JP2012161258A - Sugar-containing composition - Google Patents

Sugar-containing composition Download PDF

Info

Publication number
JP2012161258A
JP2012161258A JP2011022561A JP2011022561A JP2012161258A JP 2012161258 A JP2012161258 A JP 2012161258A JP 2011022561 A JP2011022561 A JP 2011022561A JP 2011022561 A JP2011022561 A JP 2011022561A JP 2012161258 A JP2012161258 A JP 2012161258A
Authority
JP
Japan
Prior art keywords
sugar
containing composition
treatment
sulfurous acid
concentration
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2011022561A
Other languages
Japanese (ja)
Other versions
JP5701632B2 (en
Inventor
Jun Yashiro
洵 八代
Makoto Hirota
真 廣田
Makoto Arai
眞 荒井
Hideki Okada
秀樹 岡田
Shigeyuki Watanabe
繁幸 渡邊
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Cosmo Oil Co Ltd
Nippon Paper Chemicals Co Ltd
Original Assignee
Cosmo Oil Co Ltd
Nippon Paper Chemicals Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Cosmo Oil Co Ltd, Nippon Paper Chemicals Co Ltd filed Critical Cosmo Oil Co Ltd
Priority to JP2011022561A priority Critical patent/JP5701632B2/en
Publication of JP2012161258A publication Critical patent/JP2012161258A/en
Application granted granted Critical
Publication of JP5701632B2 publication Critical patent/JP5701632B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E50/00Technologies for the production of fuel of non-fossil origin
    • Y02E50/10Biofuels, e.g. bio-diesel

Abstract

PROBLEM TO BE SOLVED: To obtain, from a woody biomass, a sugar-containing composition which abundantly contains sugar, is less fermentation inhibitory when serving to alcohol fermentation, and is hardly contaminated by bacteria.SOLUTION: There are provided: the sugar-containing composition obtained by sulfuring the woody biomass, using a solution that contains sulfurous acid in the concentration from 1.0 to 4.0 w/v%; the sugar-containing composition that is a raw material of alcohol and/or organic acid; a production method of the sugar-containing composition that uses the solution that contains sulfurous acid in the concentration from 1.0 to 4.0 w/v% as for the woody biomass; applications of the sugar-containing composition as the raw material of alcohol and/or organic acid; a production method of alcohol and organic acid that uses the sugar-containing composition as the raw material; microorganism growing medium that contain the sugar-containing composition; and a method for growing microorganisms by the sugar-containing composition.

Description

本発明は、糖含有組成物に関する。   The present invention relates to a sugar-containing composition.

産業革命以後、人類は豊かな生活を送れる様になってきたが、一方エネルギーの見地から見ると限りある石油・石炭の大量消費から化石資源の枯渇が問題となってきている。また、環境の見地から見るとこれらの燃焼により発生する二酸化炭素等に基づく地球温暖化が進み、その両面での対策が急務となってきている。   Since the Industrial Revolution, human beings have been able to live a rich life, but from the viewpoint of energy, depletion of fossil resources has become a problem due to the limited mass consumption of oil and coal. In addition, from the viewpoint of the environment, global warming based on carbon dioxide and the like generated by these combustion advances, and measures on both sides are urgently needed.

この両者に効果のある対策のひとつとして再生可能な資源であるバイオマスの利用が注目され、所謂バイオエタノール、バイオブタノール等のバイオアルコールの生産技術開発もその一環として多くの研究や実用化が試みられている。   The use of biomass, a renewable resource, has attracted attention as one of the effective measures for both, and many researches and practical applications have been attempted in the development of so-called bioethanol and biobutanol production technologies such as bioethanol. ing.

バイオエタノールについては石油から作られるガソリンを補う燃料としての実用化が進められており、ブラジルのサトウキビの糖を利用したものや米国のとうもろこしでんぷんを利用したエタノールがすでに実用化されている。しかし、これらの原料は元来、人間や家畜の食糧・飼料となるものであり、これらを工業用途に利用する事は食糧危機を更に加速するする側面も持ち合わせており、危惧されている。   Bioethanol has been put into practical use as a fuel to supplement gasoline made from petroleum, and ethanol using sugarcane sugar from Brazil and ethanol using corn starch from the United States have already been put into practical use. However, these raw materials are originally used as food and feed for humans and livestock, and the use of these for industrial purposes also has an aspect of further accelerating the food crisis, which is a concern.

この様な背景から木質系バイオマスを利用したバイオアルコール生産技術の開発が求められている。   From such a background, development of bioalcohol production technology using woody biomass is required.

従来から、木質系バイオマスからアルコール発酵に利用する糖を得る技術としては、硫酸が用いられた鉱酸加水分解法(濃硫酸法、希硫酸法)が知られている。   Conventionally, a mineral acid hydrolysis method using sulfuric acid (concentrated sulfuric acid method, dilute sulfuric acid method) is known as a technique for obtaining sugar used for alcoholic fermentation from woody biomass.

しかし濃硫酸法では、濃硫酸を糖(主にグルコース)と分離する工程が必要であると共に硫酸を回収する工程が必要であり、設備の腐食や操業安全性に問題があるとされてきた。また、希硫酸法では、廃硫酸の石灰による中和により生成する石膏の処理が問題となることが多かった。さらに、木材中の主要成分の一つであるリグニンは、木質系バイオマスの主成分の一つであり、木材に占めるリグニンの割合は、通常20重量%〜40重量%である。リグニンは、鉱酸加水分解法、すなわち濃硫酸法及び希硫酸法のいずれにおいても、不溶性の状態でとどまるため、該方法による糖化収率を低下させる原因となることが多い。さらに、鉱酸加水分解法では、フルフラール等の発酵阻害物質も著量発生し、これも糖化・発酵収率の低下を招いている。   However, the concentrated sulfuric acid method requires a step of separating concentrated sulfuric acid from sugar (mainly glucose) and a step of recovering sulfuric acid, and has been considered to have problems in equipment corrosion and operational safety. Further, in the dilute sulfuric acid method, the treatment of gypsum produced by neutralization of waste sulfuric acid with lime often becomes a problem. Furthermore, lignin, which is one of the main components in wood, is one of the main components of woody biomass, and the proportion of lignin in wood is usually 20% to 40% by weight. Lignin remains in an insoluble state in both the mineral acid hydrolysis method, that is, the concentrated sulfuric acid method and the diluted sulfuric acid method, and often causes a reduction in saccharification yield by the method. Furthermore, in the mineral acid hydrolysis method, a significant amount of fermentation inhibiting substances such as furfural is also generated, which also leads to a decrease in saccharification and fermentation yield.

これらの従来の問題点を解決するため、様々な技術が提案されているが、いずれも従来の課題を解決するには不十分である。   In order to solve these conventional problems, various techniques have been proposed, but these are insufficient to solve the conventional problems.

例えば、特許文献1には、クラフトパルプ(KP)製造技術を利用し、リグノセルロース系バイオマス、すなわち木質系バイオマスをアルカリ蒸解法で脱リグニンし、アルカリ蒸解したリグノセルロース系バイオマスを炭素源として糖化酵素産生菌を培養し、リグノセルロース系バイオマスの糖化に適した酵素を生産させ、得られた糖化酵素を含有する培養液とエタノール発酵菌をアルカリ蒸解したリグノセルロース系バイオマスに添加して糖化・発酵させる方法が開示されている。しかしながら、アルカリ蒸解した処理液にはヘミセルロースがポリマーのまま残存するため、単糖を得るためには、事実上複数の糖化酵素(セルラーゼ、ヘミセルラーゼなど)が必要である。酵素の至適活性点は通常異なるため、十分な糖化がなされないおそれがある。また、糖化された糖液は、比較的雑菌汚染を受けやすい問題がある。   For example, in Patent Document 1, kraft pulp (KP) production technology is used, lignocellulosic biomass, that is, woody biomass is delignified by an alkali digestion method, and the lignocellulosic biomass obtained by alkali digestion is used as a saccharification enzyme. The producing bacteria are cultured to produce enzymes suitable for saccharification of lignocellulosic biomass, and the resulting culture solution containing saccharifying enzymes and ethanol-fermenting bacteria are added to lignocellulosic biomass that has been alkali-digested for saccharification and fermentation. A method is disclosed. However, since hemicellulose remains as a polymer in the alkali-digested processing solution, a plurality of saccharifying enzymes (cellulase, hemicellulase, etc.) are actually required to obtain monosaccharides. Since the optimal active site of the enzyme is usually different, there is a possibility that sufficient saccharification is not performed. Moreover, the saccharified sugar solution has a problem that it is relatively susceptible to contamination with bacteria.

特許文献2には、第1のリグノセルロース原料、すなわち木質系バイオマスをクラフト蒸解してクラフトパルプとクラフト黒液を得るクラフト蒸解装置と、第2のリグノセルロース原料をナトリウムベースでサルファイト蒸解してサルファイトパルプとサルファイト黒液を得るサルファイト蒸解装置と、サルファイト黒液をエタノール発酵してエタノールと発酵済液を得るエタノール発酵装置と、クラフト黒液と発酵済液に含まれる蒸解薬品を回収し、回収した蒸解薬品を該クラフト蒸解装置へ送る蒸解薬品回収装置と、を備える、リグノセルロースを原料としてエタノールを製造するためのシステムが提案されている。このシステムでは、サルファイト蒸解の条件については一般的な条件を示すに過ぎず、このような一般的なサルファイト蒸解の条件で得られるサルファイト黒液からでは、収率良くエタノール発酵させることが困難である。非特許文献1には、酸性亜硫酸蒸解法で木材をヘミセルロース及びセルロースを単糖化する技術が開示されているが、ヘミセルロースから生成した単糖は過分解を起こし発酵に利用できなくなる問題がある。   In Patent Document 2, a first lignocellulose raw material, that is, a kraft cooking apparatus for kraft cooking woody biomass to obtain kraft pulp and kraft black liquor, and a second lignocellulose raw material by sulfite cooking on a sodium basis. A sulfite cooking device that obtains sulfite pulp and sulfite black liquor, an ethanol fermentation device that obtains ethanol and fermented liquor by ethanol fermentation of sulfite black liquor, and cooking chemicals contained in kraft black liquor and fermented liquor A system for producing ethanol using lignocellulose as a raw material has been proposed, which comprises a cooking chemical recovery device that recovers and sends the recovered cooking chemical to the kraft cooking device. This system only shows general conditions for sulfite cooking conditions, and ethanol fermentation can be carried out with good yield from sulfite black liquor obtained under such general sulfite cooking conditions. Have difficulty. Non-Patent Document 1 discloses a technique for converting wood into hemicellulose and cellulose by an acidic sulfite digestion method, but there is a problem that monosaccharides produced from hemicellulose cannot be used for fermentation due to hyperlysis.

特開2008−92910号公報JP 2008-92910 A 特開2009−213389号公報JP 2009-213389 A

第77回紙パルプ研究発表会講演要旨集p82−85(2010)Abstracts of the 77th Paper Pulp Research Presentation, p82-85 (2010)

本発明は、木質系バイオマスから、糖を豊富に含み、アルコール発酵に供した際の発酵阻害性が少ない糖含有組成物を得ることを目的とする。   It is an object of the present invention to obtain a sugar-containing composition that contains abundant sugar and has a low fermentation inhibitory effect when subjected to alcoholic fermentation from woody biomass.

本発明は、以下の〔1〕〜〔8〕を提供する。
〔1〕木質系バイオマスについて、亜硫酸を1.0w/v%以上4.0w/v%以下の濃度で含む溶液を用いる亜硫酸処理を行って得られる糖含有組成物。
〔2〕前記亜硫酸処理は、pH1.1以上2.0以下の条件下で行われる、上記〔1〕に記載の糖含有組成物。
〔3〕以下の(A)、(B)又は(C)である、上記〔1〕又は〔2〕に記載の糖含有組成物。
(A)前記亜硫酸処理を行って、抽出残渣を分離して得られる抽出液
(B)前記亜硫酸処理を行って、抽出液を分離して得られる抽出残渣を、アルカリ処理し、さらに糖化酵素処理して得られる酵素分解物
(C)前記(A)及び(B)の混合物
〔4〕アルコール及び/又は有機酸の原料である、上記〔1〕〜〔3〕のいずれか一項に記載の糖含有組成物。
〔5〕木質系バイオマスに対し、亜硫酸を1.0w/v%以上4.0w/v%以下の濃度で含む溶液を用いる亜硫酸処理を行う、糖含有組成物の製造方法。
〔6〕上記〔1〕〜〔3〕のいずれか一項に記載の糖含有組成物を原料として用いる、アルコール及び/又は有機酸の製造方法。
〔7〕上記〔1〕〜〔3〕のいずれか一項に記載の糖含有組成物を含む、微生物生育用培地。
〔8〕上記〔1〕〜〔3〕のいずれか一項に記載の糖含有組成物で微生物を生育する方法。
The present invention provides the following [1] to [8].
[1] A sugar-containing composition obtained by performing a sulfurous acid treatment on a woody biomass using a solution containing sulfurous acid at a concentration of 1.0 w / v% to 4.0 w / v%.
[2] The sugar-containing composition according to [1], wherein the sulfurous acid treatment is performed under conditions of pH 1.1 to 2.0.
[3] The sugar-containing composition according to [1] or [2], which is the following (A), (B), or (C).
(A) Extract obtained by separating the extraction residue by performing the sulfurous acid treatment (B) Extracting residue obtained by separating the extract by performing the sulfurous acid treatment, alkali treatment, and further saccharifying enzyme treatment (C) The mixture of (A) and (B) [4] The material according to any one of [1] to [3] above, which is a raw material of alcohol and / or organic acid Sugar-containing composition.
[5] A method for producing a sugar-containing composition, wherein a sulfurous acid treatment is performed on a woody biomass using a solution containing sulfurous acid at a concentration of 1.0 w / v% to 4.0 w / v%.
[6] A method for producing an alcohol and / or an organic acid using the sugar-containing composition according to any one of [1] to [3] as a raw material.
[7] A culture medium for microbial growth comprising the sugar-containing composition according to any one of [1] to [3].
[8] A method for growing a microorganism with the sugar-containing composition according to any one of [1] to [3].

本発明によれば、糖を豊富に含み、アルコール発酵に供した際の発酵阻害性が少ないので、バイオエタノール等アルコールの製造原料として優れている糖含有組成物が提供される。   ADVANTAGE OF THE INVENTION According to this invention, since it contains abundant saccharide | sugar and there is little fermentation inhibitory property at the time of using for alcoholic fermentation, the saccharide | sugar containing composition excellent as a raw material for alcohol, such as bioethanol, is provided.

図1−1は、酵母に対する比較例1で得られる蒸解抽出液の添加量と生成エタノール量との関係を示すグラフである。FIG. 1-1 is a graph showing the relationship between the amount of cooked extract obtained in Comparative Example 1 for yeast and the amount of produced ethanol. 図1−2は、酵母に対する実施例1で得られる蒸解抽出液の添加量と生成エタノール量との関係を示すグラフである。1-2 is a graph showing the relationship between the amount of cooked extract obtained in Example 1 for yeast and the amount of ethanol produced. 図2は、実施例2及び実施例3のそれぞれで得られる抽出残渣の糖化による生成グルコース量の経時的変化を示すグラフである。FIG. 2 is a graph showing changes over time in the amount of glucose produced by saccharification of the extraction residue obtained in each of Example 2 and Example 3.

以下に、本発明を詳細に説明する。本発明の糖含有組成物は、木質系バイオマスを亜硫酸処理して得られる。   The present invention is described in detail below. The sugar-containing composition of the present invention is obtained by treating a woody biomass with sulfite.

本発明において、木質系バイオマスとは、木本類、草本類、海草などから選ばれる植物に由来するバイオマスを意味する。木質系バイオマスの代表的なものとしては、針葉樹、広葉樹等のいわゆる木本類を原料とする木材系バイオマス、草本類など木本類以外の加工品である非木材系バイオマスが挙げられ、これらのいずれであってもよい。針葉樹としては、例えば、アカシア、アカマツ、クロマツ、トドマツ、エゾマツ、モミ、ツガ、スギ、ヒノキ、カラマツ、トウヒ、ヒバ、ダグラスファー、ヘムロック、スプルース、バルサム、ラジアータパイン等が例示される。広葉樹としては、例えば、ナラ、シイ、ブナ、カバ、ハンノキ、シラカバ、ポプラ、ユーカリ、マングローブ、ラワン等を挙げることができる。非木材系バイオマスとしては古来より非木材パルプ原料として用いられてきた、靭皮繊維を利用するケナフ、楮、三椏、雁皮、亜麻、大麻、ジュート、種毛繊維を利用する綿、茎の繊維を利用する竹、稲わら、麦わら、砂糖きびバガス等を挙げることができる。木質系バイオマスは、木本類、草本類等の植物の植物体そのもの、その一部(例:樹皮、幹、枝、葉、根、実)のいずれであってもよいし、必要に応じて植物に処理を加えたもの(例えば、粉砕、チップ、ペレット等への成形など)であってもよい。木質系バイオマスの具体例としては、間伐材、林地残材、製材所廃材、剪定枝、果樹剪定枝、建築廃材(例:建築解体廃材、新増築廃材)、成形燃料等を挙げることができる。   In the present invention, the woody biomass means biomass derived from a plant selected from woody plants, herbaceous plants, seaweeds and the like. Typical woody biomass includes wood-based biomass made from so-called woody materials such as conifers and broad-leaved trees, and non-woody biomass that is processed products other than woody materials such as herbs. Either may be sufficient. Examples of coniferous trees include acacia, red pine, black pine, todomatsu, spruce, fir, tsuga, cedar, cypress, larch, spruce, hiba, douglas fir, hemlock, spruce, balsam, radiata pine and the like. Examples of broad-leaved trees include oak, shii, beech, hippopotamus, alder, birch, poplar, eucalyptus, mangrove, and lauan. Non-wood biomass has been used as a raw material for non-wood pulp since ancient times, such as kenaf, cocoon, cocoon, husk, flax, cannabis, jute, and cotton and stem fibers that use seed hair fibers. Bamboo, rice straw, wheat straw, sugar cane bagasse etc. to be used can be mentioned. The woody biomass may be any of plant bodies such as trees, herbs, etc., or a part thereof (eg, bark, trunk, branch, leaf, root, fruit), and if necessary What processed the plant (for example, crushing, shaping | molding to a chip | tip, a pellet, etc.) may be sufficient. Specific examples of woody biomass include thinned wood, forest land residue, sawmill waste, pruned branches, fruit tree pruned branches, construction waste (eg, building demolition waste, new extension waste), molded fuel, and the like.

本発明においては、木質系バイオマスの亜硫酸処理を行う。亜硫酸処理とは、亜硫酸を被処理物に接触させる処理を意味する。亜硫酸そのものを用いてもよいし、亜硫酸の塩(例えば、亜硫酸カルシウム、亜硫酸マグネシウム、亜硫酸アンモニウム、亜硫酸ナトリウムなど)を用いてもよい。亜硫酸処理の際用いる設備は特に限定されるものではなく、例えば、一般に知られている溶解パルプの製造設備などを用いることができる。   In the present invention, sulfite treatment of woody biomass is performed. Sulfurous acid treatment means treatment for bringing sulfurous acid into contact with an object to be treated. Sulfurous acid itself may be used, or a sulfite salt (for example, calcium sulfite, magnesium sulfite, ammonium sulfite, sodium sulfite, etc.) may be used. The equipment used for the sulfurous acid treatment is not particularly limited, and for example, generally known dissolving pulp production equipment can be used.

亜硫酸処理は、亜硫酸の溶液中の濃度(木質系バイオマスの持つ水分も含めた溶液(いわゆる蒸解用薬液(蒸解液))の容量(100mL)に対する亜硫酸の重量(g)の割合(g/100mL、単位:w/v%))、実施例における仕込み亜硫酸濃度)が所謂従来のレーヨン用パルプを製造する条件より低いこと、すなわち、4.0w/v%以下であることが必要である。好ましくは、3.5w/v%以下である。亜硫酸濃度が4.0w/v%以下であることにより、亜硫酸処理の結果得られる糖含有組成物中の酢酸、フルフラール等の発酵阻害物質の濃度は、上記範囲外の濃度の亜硫酸にて処理された処理物のそれと同等であるにもかかわらず、発酵阻害性の低い糖含有組成物が得られる。発酵阻害性が低い原因は、従来より発酵阻害性を有することが知られている物質である、酢酸やフルフラール類以外の、発酵阻害性を持つ物質(糖、リグニン、タンニンフラボノイドの変性物(過分解物))が少ない為であると推測される。すなわち、上記範囲内であることにより、木質系バイオマス中の糖の分解を最小限に抑えることができると共に、発酵阻害物質等の余分な成分が抽出されず、糖含量(例えば抽出固形分に対する糖の割合)を向上させることができる。亜硫酸の濃度の下限は、1.0w/v%以上であることが好ましく、2.0w/v%以上であることが好ましい。これより低いとヘミセルロースを単糖に十分に分解できなくなるおそれがある。すなわち、亜硫酸の濃度は、ヘミセルロース由来の単糖が十分含有される糖類を得る観点からは、1.0w/v%以上4.0w/v%以下であることが好ましく、2w/v%以上3.5w/v%以下であることがより好ましい。   Sulfurous acid treatment is a ratio of the weight (g) of sulfurous acid to the volume (100 mL) of the concentration (100 mL) of the concentration of sulfurous acid in the solution (including the moisture of the woody biomass (so-called cooking chemical (digestion liquid)) (g / 100 mL, The unit: w / v%)) and the concentration of sulfite charged in the examples) need to be lower than the so-called conventional conditions for producing rayon pulp, that is, 4.0 w / v% or less. Preferably, it is 3.5 w / v% or less. When the concentration of sulfurous acid is 4.0 w / v% or less, the concentration of fermentation inhibitors such as acetic acid and furfural in the sugar-containing composition obtained as a result of the sulfurous acid treatment is treated with sulfurous acid having a concentration outside the above range. In spite of being equivalent to that of the processed product, a sugar-containing composition having a low fermentation inhibition property is obtained. The cause of low fermentation inhibitory properties is a substance having fermentation inhibitory properties other than acetic acid and furfurals (sugar, lignin, tannin flavonoid denatured substances (excessive substances)) that are conventionally known to have fermentation inhibitory properties. It is assumed that this is because there are few decomposition products)). That is, by being within the above range, it is possible to minimize the decomposition of sugar in the woody biomass, and extra components such as fermentation inhibitors are not extracted, and the sugar content (for example, sugar relative to the extracted solid content) Ratio) can be improved. The lower limit of the concentration of sulfurous acid is preferably 1.0 w / v% or more, and more preferably 2.0 w / v% or more. If it is lower than this, hemicellulose may not be sufficiently decomposed into monosaccharides. That is, the concentration of sulfurous acid is preferably 1.0 w / v% or more and 4.0 w / v% or less, preferably 2 w / v% or more and 3 or less, from the viewpoint of obtaining a saccharide sufficiently containing a hemicellulose-derived monosaccharide. More preferably, it is 5 w / v% or less.

亜硫酸処理の際のpH条件は、1.1以上2.0以下であることが好ましく、1.2以上1.8以下であることが好ましい。これにより、木質系バイオマスに含まれるリグニン類を十分可溶化させることができる。また、後述の糖化酵素処理を行う場合には、セルロースの糖化性を十分に向上することができる。   The pH condition during the sulfurous acid treatment is preferably 1.1 or more and 2.0 or less, and more preferably 1.2 or more and 1.8 or less. Thereby, the lignin contained in the woody biomass can be sufficiently solubilized. Moreover, when performing the saccharification enzyme process mentioned later, the saccharification property of a cellulose can fully be improved.

また、亜硫酸処理においてはカウンターカチオンを添加することが好ましい。カウンターカチオンを添加することにより、亜硫酸処理におけるpHを保つことができ、糖の過分解を抑えることができる。カウンターカチオンとしては、例えば、MgO、Mg(OH)2、CaO、Ca(OH)2、CaCO3、NH3、NH4OH、NaOH、NaHCO3、Na2CO3等が挙げられ、このうちMg(OH)2、NaOHが特に好ましい。 In addition, it is preferable to add a counter cation in the sulfurous acid treatment. By adding a counter cation, the pH in the sulfite treatment can be maintained, and the excessive decomposition of sugar can be suppressed. Examples of the counter cation include MgO, Mg (OH) 2 , CaO, Ca (OH) 2 , CaCO 3 , NH 3 , NH 4 OH, NaOH, NaHCO 3 , Na 2 CO 3, etc. (OH) 2 and NaOH are particularly preferred.

亜硫酸処理の際の温度条件は、120℃以上150℃以下であることが好ましい。なお、上記カウンターカチオンを添加する際は、添加時の温度は、常温の範囲(例えば、10℃以上40℃以下)とすることが好ましい。   The temperature condition during the sulfurous acid treatment is preferably 120 ° C. or higher and 150 ° C. or lower. In addition, when adding the said counter cation, it is preferable that the temperature at the time of addition shall be the range of normal temperature (for example, 10 degreeC or more and 40 degrees C or less).

亜硫酸処理の処理時間は、通常は1時間以上12時間以下、好ましくは2時間以上4時間以下である。   The treatment time for the sulfurous acid treatment is usually 1 hour or more and 12 hours or less, preferably 2 hours or more and 4 hours or less.

亜硫酸処理は、通常は、いわゆる蒸解液と呼ばれる亜硫酸を含む溶液と、木質系チップとを接触させて行う。蒸解液における亜硫酸の濃度は、通常は5w/v%以上10w/v%以下である。蒸解液は、亜硫酸を適当な溶媒、一般に、水等に溶解させて調製され得る。蒸解液には、必要に応じて、亜硫酸、カウンターカチオンのほかに、蒸解浸透剤(例えば、アントラキノンスルホン酸塩、アントラキノン、テトラヒドロアントラキノン等の環状ケト化合物)を含ませてもよい。亜硫酸処理における、木質系バイオマスと蒸解液との比率は、亜硫酸の濃度、pHなど亜硫酸処理条件にもよるが、通常は、蒸解液液比(木質バイオマスの水分も加えた蒸解液の容量(L)に対する木質系バイオマスの絶乾重量(kg)の比(L/kg))として、2.0〜6.0であることが好ましく、2.5〜4.0であることがより好ましい。   The sulfurous acid treatment is usually performed by bringing a solution containing sulfurous acid called so-called cooking liquor into contact with a wood chip. The concentration of sulfurous acid in the cooking liquor is usually 5 w / v% or more and 10 w / v% or less. The cooking liquor can be prepared by dissolving sulfurous acid in a suitable solvent, generally water or the like. If necessary, the cooking solution may contain a cooking penetrant (eg, a cyclic keto compound such as anthraquinone sulfonate, anthraquinone, and tetrahydroanthraquinone) in addition to sulfurous acid and a counter cation. The ratio of woody biomass to cooking liquor in sulfite treatment depends on the sulfite treatment conditions such as the concentration and pH of sulfite, but usually the liquor liquor ratio (the volume of cooking liquor with the moisture of the woody biomass (L The ratio (L / kg) of the absolute dry weight (kg) of the woody biomass to) is preferably 2.0 to 6.0, and more preferably 2.5 to 4.0.

亜硫酸処理後、抽出液、抽出残渣、及びそれらの混合物が得られ、いずれもそのまま、或いは、必要に応じて他の処理を加えて本発明の糖含有組成物として利用できる。中でも、本発明の糖含有組成物は、以下の(A)、(B)又は(C)であることが好ましく、(C)であることがより好ましい。
(A)木質系バイオマスを亜硫酸処理して得られる抽出液
(B)木質系バイオマスを亜硫酸処理して得られる抽出残渣をアルカリ処理し、さらに糖化酵素処理して得られる酵素分解物
(C)(A)及び(B)の混合物、すなわち、木質系バイオマスを亜硫酸処理して得られる抽出液と、木質系バイオマスを亜硫酸処理して得られる抽出残渣をアルカリ処理し、さらに糖化酵素処理して得られる酵素分解処理物との混合物
After the sulfurous acid treatment, an extract, an extraction residue, and a mixture thereof are obtained, and all of them can be used as they are, or can be used as the sugar-containing composition of the present invention after adding other treatments as necessary. Especially, it is preferable that the saccharide | sugar containing composition of this invention is the following (A), (B) or (C), and it is more preferable that it is (C).
(A) Extract obtained by sulfite treatment of woody biomass (B) Enzymatic degradation product obtained by subjecting the extraction residue obtained by sulfite treatment of woody biomass to alkali treatment and further saccharification enzyme treatment (C) ( A mixture of A) and (B), that is, an extract obtained by sulfite treatment of woody biomass and an extract residue obtained by sulfite treatment of woody biomass are obtained by alkali treatment and further saccharification enzyme treatment. Mixture with enzymatic degradation treatment

(A)木質系バイオマスを亜硫酸処理して得られる抽出液は、亜硫酸処理の結果得られる処理物のうち蒸解液に溶解した液体部分を意味し、以下、本明細書において蒸解抽出液と呼ぶことがある。蒸解抽出液は、亜硫酸処理の結果得られる処理物のうち、抽出残渣を除いた部分である。抽出残渣の除去は、ろ過や遠心分離等の手段による分離によることができる。抽出液はそのまま、或いは必要に応じて中和、減圧濃縮等の処理を行ってから、糖含有組成物として利用できる。中和の際には、例えば、MgO、Mg(OH)2、CaO、Ca(OH)2、CaCO3、NH3、NH4OH、NaOH、NaHCO3、Na2CO3等を用いることができる。減圧濃縮を行うことにより、抽出液の糖濃度を向上させることができる。 (A) The extract obtained by sulfite treatment of the woody biomass means a liquid part dissolved in the digestion liquid in the treated product obtained as a result of the sulfite treatment, and hereinafter referred to as a digestion extract in this specification. There is. The cooking extract is a portion of the processed product obtained as a result of the sulfurous acid treatment, excluding the extraction residue. The extraction residue can be removed by separation by means such as filtration or centrifugation. The extract can be used as a sugar-containing composition as it is or after being subjected to treatment such as neutralization and concentration under reduced pressure as necessary. In the neutralization, for example, MgO, Mg (OH) 2 , CaO, Ca (OH) 2 , CaCO 3 , NH 3 , NH 4 OH, NaOH, NaHCO 3 , Na 2 CO 3 and the like can be used. . By performing concentration under reduced pressure, the sugar concentration of the extract can be improved.

(B)木質系バイオマスを亜硫酸処理して得られる抽出残渣をアルカリ処理し、さらに糖化酵素処理して得られる酵素分解物において、抽出残渣は、亜硫酸処理により得られる処理物のうち主に固体部分を意味する。抽出残渣は、抽出液からろ過や遠心分離等の手段により分離することにより得られる。抽出残渣はそのまま、水洗後、或いはアルカリ処理、糖化酵素処理を行ってから、糖含有組成物として利用でき、アルカリ処理、次いで糖化酵素処理を行ってから糖含有組成物として利用することが好ましい。   (B) In the enzymatic decomposition product obtained by treating the extraction residue obtained by treating the woody biomass with sulfite with an alkali and further treating with saccharification enzyme, the extraction residue is mainly a solid part of the treated product obtained by sulfite treatment. Means. The extraction residue is obtained by separating from the extract by means such as filtration or centrifugation. The extraction residue can be used as it is as a sugar-containing composition after washing with water, or after alkali treatment and saccharifying enzyme treatment, and preferably used as a sugar-containing composition after alkali treatment and then saccharifying enzyme treatment.

アルカリ処理は、抽出残渣に塩基性物質を接触させて行えばよい。塩基性物質としては、水酸化ナトリウム(NaOH、苛性ソーダ)が好ましい。塩基性物質の量は、抽出残渣の固形分重量、或いは、後述のように抽出残渣を水等の水性溶媒に分散し分散液を調整する場合には分散液の重量に対する重量の割合で、0.5重量%以上3.0重量%以下であることが好ましく、1.0重量%以上2.0重量%以下であることがより好ましい。この範囲であることにより、糖化酵素の反応性を十分な範囲に保つことができ、塩基性物質の添加量に見合った効果を得ることができる。アルカリ処理の処理温度は、90℃以上100℃以下であることが好ましく、95℃以上98℃以下であることがより好ましい。アルカリ処理の処理時間は、0.5時間以上6時間であることが好ましく、1時間以上2時間以下であることが特に好ましい。   The alkali treatment may be performed by bringing a basic substance into contact with the extraction residue. As the basic substance, sodium hydroxide (NaOH, caustic soda) is preferable. The amount of the basic substance is the weight of the solid content of the extraction residue, or the ratio of the weight to the weight of the dispersion when the extraction residue is dispersed in an aqueous solvent such as water as will be described later. It is preferably 5% by weight or more and 3.0% by weight or less, and more preferably 1.0% by weight or more and 2.0% by weight or less. By being in this range, the reactivity of the saccharifying enzyme can be maintained within a sufficient range, and an effect commensurate with the amount of basic substance added can be obtained. The treatment temperature of the alkali treatment is preferably 90 ° C. or higher and 100 ° C. or lower, and more preferably 95 ° C. or higher and 98 ° C. or lower. The treatment time of the alkali treatment is preferably 0.5 hours or more and 6 hours, particularly preferably 1 hour or more and 2 hours or less.

アルカリ処理に先立ち、必要に応じて、抽出残渣の分散処理、濃度の調整(水等の水性溶媒の分散液の調製)を行ってもよい。分散処理は、ディスクリファイナーの通過、ミキサー、ディスパーザーへの添加、ニーダー処理などによることができる。濃度の調整は、例えば水等の水性溶媒を用いて行うことができる。濃度の調整は、水性溶媒(重量)中の抽出残渣の固形分(重量)濃度が5.0重量%以上であることが好ましい。上限は、20.0重量%以下となるように調整することが好ましく、15.0重量%以下となるように調整することがより好ましい。   Prior to the alkali treatment, if necessary, a dispersion treatment of the extraction residue and a concentration adjustment (preparation of a dispersion of an aqueous solvent such as water) may be performed. The dispersion treatment can be performed by passing through a disc refiner, adding to a mixer or disperser, a kneader treatment, or the like. The concentration can be adjusted using an aqueous solvent such as water. The concentration is preferably adjusted such that the solid content (weight) concentration of the extraction residue in the aqueous solvent (weight) is 5.0% by weight or more. The upper limit is preferably adjusted to 20.0% by weight or less, and more preferably adjusted to 15.0% by weight or less.

糖化酵素処理の際用いる糖化酵素としては、特に限定されるものではない。例えば、セルラーゼ、ヘミセルラーゼ、セルラーゼとヘミセルラーゼの混合物などが挙げられる。セルラーゼは、endo−グルカナーゼ、exo−グルカナーゼ、β−グルコシダーゼ等に分類され、これらから選ばれる1種、或いは2種以上の混合物を、糖化酵素として用いることができる。前記セルラーゼの2種以上の混合物の場合には、それぞれの酵素の配合比のバランスの取れたものであることが好ましい。糖化酵素は、分解活性の高いものが好ましい。糖化酵素の具体例として、ノボ社製のセルラーゼ(NS50013とNS50010の混合物、NS22074など)、ジェネンコア協和社のセルラーゼ(オプチマッシュBG、Accellase1500)、新日本化学工業社のセルラーゼ(スミチームAC)等を例示することができるが、これに限定されるものではない。   The saccharifying enzyme used in the saccharifying enzyme treatment is not particularly limited. Examples include cellulase, hemicellulase, a mixture of cellulase and hemicellulase, and the like. Cellulases are classified into endo-glucanase, exo-glucanase, β-glucosidase, and the like, and one or a mixture of two or more selected from these can be used as the saccharifying enzyme. In the case of a mixture of two or more of the above cellulases, it is preferable that the mixing ratio of each enzyme is balanced. The saccharifying enzyme preferably has a high decomposing activity. Specific examples of saccharifying enzymes include cellulases from Novo (mixture of NS50013 and NS50010, NS22074, etc.), cellulases from Genencor Kyowa (Optimash BG, Accelase 1500), cellulase from Sumitomo Chemical (Sumiteam AC), etc. However, the present invention is not limited to this.

また、糖化酵素に代えて、糖化酵素活性を持つ微生物又はその培養物を利用してもよい。糖化酵素活性を持つ微生物のうち、セルラーゼ活性を持つ微生物としては、例えば、トリコデルマ(Trichoderma)属、アスペルギルス(Aspergillus)属、アクレモヌウム(Acremonium)属等の微生物が挙げられる。糖化酵素活性を持つ微生物を利用する糖化酵素処理の例としては、該微生物を含む培地に、上記アルカリ処理後の抽出残渣を添加する方法が挙げられる。   Further, instead of saccharifying enzymes, microorganisms having saccharifying enzyme activity or cultures thereof may be used. Among microorganisms having saccharifying enzyme activity, microorganisms having cellulase activity include, for example, microorganisms of the genus Trichoderma, the genus Aspergillus, the genus Acremonium, and the like. An example of saccharifying enzyme treatment using a microorganism having saccharifying enzyme activity is a method of adding the extraction residue after the alkali treatment to a medium containing the microorganism.

糖化酵素処理における処理条件は、用いる糖化酵素、微生物等により左右され、一律に範囲を特定することは困難であるが、一例を示すと以下の通りである。酵素の添加量は、抽出残渣の固形分重量に対する固形分(重量)濃度で、0.5重量%以上10.0重量%以下であることが好ましく、1.0重量%以上8.0重量%以下であることがより好ましい。pH条件は、4.0以上7.0以下であることが好ましい。温度条件は、30℃以上60℃以下であることが望ましい。反応時間は10時間以上72時間以下であることが好ましく、24時間以上48時間以下であることがより望ましい。   The processing conditions in the saccharifying enzyme treatment depend on the saccharifying enzyme, microorganism, etc. used, and it is difficult to specify the range uniformly, but an example is as follows. The amount of the enzyme added is preferably 0.5% by weight or more and 10.0% by weight or less, and more preferably 1.0% by weight or more and 8.0% by weight, as a solid content (weight) concentration with respect to the solid content weight of the extraction residue. The following is more preferable. The pH condition is preferably 4.0 or more and 7.0 or less. The temperature condition is desirably 30 ° C. or higher and 60 ° C. or lower. The reaction time is preferably 10 hours or more and 72 hours or less, and more preferably 24 hours or more and 48 hours or less.

糖化処理に先立ち、アルカリ処理がなされた抽出残渣の固形分濃度の調整を行ってもよい。固形分濃度の調整例としては、抽出残渣の固形分の重量が2.0重量%以上15.0重量%以下となるように水等の水性溶媒を添加することが挙げられる。   Prior to the saccharification treatment, the solid content concentration of the extraction residue subjected to the alkali treatment may be adjusted. Examples of adjusting the solid content concentration include adding an aqueous solvent such as water so that the solid content of the extraction residue is 2.0 wt% or more and 15.0 wt% or less.

得られる酵素分解物はそのままでも利用可能であるが、ろ過、膜処理ないしは遠心分離でスラッジを除くことが好ましい。また、減圧濃縮或いは逆浸透濃縮を行うと、酵素分解物中の糖濃度を向上させることができるので、好ましい。   The obtained enzyme degradation product can be used as it is, but it is preferable to remove sludge by filtration, membrane treatment or centrifugation. Further, concentration under reduced pressure or reverse osmosis is preferable because the sugar concentration in the enzymatic degradation product can be improved.

(C)混合物の亜硫酸濃度は、雑菌汚染効果を有し、且つ発酵阻害が起こさない点から、混合物の容量(100mL)に対する重量(g)の比率(単位:w/v%)として、0.01w/v%以上0.30w/v%以下であることが好ましく、0.05w/v%以上0.10w/v%以下であることが更に好ましい。糖含有組成物中(C)の亜硫酸濃度は、(A)抽出液及び/又は(B)酵素分解物の製造時における減圧濃縮によるコントロール、(A)と(B)の配合比率によりコントロールすることが可能である。(C)における(A)と(B)の配合比率(容量比)は特に限定されず、例えば、(A)/(B)=0.01〜99.99/99.99〜0.01(但し、(A)+(B)=100とする)であればよい。さらに、(A)〜(C)のいずれにおいても、発酵阻害物質のうち、酢酸等の有機酸は、糖含有組成物をエバポレーター処理等することにより通常は半分以下の量まで除去され得る。   (C) The concentration of sulfurous acid in the mixture is 0. As a ratio (unit: w / v%) of the weight (g) to the volume of the mixture (100 mL) from the viewpoint of having the effect of contaminating bacteria and preventing fermentation inhibition. It is preferably from 01 w / v% to 0.30 w / v%, more preferably from 0.05 w / v% to 0.10 w / v%. The concentration of sulfurous acid in (C) in the sugar-containing composition should be controlled by (A) control by concentration under reduced pressure during the production of the extract and / or (B) enzymatic degradation product, and the blending ratio of (A) and (B). Is possible. The blending ratio (volume ratio) of (A) and (B) in (C) is not particularly limited. For example, (A) / (B) = 0.01 to 99.99 / 99.99 to 0.01 ( However, (A) + (B) = 100) is sufficient. Furthermore, in any of (A) to (C), among fermentation inhibitors, organic acids such as acetic acid can be usually removed to half or less by treating the sugar-containing composition with an evaporator.

本発明の糖含有組成物は、いずれも糖を含む。(A)抽出液は、糖、中でも、グルコース、マンノース、ガラクトース等の六炭糖、キシロース、アラビノース等の五炭糖を豊富に含有し、このうち五炭糖ではキシロースが多く、六炭糖ではマンノースが主体である。また、本発明の糖含有組成物のうち(A)及び(C)、中でも(A)は、有機酸、例えば、酢酸、蟻酸等の低級有機酸(好ましくは炭素数1以上3以下程度)を多く含む。さらに、(B)酵素分解物及び(C)混合物に含まれる糖は、材料や処理条件等により個体差が多いので一概には言えないが、通常はグルコースが主体である。さらに、(A)及び(C)は、雑菌に汚染されにくいという特徴がある。雑菌汚染が防止できる理由は完全には明らかではないが、主に糖含有組成物中の亜硫酸が雑菌汚染防止効果を発現しているものと推測される。   All the sugar-containing compositions of the present invention contain sugar. (A) The extract contains saccharides, especially hexoses such as glucose, mannose and galactose, and pentoses such as xylose and arabinose. Among them, pentose contains a lot of xylose, Mainly mannose. Among the sugar-containing compositions of the present invention, (A) and (C), in particular, (A) is an organic acid, for example, a lower organic acid such as acetic acid or formic acid (preferably having about 1 to 3 carbon atoms). Including many. Furthermore, the sugars contained in the (B) enzyme degradation product and (C) mixture cannot be generally described because there are many individual differences depending on the materials and processing conditions, but usually glucose is mainly used. Furthermore, (A) and (C) are characterized by being hardly contaminated by various bacteria. The reason why the contamination with various bacteria can be prevented is not completely clear, but it is presumed that the sulfurous acid in the saccharide-containing composition mainly exhibits the effect of preventing the contamination with various bacteria.

本発明の糖含有組成物は、アルコール及び/又は有機酸製造の際の原料として有用である。糖含有組成物はそのまま、あるいは必要に応じて減圧濃縮、水等の水性溶媒への分散などを行ってからアルコール及び/又は有機酸製造の原料として利用できる。   The sugar-containing composition of the present invention is useful as a raw material in the production of alcohol and / or organic acid. The sugar-containing composition can be used as a raw material for alcohol and / or organic acid production as it is or after concentration under reduced pressure and dispersion in an aqueous solvent such as water as necessary.

糖含有組成物を用いてアルコール(例えば、エタノール、ブタノール)及び/又は有機酸(例えば、酢酸、蟻酸)を製造する際の条件は、特に限定されない。アルコールの製造を例に取ると、アルコール発酵能を有する微生物を添加して培養する方法が挙げられる。アルコール発酵を有する微生物としては、カンジダ属微生物(例えば、五炭糖からのアルコール発酵能を有するカンジダ・シェハタエ(例えばカンジダ・シェハタエ(Candida shehatae) ATCC22984))、サッカロミセス属微生物(例えば、サッカロミセス・セレビシエ(Saccharomyces cerevisiae))、シゾサッカロミセス属微生物(例えば、シゾサッカロミセス・ポンベ(Schizosaccharomyces pombe) AHU3179)等が挙げられる。アルコール発酵能を有する微生物の培養の際の条件は、微生物の種類により最適な条件を選択すればよい。微生物が、カンジダ・シェハタエの場合の例を挙げると、温度は25℃以上35℃以下であることが好ましく、発酵時間は12時間以上48時間以下であることが好ましい。アルコール及び/又は有機酸を製造する際には、糖含有組成物のみを原料としてもよいし、他の原料(グルコース等の糖など)と共に原料としてもよい。   Conditions for producing alcohol (eg, ethanol, butanol) and / or organic acid (eg, acetic acid, formic acid) using the sugar-containing composition are not particularly limited. Taking the production of alcohol as an example, a method of adding and culturing a microorganism having alcohol fermentability can be mentioned. Examples of microorganisms having alcohol fermentation include Candida microorganisms (for example, Candida shehatae (for example, Candida shehatae ATCC 22984) having alcohol fermentation ability from pentose sugar), and Saccharomyces microorganisms (for example, Saccharomyces cerevisiae ( Saccharomyces cerevisiae)), microorganisms of the genus Schizosaccharomyces (for example, Schizosaccharomyces pombe AHU3179) and the like. What is necessary is just to select the optimal conditions for the culture | cultivation of the microorganisms which have alcohol fermentability with the kind of microorganisms. Taking an example where the microorganism is Candida shehatae, the temperature is preferably 25 ° C. or more and 35 ° C. or less, and the fermentation time is preferably 12 hours or more and 48 hours or less. When producing alcohol and / or organic acid, only the sugar-containing composition may be used as a raw material, or it may be used as a raw material together with other raw materials (such as sugars such as glucose).

製造されるアルコール及び/又は有機酸は、必要に応じて蒸留、精製等を施した後、いわゆるバイオアルコール(バイオエタノール、バイオブタノールなど)、酢酸、蟻酸などとして、各種用途に供することができる。   The alcohol and / or organic acid to be produced can be subjected to various uses as so-called bioalcohol (bioethanol, biobutanol, etc.), acetic acid, formic acid and the like after being subjected to distillation, purification, etc., if necessary.

本発明の糖含有組成物は、微生物の生育において、炭素源としても有用である。本発明の糖含有組成物により生育可能な微生物は、生育に炭素源を必要とする微生物であれば特に限定されないが、アルコール発酵能を有する微生物(具体例については上述したとおりである)、有機酸発酵能を有する微生物(アセトバクター属微生物など)であることが好ましい。本発明の糖含有組成物は、微生物生育用培地の成分として含ませることができる。微生物生育用培地の形態は、液体培地、固体培地等のいずれであってもよい。また、微生物生育用培地は、本発明の糖含有組成物のほかに、他の成分、例えば窒素源、ビタミン、微量元素等を含んでいてもよい。   The sugar-containing composition of the present invention is also useful as a carbon source in the growth of microorganisms. The microorganism that can grow with the sugar-containing composition of the present invention is not particularly limited as long as it is a microorganism that requires a carbon source for growth, but it is a microorganism having alcohol fermentability (specific examples are as described above), organic A microorganism having acid fermentation ability (such as an Acetobacter microorganism) is preferable. The sugar-containing composition of the present invention can be included as a component of a microorganism growth medium. The form of the culture medium for microbial growth may be either a liquid medium or a solid medium. In addition to the sugar-containing composition of the present invention, the microorganism growth medium may contain other components such as a nitrogen source, vitamins, and trace elements.

以下実施例をもって本発明の詳細を説明する。なお、以下の実施例は本発明の一例であり、本発明を限定するものではない。   The details of the present invention will be described below with reference to examples. The following examples are only examples of the present invention and do not limit the present invention.

なお、下記の記載における単糖の対抽出液固形分比率とは、抽出液固形分の重量に対する単糖の合計量の比率(重量比)を意味する。単糖の合計量は、HPLC法により測定した六炭糖(グルコース、マンノース及びガラクトース)並びに五炭糖(キシロース及びアラビノース)の溶液100ml中の重量(g)の総和を単位w/v%であらわした数値である。「抽出液固形分」は、溶液100mlを120℃で衡量化するまで乾燥した時の重量(g)を単位w/v%で表した数値である。また、比較例1及び実施例1における水洗原質パルプ収率とは、蒸解して、抽出液除去後に得られた蒸解残渣(抽出残渣)を定法どおり離解・水洗浄後、8カットスクリーンを通過した繊維の乾燥重量の対チップ絶乾重量に対する百分率(単位:重量%)である。   In the following description, the ratio of monosaccharide to extract solids means the ratio (weight ratio) of the total amount of monosaccharides to the weight of extract solids. The total amount of monosaccharides represents the total weight (g) in 100 ml of a solution of hexose sugars (glucose, mannose and galactose) and pentose sugars (xylose and arabinose) measured by the HPLC method in units of w / v%. It is a numerical value. The “extracted liquid solid content” is a numerical value expressed in units of w / v% by weight (g) when 100 ml of the solution is dried at 120 ° C. until it is weighed. Moreover, the washing raw pulp yield in Comparative Example 1 and Example 1 is digested, and the cooking residue (extraction residue) obtained after removing the extract solution is disaggregated and washed with water as usual, and then passed through an 8-cut screen. The percentage (unit:% by weight) of the dry weight of the finished fiber to the absolute dry weight of the chip.

[比較例1:No.SP28]
アカシアチップを、蒸解液液比(チップ水分も含めた蒸解液の容量に対するチップの絶乾重量比(L/kg)、以下同じ)4、仕込み亜硫酸濃度5.49w/v%、pH1.29(by MgO)で140℃、4時間蒸解した。蒸解液の亜硫酸以外の組成は、Mg0.33w/v%とした。Mg(OH)2添加の際の温度は、常温(20℃)であった。処理後に蒸解抽出液を、遠心分離により抽出残渣から分離した。得られた蒸解抽出液中、単糖合計の対抽出液固形分比率は0.24であった。また水洗原質パルプ収率は46.6重量%であった。なお、比較例1の水洗原質パルプ収率及び単糖の対抽出液固形分比率は酸性亜硫酸蒸解法で溶解パルプを製造する場合の一般的数値であった。
[Comparative Example 1: No. SP28]
Acacia chips were mixed in a cooking liquor ratio (total dry weight ratio of chips (L / kg) to the volume of cooking liquor including chip moisture, the same applies hereinafter) 4, charged sulfite concentration 5.49 w / v%, pH 1.29 ( by MgO) and digested at 140 ° C. for 4 hours. The composition other than sulfurous acid in the cooking liquid was Mg 0.33 w / v%. The temperature during the addition of Mg (OH) 2 was room temperature (20 ° C.). After the treatment, the cooked extract was separated from the extraction residue by centrifugation. In the obtained cooked extract, the total ratio of monosaccharides to the solid content of the extract was 0.24. Further, the raw pulp yield of washing was 46.6% by weight. In addition, the washing | cleaning raw material pulp yield of Comparative Example 1 and the ratio of extract solids to the monosaccharide were general numerical values when dissolving pulp was produced by the acidic sulfite cooking method.

[実施例1 No.SP30]
アカシアチップを、蒸解液液比4、仕込み亜硫酸濃度2.46w/v%、pH1.81(by MgO)で140℃、4時間蒸解したほかは、比較例1と同様に行った。蒸解液の亜硫酸以外の組成は、Mg 0.30w/v%とした。Mg(OH)2添加の際の温度は、20℃であった。処理後に蒸解抽出液を、遠心分離により抽出残渣から分離した。得られた蒸解抽出液中、単糖の対抽出液固形分比率は0.31と比較例1に比べ高い単糖合計比率であった。一方、水洗原質パルプ収率は20.0重量%にとどまり、溶解パルプの実用収率にははるか及ばなかった。また、蒸解抽出液の亜硫酸濃度は、0.67w/v%であった。
[Example 1 No. SP30]
Acacia chips were processed in the same manner as Comparative Example 1 except that the cooking was carried out at 140 ° C. for 4 hours at a cooking liquor ratio of 4, a sulfite concentration of 2.46 w / v%, and a pH of 1.81 (by MgO). The composition other than sulfurous acid in the cooking solution was Mg 0.30 w / v%. The temperature during the addition of Mg (OH) 2 was 20 ° C. After the treatment, the cooked extract was separated from the extraction residue by centrifugation. In the obtained digested extract, the ratio of the solid content of the monosaccharide to the extract was 0.31, which was a higher monosaccharide total ratio than Comparative Example 1. On the other hand, the washing raw pulp yield was only 20.0% by weight, far below the practical yield of dissolved pulp. Moreover, the sulfurous acid density | concentration of the cooking extract was 0.67 w / v%.

比較例1にて得られた蒸解抽出液(No.SP28)を半量まで60℃で減圧濃縮後もとの量まで水で戻した抽出液をSP28E、実施例1にて得られた蒸解抽出液をSP28Eの場合と同様に濃縮後もとの量まで加水して得られた抽出液をSP30Eとした。これらの抽出液を、50容量(v/v)%のグルコースモデル糖液(組成:10w/v%グルコース/200mM リン酸カリウム緩衝液)に10〜50容量(v/v)%となるように添加し、残りの容量を水でフィルアップ後、これに五炭糖発酵可能な酵母Candida shehatae ATCC22984を発酵菌として2重量%添加し30℃、2時間発酵させた。   The extract obtained by concentrating the cooked extract (No. SP28) obtained in Comparative Example 1 to half the volume at 60 ° C. under reduced pressure and then returning to the original amount with SP28E, the cooked extract obtained in Example 1 As in the case of SP28E, the extract obtained by adding water to the original amount after concentration was designated as SP30E. These extract solutions are 10 to 50 volume (v / v)% in 50 volume (v / v)% glucose model sugar solution (composition: 10 w / v% glucose / 200 mM potassium phosphate buffer). After adding up and filling up the remaining volume with water, 2% by weight of yeast Candida sheatae ATCC 22984 capable of pentose fermentation was added as a fermenter and fermented at 30 ° C. for 2 hours.

各抽出液存在下での発酵終了後、生成エタノールをF−キット(酵素法エタノール測定キット、株式会社J.K.インターナショナル)により測定した。生成エタノ−ルの測定結果を図1−1(SP28及びSP28E)及び図1−2(SP30及びSP30E)に示した。   After completion of fermentation in the presence of each extract, the produced ethanol was measured with an F-kit (enzymatic ethanol measurement kit, JK International Co., Ltd.). The measurement results of the ethanol produced are shown in FIG. 1-1 (SP28 and SP28E) and FIG. 1-2 (SP30 and SP30E).

比較例1の蒸解抽出液(SP28)では糖液への蒸解抽出液の添加率を増すに従い、急激にエタノールの生成が低下した(図1−1)。減圧濃縮処理を施した抽出液(SP28E)の場合も、エタノール発酵性は向上するものの発酵阻害性は十分には低下しなかった。これと比較し、実施例1の蒸解抽出液(SP30)ではパルプ製造条件での蒸解抽出液と比較し、含まれる酢酸や発酵阻害物質の濃度は同等であったにもかかわらず、発酵阻害性が低下しており、特に減圧濃縮を施した場合(SP30E)顕著であった(図1−2)。なお、SP−30には酢酸が1.0重量%含まれていたが、エバポレーターにより処理した後は、0.37重量%に低下した。   In the cooked extract (SP28) of Comparative Example 1, the production of ethanol decreased rapidly as the addition rate of the cooked extract into the sugar solution was increased (FIG. 1-1). Even in the case of the extract (SP28E) subjected to the vacuum concentration treatment, although the ethanol fermentability was improved, the fermentation inhibition was not sufficiently reduced. In comparison with this, the cooking extract of Example 1 (SP30) was compared with the cooking extract under the pulp production conditions, and although the concentrations of acetic acid and fermentation inhibitory substances contained were the same, the fermentation inhibitory properties were compared. Was particularly noticeable when concentrated under reduced pressure (SP30E) (FIG. 1-2). Although SP-30 contained 1.0% by weight of acetic acid, it decreased to 0.37% by weight after being treated with an evaporator.

[実施例2]
実施例1と同一条件で蒸解とパルプの分離を行った。得られた結果物から抽出残渣を蒸解抽出液から分離して水洗し、スクリーン通過を行うことなく採取した。これを4.0重量%固形分濃度となるように水分散し、希塩酸でpHを5.2に調整後、セルラーゼ(ノボ社製、NS22074)を、抽出残渣に対する固形分(重量)濃度で、5.0重量%添加し、50℃で30時間反応させた。酵素反応の間生成するグルコースを経時的に測定した。
[Example 2]
Cooking and pulp separation were performed under the same conditions as in Example 1. The extraction residue was separated from the digested extract from the resulting product, washed with water, and collected without passing through a screen. This was dispersed in water to a concentration of 4.0% by weight, adjusted to pH 5.2 with dilute hydrochloric acid, and then cellulase (Novo, NS22074) was added at a solid content (weight) concentration with respect to the extraction residue. 5.0 weight% was added and it was made to react at 50 degreeC for 30 hours. The glucose produced during the enzyme reaction was measured over time.

[実施例3]
実施例2と同様の条件で採取された抽出残渣を、8.0重量%固形分濃度となるように水に分散し、これに苛性ソーダを抽出残渣の水分散液の重量に対する重量割合で、2.0重量%添加し、95℃及び3時間の条件で加熱処理を行った。その後、遠心分離機により抽出液が殆ど出なくなるまで脱液、水洗後家庭用ミキサーを用い1分間分散を行い、得られる酵素糖化用パルプを4.0重量%固形分濃度となるように水分散した。0.1N希塩酸でpHを5.2に調整後、セルラーゼ(ノボ社製、NS22074)を、酵素糖化用パルプの重量の対固形分(重量)で5.0重量%添加し、50℃で30時間反応させた。酵素反応の間生成するグルコースを測定した。
[Example 3]
The extraction residue collected under the same conditions as in Example 2 was dispersed in water so as to have a solid content concentration of 8.0% by weight, and caustic soda was added at a weight ratio of 2 to the weight of the aqueous dispersion of the extraction residue. 0.0 wt% was added, and heat treatment was performed at 95 ° C. for 3 hours. Then, the extract is drained with a centrifugal separator until it almost disappears, washed with water and then dispersed for 1 minute using a household mixer. The resulting pulp for enzymatic saccharification is dispersed in water so as to have a solid content concentration of 4.0% by weight. did. After adjusting the pH to 5.2 with 0.1N dilute hydrochloric acid, cellulase (Novo, NS22074) was added at 5.0% by weight based on the solid content (weight) of the pulp for enzymatic saccharification, and 30 ° C. was added at 30%. Reacted for hours. The glucose produced during the enzymatic reaction was measured.

実施例2及び実施例3の測定結果を、図2に示した。実施例2及び実施例3とも、グルコースは生成されていたが、アルカリ処理を行う実施例3では、酵素反応性が大幅に向上していた。また、実施例3の酵素糖化用パルプでは、パルプに含まれるグルコース当たり70.0重量%以上の糖化率が得られた。また、実施例2及び実施例3のそれぞれにおいて酵素反応終了後に得られる、酵素分解液中に亜硫酸は殆ど検出されなかった。   The measurement results of Example 2 and Example 3 are shown in FIG. In both Example 2 and Example 3, glucose was produced, but in Example 3 where the alkali treatment was performed, the enzyme reactivity was greatly improved. Moreover, in the enzyme saccharification pulp of Example 3, a saccharification rate of 70.0% by weight or more per glucose contained in the pulp was obtained. Moreover, in each of Example 2 and Example 3, sulfurous acid was hardly detected in the enzymatic decomposition solution obtained after completion of the enzymatic reaction.

[実施例4]
実施例1で得られた蒸解抽出液を比較例1のSP28と同様に濃縮して得られる濃縮液(全単糖濃度6.8w/v%)50容量部と、実施例3で得た酵素分解液を3倍に濃縮後ろ過してスラッジを除いた糖液(グルコース7.5w/v%)を50容量部合せて糖液を得た。この糖液の組成は、以下の通りであった:グルコース3.8w/v%、マンノース0.1w/v%、ガラクトース0.2w/v% キシロース2.9w/v%、アラビノース0.1w/v%、五炭糖と六炭糖の合計:7.1w/v% SO2:0.17w/v%。
[Example 4]
50 parts by volume of a concentrate (total monosaccharide concentration: 6.8 w / v%) obtained by concentrating the cooked extract obtained in Example 1 in the same manner as SP28 in Comparative Example 1, and the enzyme obtained in Example 3 The decomposition solution was concentrated three times and then filtered to obtain a sugar solution by combining 50 parts by volume of the sugar solution (glucose 7.5 w / v%) from which sludge was removed. The composition of the sugar solution was as follows: glucose 3.8 w / v%, mannose 0.1 w / v%, galactose 0.2 w / v% xylose 2.9 w / v%, arabinose 0.1 w / v v%, the sum of the pentose and hexose: 7.1w / v% SO 2: 0.17w / v%.

この糖液のpHを6.0に調整後、500ml三角フラスコに300mlを添加し、予め前培養しておいた酵母Candida shehataeを、糖液中の濃度が2重量%濃度となるようにさらに添加した。サランラップでこのフラスコの口を覆い、30℃及び50rpmの条件で2日間発酵を行った。   After adjusting the pH of this sugar solution to 6.0, 300 ml was added to a 500 ml Erlenmeyer flask, and yeast Candida shehatae that had been pre-cultured in advance was further added so that the concentration in the sugar solution was 2% by weight. did. The mouth of the flask was covered with Saran wrap, and fermentation was performed for 2 days at 30 ° C. and 50 rpm.

発酵終了後の培養液中のエタノール濃度を測定したところ、2.0容量(v/v)%であった。なお、使用した器具類は滅菌処理を施さないものであり、また、雑菌汚染対策も施さず、実験終了後3日間同一条件で培養を継続したが、不快な臭いは発生せず、また検鏡で雑菌汚染は観察されなかった。   It was 2.0 volume (v / v)% when the ethanol density | concentration in the culture solution after completion | finish of fermentation was measured. The instruments used were not sterilized, were not subjected to contamination control, and were cultured under the same conditions for 3 days after the end of the experiment. No contamination was observed.

Claims (8)

木質系バイオマスについて、亜硫酸を1.0w/v%以上4.0w/v%以下の濃度で含む溶液を用いる亜硫酸処理を行って得られる糖含有組成物。   A sugar-containing composition obtained by subjecting woody biomass to a sulfurous acid treatment using a solution containing sulfurous acid at a concentration of 1.0 w / v% to 4.0 w / v%. 前記亜硫酸処理は、pH1.1以上2.0以下の条件下で行われる、請求項1に記載の糖含有組成物。   The sugar-containing composition according to claim 1, wherein the sulfurous acid treatment is performed under conditions of pH 1.1 to 2.0. 以下の(A)、(B)又は(C)である、請求項1又は2に記載の糖含有組成物。
(A)前記亜硫酸処理を行って、抽出残渣を分離して得られる抽出液
(B)前記亜硫酸処理を行って、抽出液を分離して得られる抽出残渣を、アルカリ処理し、さらに糖化酵素処理して得られる酵素分解物
(C)前記(A)及び(B)の混合物
The sugar-containing composition according to claim 1 or 2, which is the following (A), (B) or (C).
(A) Extract obtained by separating the extraction residue by performing the sulfurous acid treatment (B) Extracting residue obtained by separating the extract by performing the sulfurous acid treatment, alkali treatment, and further saccharifying enzyme treatment (C) Mixture of (A) and (B)
アルコール及び/又は有機酸の原料である、請求項1〜3のいずれか一項に記載の糖含有組成物。   The sugar-containing composition according to any one of claims 1 to 3, which is a raw material for alcohol and / or organic acid. 木質系バイオマスに対し、亜硫酸を1.0w/v%以上4.0w/v%以下の濃度で含む溶液を用いる亜硫酸処理を行う、糖含有組成物の製造方法。   A method for producing a sugar-containing composition, wherein a sulfurous acid treatment is performed on a woody biomass using a solution containing sulfurous acid at a concentration of 1.0 w / v% to 4.0 w / v%. 請求項1〜3のいずれか一項に記載の糖含有組成物を原料として用いる、アルコール及び/又は有機酸の製造方法。   The manufacturing method of alcohol and / or an organic acid using the saccharide | sugar containing composition as described in any one of Claims 1-3 as a raw material. 請求項1〜3のいずれか一項に記載の糖含有組成物を含む、微生物生育用培地。   A culture medium for microbial growth comprising the sugar-containing composition according to any one of claims 1 to 3. 請求項1〜3のいずれか一項に記載の糖含有組成物で微生物を生育する方法。   The method to grow microorganisms with the saccharide | sugar containing composition as described in any one of Claims 1-3.
JP2011022561A 2011-02-04 2011-02-04 Sugar-containing composition Active JP5701632B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011022561A JP5701632B2 (en) 2011-02-04 2011-02-04 Sugar-containing composition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011022561A JP5701632B2 (en) 2011-02-04 2011-02-04 Sugar-containing composition

Publications (2)

Publication Number Publication Date
JP2012161258A true JP2012161258A (en) 2012-08-30
JP5701632B2 JP5701632B2 (en) 2015-04-15

Family

ID=46841336

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011022561A Active JP5701632B2 (en) 2011-02-04 2011-02-04 Sugar-containing composition

Country Status (1)

Country Link
JP (1) JP5701632B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014131401A (en) * 2012-12-28 2014-07-10 Canon Inc Electronic apparatus and program
WO2015137467A1 (en) * 2014-03-13 2015-09-17 三菱化学株式会社 Method for treating sugar solution, method for producing treated sugar solution, treated sugar solution, method for producing organic compound, and method for culturing microorganisms
JP2016135834A (en) * 2015-01-23 2016-07-28 日本製紙株式会社 Method for producing lignin sulfonate
US11492674B2 (en) 2018-01-24 2022-11-08 Versalis S.P.A. Process for the production of sugars from biomass derived from guayule plants
RU2793789C2 (en) * 2018-01-24 2023-04-06 ВЕРСАЛИС С.п.А. Process for production of sugars from biomass derived from guayule plants

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008092910A (en) * 2006-10-16 2008-04-24 Forestry & Forest Products Research Institute Method for producing ethanol
JP2009213389A (en) * 2008-03-10 2009-09-24 Nippon Paper Chemicals Co Ltd System for producing bioethanol using lignocellulose as raw material
US20090298149A1 (en) * 2008-04-22 2009-12-03 Gaosheng Wang Sulfite Pretreatment For Biorefining Biomass
JP2010136686A (en) * 2008-12-12 2010-06-24 Oji Paper Co Ltd Method for saccharifying wood-based biomass
WO2010078930A2 (en) * 2008-12-17 2010-07-15 Borregaard Industries Limited, Norge Lignocellulosic biomass conversion

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008092910A (en) * 2006-10-16 2008-04-24 Forestry & Forest Products Research Institute Method for producing ethanol
JP2009213389A (en) * 2008-03-10 2009-09-24 Nippon Paper Chemicals Co Ltd System for producing bioethanol using lignocellulose as raw material
US20090298149A1 (en) * 2008-04-22 2009-12-03 Gaosheng Wang Sulfite Pretreatment For Biorefining Biomass
JP2010136686A (en) * 2008-12-12 2010-06-24 Oji Paper Co Ltd Method for saccharifying wood-based biomass
WO2010078930A2 (en) * 2008-12-17 2010-07-15 Borregaard Industries Limited, Norge Lignocellulosic biomass conversion

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014131401A (en) * 2012-12-28 2014-07-10 Canon Inc Electronic apparatus and program
WO2015137467A1 (en) * 2014-03-13 2015-09-17 三菱化学株式会社 Method for treating sugar solution, method for producing treated sugar solution, treated sugar solution, method for producing organic compound, and method for culturing microorganisms
US10370684B2 (en) 2014-03-13 2019-08-06 Mitsubishi Chemical Corporation Treatment method of saccharide solution
JP2016135834A (en) * 2015-01-23 2016-07-28 日本製紙株式会社 Method for producing lignin sulfonate
US11492674B2 (en) 2018-01-24 2022-11-08 Versalis S.P.A. Process for the production of sugars from biomass derived from guayule plants
RU2793789C2 (en) * 2018-01-24 2023-04-06 ВЕРСАЛИС С.п.А. Process for production of sugars from biomass derived from guayule plants

Also Published As

Publication number Publication date
JP5701632B2 (en) 2015-04-15

Similar Documents

Publication Publication Date Title
Behera et al. Importance of chemical pretreatment for bioconversion of lignocellulosic biomass
CN101796247B (en) Detoxifying and recycling of washing solution used in pretreatment of lignocellulose-containing materials
US20110314726A1 (en) Production of ethanol from lignocellulosic biomass using green liquor pretreatment
JP5752047B2 (en) Organic solvent pretreatment of biomass to promote enzymatic saccharification
JP5325793B2 (en) Process for fermentative production of ethanol from solid lignocellulosic material comprising the step of treating the solid lignocellulosic material with an alkaline solution to remove lignin
DK2449092T3 (en) Process for the hydrolysis of biomass
US20120036768A1 (en) High consistency enzymatic hydrolysis for the production of ethanol
Tropea et al. Bioethanol production from pineapple wastes.
US20080026431A1 (en) Method for saccharification of woody biomass
US8980595B2 (en) In situ production of furfural in a controlled amount in an alcohol production unit from a lignocellulosic biomass
AU2016201904A1 (en) Process for producing high value products from biomass
CN103597085A (en) Methods for converting lignocellulosic material to useful products
RU2545392C2 (en) Method for preparing alcohols and/or solvents of lignocellulosic biomass with acid recirculation of solid residues
WO2011111664A1 (en) Lignin enzyme stabiliser
WO2015005589A1 (en) Method for preparing sugar, bioethanol or microbial metabolite from lignocellulosic biomass
Singh et al. Assessment of different pretreatment technologies for efficient bioconversion of lignocellulose to ethanol
ES2703631T3 (en) Procedures and systems for the saccharification of biomass
WO2013151927A1 (en) Pretreatment composition for biomass conversion process
JP5701632B2 (en) Sugar-containing composition
JP5267387B2 (en) Bast fiber manufacturing method and bast fiber
Lissens et al. Wet oxidation treatment of organic household waste enriched with wheat straw for simultaneous saccharification and fermentation into ethanol
Premjet et al. Enzymatic response to structural and chemical transformations in Hibiscus sabdariffa var. altissima bark and core during phosphoric acid pretreatment
KR101965841B1 (en) Method for pretreatment of biomass
JP6177535B2 (en) Prehydrolyzate treatment system
CN102803498B (en) Biomass hydrolysis process

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20121115

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130531

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140417

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140430

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20140509

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140626

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150203

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150218

R150 Certificate of patent or registration of utility model

Ref document number: 5701632

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250