JP2012160354A - Control valve type lead-acid battery - Google Patents

Control valve type lead-acid battery Download PDF

Info

Publication number
JP2012160354A
JP2012160354A JP2011019490A JP2011019490A JP2012160354A JP 2012160354 A JP2012160354 A JP 2012160354A JP 2011019490 A JP2011019490 A JP 2011019490A JP 2011019490 A JP2011019490 A JP 2011019490A JP 2012160354 A JP2012160354 A JP 2012160354A
Authority
JP
Japan
Prior art keywords
control valve
exhaust port
cushion material
battery
plate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2011019490A
Other languages
Japanese (ja)
Inventor
Toshibumi Yoshimine
俊文 吉嶺
Takehiro Sasaki
健浩 佐々木
Takashi Nakajima
孝 中嶋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Original Assignee
Panasonic Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp filed Critical Panasonic Corp
Priority to JP2011019490A priority Critical patent/JP2012160354A/en
Publication of JP2012160354A publication Critical patent/JP2012160354A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Gas Exhaust Devices For Batteries (AREA)
  • Secondary Cells (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a control valve type lead-acid battery having improved life characteristics by making the working pressure of a valve constant without being affected by fine structural change, e.g. contact state of an exhaust port and the rubber plate of a control valve or adhesion amount of silicon oil.SOLUTION: An electrode plate group and an electrolytic solution are housed, respectively, in a plurality of cell chambers provided in a battery container and the plurality of cell chambers are connected in series. Upper part of the battery container is covered with a lid having exhaust ports at positions directly above respective cell chambers. Each exhaust port is sealed by a control valve consisting of a rubber plate, a cushion material mounted on the rubber plate, and a retainer plate which presses and fixes the cushion material. In such a control valve type lead-acid battery, the cushion material is pressed and fixed by a retainer plate where the thickness at a portion corresponding a part of the periphery of the exhaust port is reduced when compared with that at other positions.

Description

本発明は、制御弁式鉛蓄電池に関するものである。   The present invention relates to a valve-regulated lead-acid battery.

制御弁式鉛蓄電池を充電すると、正極と負極の活物質を充電する反応以外に、電解液中の水が電気分解することにより、正極から酸素ガスが発生する。発生した酸素ガスは、負極の活物質である海綿状鉛に吸収されて反応し、負極が部分的に未充電状態になることにより、負極から発生するガス量が少なくなる機能を備えている。従って、充電電圧が低い場合は電池の外部にガスが放出されにくい。しかしながら実用的には、充電時間を短くするために充電電流を大きくするので、分極を考慮して比較的高い充電電圧が採用されることが多い。そうすると、全ての酸素ガスと水素ガスが電池の内部で消費されることはなく、発生したガスにより、電池内圧が上昇する。但し電池内圧が上昇すると、制御弁を通して電池内部のガスを放出することで、電池の内圧が上昇することを抑制している。   When the control valve type lead-acid battery is charged, oxygen gas is generated from the positive electrode by electrolyzing water in the electrolytic solution, in addition to the reaction of charging the active material of the positive electrode and the negative electrode. The generated oxygen gas is absorbed and reacted with spongy lead, which is the active material of the negative electrode, and has a function of reducing the amount of gas generated from the negative electrode when the negative electrode is partially uncharged. Therefore, when the charging voltage is low, gas is not easily released to the outside of the battery. However, practically, since the charging current is increased in order to shorten the charging time, a relatively high charging voltage is often employed in consideration of polarization. Then, not all oxygen gas and hydrogen gas are consumed inside the battery, and the internal pressure of the battery rises due to the generated gas. However, when the battery internal pressure rises, the internal pressure of the battery is suppressed from rising by releasing the gas inside the battery through the control valve.

さらに制御弁は、電池の外部から酸素が侵入するのを妨げる機能も備えている。仮に充電の後に電池の内部が外部と連通していると、負極は電池の内部の酸素だけでなく大気中の酸素も吸収して劣化する。制御弁がこの不具合を解消しているのだが、制御弁式鉛蓄電池を放置すると、大気と連通することなく負極が電池の内部の酸素を吸収するため、電池の内部が減圧状態になることがある。   Further, the control valve has a function of preventing oxygen from entering from the outside of the battery. If the inside of the battery communicates with the outside after charging, the negative electrode absorbs not only oxygen inside the battery but also oxygen in the atmosphere and deteriorates. Although the control valve has solved this problem, if the control valve type lead-acid battery is left unattended, the negative electrode absorbs oxygen inside the battery without communicating with the atmosphere, so the inside of the battery may be in a decompressed state. is there.

制御弁式鉛蓄電池の内部透視図を図5に示す。複数のセル室を設けた電槽aのそれぞれのセル室に極板群g(正極dと負極板eとセパレータfとからなる)と電解液とを収納して直列に接続し、その両端(一方は正極側で他方は負極側)を端子cに接続し、それぞれのセル室の直上に相応する位置に排気口を設けた蓋bで電槽aの上部を覆い、排気口を制御弁hで封じ、端子cを蓋bの外側に出すことで、制御弁式鉛蓄電池が構成される。なお制御弁hと蓋bの排気口の周辺の界面にシリコンオイルなどを介在させることで、電池内部の密閉状態を強固に保っている。   An internal perspective view of the control valve type lead storage battery is shown in FIG. An electrode group g (consisting of a positive electrode d, a negative electrode plate e, and a separator f) and an electrolytic solution are accommodated in each cell chamber of a battery case a provided with a plurality of cell chambers and connected in series. One side is connected to the terminal c), the upper side of the battery case a is covered with a lid b provided with an exhaust port at a position directly above each cell chamber, and the exhaust port is connected to the control valve h. And a control valve type lead-acid battery is configured by taking the terminal c out of the lid b. Note that silicon oil or the like is interposed at the interface around the exhaust port of the control valve h and the lid b, so that the sealed state inside the battery is firmly maintained.

従来の制御弁hの構造の一例を図6に示す。クロロプレンゴムなどからなるゴム板2の上にエチレンプロピレンゴム(EPDM)の発泡体などからなるクッション材3を載置し、このクッション材3を押え板4で押圧し固定して構成された制御弁hが、排気口1を封じている。押え板4がクッション材3を押圧し固定することで、通常は電池の内部が外部と遮断されている。そして充電によって酸素ガスや水素ガスが発生し、電池の内圧が上昇して弁作動圧に達したとき、排気口1の周辺からゴム板2が剥れるように浮き上がり、電池内部のガスは放出される。そしてこれらのガスを放出することで電池の内圧が弁作動圧を下回ったとき、クッション材3が押圧することでゴム板2は排気口1に密着し、電池の内部は再び密閉される。   An example of the structure of a conventional control valve h is shown in FIG. A control valve configured by placing a cushion material 3 made of foam of ethylene propylene rubber (EPDM) on a rubber plate 2 made of chloroprene rubber or the like, and pressing and fixing the cushion material 3 with a press plate 4. h seals the exhaust port 1. The press plate 4 presses and fixes the cushion material 3 so that the inside of the battery is normally cut off from the outside. When charging, oxygen gas and hydrogen gas are generated, and when the internal pressure of the battery rises and reaches the valve operating pressure, the rubber plate 2 is lifted off from the periphery of the exhaust port 1, and the gas inside the battery is released. The When the internal pressure of the battery falls below the valve operating pressure by releasing these gases, the rubber plate 2 comes into close contact with the exhaust port 1 by pressing the cushion material 3, and the inside of the battery is sealed again.

但しクッション材3がゴム板2を押圧する力が一定でなければ、制御弁hの弁作動圧を一定に設定したつもりでも、実際は弁作動圧がばらつくことになる。ここで制御弁hの弁作動圧が高い場合、多くの酸素ガスが負極に吸収されるため、負極の充電状態は低くなる。逆に制御弁hの弁作動圧が低い場合、負極に吸収される酸素ガスが少なくなるため、負極の充電状態は高くなる。すなわち、制御弁hの弁作動圧がばらついた状態で、セル室を多直列に接続して制御弁式鉛蓄電池を構成した場合、セル室ごとの充電状態も一定でなくなる。そうすると、充電状態が低いセル室は過放電になり、短寿命の原因になる。さらに充電状態が低いまま充放電を繰り返すことで、短寿命化は加速される。   However, if the force with which the cushion material 3 presses the rubber plate 2 is not constant, the valve operating pressure actually varies even if the valve operating pressure of the control valve h is set to be constant. Here, when the valve operating pressure of the control valve h is high, since a large amount of oxygen gas is absorbed by the negative electrode, the state of charge of the negative electrode becomes low. Conversely, when the valve operating pressure of the control valve h is low, the oxygen gas absorbed by the negative electrode is reduced, and the charged state of the negative electrode is increased. That is, when the control valve type lead storage battery is configured by connecting the cell chambers in series in a state where the valve operating pressure of the control valve h varies, the charged state of each cell chamber is not constant. If it does so, a cell room with a low charge state will be over-discharged, and will cause a short life. Furthermore, shortening the service life is accelerated by repeating charging and discharging while the state of charge is low.

特許文献1では図4に示すように、ゴム板2の上方に設置された押え板4に、先端が曲面である直径1mm程度の突起tを複数本、適当に間隔をおいて全体として環状になるように設け、この突起tの先端をゴム板2に0.2mm程度食い込むように押し込ませて、排気口1の周囲を固定する構成が記されている。この構成であれば、突起tによってゴム板2は排気口1の周囲で固定されるので、強い減圧によってゴム板2が排気口1の中に吸い込まれることがなく、振動や衝撃によってゴム板2がずれることもないため、電池内部の密閉性を安定して保つことができると考えられる。この構成を図5および6に示した従来の構成と併せることで、常に設定通りの安定した弁作動圧を示す、セル室間の充電状態が一定した制御弁式鉛蓄電池を提供できるものと考えられる。   In Patent Document 1, as shown in FIG. 4, a plurality of protrusions t having a diameter of about 1 mm whose tip is a curved surface are formed annularly on the presser plate 4 installed above the rubber plate 2 at appropriate intervals. A configuration is described in which the periphery of the exhaust port 1 is fixed by pushing the tip of the projection t into the rubber plate 2 so as to bite into the rubber plate 2 by about 0.2 mm. With this configuration, the rubber plate 2 is fixed around the exhaust port 1 by the protrusion t. Therefore, the rubber plate 2 is not sucked into the exhaust port 1 by strong decompression, and the rubber plate 2 is vibrated by vibration or impact. Therefore, it is considered that the airtightness inside the battery can be stably maintained. By combining this configuration with the conventional configuration shown in FIGS. 5 and 6, it is considered that a control valve type lead-acid battery that always shows a stable valve operating pressure as set and has a constant state of charge between cell chambers can be provided. It is done.

特開昭63−310554号公報JP-A-63-310554

しかしクッション材3がゴム板2を押圧する力が一定であっても、電池の内圧が弁作動圧に達した直後にゴム板2が最初に排気口1の周辺から剥れ始める部位は、排気口1とゴム板2との接触状態(排気口1の周辺の蓋bの表面粗さや、傷の有無および深さに起因)やシリコンオイルの付着量に影響されるため、実際にガス放出が開始する時点の電池の内圧は、排気口1ごとに(すなわちセル室ごとに)異なる。加えて、排気口1とゴム板2との接触状態やシリコンオイルの付着量は、排気が起こる度に変化するので、制御弁hの弁作動圧は都度異なることになる。そうなると結局、セル室ごとの充電状態は一定でなくなり、短寿命が根本的に改善されない。   However, even if the force with which the cushion material 3 presses the rubber plate 2 is constant, the portion where the rubber plate 2 first begins to peel from the periphery of the exhaust port 1 immediately after the internal pressure of the battery reaches the valve operating pressure Since it is influenced by the contact state between the port 1 and the rubber plate 2 (due to the surface roughness of the lid b around the exhaust port 1, the presence or absence and depth of the flaw), and the amount of silicon oil attached, The internal pressure of the battery at the time of starting differs for each exhaust port 1 (that is, for each cell chamber). In addition, since the contact state between the exhaust port 1 and the rubber plate 2 and the amount of silicon oil attached change each time exhaust occurs, the valve operating pressure of the control valve h changes each time. As a result, the state of charge for each cell chamber is not constant, and the short life is not fundamentally improved.

本発明はこの課題を解決するためのものであって、排気口1と制御弁hのゴム板2との接触状態やシリコンオイルの付着量といった微細な構造変化の影響を受けずに弁作動圧を一定化させることで、寿命特性が改善された制御弁式鉛蓄電池を提供することを目的とする。   The present invention is intended to solve this problem, and the valve operating pressure is not affected by a minute structural change such as the contact state between the exhaust port 1 and the rubber plate 2 of the control valve h or the amount of silicon oil attached. It is an object of the present invention to provide a control valve type lead-acid battery whose life characteristics are improved by making the battery constant.

前記した課題を解決するために、本発明の請求項1に係る発明は、複数のセル室を設けた電槽のそれぞれのセル室に極板群と電解液とを収納して直列に接続し、それぞれのセル室の直上に相応する位置に排気口を設けた蓋でこの電槽の上部を覆い、それぞれの排気口を、ゴム板と、ゴム板の上に載置されるクッション材と、クッション材を押圧し固定する押え板とからなる制御弁で封じた制御弁式鉛蓄電池であって、排気口の周辺の一部に対応する部分の厚みを他の部位より小さくした押え板によって、クッション材を押圧し固定したことを特徴とする。   In order to solve the above-described problem, the invention according to claim 1 of the present invention is configured such that an electrode plate group and an electrolytic solution are accommodated in each cell chamber of a battery case provided with a plurality of cell chambers and connected in series. The upper part of the battery case is covered with a lid provided with an exhaust port at a position corresponding to the position directly above each cell chamber, and each exhaust port is covered with a rubber plate and a cushion material placed on the rubber plate, It is a control valve type lead-acid battery sealed with a control valve consisting of a presser plate that presses and fixes the cushioning material, and the presser plate whose thickness corresponding to a part of the periphery of the exhaust port is made smaller than other parts, The cushioning material is pressed and fixed.

また本発明の請求項2に係る発明は、複数のセル室を設けた電槽のそれぞれのセル室に極板群と電解液とを収納して直列に接続し、それぞれのセル室の直上に相応する位置に排気口を設けた蓋でこの電槽の上部を覆い、それぞれの排気口を、ゴム板と、ゴム板の上に載置されるクッション材と、クッション材を押圧し固定する押え板とからなる制御弁で封じた制御弁式鉛蓄電池であって、排気口の周辺の一部に対応する部分の密度を他の部位より小さくしたクッション材を押え板で押圧し固定したことを特徴とする。   In the invention according to claim 2 of the present invention, the electrode plate group and the electrolytic solution are accommodated in each cell chamber of the battery case provided with a plurality of cell chambers, connected in series, and directly above each cell chamber. Cover the upper part of the battery case with a lid provided with an exhaust port at the corresponding position, and press the rubber plate, the cushion material placed on the rubber plate, and the presser that presses and fixes the cushion material to each exhaust port. It is a control valve type lead-acid battery sealed with a control valve consisting of a plate, and a cushioning material whose density corresponding to a part of the periphery of the exhaust port is made smaller than other parts is pressed and fixed with a presser plate. Features.

発明者が検討した結果、ゴム板2の押圧力が小さくなる箇所を敢えて選択的に設けることで、排気口1とゴム板2との接触状態やシリコンオイルの付着量といった微細な構造変化があった場合でも、電池の内圧が弁作動圧に達した直後にゴム板2が最初に排気口1の周辺から剥れ始める部位とその剥がれ度合とを安定化できるようになることを見出した。本発明はこの知見を活用したものであって、大きくは次の2つの態様として具現化できる。   As a result of the inventor's investigation, there are fine structural changes such as the contact state between the exhaust port 1 and the rubber plate 2 and the amount of silicon oil attached by selectively providing a portion where the pressing force of the rubber plate 2 is reduced. Even in this case, it has been found that immediately after the internal pressure of the battery reaches the valve operating pressure, it is possible to stabilize the portion where the rubber plate 2 first begins to peel from the periphery of the exhaust port 1 and the degree of peeling. The present invention utilizes this knowledge, and can be embodied as the following two aspects.

第1の態様は、排気口1の周辺の一部に対応する部分の厚みを他の部位より小さくした押え板4によって、クッション材3を押圧し固定することである。押え板4が薄い部分はクッション材3を押圧する力が小さいので、その直下でゴム板2を押圧する力も小さくなる。従って、電池の内圧が弁作動圧に達した直後にゴム板2のこの近傍から最初に排気口1の周辺から剥れ始めることになる。   The first mode is to press and fix the cushion material 3 by the presser plate 4 in which the thickness of the part corresponding to a part of the periphery of the exhaust port 1 is smaller than that of the other part. Since the force that presses the cushion material 3 is small in the portion where the presser plate 4 is thin, the force that presses the rubber plate 2 immediately below it is also small. Therefore, immediately after the internal pressure of the battery reaches the valve operating pressure, it starts to peel from the vicinity of the exhaust port 1 from this vicinity of the rubber plate 2 first.

第2の態様は、排気口1の周辺の一部に対応する部分の密度を他の部位より小さくしたクッション材3を押え板4で押圧し固定することである。クッション材3の密度が小さい部分は押え板4によって押圧される力によって厚み方向に変形するので、その直下でゴム板2を押圧する力も小さくなる。従って、電池の内圧が弁作動圧に達した直後にゴム板2のこの近傍から最初に排気口1の周辺から剥れ始めることになる。   The second mode is to press and fix the cushion material 3 with the density of the part corresponding to a part of the periphery of the exhaust port 1 smaller than that of the other part by the presser plate 4. Since the portion where the density of the cushion material 3 is small is deformed in the thickness direction by the force pressed by the presser plate 4, the force pressing the rubber plate 2 immediately below it is also reduced. Therefore, immediately after the internal pressure of the battery reaches the valve operating pressure, it starts to peel from the vicinity of the exhaust port 1 from this vicinity of the rubber plate 2 first.

ここで第1の態様と第2の態様とを組み合わせても、本発明の効果は発揮されることになる。   Here, even if the first aspect and the second aspect are combined, the effect of the present invention is exhibited.

本発明の構成によれば、排気口1と制御弁hのゴム板2との接触状態やシリコンオイルの付着量といった微細な構造変化の影響を受けずに弁作動圧を一定化させることができるので、寿命特性が改善された制御弁式鉛蓄電池を提供できるようになる。   According to the configuration of the present invention, the valve operating pressure can be made constant without being affected by a minute structural change such as the contact state between the exhaust port 1 and the rubber plate 2 of the control valve h or the amount of silicon oil attached. Therefore, it becomes possible to provide a control valve type lead storage battery with improved life characteristics.

本発明の制御弁式鉛蓄電池の制御弁の一態様を示す断面図Sectional drawing which shows the one aspect | mode of the control valve of the control valve type lead acid battery of this invention 本発明の制御弁式鉛蓄電池の制御弁の他の態様を示す断面図Sectional drawing which shows the other aspect of the control valve of the control valve type lead acid battery of this invention. 本発明の制御弁式鉛蓄電池の制御弁の他の態様を示す断面図Sectional drawing which shows the other aspect of the control valve of the control valve type lead acid battery of this invention. 特許文献1の制御弁式鉛蓄電池の制御弁の態様を示す断面図Sectional drawing which shows the aspect of the control valve of the control valve type lead acid battery of patent document 1 制御弁式鉛蓄電池の内部透視図Internal perspective view of control valve type lead acid battery 従来の制御弁式鉛蓄電池の制御弁の態様を示す断面図Sectional drawing which shows the aspect of the control valve of the conventional control valve type lead acid battery 実施例における放電時間の推移を表す図The figure showing transition of the discharge time in an Example 実施例における弁作動圧の推移を表す図The figure showing transition of valve operation pressure in an example

本発明の制御弁式鉛蓄電池の基本構造は、図5に示すとおりであり、セル室の直上に相応する位置に排気口1を設けた蓋を用いている。ここでは、本発明の要部である制御弁を中心に、実施の形態を詳述する。   The basic structure of the control valve type lead storage battery of the present invention is as shown in FIG. 5 and uses a lid provided with an exhaust port 1 at a position corresponding to the position directly above the cell chamber. Here, the embodiment will be described in detail with a focus on the control valve which is the main part of the present invention.

図1は、本発明の制御弁式鉛蓄電池の制御弁の一態様を示す断面図である。排気口1を、ゴム板2と、ゴム板2の上に載置されるクッション材3と、クッション材3を押圧し固定する押え板4とからなる制御弁で封じている。ここで押え板4は、排気口1の周辺の一部に対応する部分の厚みが他の部位より小さくなっている。押え板4が薄い部分はクッション材3を押圧する力が小さいので、その直下でゴム板2を押圧する力も小さくなる。従って、内圧が弁作動圧に達した直後にゴム板2のこの近傍から最初に排気口1の周辺から剥れ始めることになる。   FIG. 1 is a cross-sectional view showing one embodiment of a control valve of a control valve type lead storage battery of the present invention. The exhaust port 1 is sealed with a control valve including a rubber plate 2, a cushion material 3 placed on the rubber plate 2, and a presser plate 4 that presses and fixes the cushion material 3. Here, the holding plate 4 has a portion corresponding to a part of the periphery of the exhaust port 1 having a smaller thickness than other portions. Since the force that presses the cushion material 3 is small in the portion where the presser plate 4 is thin, the force that presses the rubber plate 2 immediately below it is also small. Therefore, immediately after the internal pressure reaches the valve operating pressure, it starts to peel from the vicinity of the exhaust port 1 from this vicinity of the rubber plate 2 first.

図2は、本発明の制御弁式鉛蓄電池の制御弁の他の態様を示す断面図である。排気口1を、ゴム板2と、ゴム板2の上に載置されるクッション材3と、クッション材3を押圧し固定する押え板4とからなる制御弁で封じている。ここでクッション材3は、排気口1の周辺の一部に対応する部分の密度が他の部位より小さくなっている。クッション材3の密度が小さい部分は押え板4によって押圧される力によって厚み方向に変形するので、その直下でゴム板2を押圧する力も小さくなる。従って、内圧が弁作動圧に達した直後にゴム板2のこの近傍から最初に排気口1の周辺から剥れ始めることになる。   FIG. 2 is a cross-sectional view showing another embodiment of the control valve of the control valve type lead storage battery of the present invention. The exhaust port 1 is sealed with a control valve including a rubber plate 2, a cushion material 3 placed on the rubber plate 2, and a presser plate 4 that presses and fixes the cushion material 3. Here, the density of the portion of the cushion material 3 corresponding to a part of the periphery of the exhaust port 1 is smaller than that of other portions. Since the portion where the density of the cushion material 3 is small is deformed in the thickness direction by the force pressed by the presser plate 4, the force pressing the rubber plate 2 immediately below it is also reduced. Therefore, immediately after the internal pressure reaches the valve operating pressure, it starts to peel from the vicinity of the exhaust port 1 from this vicinity of the rubber plate 2 first.

図1や2のようにゴム板2が最初に排気口1の周辺から剥れ始める部位を敢えて一定にすることで剥がれ度合を安定化すれば、セル室ごとに排気口1とゴム板2との接触状態やシリコンオイルの付着量といった微細な構造の差異があっても、ガス放出が開始する時点の内圧を揃えることができるようになるので、セル室ごとの充電状態が揃うようになり、制御弁式鉛蓄電池を長寿命化できるようになる。   As shown in FIGS. 1 and 2, if the degree of peeling is stabilized by deliberately fixing the part where the rubber plate 2 starts to peel from the periphery of the exhaust port 1 first, the exhaust port 1 and the rubber plate 2 Even if there is a fine structure difference such as the contact state of silicon and the amount of silicon oil attached, the internal pressure at the time when gas release starts can be made uniform, so that the charge state of each cell chamber becomes uniform, The life of the control valve type lead-acid battery can be extended.

さらには図3のように、図1と2の特徴を組み合わせても、上述した本発明の効果は発揮される。   Further, as shown in FIG. 3, even if the features of FIGS. 1 and 2 are combined, the above-described effects of the present invention are exhibited.

ここでゴム板2には、クロロプレンゴムなどを用いることができる。またクッション材3には、エチレンプロピレンゴム(EPDM)の発泡体などを用いることができる。さらに押え板4には、アクリロニトリル−ブタジエン−スチレン共重合合成樹脂(ABS)などの材質を用いることができる。   Here, chloroprene rubber or the like can be used for the rubber plate 2. The cushion material 3 may be a foam of ethylene propylene rubber (EPDM). Further, the presser plate 4 can be made of a material such as acrylonitrile-butadiene-styrene copolymer synthetic resin (ABS).

以下、実施例により、本発明の効果を説明する。   Hereinafter, the effects of the present invention will be described with reference to examples.

(試験電池A)
鉛粉と鉛丹とを適宜混合し、硫酸を用いて練り上げた正極ペーストを、鉛合金からなる格子に塗布して乾燥することで、正極板dを作製した。一方、鉛粉と硫酸鉛とリグニン化合物とを適宜混合し、硫酸を用いて練り上げた負極ペーストを、鉛合金からなる格子に塗布して乾燥することで、負極板eを作製した。この正極板dと負極板eとを、セパレータfを介して対峙させることで、極板群gを作製した。
(Test battery A)
A positive electrode plate d was prepared by appropriately mixing lead powder and red lead, and applying and drying a positive electrode paste kneaded with sulfuric acid on a grid made of a lead alloy. On the other hand, a negative electrode plate e was prepared by appropriately mixing lead powder, lead sulfate, and lignin compound, and applying and drying a negative electrode paste kneaded with sulfuric acid on a lattice made of a lead alloy. The positive electrode plate d and the negative electrode plate e were opposed to each other with the separator f interposed therebetween, thereby preparing the electrode plate group g.

この極板群gを、セル室を6つ設けた電槽aのそれぞれのセル室に電解液(図示せず)とともに収納して直列に接続し、それぞれのセル室の直上に相応する位置に排気口1を設けた蓋bで電槽aの上部を覆い、それぞれの排気口1を、ゴム板2と、ゴム板2の上に載置されるクッション材3と、クッション材3を押圧し固定する押え板4とからなる制御弁hで封じ、端子cを蓋bの外側に出すことで、12V7.2Ahの制御弁式鉛蓄電池を構成した。なおセル室内部の密閉状態を強固に保つために、制御弁hと蓋bの排気口の周辺の界面にシリコンオイルを塗布した。   The electrode plate group g is accommodated together with an electrolytic solution (not shown) in each cell chamber of a battery case a provided with six cell chambers and connected in series, and is placed in a corresponding position directly above each cell chamber. The upper part of the battery case a is covered with a lid b provided with an exhaust port 1, and each exhaust port 1 is pressed against a rubber plate 2, a cushion material 3 placed on the rubber plate 2, and the cushion material 3. A 12V 7.2 Ah control valve type lead-acid battery was constructed by sealing with a control valve h comprising a holding plate 4 to be fixed and taking out the terminal c outside the lid b. In order to keep the inside of the cell chamber tightly, silicon oil was applied to the interface around the exhaust port of the control valve h and the lid b.

ここで制御弁hは、図1に示す構造とした。具体的には、クロロプレンゴムからなるゴム板2(厚さ0.5mm)の上に、EPDM製の発泡体からなるクッション材3(厚さ3mm、見かけ密度110kg/m3、25%圧縮応力5kPa)を載置し、このクッション材3を、厚さを0.6mmから1.4mmに変化させたテーパ状のABSからなる押え板4で押圧し固定した。その結果、押え板4の厚い箇所(厚さ1.4mm)に押圧されたクッション材3の厚さは0.8mm、押え板4の薄い箇所(厚さ0.6mm)に押圧されたクッション材3の厚さは1.6mmとなった。これを試験電池Aとする。 Here, the control valve h has the structure shown in FIG. Specifically, on a rubber plate 2 (thickness 0.5 mm) made of chloroprene rubber, a cushion material 3 (thickness 3 mm, apparent density 110 kg / m 3 , 25% compression stress 5 kPa) made of EPDM foam. The cushion material 3 was pressed and fixed with a presser plate 4 made of a tapered ABS whose thickness was changed from 0.6 mm to 1.4 mm. As a result, the thickness of the cushion material 3 pressed to a thick portion (thickness 1.4 mm) of the presser plate 4 is 0.8 mm, and the cushion material pressed to a thin portion (thickness 0.6 mm) of the presser plate 4. The thickness of 3 was 1.6 mm. This is designated as test battery A.

(試験電池B)
試験電池Aに対し、制御弁hを図2に示す構造としたこと以外は、図1と同様にして制御弁式鉛蓄電池を構成した。具体的には、クロロプレンゴムからなるゴム板2(厚さ0.5mm)の上に、見かけ密度を90kg/m3から120kg/m3(25%圧縮応力を4kPaから6kPa)まで連続的に変化させたEPDM製の発泡体からなるクッション材3(厚さ3mm)を載置し、このクッション材3を、ABSからなる押え板4(厚さ1mm)で押圧し固定した。その結果、クッション材3の厚さは1.2mmとなった。これを試験電池Bとする。
(Test battery B)
For the test battery A, a control valve type lead-acid battery was constructed in the same manner as in FIG. 1 except that the control valve h had the structure shown in FIG. Specifically, on the rubber plate 2 (thickness 0.5 mm) made of chloroprene rubber, the apparent density continuously changes from 90 kg / m 3 to 120 kg / m 3 (25% compressive stress from 4 kPa to 6 kPa). The cushion material 3 (thickness 3 mm) made of the foam made of EPDM was placed, and the cushion material 3 was pressed and fixed by a pressing plate 4 (thickness 1 mm) made of ABS. As a result, the thickness of the cushion material 3 was 1.2 mm. This is designated as test battery B.

(試験電池C)
試験電池Aに対し、制御弁hを図3に示す構造としたこと以外は、図1と同様にして制御弁式鉛蓄電池を構成した。具体的には、クロロプレンゴムからなるゴム板2(厚さ0.5mm)の上に、見かけ密度を95kg/m3から115kg/m3(25%圧縮応力を4.5kPaから5.5kPa)まで連続的に変化させたEPDM製の発泡体からなるクッション材3(厚さ3mm)を載置し、このクッション材3を、厚さを0.8mmから1.2mmに変化させたテーパ状のABSからなる押え板4で押圧し固定した。なおクッション材3の低密度な箇所(95kg/m3)は押え板4の薄い箇所(0.8mm)で押圧し、クッション材3の高密度な箇所(115kg/m3)は押え板4の厚い箇所(1.2mm)で押圧した。その結果、押え板4の厚い箇所(厚さ1.2mm)に押圧されたクッション材3の厚さは1.0mm、押え板4の薄い箇所(厚さ0.8mm)に押圧されたクッション材3の厚さは1.4mmとなった。これを試験電池Cとする。
(Test battery C)
For the test battery A, a control valve type lead-acid battery was constructed in the same manner as in FIG. 1 except that the control valve h had the structure shown in FIG. Specifically, on a rubber plate 2 (thickness 0.5 mm) made of chloroprene rubber, the apparent density is 95 kg / m 3 to 115 kg / m 3 (25% compression stress is 4.5 kPa to 5.5 kPa). A cushioning ABS 3 (thickness 3 mm) made of a foam made of EPDM which is continuously changed is placed, and this cushioning material 3 is a tapered ABS whose thickness is changed from 0.8 mm to 1.2 mm. The presser plate 4 made of The low density portion (95 kg / m 3 ) of the cushion material 3 is pressed by the thin portion (0.8 mm) of the presser plate 4, and the high density portion (115 kg / m 3 ) of the presser plate 4 is pressed by the press plate 4. Pressing at a thick spot (1.2 mm). As a result, the thickness of the cushion material 3 pressed against the thick portion (thickness 1.2 mm) of the presser plate 4 is 1.0 mm, and the cushion material pressed against the thin portion (thickness 0.8 mm) of the presser plate 4. The thickness of 3 was 1.4 mm. This is designated as test battery C.

(試験電池D)
試験電池Aに対し、制御弁hを図6に示す構造としたこと以外は、図1と同様にして制御弁式鉛蓄電池を構成した。具体的には、クロロプレンゴムからなるゴム板2(厚さ0.5mm)の上にEPDM製の発泡体からなるクッション材3(厚さ3mm、見かけ密度110kg/m3、25%圧縮応力5kPa)を載置し、このクッション材3を、ABSからなる押え板4(厚さ1mm)で押圧し固定した。その結果、クッション材3の厚さは1.2mmとなった。これを試験電池Dとする。
(Test battery D)
For the test battery A, a control valve type lead-acid battery was constructed in the same manner as in FIG. 1 except that the control valve h had the structure shown in FIG. Specifically, a cushion material 3 (thickness 3 mm, apparent density 110 kg / m 3 , 25% compression stress 5 kPa) made of EPDM foam on a rubber plate 2 (thickness 0.5 mm) made of chloroprene rubber. The cushion material 3 was pressed and fixed with a pressing plate 4 (thickness 1 mm) made of ABS. As a result, the thickness of the cushion material 3 was 1.2 mm. This is designated as test battery D.

これら各試験電池それぞれ1個について、2.9Aで14.7Vまで充電した後で14.7V一定のまま充電電流を減衰させるCC−CV充電(総充電時間8時間)
を行い、1.8Aの定電流放電(終止電圧10.5V)を行った。この充放電を1サイクルとして、25サイクルごとに放電容量と各セル室の弁作動圧とを実測した。そして試験電池の放電時間が初期の放電時間の50%を下回った時点で試験を終了した。放電時間の推移を図7に、各セル室の弁作動圧の推移を図8に、それぞれ示す。
For each one of these test batteries, CC-CV charging (total charging time 8 hours) that attenuates the charging current with 14.7V constant after being charged to 14.7V at 2.9A
A constant current discharge of 1.8 A (end voltage 10.5 V) was performed. With this charging / discharging as one cycle, the discharge capacity and the valve operating pressure in each cell chamber were measured every 25 cycles. The test was terminated when the discharge time of the test battery fell below 50% of the initial discharge time. FIG. 7 shows changes in discharge time, and FIG. 8 shows changes in valve operating pressure in each cell chamber.

図7から、従来の制御弁式鉛蓄電池(試験電池D)と比較して、本発明の制御弁式鉛蓄電池(試験電池A、B、C)は長寿命であった。   From FIG. 7, compared with the conventional control valve type lead acid battery (test battery D), the control valve type lead acid battery (test batteries A, B, C) of the present invention had a long life.

本発明の制御弁式鉛蓄電池は、ゴム板2が最初に排気口1の周辺から剥れ始める部位を敢えて一定にする(試験電池Aの場合は押え板4の薄い箇所、試験電池Bの場合はクッション材3の見かけ密度が低い箇所、試験電池Cの場合は押え板4が薄くクッション材3の見かけ密度が低い箇所)ことで剥がれ度合を安定化できているので、セル室ごとに排気口1とゴム板2との接触状態やシリコンオイルの付着量といった微細な構造の差異があっても、ガス放出が開始する時点の内圧を揃えることができるようになる。そこで図8のように本発明の制御弁式鉛蓄電池は充放電を繰り返してもセル室ごとの弁作動圧の実測値がほぼ一定となり、結果的にセル室ごとの充電状態が揃うようになるので、図7に示したように長寿命化できたものと考えられる。   In the control valve type lead-acid battery of the present invention, the part where the rubber plate 2 begins to peel from the periphery of the exhaust port 1 is dared to be constant (in the case of the test battery A, the thin part of the presser plate 4, the case of the test battery B) Is a place where the apparent density of the cushion material 3 is low, and in the case of the test battery C, the pressure plate 4 is thin and the apparent density of the cushion material 3 is low), so that the degree of peeling can be stabilized. Even if there is a difference in the fine structure such as the contact state between the rubber plate 1 and the rubber plate 2 or the amount of silicon oil attached, the internal pressure at the time when gas discharge starts can be made uniform. Therefore, as shown in FIG. 8, in the control valve type lead storage battery of the present invention, the measured value of the valve operating pressure for each cell chamber becomes substantially constant even after repeated charging and discharging, and as a result, the state of charge for each cell chamber is aligned. Therefore, it is considered that the life could be extended as shown in FIG.

本発明は制御弁式鉛蓄電池において利用可能であり、その用途は限定されないことから、工業的にも広範な利用可能性を有する。   Since the present invention can be used in a control valve type lead storage battery and its use is not limited, it has a wide range of industrial applicability.

1 排気口
2 ゴム板
3 クッション材
4 押え板
a 電槽
b 蓋
c 端子
d 正極板
e 負極板
f セパレータ
g 極板群
h 制御弁
t 突起
DESCRIPTION OF SYMBOLS 1 Exhaust port 2 Rubber plate 3 Cushion material 4 Holding plate a Battery case b Lid c Terminal d Positive electrode plate e Negative electrode plate f Separator g Electrode plate group h Control valve t Protrusion

Claims (2)

複数のセル室を設けた電槽のそれぞれのセル室に極板群と電解液とを収納して直列に接続し、それぞれのセル室の直上に相応する位置に排気口を設けた蓋でこの電槽の上部を覆い、それぞれの排気口を、ゴム板と、ゴム板の上に載置されるクッション材と、クッション材を押圧し固定する押え板とからなる制御弁で封じた制御弁式鉛蓄電池であって、
前記排気口の周辺の一部に対応する部分の厚みを他の部位より小さくした前記押え板によって、前記クッション材を押圧し固定したことを特徴とする制御弁式鉛蓄電池。
The electrode plate group and the electrolyte solution are accommodated in each cell chamber of the battery case provided with a plurality of cell chambers, connected in series, and a lid provided with an exhaust port at a position directly above each cell chamber. Control valve type that covers the upper part of the battery case and seals each exhaust port with a control valve consisting of a rubber plate, a cushion material placed on the rubber plate, and a presser plate that presses and fixes the cushion material A lead acid battery,
A control valve type lead-acid battery, wherein the cushion material is pressed and fixed by the presser plate having a thickness corresponding to a part of the periphery of the exhaust port smaller than that of the other part.
複数のセル室を設けた電槽のそれぞれのセル室に極板群と電解液とを収納して直列に接続し、それぞれのセル室の直上に相応する位置に排気口を設けた蓋でこの電槽の上部を覆い、それぞれの排気口を、ゴム板と、ゴム板の上に載置されるクッション材と、クッション材を押圧し固定する押え板とからなる制御弁で封じた制御弁式鉛蓄電池であって、
前記排気口の周辺の一部に対応する部分の密度を他の部位より小さくした前記クッション材を、前記押え板で押圧し固定したことを特徴とする制御弁式鉛蓄電池。
The electrode plate group and the electrolyte solution are accommodated in each cell chamber of the battery case provided with a plurality of cell chambers, connected in series, and a lid provided with an exhaust port at a position directly above each cell chamber. Control valve type that covers the upper part of the battery case and seals each exhaust port with a control valve consisting of a rubber plate, a cushion material placed on the rubber plate, and a presser plate that presses and fixes the cushion material A lead acid battery,
A control valve type lead-acid battery, wherein the cushion material, in which the density of a part corresponding to a part of the periphery of the exhaust port is made smaller than other parts, is pressed and fixed by the pressing plate.
JP2011019490A 2011-02-01 2011-02-01 Control valve type lead-acid battery Pending JP2012160354A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011019490A JP2012160354A (en) 2011-02-01 2011-02-01 Control valve type lead-acid battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011019490A JP2012160354A (en) 2011-02-01 2011-02-01 Control valve type lead-acid battery

Publications (1)

Publication Number Publication Date
JP2012160354A true JP2012160354A (en) 2012-08-23

Family

ID=46840725

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011019490A Pending JP2012160354A (en) 2011-02-01 2011-02-01 Control valve type lead-acid battery

Country Status (1)

Country Link
JP (1) JP2012160354A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113437426A (en) * 2020-03-05 2021-09-24 奥迪股份公司 Battery system and vehicle

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113437426A (en) * 2020-03-05 2021-09-24 奥迪股份公司 Battery system and vehicle

Similar Documents

Publication Publication Date Title
US4745039A (en) Sealed lead storage battery
JP5064805B2 (en) Control valve type lead acid battery
JP2003203615A (en) Module
US20140154554A1 (en) Battery module
KR101651515B1 (en) Secondary battery with automatic electrolyte supplementing function
KR20090035328A (en) Electrode assembly having compression plate for an electrode plate with a structure preventing deformation of the electrode plate by swelling and the battery using the same
JP2012160354A (en) Control valve type lead-acid battery
KR100542196B1 (en) Seperator for Lithium Secondary Battery and Lithium Secondary Battery
JP3390309B2 (en) Sealed alkaline storage battery
US8911916B2 (en) Fuel cell
JPH0438106B2 (en)
JP2000251949A (en) Sealed storage battery
JP2020061224A (en) Method of manufacturing nickel metal hydride storage battery
JP2005026037A (en) Sealed alkaline storage battery
KR101464514B1 (en) Anode electrode of nickel base secondary battery improving battery service life and electrode structure of nickel base secondary battery including the same
CN2914336Y (en) Anode cap of battery and battery thereof
CN202996945U (en) Button cell
JP2006156022A (en) Charging method of control valve type lead acid storage battery
KR101271920B1 (en) Secondary battery
CN209133640U (en) Deep discharge resistant alkaline battery
JP2007234393A (en) Sealed type secondary battery
JP2000090964A (en) Sealed lead-acid battery
KR101023142B1 (en) Lithium Secondary Battery
JP2000235848A (en) Sealed battery
KR101777448B1 (en) Secondary battery