carrier 14, and can also suppress the failure | damage of the catalyst support | carrier 14 resulting from this local overheating. This will be described in detail below.

本実施形態で触媒担体14として用いたSiCは強度が低いため、過大な力が作用すると破損する(たとえば割れたり欠けたりする)ことがある。特に、触媒担体14の部位に応じて内部温度に差(温度勾配あるいは温度ムラ)が生じた場合には、この温度差に比例する熱応力が触媒担体14に発生するため、触媒担体14が内部から破損する原因となる。このような触媒担体14の破損を防止するためには、触媒担体14への通電電力を低くすればよいが、その場合には、触媒担体14の温度を目標温度にまで上昇させるために要する時間が長くなる。   Since SiC used as the catalyst carrier 14 in this embodiment has low strength, it may be damaged (for example, cracked or chipped) when an excessive force is applied. In particular, when a difference (temperature gradient or temperature unevenness) occurs in the internal temperature depending on the portion of the catalyst carrier 14, a thermal stress proportional to this temperature difference is generated in the catalyst carrier 14, so that the catalyst carrier 14 Cause damage. In order to prevent such damage to the catalyst carrier 14, it is only necessary to reduce the electric power supplied to the catalyst carrier 14. In this case, the time required to raise the temperature of the catalyst carrier 14 to the target temperature. Becomes longer.

本実施形態のように、触媒担体14を通電によって加熱する構成では、通電時の電流分布によっても、触媒担体14の温度分布に偏りが生じることがある。すなわち、図1(B)に示すように、触媒担体14の断面形状を円形とし、この触媒担体14を挟んで対向する位置に電極16A、16Bを貼着した構成を例に考えると、電極と比較して触媒担体14の電気抵抗が大きいため、触媒担体14を流れる距離が相対的に短くなるような径路に電流が集中する傾向がある。したがって、図2(A)に矢印ECで示すような電流分布となる(図2(A)では電流値の大きさを矢印ECの大きさに対応させている)。なお、触媒担体14がこれと異なる断面形状である構造や、電極16A、16Bの配置がこれと異なる構造であっても、それぞれの構造に応じた電流分布は生じる。   In the configuration in which the catalyst carrier 14 is heated by energization as in this embodiment, the temperature distribution of the catalyst carrier 14 may be biased due to the current distribution during energization. That is, as shown in FIG. 1B, when the cross-sectional shape of the catalyst carrier 14 is circular and the electrodes 16A and 16B are attached to positions facing each other with the catalyst carrier 14 interposed therebetween, In comparison, since the electric resistance of the catalyst carrier 14 is large, the current tends to concentrate on a path where the distance flowing through the catalyst carrier 14 becomes relatively short. Therefore, the current distribution is as shown by an arrow EC in FIG. 2A (in FIG. 2A, the magnitude of the current value is made to correspond to the magnitude of the arrow EC). Even if the catalyst carrier 14 has a different cross-sectional shape or a structure in which the arrangement of the electrodes 16A and 16B is different from this, a current distribution corresponding to each structure occurs.

また、本実施形態で触媒担体14として用いたSiCはNTC特性を有している。図2(A)に示したように電流が多く流れた部位は、その周囲と比較して温度が高くなるため、電気抵抗は低くなり、より電流が流れやすくなる。すなわち、電流が多く流れた部位に、さらに電流が集中することになり、局所加熱が促進される。また、電流集中の程度は、供給電力に比例するため、電力が大きいほど、局所加熱も顕著になる。触媒担体14の内部においても熱伝導(相対的に高温の部位から低温の部位への熱移動)は発生するが、この電流集中が大きくなると熱伝導が間に合わなくなり、触媒担体14の温度分布が大きくなる。たとえば、図1(A)に示した触媒担体14及び電極16A、16Bの構造の場合、図2(B)に示すように、電流の集中箇所に近い高温箇所HTと、この集中箇所から離れた低温箇所LTとが生じるような温度分布となる。そして、この温度の偏りが大きくなると、触媒担体14の破損を招く原因となる。   Further, SiC used as the catalyst carrier 14 in this embodiment has NTC characteristics. As shown in FIG. 2A, the temperature of the portion where a large amount of current flows is higher than that of the surrounding area, so that the electrical resistance is low and the current flows more easily. That is, the current is further concentrated on the portion where a large amount of current flows, and the local heating is promoted. In addition, since the degree of current concentration is proportional to the supplied power, local heating becomes more conspicuous as the power increases. Although heat conduction (heat transfer from a relatively high temperature part to a low temperature part) also occurs in the inside of the catalyst carrier 14, if this current concentration becomes large, the heat conduction will not be in time, and the temperature distribution of the catalyst carrier 14 will be large. Become. For example, in the case of the structure of the catalyst carrier 14 and the electrodes 16A and 16B shown in FIG. 1 (A), as shown in FIG. 2 (B), the high-temperature part HT near the current concentration part and the distance from the concentration part are separated. The temperature distribution is such that a low temperature portion LT is generated. And if this temperature deviation becomes large, it will cause damage to the catalyst carrier 14.

図3(A)に示す本実施形態の電力供給パターンA及び、図5に示す電力供給パターンB、Cはいずれも、時刻TS(通電開始時)で電力供給を開始し、時刻TE(通電終了時)で電力供給を終了しているが、少なくとも通電終了時TEを含む所定時間(これを通電終了段階TE’とする)では、通電電力が漸減している。   The power supply pattern A of this embodiment shown in FIG. 3A and the power supply patterns B and C shown in FIG. 5 both start supplying power at time TS (at the start of energization) and time TE (energization end). However, at least for a predetermined time including the energization end TE (referred to as energization end stage TE ′), the energization power gradually decreases.

上記したNTC特性を持つ材料では、通電からの時間経過と共に、内部での温度ムラが大きくなる傾向がある。したがって、たとえば、通電終了時TEの直前で通電電力が大きくなるように触媒担体14に通電してしまうと、内部での温度差をより大きくしてしまうことになる。また、比較例の電力供給パターンEのように、通電電力を通電開始時TSから通電終了時TEまで一定とした場合であっても、図3(B)のグラフにおいて二点鎖線で示すように、触媒担体14の内部での温度差は、本実施形態の電力供給パターンAよりも大きくなる傾向にある。   In the material having the NTC characteristics described above, the temperature unevenness inside tends to increase with the elapse of time from energization. Therefore, for example, if the catalyst carrier 14 is energized so that the energized power becomes large immediately before the energization end TE, the internal temperature difference is further increased. Further, as in the power supply pattern E of the comparative example, even when the energization power is constant from the energization start time TS to the energization end time TE, as shown by a two-dot chain line in the graph of FIG. The temperature difference inside the catalyst carrier 14 tends to be larger than the power supply pattern A of the present embodiment.

これに対し、本実施形態では、触媒担体14の温度ムラが小さい段階(通電初期段階)では通電電力を大きくし、通電終了時TEを含む少なくとも通電終了段階TE’において、通電電力を漸減させている。したがって、触媒担体14の温度が上昇した状態で触媒担体14の局所過熱を抑制することができる。すなわち、通電終了時TEの直前で通電電力が大きくなる構成と比較して、触媒担体14内での温度ムラを少なくし、触媒担体14の熱応力に起因する破損を抑制できる。   On the other hand, in the present embodiment, the energization power is increased at a stage where the temperature unevenness of the catalyst carrier 14 is small (initial stage of energization), and the energization power is gradually reduced at least at the energization end stage TE ′ including the energization end TE. Yes. Therefore, local overheating of the catalyst carrier 14 can be suppressed while the temperature of the catalyst carrier 14 is raised. That is, as compared with the configuration in which the energized power increases immediately before the end of energization TE, temperature unevenness in the catalyst carrier 14 can be reduced, and damage due to thermal stress of the catalyst carrier 14 can be suppressed.

なお、電力供給パターンAでは、通電開始時TSで通電電力を最大とし、時間経過と共に通電電力を線型(時間の一次関数)で減少させるような変化としているが、要するに、通電終了時TEを含む通電終了段階TE’において通電電力が漸減していればよく、かかる観点からは、たとえば、図5に示すような、以下の各電力供給パターンB及びCでもよい。   In the power supply pattern A, the energization power is maximized at the energization start time TS, and the energization power is changed linearly (linear function of time) as time passes. In short, the energization end time TE is included. It is only necessary that the energized power is gradually reduced in the energization end stage TE ′. From this viewpoint, for example, the following power supply patterns B and C as shown in FIG. 5 may be used.

電力供給パターンBでは、通電開始時TSから所定時間は、通電電力が漸増している。そして、通電開始時TSと通電終了時TEの間において、通電電力が最大値となっている(この電力最大値の時点を電力最大時TMとする)。電力最大時TMから通電終了時TEまでは、通電電力が漸減している。このような電力供給パターンBであっても、通電終了段階TE’において通電電力が漸減しており、触媒担体14内での温度ムラを少なくすることが可能である。   In the power supply pattern B, the energization power gradually increases for a predetermined time from the energization start time TS. And between energization start time TS and energization end time TE, energization electric power becomes the maximum value (the time of this electric power maximum value is made into electric power maximum time TM). The energization power gradually decreases from the maximum power TM to the energization end TE. Even in such a power supply pattern B, the energized power gradually decreases in the energization end stage TE ′, and it is possible to reduce the temperature unevenness in the catalyst carrier 14.

また、通電終了段階TE’において、触媒担体14への熱エネルギーの供給に実質的な大変動が無ければ、通電電力が上昇(あるいは降下)している時間が存在していても、通電終了段階TE’において通電電力が「漸減」している構成に含まれる。たとえば、図5の電力供給パターンCでは、通電終了段階TE’において、通電電力が極大値となる時間ΔT’がある。しかし、この時間ΔT’が十分に短ければ、触媒担体14の温度が過大に上昇することなないため、通電終了段階TE’においては通電電力が漸減されていることになり、触媒担体14内での温度ムラを少なくすることが可能である。なお、このように時間ΔT’における通電電力の極大値(グラフ上での上に凸の部分の高さ)は特に問わない。   In addition, in the energization end stage TE ′, if there is no substantial change in the supply of thermal energy to the catalyst carrier 14, the energization end stage even if there is a time during which the energized power is increasing (or decreasing). It is included in the configuration in which the energized power “decreases” in TE ′. For example, in the power supply pattern C of FIG. 5, there is a time ΔT ′ at which the energized power reaches a maximum value at the energization end stage TE ′. However, if this time ΔT ′ is sufficiently short, the temperature of the catalyst carrier 14 does not rise excessively, so that the energized power is gradually reduced in the energization end stage TE ′. Temperature unevenness can be reduced. It should be noted that the maximum value of the energization power at the time ΔT ′ (the height of the convex portion on the graph) is not particularly limited.

また、触媒担体14への供給電力は、連続的に変化している必要はなく、断続的な(ステップ状の)変化であってもよい。たとえば、図6に示す電力供給パターンDでは、通電開始時TSから所定時間ΔT1では通電電力を一定とし、その後の所定時間ΔT2では、一時的に通電電力を低くしている(実質的にゼロとしている)。そしてその後、所定時間ΔT3では、通電電力を最大(一定値)とし、その後の通電終了時TEに至る所定時間ΔT4では、最大値よりも低い通電電力(一定値)としている。この電力供給パターンDでは、所定時間ΔT3の終了時を含み、さらに所定時間ΔT4を経て通電終了時TEに至るまでが、本発明における通電終了段階TE’に該当する。すなわち、通電終了段階TE’では通電電力が漸減(段階的に減少)しているので、触媒担体14内での温度ムラを少なくすることが可能である。   Further, the power supplied to the catalyst carrier 14 does not need to change continuously, and may be intermittent (step-like) change. For example, in the power supply pattern D shown in FIG. 6, the energized power is constant for a predetermined time ΔT1 from the energization start time TS, and the energized power is temporarily lowered (substantially set to zero) for the subsequent predetermined time ΔT2. ) Thereafter, the energization power is maximized (a constant value) at a predetermined time ΔT3, and the energization power (constant value) is lower than the maximum value at a predetermined time ΔT4 until the subsequent energization end TE. In the power supply pattern D, the period from the end of the predetermined time ΔT3 to the end of energization TE after the predetermined time ΔT4 corresponds to the energization end stage TE ′ in the present invention. That is, in the energization end stage TE ′, the energization power gradually decreases (decreases in stages), so that it is possible to reduce the temperature unevenness in the catalyst carrier 14.

しかも、この電力供給パターンDでは、通電開始時TSから通電終了時TEまでの間に、通電電力を一時的に低くする時間ΔT2を設定しているので、この時間で触媒担体14内部の熱伝導による温度の均一化を促進でき、温度ムラの発生をさらに効果的に抑制可能となる。   In addition, in this power supply pattern D, the time ΔT2 during which the energized power is temporarily reduced is set between the energization start time TS and the energization end time TE, so that the heat conduction inside the catalyst carrier 14 is performed during this time. This makes it possible to promote the uniformity of the temperature and to more effectively suppress the occurrence of temperature unevenness.

なお、本実施形態のいずれの電力供給パターンにおいても、通電開始時TS以降(通電開始時TSを含む)から通電終了時TEまでの間に、通電電力が最大値をとるようになっており、触媒担体14の効率的な加熱が可能である。特に、通電の初期段階で通電電力を最大値にすれば、触媒担体14の温度が低い段階で、大きな電力により触媒担体14を加熱できるので、好ましい。たとえば、電極供給パターンAは、通電開始時TSにおいて通電電力が最大値となっており、触媒担体14の効率的な加熱という観点からは、好ましい。もちろん、本発明としては、通電開始時TSから所定時間は通電電力を一定とし、その後、通電終了時TEに向けて通電電力を漸減させる構成も含まれる。   In any of the power supply patterns of the present embodiment, the energized power takes a maximum value after the energization start time TS (including the energization start time TS) to the energization end time TE, The catalyst carrier 14 can be efficiently heated. In particular, it is preferable to set the energization power to the maximum value in the initial stage of energization, because the catalyst support 14 can be heated with large power at a stage where the temperature of the catalyst support 14 is low. For example, the electrode supply pattern A is preferable in terms of efficient heating of the catalyst carrier 14 because the energization power has the maximum value at the start of energization TS. Of course, the present invention includes a configuration in which the energized power is made constant for a predetermined time from the energization start time TS, and then the energized power is gradually reduced toward the energization end time TE.

本発明において、「通電終了段階TE’」は、少なくとも通電終了時TEを含んでいるが、あまりに短い時間では、実質的に通電終了時TEの直前でのみ通電電力を漸減させることになってしまうため、通電電圧が漸減している実質的な時間が短くなり、触媒担体14内での温度ムラを少なくするという効果が低くなる。したがって、触媒担体14への全通電時間の(3/4)経過時TC(図3、図5及び図6参照)よりも前から「通電終了段階TE’」が開始されると、通電電圧が漸減している時間を十分に確保できる。たとえば、電力供給パターンAでは、通電開始時TSにおいて通電電力が最大値となっており、その後は通電電力が漸減されているので、この条件を満たす。また、電力供給パターンB及びCにおいても、通電電力を最大値とする電力最大時TMを、上記した(3/4)経過時TCよりも前に設定すればよい。同様に、電力供給パターンDにおいても、通電電力を最大値とする時間ΔT3の終了時を、上記した(3/4)経過時TCよりも前に設定すればよい。   In the present invention, the “energization end stage TE ′” includes at least the energization end TE, but in an extremely short time, the energization power is gradually reduced only immediately before the energization end TE. Therefore, the substantial time during which the energization voltage is gradually reduced is shortened, and the effect of reducing temperature unevenness in the catalyst carrier 14 is reduced. Therefore, when the “energization end stage TE ′” is started before TC (see FIGS. 3, 5, and 6) at the time of (3/4) of the total energization time to the catalyst carrier 14, Sufficient time can be secured. For example, in the power supply pattern A, the energized power becomes the maximum value at the energization start time TS, and thereafter, the energized power is gradually reduced, so this condition is satisfied. Also in the power supply patterns B and C, the power maximum time TM at which the energized power is the maximum value may be set before the above-described (3/4) elapsed time TC. Similarly, also in the power supply pattern D, the end of the time ΔT3 when the energized power is the maximum value may be set before the above-described (3/4) elapsed time TC.

また、本発明の「通電終了段階」の開始時点は、あらかじめ時間によって決めておいてもよい。上記したように、触媒担体14への全通電時間の(3/4)経過時TCよりも後の段階を「通電終了段階」とする構成は、この一例である。これに代えて(あるいは併用して)温度センサ等によって触媒担体14の温度を検出し、この温度が、触媒担体14の目標温度の所定範囲に達した段階で、「通電終了段階」に移行するようにしてもよい。   The start point of the “energization end stage” of the present invention may be determined in advance by time. As described above, the configuration in which the stage after the TC at the time when (3/4) of the total energization time to the catalyst carrier 14 is “the energization end stage” is an example of this. Instead of this (or in combination), the temperature of the catalyst carrier 14 is detected by a temperature sensor or the like, and when this temperature reaches a predetermined range of the target temperature of the catalyst carrier 14, the process proceeds to the “energization end stage”. You may do it.

上記では、触媒担体14として、排気の流れ方向(矢印F1方向)と直交する断面形状が円形のものを挙げたが、触媒担体14の形状は円形に限定されない。すなわち、触媒担体14がNTC特性を有していれば、触媒担体14の形状に関わらず、触媒担体14内での温度ムラを少なくし、触媒担体14の熱応力に起因する破損を抑制できる。   In the above description, the catalyst carrier 14 has a circular cross section perpendicular to the exhaust flow direction (arrow F1 direction), but the shape of the catalyst carrier 14 is not limited to a circle. That is, if the catalyst carrier 14 has NTC characteristics, the temperature unevenness in the catalyst carrier 14 can be reduced regardless of the shape of the catalyst carrier 14, and damage due to thermal stress of the catalyst carrier 14 can be suppressed.

12 触媒コンバータ装置
14 触媒担体
24 保持部材
28 ケース筒体
30 電源装置(通電手段)
32 制御装置(通電手段)
TS 通電開始時
TE 通電終了時
TE’ 通電終了段階
12 catalytic converter device 14 catalyst carrier 24 holding member 28 case cylinder 30 power supply device (energizing means)
32 Control device (energization means)
TS When energization starts TE When energization ends TE 'Energization end stage

Claims (4)

温度上昇に伴って電気抵抗が低下する特性を備え、内燃機関から排出される排気を浄化するための触媒を担持すると共に通電によって加熱される触媒担体と、
前記触媒担体に対し通電電力を制御して通電可能な通電手段と、
を有し、
前記通電手段が、前記触媒担体への通電終了時を含む少なくとも通電終了段階では通電終了時に向けて通電電力を漸減させる触媒コンバータ装置。
A catalyst carrier that has a characteristic that electric resistance decreases as the temperature rises, carries a catalyst for purifying exhaust gas discharged from an internal combustion engine, and is heated by energization;
Energization means capable of energizing the catalyst carrier by controlling energization power;
Have
A catalytic converter device in which the energization means gradually reduces energized power toward the end of energization at least in the energization end stage including the end of energization of the catalyst carrier.
前記通電手段が、前記触媒担体への通電開始時以降で前記通電終了時よりも前に通電電力を最大値とし、この最大値の時点から通電終了時までに記通電終了段階を設定して通電電力を漸減させる請求項1に記載の触媒コンバータ装置。   The energization means sets the energization power to a maximum value after the start of energization to the catalyst carrier and before the end of energization, and sets the energization end stage from the time of this maximum value to the end of energization. The catalytic converter device according to claim 1, wherein the electric power is gradually reduced. 前記最大値の時点が、通電開始から全通電時間の(3/4)よりも前に設定されている請求項2に記載の触媒コンバータ装置。   The catalytic converter device according to claim 2, wherein the time point of the maximum value is set before (3/4) of the total energization time from the energization start. 温度上昇に伴って電気抵抗が低下する特性を備え、内燃機関から排出される排気を浄化するための触媒を担持した触媒担体を、通電によって加熱する触媒担体通電方法であって、
前記触媒担体への通電終了時を含む少なくとも通電終了段階では通電終了時に向けて通電電力を漸減させる触媒担体通電方法。
A catalyst carrier energization method comprising heating a catalyst carrier carrying a catalyst for purifying exhaust gas discharged from an internal combustion engine, with a characteristic that electric resistance decreases with increasing temperature,
A catalyst carrier energization method for gradually reducing energization power toward the end of energization at least at the energization end stage including the end of energization of the catalyst carrier.
JP2011024866A 2011-02-08 2011-02-08 Catalytic converter device and catalyst carrier energization method Active JP5659836B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011024866A JP5659836B2 (en) 2011-02-08 2011-02-08 Catalytic converter device and catalyst carrier energization method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011024866A JP5659836B2 (en) 2011-02-08 2011-02-08 Catalytic converter device and catalyst carrier energization method

Publications (2)

Publication Number Publication Date
JP2012163058A true JP2012163058A (en) 2012-08-30
JP5659836B2 JP5659836B2 (en) 2015-01-28

Family

ID=46842671

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011024866A Active JP5659836B2 (en) 2011-02-08 2011-02-08 Catalytic converter device and catalyst carrier energization method

Country Status (1)

Country Link
JP (1) JP5659836B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013147273A1 (en) * 2012-03-30 2013-10-03 日本碍子株式会社 Heating method of honeycomb structure
JP2017125427A (en) * 2016-01-12 2017-07-20 トヨタ自動車株式会社 Control system of electric heating type catalyst

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0444424U (en) * 1990-08-20 1992-04-15
JPH09166018A (en) * 1995-12-15 1997-06-24 Nissan Motor Co Ltd Exhaust emission control device of engine
JP2006105073A (en) * 2004-10-08 2006-04-20 Denso Corp Exhaust emission control device for internal combustion engine and method for controlling exhaust emission control device for internal combustion engine
JP2009189921A (en) * 2008-02-13 2009-08-27 Toyota Motor Corp Current flow control system for use in catalyst device heated by current flow

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0444424U (en) * 1990-08-20 1992-04-15
JPH09166018A (en) * 1995-12-15 1997-06-24 Nissan Motor Co Ltd Exhaust emission control device of engine
JP2006105073A (en) * 2004-10-08 2006-04-20 Denso Corp Exhaust emission control device for internal combustion engine and method for controlling exhaust emission control device for internal combustion engine
JP2009189921A (en) * 2008-02-13 2009-08-27 Toyota Motor Corp Current flow control system for use in catalyst device heated by current flow

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013147273A1 (en) * 2012-03-30 2013-10-03 日本碍子株式会社 Heating method of honeycomb structure
JPWO2013147273A1 (en) * 2012-03-30 2015-12-14 日本碍子株式会社 Heat generation method for honeycomb structure
US9820337B2 (en) 2012-03-30 2017-11-14 Ngk Insulators, Ltd. Heating method of honeycomb structure
JP2017125427A (en) * 2016-01-12 2017-07-20 トヨタ自動車株式会社 Control system of electric heating type catalyst

Also Published As

Publication number Publication date
JP5659836B2 (en) 2015-01-28

Similar Documents

Publication Publication Date Title
US9295944B2 (en) Electrically heated catalyst device and its manufacturing method
CN112727573B (en) Heating device for heating exhaust gases, associated exhaust gas line and vehicle
JP4973533B2 (en) Electric current control system for electric heating type catalytic device
JP5316707B2 (en) Exhaust gas purification device for internal combustion engine
US9243540B2 (en) Catalytic converter
JP5659836B2 (en) Catalytic converter device and catalyst carrier energization method
JP2012112302A (en) Catalyst converter apparatus
JP6387976B2 (en) Electric heating type catalyst
JP5531925B2 (en) Electric heating type catalyst
JP5765221B2 (en) Electric heating catalyst device and method for manufacturing the same
US9422852B2 (en) Electric heating catalyst
US20160032807A1 (en) Electrically heated catalyst device
JP2012106199A (en) Electric heating type catalyst
JP5625796B2 (en) Electric heating catalyst
JP5733222B2 (en) Control device for hybrid system
JP2013160197A (en) Control system for electrically heated catalyst
CN109667646B (en) Exhaust gas purification device for internal combustion engine
JP5411887B2 (en) Catalyst supporting structure and catalytic converter device
JP2012172580A (en) Exhaust emission control device
CN112648050B (en) Electrically heated catalyst device
JP7251521B2 (en) Electric heating catalyst device
JP2013113251A (en) Electrically heated exhaust purifying system
JP2019000799A (en) Catalyst device
JP5633450B2 (en) Catalytic converter device
JP2015135059A (en) Electric heating type exhaust emission control system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20131017

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140709

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140722

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140916

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20141104

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20141117

R151 Written notification of patent or utility model registration

Ref document number: 5659836

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151