JP2012162463A - METHOD FOR PRODUCING α-AMINO-ε-CAPROLACTAM - Google Patents

METHOD FOR PRODUCING α-AMINO-ε-CAPROLACTAM Download PDF

Info

Publication number
JP2012162463A
JP2012162463A JP2011021747A JP2011021747A JP2012162463A JP 2012162463 A JP2012162463 A JP 2012162463A JP 2011021747 A JP2011021747 A JP 2011021747A JP 2011021747 A JP2011021747 A JP 2011021747A JP 2012162463 A JP2012162463 A JP 2012162463A
Authority
JP
Japan
Prior art keywords
lysine
reaction
caprolactam
amino
alcohol
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2011021747A
Other languages
Japanese (ja)
Other versions
JP5776195B2 (en
Inventor
Hiroshi Matsumoto
紘 松本
Koji Kaiiso
孝二 海磯
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ube Corp
Original Assignee
Ube Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ube Industries Ltd filed Critical Ube Industries Ltd
Priority to JP2011021747A priority Critical patent/JP5776195B2/en
Publication of JP2012162463A publication Critical patent/JP2012162463A/en
Application granted granted Critical
Publication of JP5776195B2 publication Critical patent/JP5776195B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

PROBLEM TO BE SOLVED: To provide a new method for efficiently producing α-amino-ε-caprolactam which is the target compound directly from lysine or a salt thereof.SOLUTION: By using a method for producing α-amino-ε-caprolactam, in which lysine or a salt thereof is heated in a mixed solution of an alcohol and water with a ratio of alcohol/water (volume ratio) of 1-99, and dehydrated and cyclized, the α-amino-ε-caprolactam is rapidly produced with a good yield. Preferably the alcohol is methanol.

Description

本発明はリジンを原料に用いて直接にα−アミノ−ε−カプロラクタムを製造する新規な方法に関する。   The present invention relates to a novel process for directly producing α-amino-ε-caprolactam using lysine as a raw material.

リジンを出発原料とするα−アミノ−ε−カプロラクタムの製造法としては、リジンをエステルとし、これを有機溶媒中又は無溶媒で加熱することにより脱アルコール環化する方法(非特許文献1)、およびリジンエステルを濃アンモニア水中で環化する方法(特許文献1)が知られている。しかし、これらの公知方法はいずれもリジンのエステルを経由するため、リジンをアルコール中で酸の存在下にエステル化する工程、エステル化に用いた酸を塩基で中和する工程及びエステルの単離工程を必要とする上に、ジケトピペラジンの副生を生じ環化収率の低下をもたらす等の欠点を有する事が知られている(特許文献2)。更にリジンエステルを濃アンモニア水中で環化する方法では刺激性の高い濃アンモニア水を必要とし、経済的に不利であるばかりかアンモニアの揮発漏洩に伴う危険や環境汚染を防止するための対策が必要となる。   As a method for producing α-amino-ε-caprolactam using lysine as a starting material, a method in which lysine is used as an ester and dealcoholized by heating in an organic solvent or in the absence of a solvent (Non-patent Document 1), And a method of cyclizing lysine ester in concentrated ammonia water (Patent Document 1) is known. However, since all of these known methods are via an ester of lysine, a step of esterifying lysine in an alcohol in the presence of an acid, a step of neutralizing the acid used for esterification with a base, and isolation of the ester In addition to requiring a step, it is known to have disadvantages such as diketopiperazine by-product and a reduction in cyclization yield (Patent Document 2). Furthermore, the method of cyclizing lysine ester in concentrated aqueous ammonia requires highly concentrated concentrated aqueous ammonia, which is not only economically disadvantageous, but also requires measures to prevent dangers associated with volatile leakage of ammonia and environmental pollution. It becomes.

特公昭46−37352号公報Japanese Patent Publication No.46-37352 特開昭59−76063号公報JP 59-76063 A

J、 Chem、 Soc、 1943. p39J, Chem, Soc, 1943. p39

上記、従来法の有する如き欠点を有せず、リジンから直接にα−アミノ−ε−カプロラクタムを効率よく製造し得る簡便な方法を提供することを課題とする。   It is an object of the present invention to provide a simple method capable of efficiently producing α-amino-ε-caprolactam directly from lysine without the disadvantages of the conventional methods.

上記課題は、本発明であるアルコール/水(体積比)が1〜99のアルコール水混合液中でリジンを加熱して脱水環化させるα−アミノ−ε−カプロラクタムの製造法によって解決される。   The above-described problems are solved by the method for producing α-amino-ε-caprolactam, in which the lysine is heated for dehydration cyclization in an alcohol / water mixture having an alcohol / water (volume ratio) of 1 to 99 according to the present invention.

本発明のα−アミノ−ε−カプロラクタムの製造法によって、目的とするα−アミノ−ε−カプロラクタムを迅速に収率良く、製造取得することができる。   By the method for producing α-amino-ε-caprolactam of the present invention, the desired α-amino-ε-caprolactam can be produced and obtained quickly and with good yield.

実施例2記載の連続高温高圧反応装置Continuous high-temperature high-pressure reactor described in Example 2

本発明に於いて用いられるアルコール水混合液のアルコール/水(体積比)は1〜99、好ましくは2〜19、より好ましくは3〜9である。このアルコール/水(体積比)の範囲は、アルコールあるいは水のみの場合に比べ高い反応速度を示す。また、水のみの場合に比べ、反応収率も向上する。
本発明の原料であるリジンは、廃糖蜜などのバイオマスから酵素反応によって得られるものがカーボンニュートラルな製造方法という見地から好ましく用いられるが、市販のリジンでも良い。また、L-体、D-体、ラセミ体の何れのリジンであっても使用することができる。なお、1960年代初期、日本のバイオテクノロジー社により、糖からリジンを製造する細菌発酵技術が発見されており、L‐リジンは味の素、協和発酵、Sewon、Arthur Daniels Midland、Cheil Jedang、BASFおよびCargillなどの多くの企業において製造されており、入手できる。
The alcohol / water (volume ratio) of the alcohol / water mixture used in the present invention is 1 to 99, preferably 2 to 19, and more preferably 3 to 9. This alcohol / water (volume ratio) range shows a higher reaction rate than the case of alcohol or water alone. Also, the reaction yield is improved as compared with the case of water alone.
The lysine that is a raw material of the present invention is preferably obtained from an enzyme reaction from biomass such as waste molasses from the viewpoint of a carbon neutral production method, but commercially available lysine may also be used. In addition, any lysine of L-form, D-form, and racemate can be used. In the early 1960s, Japanese biotechnology company discovered bacterial fermentation technology that produces lysine from sugar. L-lysine is Ajinomoto, Kyowa Hakko, Sewon, Arthur Daniels Midland, Cheil Jedang, BASF and Cargill Manufactured and available in many companies.

また、二塩酸L‐リジン、塩酸L‐リジン、リン酸L‐リジン、二リン酸L‐リジン、酢酸L‐リジンなどの市販のリジン塩も水酸化ナトリウム水溶液などで中和して用いる事ができる。リジンの調製においては、L‐リジンをD‐リジンから分離するステップ、例えばキラル分離ステップも加えてよく、定法の分離および精製を行う事も含む。   Also, commercially available lysine salts such as L-lysine dihydrochloride, L-lysine hydrochloride, L-lysine phosphate, L-lysine diphosphate, and L-lysine acetate can be neutralized with an aqueous sodium hydroxide solution. it can. In the preparation of lysine, a step of separating L-lysine from D-lysine, such as a chiral separation step, may be added, including performing conventional separation and purification.

本発明におけるアルコールとしては、炭素数1〜3の脂肪族アルコール、例えば、メタノール、エタノール、イソプロパノール、ノルマルプロパノールなどが挙げられる。   As alcohol in this invention, C1-C3 aliphatic alcohol, for example, methanol, ethanol, isopropanol, normal propanol etc. are mentioned.

反応温度は100〜400℃、好ましくは200〜350℃である。100℃より低い温度は反応速度が低下するため好ましくない。一方、400℃より高い温度では、分解反応が促進されるため好ましくない。
反応圧力は滞留時間(反応時間)が維持できる圧力であれば特に限定するものではないが、好ましくは1〜40MPa(ゲージ圧)、より好ましくは2〜20MPa(ゲージ圧)さらに好ましくは3〜10MPa(ゲージ圧)である。
The reaction temperature is 100 to 400 ° C, preferably 200 to 350 ° C. A temperature lower than 100 ° C. is not preferable because the reaction rate decreases. On the other hand, a temperature higher than 400 ° C. is not preferable because the decomposition reaction is accelerated.
The reaction pressure is not particularly limited as long as the residence time (reaction time) can be maintained, but is preferably 1 to 40 MPa (gauge pressure), more preferably 2 to 20 MPa (gauge pressure), and further preferably 3 to 10 MPa. (Gauge pressure).

反応時間は、1分から3時間であることが好ましく、2.5分から15分であることがより好ましい。   The reaction time is preferably 1 minute to 3 hours, and more preferably 2.5 minutes to 15 minutes.

メタノールと水との混合液の総体積に対するリジン(リジン塩の場合は、リジン換算。)の使用量は、0を越え500g/L以下であることが好ましく、10〜200g/Lであることが特に好ましい。500g/Lを超えて高い濃度になると反応収率が低下する。一方、1g/Lより低い濃度は工業的に好ましくない。
連続反応においては、メタノールと水との混合であることにより、アルコールのみの系よりも基質であるリジンの濃度を上げる事が可能となっている。
The use amount of lysine (in the case of lysine salt, lysine conversion) with respect to the total volume of the mixture of methanol and water is preferably more than 0 and 500 g / L or less, and preferably 10 to 200 g / L. Particularly preferred. When the concentration exceeds 500 g / L, the reaction yield decreases. On the other hand, a concentration lower than 1 g / L is not industrially preferable.
In a continuous reaction, the concentration of lysine, which is a substrate, can be increased by mixing methanol with water rather than a system using only alcohol.

本発明の反応は、反応装置に空隙がある場合、窒素、アルゴンなどの不活性ガスの雰囲気下で行うのが好ましい。   The reaction of the present invention is preferably carried out in an atmosphere of an inert gas such as nitrogen or argon when the reaction apparatus has voids.

反応装置としては、オートクレーブ(SUS製)、封じ込め配管(例えば、SUS製の配管の両端をSUS製のスクリューキャップ等で密栓、或いは、一端において密栓が固定されるか閉塞されており、開放部をスクリューキャップ等で密栓するもの。)などが使用される。   As the reaction apparatus, an autoclave (manufactured by SUS), a containment pipe (for example, a SUS pipe with both ends sealed with a SUS screw cap or the like, or one end is fixed or closed at one end, What is sealed with a screw cap, etc.) is used.

反応形式は、連続方式、バッチ方式のいずれかを問わない。リジンとメタノールは、別々に反応装置に供給することができるが、予め混合しているものを反応装置に供給しても良い。
得られたα−アミノ−ε−カプロラクタムの精製は、脱メタノール工程と分離工程によって行なわれても良く、脱メタノール工程のみによって行なっても良い。
The reaction format may be either a continuous method or a batch method. Lysine and methanol can be separately supplied to the reactor, but those previously mixed may be supplied to the reactor.
Purification of the obtained α-amino-ε-caprolactam may be performed by a demethanol step and a separation step, or may be performed only by a demethanol step.

脱メタノール工程は、単蒸留装置、フラッシュドラム等からなるフラッシュ分離装置、蒸留塔等の(減圧)蒸留装置、吸着塔等の吸着装置、乾燥装置等によって行なわれ、分離回収工程としては、単蒸留装置、蒸留塔等の(減圧)蒸留装置、薄膜蒸発装置や、脱ガス、抽出、遠心分離、遠心沈降機、液体サイクロン、静置分離、濾過、圧搾、分別等が行える各装置等によって行なわれる。これら脱メタノール工程や分離工程は、減圧または加圧状態で行ってもよい。   The methanol removal process is carried out by a single distillation apparatus, a flash separation apparatus comprising a flash drum, a (depressurized) distillation apparatus such as a distillation tower, an adsorption apparatus such as an adsorption tower, a drying apparatus, etc. (Decompression) distillation equipment such as equipment, distillation towers, thin film evaporators, degassing, extraction, centrifugal separation, centrifugal sedimentation equipment, hydrocyclone, stationary separation, filtration, compression, fractionation, etc. . These demethanol steps and separation steps may be performed under reduced pressure or pressure.

脱アルコール工程において、フラッシュ分離装置等を利用して分離された蒸気状態のメタノールは、熱交換器によって凝縮される。凝縮されたメタノールは、ポンプにより、再び反応用にリサイクルすることができる。これにより、メタノールの使用量を減少させることが可能となる。
以下、実施例によって具体的に説明する。しかし、本発明は実施例のみに限定されない。
In the dealcoholization step, the vaporized methanol separated using a flash separation device or the like is condensed by a heat exchanger. The condensed methanol can be recycled again for the reaction by means of a pump. As a result, the amount of methanol used can be reduced.
Hereinafter, specific examples will be described. However, the present invention is not limited to the examples.

[実施例1−1]
反応容器(内容積10mlのSUS316製配管)にリジン0.1021gと、メタノール1.9280g、脱気水を0.6170g仕込み窒素置換し、密栓した。これを、温度250℃に保った電気炉にいれることで反応容器を速やかに加熱し反応を開始させた。該反応容器の温度上昇に伴い、容器内の圧力は9.3MPaG(ゲージ圧)に上昇した。反応を開始してから15分後に該反応器を恒温槽から取り出し、冷水浴に浸し室温まで冷却して反応を停止させた。次いで、該反応容器から内容物である反応液を取り出し、液体クロマトグラフ-質量分析法(カラム:YMC−Pack Diol−120−NP 250×4.6mmI.D. S−5μm,12nm、カラムオーブン温度:40℃、移動層組成:アセトニトリル/50mMギ酸アンモニウム水溶液=85/15、移動層流速:1mL/min、検出器:UV−VIS検出器,波長210nm)にて該反応液の分析を行った。
α-アミノ-ε-カプロラクタムの生成量を計算すると、生成量は0.0696gであり、収率は77%であった。
[Example 1-1]
A reaction vessel (SUS316 pipe with an internal volume of 10 ml) was charged with 0.1021 g of lysine, 1.9280 g of methanol, and 0.6170 g of degassed water, purged with nitrogen, and sealed. This was placed in an electric furnace maintained at a temperature of 250 ° C., whereby the reaction vessel was quickly heated to start the reaction. As the temperature of the reaction vessel increased, the pressure in the vessel increased to 9.3 MPaG (gauge pressure). After 15 minutes from the start of the reaction, the reactor was removed from the thermostatic bath, immersed in a cold water bath and cooled to room temperature to stop the reaction. Subsequently, the reaction solution as the contents was taken out from the reaction vessel, and subjected to liquid chromatography-mass spectrometry (column: YMC-Pack Diol-120-NP 250 × 4.6 mm ID S-5 μm, 12 nm, column oven temperature. The reaction solution was analyzed at 40 ° C., moving bed composition: acetonitrile / 50 mM ammonium formate aqueous solution = 85/15, moving bed flow rate: 1 mL / min, detector: UV-VIS detector, wavelength 210 nm).
When the production amount of α-amino-ε-caprolactam was calculated, the production amount was 0.0696 g, and the yield was 77%.

[実施例1−2、比較例1−1及び1−2]
溶媒を表1に示すとおり変更した以外は、実施例1と同様の条件で反応させた。その結果を表1に示す。
溶媒をメタノールのみにして行った結果は比較例として示す。
[Example 1-2, Comparative Examples 1-1 and 1-2]
The reaction was carried out under the same conditions as in Example 1 except that the solvent was changed as shown in Table 1. The results are shown in Table 1.
The results obtained by using only methanol as the solvent are shown as comparative examples.

Figure 2012162463
Figure 2012162463

[実施例2]
図1に示す連続高温高圧反応装置を用いて、以下、実施例2−1〜2−5に記載の温度、圧力、滞留時間で反応を行った。なお、反応時間(滞留時間)は送液量と反応器容積から算出した。反応液の分析は、採取された反応液を、液体クロマトグラフ-質量分析法(カラム:YMC−Pack Diol−120−NP 250×4.6mmI.D. S−5μm,12nm、カラムオーブン温度:40℃、移動層組成:アセトニトリル/50mMギ酸アンモニウム水溶液=85/15、移動層流速:1mL/min、検出器:UV−VIS検出器,波長210nm)を用いて行った。
[Example 2]
Using the continuous high-temperature and high-pressure reactor shown in FIG. 1, the reaction was carried out at the temperatures, pressures and residence times described in Examples 2-1 to 2-5. The reaction time (residence time) was calculated from the amount of liquid fed and the reactor volume. For analysis of the reaction solution, the collected reaction solution was subjected to liquid chromatography-mass spectrometry (column: YMC-Pack Diol-120-NP 250 × 4.6 mm ID S-5 μm, 12 nm, column oven temperature: 40 C., moving bed composition: acetonitrile / 50 mM ammonium formate aqueous solution = 85/15, moving bed flow rate: 1 mL / min, detector: UV-VIS detector, wavelength 210 nm).

[実施例2−1]
反応器容積を5ml、圧力調整弁の圧力を10MPaG、反応器内部温度が250℃になるように電気炉の温度を設定した連続高温高圧反応装置にポンプ1(JASCO PU−2086Plus)より原料水溶液(リジン1塩酸塩117.7g、水酸化ナトリウム25.8g、純水450.8g)を流量2ml/minで送液、ポンプ2(JASCO PU−2086Plus)よりメタノールを流量2ml/minで送液した。採取された反応液を、液体クロマトグラフ-質量分析法にて該反応液の分析を行った結果、α-アミノ-ε-カプロラクタムの収率は45%であった。
[Example 2-1]
The raw material aqueous solution (JASCO PU-2086Plus) is fed into a continuous high temperature and high pressure reactor in which the reactor volume is 5 ml, the pressure of the pressure regulating valve is 10 MPaG, and the temperature of the electric furnace is set to 250 ° C. from the pump 1 (JASCO PU-2086Plus). Lysine monohydrochloride (117.7 g, sodium hydroxide 25.8 g, pure water 450.8 g) was fed at a flow rate of 2 ml / min, and methanol was fed from pump 2 (JASCO PU-2086Plus) at a flow rate of 2 ml / min. The collected reaction solution was analyzed by liquid chromatography-mass spectrometry. As a result, the yield of α-amino-ε-caprolactam was 45%.

[実施例2−2〜2−5]
表2に示すとおり滞留時間(反応時間)を変更した以外は、実施例2−1と同様の条件に反応を行った。その結果を以下の表2に示す。
[Examples 2-2 to 2-5]
The reaction was performed under the same conditions as in Example 2-1, except that the residence time (reaction time) was changed as shown in Table 2. The results are shown in Table 2 below.

Figure 2012162463
Figure 2012162463

[実施例3−1]
反応器容積を10ml、圧力調整弁の圧力を10MPaG、反応器内部温度が250℃になるように電気炉の温度を設定した連続高温高圧反応装置にポンプ1(JASCO PU−2086Plus)より原料水溶液(リジン1塩酸塩7.6g、水酸化ナトリウム1.7g、純水300.4g)を流量1ml/minで送液、ポンプ2(JASCO PU−2086Plus)よりメタノールを流量1ml/minで送液した。採取された反応液を、液体クロマトグラフ-質量分析法にて該反応液の分析を行った結果、α-アミノ-ε-カプロラクタムの収率は78%であった。
[Example 3-1]
The reactor aqueous volume is 10 ml, the pressure regulating valve pressure is 10 MPaG, and the temperature of the electric furnace is set so that the reactor internal temperature becomes 250 ° C. The raw material aqueous solution (JASCO PU-2086Plus) is fed from the pump 1 (JASCO PU-2086Plus). Lysine monohydrochloride (7.6 g, sodium hydroxide 1.7 g, pure water 300.4 g) was fed at a flow rate of 1 ml / min, and methanol was fed from pump 2 (JASCO PU-2086Plus) at a flow rate of 1 ml / min. The collected reaction solution was analyzed by liquid chromatography-mass spectrometry. As a result, the yield of α-amino-ε-caprolactam was 78%.

[実施例3−2及び3−3]
表3に示す圧力(ゲージ圧)に変更した以外は、実施例3−1と同様の条件で反応を行った。その結果を表3に示す。
[Examples 3-2 and 3-3]
Except having changed into the pressure (gauge pressure) shown in Table 3, it reacted on the same conditions as Example 3-1. The results are shown in Table 3.

Figure 2012162463
Figure 2012162463

[実施例3−4〜3−8]
表4に示す基質濃度(リジン1塩酸塩の濃度)、温度、滞留時間(反応時間)に変更した以外は実施例3−3と同様の条件で反応を行った。その結果を表4に示す。
[Examples 3-4 to 3-8]
The reaction was carried out under the same conditions as in Example 3-3 except that the substrate concentration (concentration of lysine monohydrochloride), temperature, and residence time (reaction time) shown in Table 4 were changed. The results are shown in Table 4.

Figure 2012162463
Figure 2012162463

[実施例3−9〜3−13]
表5に示す溶媒混合比、温度、滞留時間に変更した以外は実施例3−3と同様の条件で行った。その結果を表5に示す。
[Examples 3-9 to 3-13]
The test was performed under the same conditions as in Example 3-3 except that the solvent mixing ratio, temperature, and residence time shown in Table 5 were changed. The results are shown in Table 5.

Figure 2012162463
Figure 2012162463

[実施例4−1]
反応器容積を5ml、圧力調整弁の圧力を10MPaG、反応器内部温度が250℃になるように電気炉の温度を設定した連続高温高圧反応装置にポンプ1(JASCO PU−2086Plus)より原料水溶液(リジン1塩酸塩45.1g、水酸化ナトリウム9.9g、純水399.9g)を流量0.5ml/minで送液、ポンプ2(JASCO PU−2086Plus)よりメタノールを流量0.5ml/minで送液した。採取された反応液を、液体クロマトグラフ-質量分析法にて該反応液の分析を行った結果、α-アミノ-ε-カプロラクタムの収率は65%であった。
[Example 4-1]
The raw material aqueous solution (JASCO PU-2086Plus) is fed into a continuous high temperature and high pressure reactor in which the reactor volume is 5 ml, the pressure of the pressure regulating valve is 10 MPaG, and the temperature of the electric furnace is set to 250 ° C. from the pump 1 (JASCO PU-2086Plus). Lysine monohydrochloride 45.1 g, sodium hydroxide 9.9 g, pure water 399.9 g) was fed at a flow rate of 0.5 ml / min, and methanol was pumped at a flow rate of 0.5 ml / min from the pump 2 (JASCO PU-2086Plus). Liquid was sent. The collected reaction solution was analyzed by liquid chromatography-mass spectrometry. As a result, the yield of α-amino-ε-caprolactam was 65%.

[実施例4−2〜4−4]
表6に示すアルコールに変更した以外は実施例4−1と同様の条件で反応を行った。その結果を表6に示す。
[Examples 4-2 to 4-4]
The reaction was carried out under the same conditions as in Example 4-1, except that the alcohol was changed to the alcohol shown in Table 6. The results are shown in Table 6.

Figure 2012162463
Figure 2012162463

1 原料層(リジン塩酸塩水溶液)
2 送液ポンプ1(JASCO PU−2086Plus)
3 開閉用バルブ1
4 非極性溶媒層
5 送液ポンプ2(JASCO PU−2086Plus)
6 開閉用バルブ2
7 電気炉内反応器(SUS316、3mm配管)
8 電気炉(ESPEC STPH−101M)
9 反応器内部温度測定機
10 冷却ライン(SUS316、1/16配管)
11 圧力調整機(JASCO SCFBpg)
12 反応液採取層排ガス
1 Raw material layer (lysine hydrochloride aqueous solution)
2 Liquid feed pump 1 (JASCO PU-2086Plus)
3 Valve 1 for opening and closing
4 Non-polar solvent layer 5 Liquid feed pump 2 (JASCO PU-2086Plus)
6 Opening and closing valve 2
7 Reactor in electric furnace (SUS316, 3mm piping)
8 Electric furnace (ESPEC STPH-101M)
9 Reactor internal temperature measuring device 10 Cooling line (SUS316, 1/16 piping)
11 Pressure regulator (JASCO SCFBpg)
12 Reaction liquid sampling layer exhaust gas

Claims (2)

アルコール/水(体積比)が1〜99であるアルコール水混合液中、リジンを加熱して脱水環化させるα−アミノ−ε−カプロラクタムの製造方法。 A method for producing α-amino-ε-caprolactam, wherein lysine is heated and dehydrocyclized in an alcoholic water mixture having an alcohol / water (volume ratio) of 1 to 99. アルコールがメタノールである請求項1記載のα−アミノ−ε−カプロラクタムの製造方法。 The method for producing α-amino-ε-caprolactam according to claim 1, wherein the alcohol is methanol.
JP2011021747A 2011-02-03 2011-02-03 Process for producing α-amino-ε-caprolactam Expired - Fee Related JP5776195B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011021747A JP5776195B2 (en) 2011-02-03 2011-02-03 Process for producing α-amino-ε-caprolactam

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011021747A JP5776195B2 (en) 2011-02-03 2011-02-03 Process for producing α-amino-ε-caprolactam

Publications (2)

Publication Number Publication Date
JP2012162463A true JP2012162463A (en) 2012-08-30
JP5776195B2 JP5776195B2 (en) 2015-09-09

Family

ID=46842256

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011021747A Expired - Fee Related JP5776195B2 (en) 2011-02-03 2011-02-03 Process for producing α-amino-ε-caprolactam

Country Status (1)

Country Link
JP (1) JP5776195B2 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5976063A (en) * 1982-10-22 1984-04-28 Ajinomoto Co Inc Preparation of alpha-amino-epsilon-caprolactam
JPH0317062A (en) * 1989-06-15 1991-01-25 Kyowa Yuka Kk Production of alpha-amino-epsilon-caprolactam
JP2003206276A (en) * 2002-01-07 2003-07-22 Chisso Corp METHOD FOR PRODUCING alpha-AMINO-epsilon-CAPROLACTAM
JP2008502728A (en) * 2004-06-10 2008-01-31 ボード、オブ、トラスティーズ、オブ、ミシガン、ステイト、ユニバーシティ Synthesis of caprolactam from lysine.
WO2010011967A1 (en) * 2008-07-24 2010-01-28 Draths Corporation Methods of making cyclic amide monomers, and related derivatives and methods

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5976063A (en) * 1982-10-22 1984-04-28 Ajinomoto Co Inc Preparation of alpha-amino-epsilon-caprolactam
JPH0317062A (en) * 1989-06-15 1991-01-25 Kyowa Yuka Kk Production of alpha-amino-epsilon-caprolactam
JP2003206276A (en) * 2002-01-07 2003-07-22 Chisso Corp METHOD FOR PRODUCING alpha-AMINO-epsilon-CAPROLACTAM
JP2008502728A (en) * 2004-06-10 2008-01-31 ボード、オブ、トラスティーズ、オブ、ミシガン、ステイト、ユニバーシティ Synthesis of caprolactam from lysine.
WO2010011967A1 (en) * 2008-07-24 2010-01-28 Draths Corporation Methods of making cyclic amide monomers, and related derivatives and methods

Also Published As

Publication number Publication date
JP5776195B2 (en) 2015-09-09

Similar Documents

Publication Publication Date Title
CN101798271B (en) Method for preparing (+/-)-norepinephrine
CN113201016A (en) Preparation method of C15 phosphonium salt
CN102002020B (en) Method for refining piperazine
CN103274913A (en) Method and device for producing methyl isobutyl ketone
CN105612257B (en) Cadaverine purification using high boiling point solvents
JP5776195B2 (en) Process for producing α-amino-ε-caprolactam
EP3853195B1 (en) Process to recover high quality 3-methyl-but-3-en-1-ol
WO2022088306A1 (en) Method for preparing intermediate 4,4-dimethylisoxazol-3-one
CN112321543A (en) Preparation method of alpha-chloro-alpha acetyl-gamma-butyrolactone
CN101910124B (en) Optically active 3-aminopyrrolidine salt, process for production thereof, and method for optical resolution of 3-aminopyrrolidine
CN112661667B (en) Preparation method of trifluoroacetamidine
CN108484484B (en) Preparation method of 2-oxo-3-ethyl piperidinecarboxylate
JP5776194B2 (en) Process for producing α-amino-ε-caprolactam
CN111454223B (en) Synthetic method of 2, 3-dihydroxy-6-chloroquinoxaline
KR20140114867A (en) Process for preparing choline hydroxide from trimethylamine and ethylene oxide
CN104513170B (en) A kind of trans production technology to cyclohexane-carboxylic acid
CN112094237A (en) Synthesis method of fluorobenzene imidazole
JP5166747B2 (en) Method for purifying alkylaminopyridines
TWI696600B (en) Process for the preparation of diaminobutane
KR101686087B1 (en) Process for Production of Optically Active Indoline Derivatives or Salts Thereof
CN113248440B (en) Synthetic method of 4-formamido antipyrine
CN112457235B (en) Preparation method of 7-methylindole
CN111116446B (en) Synthetic process method of 3-substituted-1H-pyrrole
CN109535092B (en) Preparation method of benzotriazole derivatives
CN111732540B (en) Preparation method of roximelic

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20131129

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20141111

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150106

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150609

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150622

R150 Certificate of patent or registration of utility model

Ref document number: 5776195

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees