JP2012161029A - Imaging device - Google Patents

Imaging device Download PDF

Info

Publication number
JP2012161029A
JP2012161029A JP2011020903A JP2011020903A JP2012161029A JP 2012161029 A JP2012161029 A JP 2012161029A JP 2011020903 A JP2011020903 A JP 2011020903A JP 2011020903 A JP2011020903 A JP 2011020903A JP 2012161029 A JP2012161029 A JP 2012161029A
Authority
JP
Japan
Prior art keywords
image
blur
accumulation period
imaging
images
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2011020903A
Other languages
Japanese (ja)
Inventor
Seiji Kato
聖史 加藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hoya Corp
Original Assignee
Hoya Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hoya Corp filed Critical Hoya Corp
Priority to JP2011020903A priority Critical patent/JP2012161029A/en
Publication of JP2012161029A publication Critical patent/JP2012161029A/en
Withdrawn legal-status Critical Current

Links

Images

Landscapes

  • Transforming Light Signals Into Electric Signals (AREA)
  • Studio Devices (AREA)

Abstract

PROBLEM TO BE SOLVED: To correct an image blur and suppress image distortion in an imaging device equipped with an image sensor with an asynchronous accumulation period of a signal charge.SOLUTION: An imaging device comprises: an image sensor in which a charge accumulation period is different for each predetermined area on an imaging surface; imaging control means that controls the drive of the image sensor to capture a subject in plural times of continuous exposure times; blur detection means that compares the plural captured images to detect a blur between the images; blur correction means that mutually shifts the plural images so as to correct the detected blur to combine them to one image; velocity vector calculation means that calculates a velocity vector of the subject based on the detected blur; and distortion correction means that corrects image distortion due to asynchrony of the charge accumulation period between the predetermined areas based on the velocity vector.

Description

本発明は、信号電荷の蓄積期間が非同時な撮像素子を搭載した撮像装置に関する。   The present invention relates to an imaging device equipped with an imaging device in which signal charge accumulation periods are not simultaneous.

近年、固体撮像素子を搭載した撮像装置が広く普及している。撮像装置による被写体の撮像においては、像ぶれを抑えることが重要な課題の一つとして挙げられる。像ぶれを抑えるように構成された撮像装置は種々提案されている。   In recent years, imaging devices equipped with solid-state imaging elements have become widespread. In imaging of a subject by an imaging device, suppressing image blur is one of important issues. Various imaging devices configured to suppress image blur have been proposed.

例えば特許文献1には、被写体を複数回の連続した短い露光時間で時分割的に撮像する撮像装置が記載されている。特許文献1に記載の撮像装置で撮像された各画像は、一回あたりの露光時間が短いため被写体のぶれ量が少ないが、露光不足のため全体的に輝度が低い。そのため、撮像装置は、露光開始からの装置本体のぶれ量が許容量に達するまで短時間露光を繰り返し行う。このようにして撮像された複数枚の画像は、一枚に合成されて適正な輝度を確保する。合成は、各画像の相互の像ぶれ量を検出し補正された状態で行われる。   For example, Patent Document 1 describes an imaging apparatus that images a subject in a time-division manner with a plurality of continuous short exposure times. Each image picked up by the image pickup apparatus described in Patent Document 1 has a small amount of blurring of the subject because the exposure time per time is short, but the overall brightness is low due to insufficient exposure. For this reason, the imaging apparatus repeatedly performs short-time exposure until the amount of blurring of the apparatus main body from the start of exposure reaches an allowable amount. A plurality of images taken in this way are combined into one image to ensure proper luminance. The composition is performed in a state where the image blur amount of each image is detected and corrected.

特開2003−32540号公報Japanese Patent Laid-Open No. 2003-32540

特許文献1に記載の撮像装置は、固体撮像素子としてCCD(Charge Coupled Device)イメージセンサを想定している。しかし、像ぶれは、CCDイメージセンサ以外の他の固体撮像素子を用いて撮像する場合も発生する。CCDイメージセンサ以外の代表的な固体撮像素子として、例えば、安価かつ低消費電力で量産性に優れたCMOS(Complementary Metal Oxide Semiconductor)イメージセンサが知られている。   The imaging apparatus described in Patent Document 1 assumes a CCD (Charge Coupled Device) image sensor as a solid-state imaging device. However, image blur also occurs when imaging is performed using a solid-state imaging device other than the CCD image sensor. As a typical solid-state image sensor other than a CCD image sensor, for example, a CMOS (Complementary Metal Oxide Semiconductor) image sensor that is inexpensive, has low power consumption, and is excellent in mass productivity is known.

CMOSイメージセンサを搭載した撮像装置において特許文献1に記載の像ぶれ補正の発明を適用すると、CCDイメージセンサを搭載した撮像装置と同様に像ぶれが補正されるものと思われる。   When the image blur correction invention described in Patent Document 1 is applied to an image pickup apparatus equipped with a CMOS image sensor, it is considered that image blur is corrected in the same manner as an image pickup apparatus equipped with a CCD image sensor.

しかし、CMOSイメージセンサは、動作原理上、信号出力直後に再び光電変換した信号の蓄積を開始するため、信号電荷の蓄積期間が走査線ごとに異なる。そのため、電荷蓄積期間のずれに起因した像の歪みが発生する。この種の像の歪みは、露光時間が短いほど各電荷蓄積期間の重複部分が短くなるため顕著に現れる。すなわち、特許文献1に記載の像ぶれ補正の発明をCMOSイメージセンサを搭載した撮像装置に適用した場合、像ぶれ補正の代償として像が大きく歪むという弊害が発生する。   However, since the CMOS image sensor starts accumulation of the photoelectrically converted signal again immediately after signal output, the signal charge accumulation period differs for each scanning line. For this reason, image distortion due to a shift in the charge accumulation period occurs. This type of image distortion becomes more prominent because the overlapping portion of each charge accumulation period becomes shorter as the exposure time is shorter. That is, when the image blur correction invention described in Patent Document 1 is applied to an image pickup apparatus equipped with a CMOS image sensor, there is a problem that the image is greatly distorted as a price for image blur correction.

本発明は上記の事情に鑑みてなされたものであり、その目的とするところは、信号電荷の蓄積期間が非同時な撮像素子を搭載した撮像装置において像ぶれを補正すると共に像の歪みを抑えることである。   The present invention has been made in view of the above circumstances, and an object of the present invention is to correct image blur and suppress image distortion in an imaging apparatus equipped with an imaging element in which signal charge accumulation periods are not simultaneous. That is.

上記の課題を解決する本発明の一形態に係る撮像装置は、電荷蓄積期間が撮像面の所定領域ごとに相違する撮像素子と、撮像素子を駆動制御して被写体を複数回の連続した露光時間で撮像する撮像制御手段と、撮像された複数枚の画像を比較して該画像の相互のぶれを検出するぶれ検出手段と、検出されたぶれを補正するように複数枚の画像を相互にシフトして一枚の画像に合成するぶれ補正手段と、検出されたぶれに基づいて被写体の速度ベクトルを計算する速度ベクトル計算手段と、速度ベクトルに基づいて所定領域間の電荷蓄積期間の非同時性に起因した画像の歪みを補正する歪み補正手段とを有することを特徴としている。   An imaging apparatus according to an embodiment of the present invention that solves the above-described problems includes an imaging element having a different charge accumulation period for each predetermined region of the imaging surface, and a plurality of continuous exposure times of the subject by driving the imaging element. The image pickup control means for picking up the image, the shake detection means for comparing the picked up images and detecting the mutual shake of the images, and the plural images are mutually shifted so as to correct the detected shake. Blur correction means for combining the images into one image, speed vector calculation means for calculating the velocity vector of the subject based on the detected blur, and non-simultaneousness of the charge accumulation period between the predetermined areas based on the velocity vector And distortion correcting means for correcting image distortion caused by the above.

本願発明によれば、電荷蓄積期間が撮像面の所定領域ごとに相違する撮像素子を用いて像ぶれ補正のために複数回の短時間露光を行う場合も、信号電荷の蓄積期間の非同時性に起因する画像の歪みが良好に抑えられる。   According to the present invention, the signal charge accumulation period is not synchronized even when multiple short-time exposures are performed for image blur correction using an image sensor in which the charge accumulation period is different for each predetermined region of the imaging surface. The distortion of the image due to the image can be satisfactorily suppressed.

歪み補正手段は、撮像面上の所定の基準領域の電荷蓄積期間を基準蓄積期間と定義し、歪み補正の対象となる補正対象像を取り込んだ該撮像面上の該基準領域以外の他の所定領域の電荷蓄積期間と該基準蓄積期間とのずれ時間を蓄積ずれ時間と定義し、該基準蓄積期間開始から該他の所定領域の電荷蓄積期間開始までの間の該補正対象像の移動距離及び移動方向を露光ずれ量と定義した場合に、他の所定領域ごとに、速度ベクトルと蓄積ずれ時間を用いて露光ずれ量を計算し、露光ずれ量を用いて補正対象像の位置を基準蓄積期間の開始時点で存在していたと推定される位置に変換する構成としてもよい。   The distortion correction unit defines a charge accumulation period of a predetermined reference area on the imaging surface as a reference accumulation period, and other predetermined areas other than the reference area on the imaging surface that capture a correction target image to be subjected to distortion correction. The shift time between the charge storage period of the region and the reference storage period is defined as the storage shift time, and the moving distance of the correction target image from the start of the reference storage period to the start of the charge storage period of the other predetermined region When the movement direction is defined as the exposure deviation amount, the exposure deviation amount is calculated using the velocity vector and the accumulation deviation time for each other predetermined area, and the position of the correction target image is determined using the exposure deviation amount as a reference accumulation period. It is good also as a structure converted into the position estimated that it existed at the start time of.

本発明に係る撮像装置は、歪み補正後の画像の形状を所定の表示画面領域に合わせて変更する形状変更手段を有する構成としてもよい。   The imaging apparatus according to the present invention may be configured to include a shape changing unit that changes the shape of the image after distortion correction in accordance with a predetermined display screen area.

撮像素子には、例えば安価かつ低消費電力で量産性に優れたCMOSイメージセンサが想定される。   As the imaging device, for example, a CMOS image sensor that is inexpensive, has low power consumption, and is excellent in mass productivity is assumed.

ぶれ検出手段は、複数枚の画像の中から共通の特徴点を検出し、ぶれ補正手段は、特徴点が重なるように複数枚の画像を相互にシフトして一枚の画像に合成するように構成されてもよい。   The blur detection unit detects a common feature point from the plurality of images, and the blur correction unit shifts the plurality of images to each other so that the feature points overlap to be combined into one image. It may be configured.

本発明に係る撮像装置によれば、撮像素子の信号電荷の蓄積期間が非同時であっても像ぶれが補正されると共に像の歪みが抑えられる。   According to the imaging apparatus of the present invention, image blur is corrected and image distortion is suppressed even when the signal charge accumulation period of the imaging element is not simultaneous.

本発明の実施形態の撮像装置の構成を示すブロック図である。It is a block diagram which shows the structure of the imaging device of embodiment of this invention. 本発明の実施形態の撮像装置に搭載されたCMOSイメージセンサの撮像面の走査タイミングを説明するための図である。It is a figure for demonstrating the scanning timing of the imaging surface of the CMOS image sensor mounted in the imaging device of embodiment of this invention. 本発明の実施形態の撮像装置に搭載された像ぶれ検出回路による像ぶれ検出を説明するための図である。It is a figure for demonstrating the image blur detection by the image blur detection circuit mounted in the imaging device of embodiment of this invention. 本発明の実施形態の撮像装置に搭載された像ぶれ補正回路及び露光ずれ補正回路による画像の補正を説明するための図である。It is a figure for demonstrating correction | amendment of the image by the image blurring correction circuit and exposure shift correction circuit mounted in the imaging device of embodiment of this invention.

以下、図面を参照して、本発明の実施形態の撮像装置について説明する。   Hereinafter, an imaging apparatus according to an embodiment of the present invention will be described with reference to the drawings.

図1は、本実施形態の撮像装置100の構成を示すブロック図である。本実施形態において、撮像装置100は、内視鏡システム中の撮像装置部分を抜き出して示したものであるが、デジタルスチルカメラ、デジタルビデオカメラ、PDA(Personal Digital Assistant)、PND(Portable Navigation Device)、PHS(Personal Handy-phone System)、携帯ゲーム機、PC等の撮像機能を有する別の形態の機器に組み込まれた装置としてもよい。   FIG. 1 is a block diagram illustrating a configuration of the imaging apparatus 100 according to the present embodiment. In the present embodiment, the imaging device 100 is an extracted imaging device portion in an endoscope system, but is a digital still camera, a digital video camera, a PDA (Personal Digital Assistant), a PND (Portable Navigation Device). It is good also as an apparatus incorporated in the apparatus of another form which has imaging functions, such as PHS (Personal Handy-phone System), a portable game machine, and PC.

図1に示されるように、撮像装置100は、コントロール回路1を有している。コントロール回路1は、各ブロックを統括的に制御する。図1中、コントロール回路1と各ブロックとの結線は、図面を簡明化する便宜上省略する。   As illustrated in FIG. 1, the imaging apparatus 100 includes a control circuit 1. The control circuit 1 comprehensively controls each block. In FIG. 1, the connection between the control circuit 1 and each block is omitted for the sake of simplicity.

コントロール回路1は、所定の同期信号に従い、CMOSイメージセンサ2にクロックパルスを供給する。コントロール回路1は、像ぶれ補正のため、被写体を複数回の連続した短い露光時間で時分割的に撮像するようにCMOSイメージセンサ2の動作を制御する。各撮像において露光時間は一定で、撮像間隔も一定である。CMOSイメージセンサ2は、クロックパルスに従って駆動して、光電変換した信号電荷を各画素で増幅して出力する。   The control circuit 1 supplies clock pulses to the CMOS image sensor 2 according to a predetermined synchronization signal. The control circuit 1 controls the operation of the CMOS image sensor 2 so that the subject is imaged in a time-division manner with a plurality of continuous short exposure times for image blur correction. In each imaging, the exposure time is constant and the imaging interval is also constant. The CMOS image sensor 2 is driven according to a clock pulse and amplifies and outputs photoelectrically converted signal charges at each pixel.

図2(a)、(b)は、CMOSイメージセンサ2の撮像面の走査タイミングを説明するための図である。図2(a)に示されるように、CMOSイメージセンサ2の撮像面には、複数の画素をライン状に並べた走査線が複数本(走査線L、L、・・・、Ln−1、L)配置されている。撮像面の走査タイミングは、図2(b)に示される通りである。すなわち、CMOSイメージセンサ2は、走査線ごとに走査する時間だけ信号電荷の蓄積期間がずれており、同時性がない。走査線Lを撮像面の最も上側の走査線と定義し、走査線Lを撮像面の最も下側の走査線と定義した場合、各走査線における信号電荷の蓄積期間の開始・終了は、撮像面の上側の走査線ほど早い。図2(b)に示されるように、CMOSイメージセンサ2は、一連の撮影動作中に各フレームで電荷蓄積が非同時な画素信号を数フレーム分出力する。 FIGS. 2A and 2B are diagrams for explaining the scanning timing of the imaging surface of the CMOS image sensor 2. As shown in FIG. 2A, the imaging surface of the CMOS image sensor 2 has a plurality of scanning lines in which a plurality of pixels are arranged in a line (scanning lines L 1 , L 2 ,..., L n. −1 , L n ). The scanning timing of the imaging surface is as shown in FIG. That is, in the CMOS image sensor 2, the signal charge accumulation period is shifted by the scanning time for each scanning line, and there is no simultaneity. The scanning line L 1 is defined as the uppermost scanning line of the imaging surface, when the scanning line L n is defined as the lowermost scanning line of the imaging surface, the start and end of the accumulation period of the signal charge in each scan line The scanning line on the upper side of the imaging surface is earlier. As shown in FIG. 2B, the CMOS image sensor 2 outputs several frames of pixel signals that are non-simultaneous in charge accumulation in each frame during a series of photographing operations.

CMOSイメージセンサ2が出力する各フレームの画素信号は、A/D変換回路3に入力してデジタル信号に変換後、前段画像処理回路4に入力する。前段画像処理回路4に入力した各画素信号は、クランプ、ニー、γ補正、補間処理、AGC(Auto Gain Control)等の所定の信号処理後、画像メモリ5が持つフレームメモリにフレーム単位でバッファリングされる。画素メモリ5には、少なくとも上記一連の撮影動作で得られる数のフレームを格納する領域が備えられている。   The pixel signal of each frame output from the CMOS image sensor 2 is input to the A / D conversion circuit 3 and converted into a digital signal, and then input to the pre-stage image processing circuit 4. Each pixel signal input to the pre-stage image processing circuit 4 is subjected to predetermined signal processing such as clamping, knee, γ correction, interpolation processing, AGC (Auto Gain Control), etc., and then buffered in the frame memory of the image memory 5 in units of frames. Is done. The pixel memory 5 is provided with an area for storing at least the number of frames obtained by the series of photographing operations.

像ぶれ検出回路6は、像ぶれ量を電子的に検出する回路である。図3に、像ぶれ検出回路6による像ぶれ検出を説明するための図を示す。図3(a)〜(c)に示されるように、像ぶれ検出回路6は、フレームメモリに格納されている上記一連の撮影動作中に撮像された複数枚(本実施形態では3枚)の画像の中からエッジ検出等により共通の特徴点fを検出する。像ぶれ検出回路6は、各画像の特徴点fの出現座標を比較して被写体(例えば図3(a)中撮影範囲の中央に位置する被写体O)の相互の表示位置のずれ、つまり像ぶれ量を検出する。   The image blur detection circuit 6 is a circuit that electronically detects an image blur amount. FIG. 3 is a diagram for explaining image blur detection by the image blur detection circuit 6. As shown in FIGS. 3A to 3C, the image blur detection circuit 6 includes a plurality of (three in the present embodiment) images captured during the series of imaging operations stored in the frame memory. A common feature point f is detected from the image by edge detection or the like. The image blur detection circuit 6 compares the appearance coordinates of the feature point f of each image and shifts the mutual display position of the subject (for example, the subject O located at the center of the shooting range in FIG. 3A), that is, image blur. Detect the amount.

像ぶれ補正回路7は像ぶれを補正し、露光ずれ補正回路8は画像の歪みを補正する。図4に、像ぶれ補正回路7及び露光ずれ補正回路8による画像の補正を説明するための図を示す。   The image blur correction circuit 7 corrects image blur, and the exposure shift correction circuit 8 corrects image distortion. FIG. 4 is a diagram for explaining image correction by the image blur correction circuit 7 and the exposure deviation correction circuit 8.

像ぶれ補正回路7は、フレームメモリに格納されている3枚の画像を単純に重ね合わせる(図4(a)参照)。個々の画像は、短時間露光で得た画像であるため像ぶれが少ない。しかし、画像相互では像ぶれがあるため、被写体Oの表示位置が一致しない。像ぶれ補正回路7は、像ぶれ検出回路6で検出された像ぶれ量の分だけ画像を相互にシフトさせて一枚の画像に合成する。シフト処理後の合成画像において特徴点fは一点に重なる(図4(b)参照)。   The image blur correction circuit 7 simply superimposes three images stored in the frame memory (see FIG. 4A). Since each image is an image obtained by short-time exposure, image blurring is small. However, the display position of the subject O does not match because there is image blur between the images. The image blur correction circuit 7 shifts the images to each other by the amount of the image blur detected by the image blur detection circuit 6 and combines them into a single image. In the composite image after the shift process, the feature point f overlaps one point (see FIG. 4B).

図4(b)に示されるように、合成画像は、シフト量に応じて画像サイズが拡大している。像ぶれ補正回路7は、トリミングを行い、規定の画像サイズ(例えばフレームメモリに格納されている画像と同一のサイズ)を超える領域をカットする(図4(c)参照)。モニタ200の解像度が高い場合は、大きい画像を表示するためトリミングを行わなくてもよい。   As shown in FIG. 4B, the image size of the composite image is enlarged according to the shift amount. The image blur correction circuit 7 performs trimming to cut an area exceeding a prescribed image size (for example, the same size as the image stored in the frame memory) (see FIG. 4C). When the resolution of the monitor 200 is high, trimming may not be performed to display a large image.

像ぶれ補正回路7は、短時間露光で得た複数枚の画像を上記の通り合成することにより、ぶれが少ないと共に輝度が確保された画像を得る。しかし、合成画像には、CMOSイメージセンサ2の信号電荷の蓄積期間の非同時性に起因した歪みが残存している。図3(a)〜(c)中の被写体O’(点線)は、CCDイメージセンサのように全画素の信号電荷の蓄積期間及び転送が同時に行われる場合に撮像される被写体像を示す。つまり、図3の例においては、被写体O’に対する現実の撮影像(すなわち被写体O)自体が画像の歪みを表現している。   The image blur correction circuit 7 synthesizes a plurality of images obtained by short-time exposure as described above, thereby obtaining an image with less blur and with ensured luminance. However, distortion resulting from the non-synchronization of the signal charge accumulation period of the CMOS image sensor 2 remains in the composite image. A subject O ′ (dotted line) in FIGS. 3A to 3C shows a subject image picked up when the signal charge accumulation period and transfer of all the pixels are performed simultaneously as in a CCD image sensor. That is, in the example of FIG. 3, the actual captured image (that is, the subject O) itself with respect to the subject O ′ expresses image distortion.

露光ずれ補正回路8は、CMOSイメージセンサ2の信号電荷の蓄積期間の非同時性に起因した歪みを補正する。ここで、各走査線L、L、・・・、Lnにおける信号電荷の蓄積期間は既知である。そのため、基準走査線における信号電荷の蓄積期間を基準蓄積期間と定義した場合、基準蓄積期間と各走査線における信号電荷の蓄積期間とのずれ時間(以下、「蓄積ずれ時間」と記す。)も既知である。本実施形態において基準走査線は、例えば走査線Lである。 The exposure deviation correction circuit 8 corrects distortion caused by the non-simultaneity of the signal charge accumulation period of the CMOS image sensor 2. Here, the signal charge accumulation period in each of the scanning lines L 1 , L 2 ,..., Ln is known. Therefore, when the signal charge accumulation period in the reference scanning line is defined as the reference accumulation period, the time difference between the reference accumulation period and the signal charge accumulation period in each scanning line (hereinafter referred to as “accumulation deviation time”) is also included. Known. Reference scan line in the present embodiment is, for example, a scanning line L 1.

露光ずれ補正回路8は、各画像の被写体Oの相互の表示位置のずれから被写体Oの速度ベクトルを計算する。露光ずれ補正回路8は、基準蓄積期間開始から当該走査線の蓄積期間開始までの間の被写体Oの移動距離及び移動方向を速度ベクトルと蓄積ずれ時間を基に走査線単位で推定する。露光ずれ補正回路8は、推定された被写体Oの移動距離及び移動方向に対応した座標変換を走査線単位で行う。すなわち、露光ずれ補正回路8は、補正対象の走査線上の被写体Oを基準蓄積期間の開始時点で存在していたと推定される位置(被写体O’の位置)に移動させる。図3の例においては、被写体Oが画面右側に移動しているため、撮像面の下側の走査線の被写体像ほど画面右側に現れている。露光ずれ補正回路8は、被写体Oが被写体O’の位置に現れるように座標変換を行い(図3(a)〜(c)及び図4(d)参照)、CMOSイメージセンサ2の信号電荷の蓄積期間の非同時性に起因した歪みを補正する。   The exposure shift correction circuit 8 calculates the velocity vector of the subject O from the shift of the display position of the subject O in each image. The exposure shift correction circuit 8 estimates the moving distance and moving direction of the subject O from the start of the reference accumulation period to the start of the scanning line accumulation period in units of scanning lines based on the velocity vector and the accumulation deviation time. The exposure deviation correction circuit 8 performs coordinate conversion corresponding to the estimated movement distance and movement direction of the subject O in units of scanning lines. That is, the exposure shift correction circuit 8 moves the subject O on the scanning line to be corrected to a position (position of the subject O ′) that is estimated to exist at the start of the reference accumulation period. In the example of FIG. 3, since the subject O has moved to the right side of the screen, the subject image of the scanning line on the lower side of the imaging surface appears on the right side of the screen. The exposure deviation correction circuit 8 performs coordinate conversion so that the subject O appears at the position of the subject O ′ (see FIGS. 3A to 3C and FIG. 4D), and the signal charges of the CMOS image sensor 2 are converted. Correct distortion caused by non-simultaneous accumulation period.

露光ずれ補正回路8による座標変換後の画像は、後段画像処理回路9に入力する。座標変換後の画像の形状は、図4(d)に示されるように、矩形でなく歪んでいる。後段画像処理回路9は、座標変換後の画像をモニタ200上の撮影画像の表示領域(例えば矩形)に合わせてトリミングする(図4(e)参照)。図4(e)においては、説明の便宜上、トリミングで除去される領域が多く示されているが、実際に除去される領域は少ない。また、注視すべき被写体は画面中央に表示されているため、周辺領域を除去しても実質的に問題は生じない。後段画像処理回路9は、トリミングに代えて矩形のマスキングを行ってもよい。トリミングやマスキングの実行は、処理の簡略のため省いてもよい。   The image after the coordinate conversion by the exposure deviation correction circuit 8 is input to the subsequent image processing circuit 9. The shape of the image after coordinate transformation is not rectangular but distorted as shown in FIG. The rear-stage image processing circuit 9 trims the image after coordinate conversion in accordance with the display area (for example, a rectangle) of the captured image on the monitor 200 (see FIG. 4E). In FIG. 4 (e), for convenience of explanation, many regions removed by trimming are shown, but there are few regions actually removed. In addition, since the subject to be watched is displayed at the center of the screen, no problem occurs even if the peripheral area is removed. The post-stage image processing circuit 9 may perform rectangular masking instead of trimming. Trimming and masking may be omitted to simplify the process.

トリミング後の画像は、画像出力回路10に入力してNTSC(National Television
System Committee)やPAL(Phase Alternating Line)等の所定の規格に準拠した映像信号に変換される。変換された映像信号がモニタ200に順次入力することにより、被写体の画像がモニタ200の表示画面上に表示される。
The trimmed image is input to the image output circuit 10 and input to NTSC (National Television
It is converted into a video signal that conforms to a predetermined standard such as System Committee) or PAL (Phase Alternating Line). By sequentially inputting the converted video signals to the monitor 200, an image of the subject is displayed on the display screen of the monitor 200.

このように、本実施形態によれば、CMOSイメージセンサ2を搭載した撮像装置100において、像ぶれ補正のために複数回の短時間露光を行う場合も、信号電荷の蓄積期間の非同時性に起因する画像の歪みが良好に抑えられる。なお、本実施形態の像ぶれ補正と歪み補正を行うにあたり特定のハードウェア構成を追加する必要はなく、実質的にコスト上昇を伴わない。   As described above, according to the present embodiment, in the imaging apparatus 100 equipped with the CMOS image sensor 2, even when performing a plurality of short-time exposures for image blur correction, the signal charge accumulation period is not synchronized. The resulting image distortion can be satisfactorily suppressed. Note that it is not necessary to add a specific hardware configuration for performing the image blur correction and distortion correction of the present embodiment, and the cost is not substantially increased.

以上が本発明の実施形態の説明である。本発明は、上記の構成に限定されるものではなく、本発明の技術的思想の範囲において様々な変形が可能である。例えばCMOSイメージセンサ2は、信号電荷の蓄積期間が走査線単位でなく画素単位でずれた構成としてもよい。また、蓄積された信号電荷の走査順序は、本実施形態で示される順序に限定されない。   The above is the description of the embodiment of the present invention. The present invention is not limited to the above-described configuration, and various modifications can be made within the scope of the technical idea of the present invention. For example, the CMOS image sensor 2 may have a configuration in which the signal charge accumulation period is shifted not in units of scanning lines but in units of pixels. Further, the scanning order of the accumulated signal charges is not limited to the order shown in this embodiment.

像ぶれ検出回路6は、電子式に限らず角速度センサ等のセンサ類を用いて像ぶれ量を検出するモジュールに置き換えてもよい。   The image blur detection circuit 6 is not limited to an electronic type, and may be replaced with a module that detects an image blur amount using sensors such as an angular velocity sensor.

1 コントロール回路
2 CMOSイメージセンサ
3 A/D変換回路
4 前段画像処理回路
5 画像メモリ
6 像ぶれ検出回路
7 像ぶれ補正回路
8 露光ずれ補正回路
9 後段画像処理回路
10 画像出力回路
100 撮像装置
DESCRIPTION OF SYMBOLS 1 Control circuit 2 CMOS image sensor 3 A / D conversion circuit 4 Pre-stage image processing circuit 5 Image memory 6 Image blur detection circuit 7 Image blur correction circuit 8 Exposure shift correction circuit 9 Post-stage image processing circuit 10 Image output circuit 100 Imaging device

Claims (5)

電荷蓄積期間が撮像面の所定領域ごとに相違する撮像素子と、
前記撮像素子を駆動制御して被写体を複数回の連続した露光時間で撮像する撮像制御手段と、
前記撮像された複数枚の画像を比較して該画像の相互のぶれを検出するぶれ検出手段と、
前記検出されたぶれを補正するように前記複数枚の画像を相互にシフトして一枚の画像に合成するぶれ補正手段と、
前記検出されたぶれに基づいて前記被写体の速度ベクトルを計算する速度ベクトル計算手段と、
前記速度ベクトルに基づいて前記所定領域間の前記電荷蓄積期間の非同時性に起因した画像の歪みを補正する歪み補正手段と、
を有することを特徴とする撮像装置。
An image sensor having a different charge accumulation period for each predetermined region of the imaging surface;
Imaging control means for driving and controlling the imaging element to image a subject with a plurality of continuous exposure times;
Blur detection means for comparing the plurality of captured images to detect mutual blur between the images;
A blur correction unit that shifts the plurality of images to each other and combines them into a single image so as to correct the detected blur;
Speed vector calculation means for calculating a speed vector of the subject based on the detected shake;
Distortion correcting means for correcting distortion of the image due to non-simultaneity of the charge accumulation period between the predetermined regions based on the velocity vector;
An imaging device comprising:
前記歪み補正手段は、
前記撮像面上の所定の基準領域の電荷蓄積期間を基準蓄積期間と定義し、歪み補正の対象となる補正対象像を取り込んだ該撮像面上の該基準領域以外の他の所定領域の電荷蓄積期間と該基準蓄積期間とのずれ時間を蓄積ずれ時間と定義し、該基準蓄積期間開始から該他の所定領域の電荷蓄積期間開始までの間の該補正対象像の移動距離及び移動方向を露光ずれ量と定義した場合に、
前記他の所定領域ごとに、
前記速度ベクトルと前記蓄積ずれ時間を用いて前記露光ずれ量を計算し、
前記露光ずれ量を用いて前記補正対象像の位置を前記基準蓄積期間の開始時点で存在していたと推定される位置に変換する
ことを特徴とする、請求項1に記載の撮像装置。
The distortion correction means includes
The charge accumulation period of a predetermined reference area on the imaging surface is defined as a reference accumulation period, and charge accumulation in a predetermined area other than the reference area on the imaging surface that captures a correction target image to be subjected to distortion correction The deviation time between the period and the reference accumulation period is defined as the accumulation deviation time, and the movement distance and movement direction of the correction target image from the start of the reference accumulation period to the start of the charge accumulation period of the other predetermined area are exposed. When defined as a deviation amount,
For each of the other predetermined areas,
Calculate the amount of exposure deviation using the velocity vector and the accumulated deviation time,
The imaging apparatus according to claim 1, wherein the position of the correction target image is converted to a position estimated to exist at the start time of the reference accumulation period using the exposure deviation amount.
前記歪み補正後の画像の形状を所定の表示画面領域に合わせて変更する形状変更手段を有することを特徴とする、請求項1又は請求項2に記載の撮像装置。   The imaging apparatus according to claim 1, further comprising a shape changing unit that changes the shape of the image after distortion correction in accordance with a predetermined display screen area. 前記撮像素子は、CMOS(Complementary Metal Oxide Semiconductor)イメージセンサであることを特徴とする、請求項1から請求項3の何れか一項に記載の撮像装置。   The imaging device according to any one of claims 1 to 3, wherein the imaging device is a complementary metal oxide semiconductor (CMOS) image sensor. 前記ぶれ検出手段は、前記複数枚の画像の中から共通の特徴点を検出し、
前記ぶれ補正手段は、前記特徴点が重なるように前記複数枚の画像を相互にシフトして一枚の画像に合成することを特徴とする、請求項1から請求項4の何れか一項に記載の撮像装置。
The blur detection means detects a common feature point from the plurality of images,
5. The blur correction unit according to claim 1, wherein the blur correction unit shifts the plurality of images to be combined with each other so that the feature points overlap each other. The imaging device described.
JP2011020903A 2011-02-02 2011-02-02 Imaging device Withdrawn JP2012161029A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011020903A JP2012161029A (en) 2011-02-02 2011-02-02 Imaging device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011020903A JP2012161029A (en) 2011-02-02 2011-02-02 Imaging device

Publications (1)

Publication Number Publication Date
JP2012161029A true JP2012161029A (en) 2012-08-23

Family

ID=46841172

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011020903A Withdrawn JP2012161029A (en) 2011-02-02 2011-02-02 Imaging device

Country Status (1)

Country Link
JP (1) JP2012161029A (en)

Similar Documents

Publication Publication Date Title
US10666865B2 (en) Panoramic camera with multiple image sensors using timed shutters
KR102179731B1 (en) Image-capturing device, solid-state image-capturing element, camera module, electronic device, and image-capturing method
US9185308B2 (en) Imaging apparatus and imaging method
US9106831B2 (en) Image capturing apparatus capable of capturing panoramic image
US8223235B2 (en) Digital imager with dual rolling shutters
JP4509917B2 (en) Image processing apparatus and camera system
US8711230B2 (en) Image capture apparatus and program
US8619120B2 (en) Imaging apparatus, imaging method and recording medium with program recorded therein
JP4689687B2 (en) Imaging method and imaging apparatus
US20090002520A1 (en) Imaging apparatus, imaging method, storage medium storing program, and integrated circuit
JP2011061514A (en) Imaging apparatus and imaging method
US20080316333A1 (en) Imaging apparatus, imaging method, program, and integrated circuit
KR20190089855A (en) TECHNICAL FIELD The present invention relates to an image pickup device,
JP4636979B2 (en) Imaging apparatus and control method thereof
JP7118659B2 (en) IMAGING DEVICE, IMAGING DEVICE CONTROL METHOD AND PROGRAM
JP2012161029A (en) Imaging device
US9883102B2 (en) Image processing apparatus, image processing method, program, and camera
JP3405404B2 (en) Camera shake correction method for solid-state imaging device and solid-state imaging device
JP5541956B2 (en) Image composition method, image composition program, and image composition apparatus
JP2008244670A (en) Imaging apparatus
JP2017038281A5 (en)
KR101403132B1 (en) Image pickup apparatus and image pickup method
CN113228630B (en) Image pickup apparatus
KR20140118590A (en) Image processing apparatus and photographing apparatus including the same
JP2011015053A (en) Digital camera

Legal Events

Date Code Title Description
RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20130510

A300 Application deemed to be withdrawn because no request for examination was validly filed

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20140513