JP2012159308A - Magnetic sensor device - Google Patents

Magnetic sensor device Download PDF

Info

Publication number
JP2012159308A
JP2012159308A JP2011017325A JP2011017325A JP2012159308A JP 2012159308 A JP2012159308 A JP 2012159308A JP 2011017325 A JP2011017325 A JP 2011017325A JP 2011017325 A JP2011017325 A JP 2011017325A JP 2012159308 A JP2012159308 A JP 2012159308A
Authority
JP
Japan
Prior art keywords
pair
sensor device
tunnel magnetoresistive
magnetic sensor
voltage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2011017325A
Other languages
Japanese (ja)
Inventor
Satoshi Uozumi
学司 魚住
Kenzo Nakamura
賢蔵 中村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Materials Corp
Original Assignee
Mitsubishi Materials Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Materials Corp filed Critical Mitsubishi Materials Corp
Priority to JP2011017325A priority Critical patent/JP2012159308A/en
Publication of JP2012159308A publication Critical patent/JP2012159308A/en
Withdrawn legal-status Critical Current

Links

Images

Abstract

PROBLEM TO BE SOLVED: To provide a magnetic sensor device which can prevent the insulation breakdown of a TMR element, and use a general-purpose IC.SOLUTION: A magnetic sensor device comprises: a substrate 2; a plurality of tunnel magnetic resistance elements 3 provided on the substrate 2 and having a pair of electrodes 3a; wiring 4 provided on the substrate 2, connecting the plurality of tunnel magnetic resistance elements 3 in series, and having connecting terminals 4a at both ends; and a detection circuit portion 6 for detecting resistance change by applying voltage on the tunnel magnetic resistance elements 3. When estimating the voltage resistance of the whole of the tunnel magnetic resistance elements 3 connected in series as Vb, and the action voltage of an IC 5 as Vdd, the voltage resistance Vb is set to be a relationship of Vdd/2≤Vb≤2Vdd.

Description

本発明は、耐電圧の低いトンネル磁気抵抗素子の絶縁破壊を防いで汎用ICで駆動可能な磁気センサ装置に関する。   The present invention relates to a magnetic sensor device which can be driven by a general-purpose IC while preventing dielectric breakdown of a tunnel magnetoresistive element having a low withstand voltage.

近年、トンネル磁気抵抗(TMR)素子を用いた磁気センサや電流センサが開発されている。このTMR素子は、薄い絶縁層を挟んで対向した一対の強磁性層を備えた素子構造を有し、一方の強磁性層の磁化の向きが固定されて固定磁化層(いわゆるピン層)とされていると共に、他方の強磁性層の磁化の向きが外部磁界に応じて変化する自由磁化層(いわゆるフリー層)とされている。そして、このTMR素子では、外部磁界が加わった際に、一対の強磁性層の互いの磁化方向に応じて、一対の強磁性層間のトンネル電流が変化して素子の抵抗値が変化することで、外部磁界を高精度に検出することが可能である。   In recent years, magnetic sensors and current sensors using tunneling magnetoresistive (TMR) elements have been developed. This TMR element has an element structure including a pair of ferromagnetic layers opposed to each other with a thin insulating layer interposed therebetween, and a magnetization direction of one ferromagnetic layer is fixed to form a fixed magnetization layer (so-called pinned layer). In addition, the magnetization direction of the other ferromagnetic layer is a free magnetic layer (so-called free layer) that changes according to an external magnetic field. In this TMR element, when an external magnetic field is applied, the tunnel current between the pair of ferromagnetic layers changes according to the magnetization directions of the pair of ferromagnetic layers, and the resistance value of the element changes. It is possible to detect an external magnetic field with high accuracy.

このTMR素子は、良好な磁気感度を有するが、絶縁層が極めて薄く素子の耐電圧が低いため、TMR素子が静電気等によって絶縁破壊してしまうおそれがあった。
このため、例えば非特許文献1には、TMR素子の上下に設けた上部シールド層および下部シールド層にシャント抵抗を接続し、放電原因となる寄生容量を制限して絶縁破壊を抑制する方法が記載されている。
Although this TMR element has good magnetic sensitivity, the insulating layer is extremely thin and the withstand voltage of the element is low, so that the TMR element may break down due to static electricity or the like.
For this reason, for example, Non-Patent Document 1 describes a method of suppressing a dielectric breakdown by connecting a shunt resistor to the upper shield layer and the lower shield layer provided above and below the TMR element to limit the parasitic capacitance that causes discharge. Has been.

Anthony Wai Yuen Lai et al.,「Anti-Static Robustness Enhancement and high-Frequency Noise Pickup Immunity by Internal Shunting for Tunneking Magnetoresistive Sensors」IEEE Trans. On Mgn.JANUARY (2008),VOL.44,NO.l,104-106Anthony Wai Yuen Lai et al., `` Anti-Static Robustness Enhancement and high-Frequency Noise Pickup Immunity by Internal Shunting for Tunneking Magnetoresistive Sensors '' IEEE Trans. On Mgn. JANUARY (2008), VOL.44, NO.l, 104- 106

上記従来の技術には、以下の課題が残されている。
TMR素子の抵抗変化を、例えば動作電圧5Vの汎用ICを用いてモニタする場合、上記非特許文献1のように対策したTMR素子でも、耐電圧が低いために絶縁破壊が生じてしまう不都合があった。すなわち、通常、TMR素子は耐圧を考慮して1V未満の印加電圧で使用されるが、動作電圧5Vの汎用ICを用いた場合、通常、端子電圧が動作電圧の1/2程度の電圧となって印加され、TMR素子の耐電圧を超えてしまう問題があった。
The following problems remain in the conventional technology.
When the resistance change of a TMR element is monitored using, for example, a general-purpose IC with an operating voltage of 5 V, even with a TMR element that has been treated as described in Non-Patent Document 1, there is a disadvantage that dielectric breakdown occurs due to low withstand voltage. It was. That is, normally, a TMR element is used with an applied voltage of less than 1 V in consideration of the withstand voltage, but when a general-purpose IC with an operating voltage of 5 V is used, the terminal voltage is usually about ½ of the operating voltage. There is a problem that the voltage exceeds the withstand voltage of the TMR element.

本発明は、前述の課題に鑑みてなされたもので、TMR素子の絶縁破壊を防いで汎用ICを用いることができる磁気センサ装置を提供することを目的とする。   The present invention has been made in view of the above-described problems, and an object of the present invention is to provide a magnetic sensor device that can prevent a dielectric breakdown of a TMR element and use a general-purpose IC.

本発明は、前記課題を解決するために以下の構成を採用した。すなわち、第1の発明の磁気センサ装置は、基板と、該基板上に設けられ一対の電極を有した複数のトンネル磁気抵抗素子と、前記基板上に設けられ複数の前記トンネル磁気抵抗素子を直列に接続すると共に両端に接続端子を有する配線と、前記トンネル磁気抵抗素子に電圧を印加して抵抗変化を検出するICを有した検出回路部とを備え、直列に接続された前記トンネル磁気抵抗素子全体の耐電圧をVbとし、前記ICの動作電圧をVddとしたとき、前記耐電圧Vbが、Vdd/2≦Vb≦2Vddの関係に設定されていることを特徴とする。   The present invention employs the following configuration in order to solve the above problems. In other words, the magnetic sensor device of the first invention includes a substrate, a plurality of tunnel magnetoresistive elements provided on the substrate and having a pair of electrodes, and a plurality of tunnel magnetoresistive elements provided on the substrate in series. The tunnel magnetoresistive element connected in series, and a detection circuit unit having an IC for detecting a change in resistance by applying a voltage to the tunnel magnetoresistive element When the overall withstand voltage is Vb and the operating voltage of the IC is Vdd, the withstand voltage Vb is set to have a relationship of Vdd / 2 ≦ Vb ≦ 2Vdd.

すなわち、この磁気センサ装置では、直列に接続されたトンネル磁気抵抗素子全体の耐電圧をVbとし、ICの動作電圧をVddとしたとき、耐電圧Vbが、Vdd/2≦Vb≦2Vddの関係に設定されているので、TMR素子個々の耐電圧が小さくても直列接続された複数のTMR素子全体としての耐電圧Vbが高くなりICの端子電圧(Vdd/2)以上となることで、絶縁破壊を防ぐことができる。
なお、TMR素子全体としての耐電圧VbがVdd/2未満であると、ICの端子に接続した際に絶縁破壊が生じるおそれがあり、またTMR素子全体としての耐電圧Vbが2Vddを超えると、直列にTMR素子を多く接続したために抵抗が必要以上に増大してICの内部抵抗に比べて無視できない大きさになってしまう。
That is, in this magnetic sensor device, when the withstand voltage of the whole tunnel magnetoresistive elements connected in series is Vb and the operating voltage of the IC is Vdd, the withstand voltage Vb has a relationship of Vdd / 2 ≦ Vb ≦ 2Vdd. Therefore, even if the withstand voltage of each TMR element is small, the withstand voltage Vb as a whole of a plurality of TMR elements connected in series becomes high and becomes equal to or higher than the terminal voltage (Vdd / 2) of the IC. Can be prevented.
If the withstand voltage Vb of the entire TMR element is less than Vdd / 2, there is a risk that dielectric breakdown will occur when connected to the terminal of the IC, and if the withstand voltage Vb of the entire TMR element exceeds 2 Vdd, Since a large number of TMR elements are connected in series, the resistance increases more than necessary and becomes insignificant compared to the internal resistance of the IC.

また、第2の発明の磁気センサ装置は、第1の発明において、前記配線が、一対の前記接続端子に接続され互いに平行かつ近接して複数の前記トンネル磁気抵抗素子の間に延在した一対の主配線部と、前記主配線部から前記トンネル磁気抵抗素子に向けて互いに平行かつ近接して延在し一対の前記電極に接続された複数対の接続配線部とを有していることを特徴とする。
この磁気センサ装置では、配線が、一対の接続端子に接続され互いに平行かつ近接して複数のTMR素子の間に延在した一対の主配線部と、主配線部からTMR素子に向けて互いに平行かつ近接して延在し一対の電極に接続された複数対の接続配線部とを有しているので、電磁誘導によるノイズの発生を抑制することができる。すなわち、複数のTMR素子を接続したことにより多数の配線部分が存在するが、検出すべき磁界に交番磁界が含まれる場合(あるいは交番磁界の場合)、配線で電磁誘導が発生してノイズ電圧となり、S/N比が低下するおそれがある。特に、配線がTMR素子の列の外側に配される場合、一対の配線の間が広がってループ状になり、電磁誘導によりノイズが生じやすい。しかしながら、本発明では、一対の主配線部および複数対の接続配線部において、隣接する配線部同士の電流方向を互い違いにすると共に互いに近接させることで、ループ状の配線を避け、配線での電磁誘導が生じ難くなる。
The magnetic sensor device according to a second aspect of the present invention is the magnetic sensor device according to the first aspect, wherein the wiring is connected to the pair of connection terminals and extends between the plurality of tunnel magnetoresistive elements in parallel and close to each other. And a plurality of pairs of connection wiring portions extending in parallel and close to each other from the main wiring portion toward the tunnel magnetoresistive element and connected to a pair of the electrodes. Features.
In this magnetic sensor device, the wiring is connected to the pair of connection terminals and is parallel to and close to each other and extends between the plurality of TMR elements, and is parallel to each other from the main wiring part toward the TMR element. In addition, since it has a plurality of pairs of connection wiring portions extending in close proximity and connected to a pair of electrodes, generation of noise due to electromagnetic induction can be suppressed. That is, a large number of wiring portions exist due to the connection of a plurality of TMR elements, but when the magnetic field to be detected includes an alternating magnetic field (or in the case of an alternating magnetic field), electromagnetic induction occurs in the wiring and becomes a noise voltage. , S / N ratio may be reduced. In particular, when the wiring is arranged outside the row of TMR elements, the space between the pair of wirings spreads to form a loop, and noise is likely to occur due to electromagnetic induction. However, in the present invention, in the pair of main wiring portions and the plurality of pairs of connection wiring portions, the current directions of the adjacent wiring portions are staggered and brought close to each other, thereby avoiding loop-shaped wiring and preventing electromagnetic waves in the wiring. Induction is less likely to occur.

第3の発明の磁気センサ装置は、第2の発明において、複数の前記トンネル磁気抵抗素子が、複数列に並んで配置され、一対の前記主配線部が、前記トンネル磁気抵抗素子の列間に配されていると共に、複数対の前記接続配線部が一対の前記主配線部の両側に配されていることを特徴とする。
すなわち、この磁気センサ装置では、一対の主配線部が、複数列に並んだトンネル磁気抵抗素子の列間に配されているので、列の外側に配線を配する場合に比べて配線長を短縮でき、さらに配線で生じる電磁誘導を抑制することができる。
According to a third aspect of the present invention, there is provided the magnetic sensor device according to the second aspect, wherein the plurality of tunnel magnetoresistive elements are arranged in a plurality of columns, and the pair of main wiring portions are arranged between the columns of the tunnel magnetoresistive elements. And a plurality of pairs of connection wiring portions are disposed on both sides of the pair of main wiring portions.
That is, in this magnetic sensor device, the pair of main wiring portions are arranged between the columns of the tunnel magnetoresistive elements arranged in a plurality of columns, so that the wiring length is shortened as compared with the case where the wiring is arranged outside the columns. In addition, electromagnetic induction generated in the wiring can be suppressed.

本発明によれば、以下の効果を奏する。
すなわち、本発明に係る磁気センサ装置によれば、直列に接続されたトンネル磁気抵抗素子全体の耐電圧をVbとし、ICの動作電圧をVddとしたとき、耐電圧Vbが、Vdd/2≦Vb≦2Vddの関係に設定されているので、複数のTMR素子全体としての耐電圧Vbが高くなりICの端子電圧以上となることで、絶縁破壊を防ぐことができる。したがって、動作電圧5Vの汎用ICを採用しても絶縁破壊が生じず、高い信頼性が得られると共に部材コストを低減することができる。
The present invention has the following effects.
That is, according to the magnetic sensor device of the present invention, when the withstand voltage of the entire tunnel magnetoresistive elements connected in series is Vb and the operating voltage of the IC is Vdd, the withstand voltage Vb is Vdd / 2 ≦ Vb. Since the relationship of ≦ 2 Vdd is set, the withstand voltage Vb of the plurality of TMR elements as a whole becomes higher and becomes equal to or higher than the terminal voltage of the IC, thereby preventing dielectric breakdown. Therefore, even if a general-purpose IC with an operating voltage of 5 V is adopted, dielectric breakdown does not occur, high reliability can be obtained, and member costs can be reduced.

本発明に係る磁気センサ装置の一実施形態を示す構成図である。It is a lineblock diagram showing one embodiment of a magnetic sensor device concerning the present invention. 本実施形態において、トンネル磁気抵抗素子を示す概略的な斜視図である。In this embodiment, it is a schematic perspective view which shows a tunnel magnetoresistive element. 本実施形態において、磁気センサ装置の簡易的な等価回路図である。In this embodiment, it is a simple equivalent circuit schematic of a magnetic sensor apparatus. 本実施形態において、磁気センサ装置の等価回路図である。In this embodiment, it is an equivalent circuit schematic of a magnetic sensor apparatus. 本発明の他の例において、センサ本体を示す平面図である。In other examples of the present invention, it is a top view showing a sensor main part. 本実施形態の他の例において、センサ本体を示す平面図である。In other examples of this embodiment, it is a top view showing a sensor main part.

以下、本発明に係る磁気センサ装置の一実施形態を、図1から図6を参照しながら説明する。なお、以下の説明に用いる各図面では、各部材を認識可能又は認識容易な大きさとするために縮尺を適宜変更している。   Hereinafter, an embodiment of a magnetic sensor device according to the present invention will be described with reference to FIGS. In each drawing used for the following description, the scale is appropriately changed in order to make each member recognizable or easily recognizable.

本実施形態の磁気センサ装置1は、図1に示すように、基板2と、該基板2上に設けられ一対の電極3aを有した複数のトンネル磁気抵抗素子(以下、TMR素子とも称す)3と、基板2上に設けられ複数のトンネル磁気抵抗素子3を直列に接続すると共に両端に接続端子4aを有する配線4と、トンネル磁気抵抗素子3に電圧を印加して抵抗変化を検出するIC5を有した検出回路部6とを備えている。なお、基板2、TMR素子3および配線4によりセンサ本体7が構成され、該センサ本体7と検出回路部6とは、配線4の一対の接続端子4aに接続された一対のリード線8で接続されている。   As shown in FIG. 1, a magnetic sensor device 1 according to this embodiment includes a substrate 2 and a plurality of tunnel magnetoresistive elements (hereinafter also referred to as TMR elements) 3 provided on the substrate 2 and having a pair of electrodes 3a. A wiring 4 provided on the substrate 2 for connecting a plurality of tunnel magnetoresistive elements 3 in series and having connection terminals 4a at both ends, and an IC 5 for detecting a resistance change by applying a voltage to the tunnel magnetoresistive element 3. And a detection circuit unit 6 provided. The sensor body 7 is composed of the substrate 2, the TMR element 3 and the wiring 4, and the sensor body 7 and the detection circuit unit 6 are connected by a pair of lead wires 8 connected to a pair of connection terminals 4 a of the wiring 4. Has been.

上記配線4は、一対の接続端子4aに接続され互いに平行かつ近接して複数のトンネル磁気抵抗素子3の間に延在した一対の主配線部4Aと、主配線部4Aからトンネル磁気抵抗素子3に向けて互いに平行かつ近接して延在し一対の電極3aに接続された複数対の接続配線部4Bとを有している。   The wiring 4 is connected to the pair of connection terminals 4a and extends between the plurality of tunneling magnetoresistive elements 3 in parallel and close to each other, and the tunneling magnetoresistive element 3 from the main wiring part 4A. And a plurality of pairs of connection wiring portions 4B extending in parallel and close to each other and connected to the pair of electrodes 3a.

また、複数の上記トンネル磁気抵抗素子3は、2列に並んで配置され、一対の主配線部4Aが、トンネル磁気抵抗素子3の列間に配されていると共に、複数対の接続配線部4Bが一対の主配線部4Aの両側に配されている。これら主配線部4Aおよび接続配線部4Bでは、いずれの箇所も隣接する線同士で互い違いに電流が流れる。
上記一対のリード線8は、より対線(いわゆるツイストペアケーブル)である。
The plurality of tunnel magnetoresistive elements 3 are arranged in two rows, a pair of main wiring portions 4A are arranged between the columns of the tunnel magnetoresistive elements 3, and a plurality of pairs of connection wiring portions 4B. Are arranged on both sides of the pair of main wiring portions 4A. In these main wiring portion 4A and connection wiring portion 4B, current flows alternately between adjacent lines at any location.
The pair of lead wires 8 are twisted pair wires (so-called twisted pair cables).

さらに、本磁気センサ装置1では、直列に接続されたトンネル磁気抵抗素子3全体の耐電圧をVbとし、IC5の動作電圧をVddとしたとき、耐電圧Vbが、Vdd/2≦Vb≦2Vddの関係に設定されている。例えば、動作電圧Vddが5Vである汎用ICをIC5として使用した場合、トンネル磁気抵抗素子3全体の耐電圧Vbが、2.5V≦Vb≦10Vの範囲内になるように設定される。   Further, in this magnetic sensor device 1, when the withstand voltage of the entire tunnel magnetoresistive element 3 connected in series is Vb and the operating voltage of the IC 5 is Vdd, the withstand voltage Vb is Vdd / 2 ≦ Vb ≦ 2Vdd. Set in a relationship. For example, when a general-purpose IC having an operating voltage Vdd of 5V is used as IC5, the withstand voltage Vb of the entire tunnel magnetoresistive element 3 is set to be in a range of 2.5V ≦ Vb ≦ 10V.

上記TMR素子3は、図2に示すように、例えば固定側電極層11、固定磁化層12、絶縁層13、自由磁化層14および自由側電極層15の順に積層された構造を有している。例えば、固定側電極層11は、Ta層(厚さ30nm)/CoFe層(厚さ3nm)/IrMn層(厚さ15nm)の積層で構成され、固定磁化層12は、CoFe層(厚さ2nm)/Ru層(厚さ0.8nm)/CoFeB層(厚さ3nm)の積層で構成されている。また、絶縁層13は、MgO層(厚さ1.2nm)であり、自由磁化層14は、CoFeB層(厚さ3nm)である。さらに、自由側電極層15は、Ta層(厚さ10nm)/Ru層(厚さ15nm)の積層で構成されている。なお、固定側電極層11および自由側電極層15は、直接一対の接続配線部4Bに接続されて一対の電極3aとされるか、ワイヤーボンディング等の他の配線を介して別途設けた一対の電極3aに電気的に接続されている。   As shown in FIG. 2, the TMR element 3 has a structure in which, for example, a fixed-side electrode layer 11, a fixed magnetic layer 12, an insulating layer 13, a free magnetic layer 14, and a free-side electrode layer 15 are stacked in this order. . For example, the fixed-side electrode layer 11 is composed of a stacked layer of a Ta layer (thickness 30 nm) / CoFe layer (thickness 3 nm) / IrMn layer (thickness 15 nm), and the fixed magnetic layer 12 is a CoFe layer (thickness 2 nm). ) / Ru layer (thickness 0.8 nm) / CoFeB layer (thickness 3 nm). The insulating layer 13 is an MgO layer (thickness 1.2 nm), and the free magnetic layer 14 is a CoFeB layer (thickness 3 nm). Furthermore, the free-side electrode layer 15 is composed of a stack of Ta layer (thickness 10 nm) / Ru layer (thickness 15 nm). The fixed-side electrode layer 11 and the free-side electrode layer 15 are directly connected to the pair of connection wiring portions 4B to form a pair of electrodes 3a, or a pair of separately provided via other wiring such as wire bonding. It is electrically connected to the electrode 3a.

上記基板2は、複数のTMR素子3が実装可能なプリント基板であり、ガラスエポキシ樹脂等で形成された絶縁材料の基板本体の実装面に銅パターン等で配線4が形成されたものである。本実施形態では、この基板2上に6つのTMR素子3が2列に実装されている。
上記配線4は、一対の接続端子4aに接続され互いに平行かつ近接して複数のTMR素子3の間に延在した一対の主配線部4Aと、主配線部4AからTMR素子3に向けて互いに平行かつ近接して延在し一対の電極3aに接続された複数対の接続配線部4Bとを有している。
The substrate 2 is a printed circuit board on which a plurality of TMR elements 3 can be mounted, and a wiring 4 is formed with a copper pattern or the like on a mounting surface of a substrate body of an insulating material formed of glass epoxy resin or the like. In the present embodiment, six TMR elements 3 are mounted on the substrate 2 in two rows.
The wiring 4 is connected to a pair of connection terminals 4 a and is parallel to and adjacent to each other and extends between the plurality of TMR elements 3, and the main wiring part 4 A toward the TMR element 3. A plurality of pairs of connection wiring portions 4B extending in parallel and close to each other and connected to the pair of electrodes 3a.

上記検出回路部6は、図3および図4に示すように、例えばVdd:5Vで動作するIC5と、TMR素子3(直列に接続された全TMR素子3)に直列に接続された参照抵抗Rとを備えている。IC5は、TMR素子3と参照抵抗Rとの間に接続され検出した信号を増幅するAMP16と、増幅した信号をアナログからデジタルへ変換するA/Dコンバータ17とを備えている。   As shown in FIGS. 3 and 4, the detection circuit unit 6 includes, for example, an IC 5 operating at Vdd: 5 V and a reference resistor R connected in series to the TMR element 3 (all TMR elements 3 connected in series). And. The IC 5 includes an AMP 16 that is connected between the TMR element 3 and the reference resistor R and amplifies the detected signal, and an A / D converter 17 that converts the amplified signal from analog to digital.

このA/Dコンバータ17は、例えば0.5〜4.5Vの範囲について128bitの分解能を有している。したがって、直列に接続したTMR素子3全体の電圧を0.5〜4.5Vの範囲に設定することで、A/Dコンバータ17を有効に使用することが可能になる。このため、磁界が印加されていない状態におけるTMR素子3全体の抵抗Rを、0.5〜4.5Vの中点になるように参照抵抗Rを設定することが好ましい。 The A / D converter 17 has a resolution of 128 bits in a range of 0.5 to 4.5V, for example. Therefore, the A / D converter 17 can be used effectively by setting the voltage across the TMR elements 3 connected in series within the range of 0.5 to 4.5V. For this reason, it is preferable to set the reference resistance R so that the resistance R 0 of the entire TMR element 3 in a state where no magnetic field is applied is at a midpoint of 0.5 to 4.5V.

なお、TMR素子3全体としての耐電圧VbがVdd/2未満であると、IC5の端子に接続した際に絶縁破壊が生じるおそれがあり、またTMR素子3全体としての耐電圧Vbが2Vddを超えると、直列にTMR素子3を多く接続したために抵抗が必要以上に増大してICの内部抵抗に比べて無視できない大きさになってしまう。例えば、1個のTMR素子3の耐電圧が1Vであるとすると、2Vdd:10Vを超えるように11個のTMR素子3を直列に接続した場合、TMR素子3全体の抵抗値が110kΩと必要以上に大きくなり、IC5の内部抵抗が10MΩであるとすると、その1%を超えるため、S/N比に影響を与える無視できない大きさとなってしまう。   If the withstand voltage Vb of the TMR element 3 as a whole is less than Vdd / 2, there is a risk of dielectric breakdown when connected to the terminal of the IC 5, and the withstand voltage Vb of the TMR element 3 as a whole exceeds 2 Vdd. Then, since many TMR elements 3 are connected in series, the resistance increases more than necessary and becomes a size that cannot be ignored compared to the internal resistance of the IC. For example, assuming that the withstand voltage of one TMR element 3 is 1V, when 11 TMR elements 3 are connected in series so as to exceed 2Vdd: 10V, the resistance value of the entire TMR element 3 is 110 kΩ or more than necessary. If the internal resistance of the IC 5 is 10 MΩ, it exceeds 1%, so that it becomes a non-negligible size that affects the S / N ratio.

このように本実施形態の磁気センサ装置1では、直列に接続されたTMR素子3全体の耐電圧をVbとし、IC5の動作電圧をVddとしたとき、耐電圧Vbが、Vdd/2≦Vb≦2Vddの関係に設定されているので、TMR素子3個々の耐電圧が小さくても直列接続された複数のTMR素子3全体としての耐電圧Vbが高くなりIC5の端子電圧(Vdd/2)以上となることで、絶縁破壊を防ぐことができる。   As described above, in the magnetic sensor device 1 according to the present embodiment, when the withstand voltage of the whole TMR element 3 connected in series is Vb and the operating voltage of the IC 5 is Vdd, the withstand voltage Vb is Vdd / 2 ≦ Vb ≦. Since the relationship of 2Vdd is set, even if the withstand voltage of each TMR element 3 is small, the withstand voltage Vb as a whole of the plurality of TMR elements 3 connected in series is increased and becomes higher than the terminal voltage (Vdd / 2) of the IC5. Thus, dielectric breakdown can be prevented.

また、配線4が、一対の接続端子4aに接続され互いに平行かつ近接して複数のTMR素子3の間に延在した一対の主配線部4Aと、主配線部4AからTMR素子3に向けて互いに平行かつ近接して延在し一対の電極3aに接続された複数対の接続配線部4Bとを有しているので、電磁誘導によるノイズの発生を抑制することができる。すなわち、複数のTMR素子3を接続したことにより多数の配線部分が存在するが、検出すべき磁界に交番磁界が含まれる場合(あるいは交番磁界の場合)、配線4で電磁誘導が発生してノイズ電圧となり、S/N比が低下するおそれがある。   In addition, the wiring 4 is connected to the pair of connection terminals 4 a and is parallel and close to each other and extends between the plurality of TMR elements 3, and from the main wiring part 4 A to the TMR element 3. Since there are a plurality of pairs of connection wiring portions 4B extending in parallel and close to each other and connected to the pair of electrodes 3a, the generation of noise due to electromagnetic induction can be suppressed. That is, when a plurality of TMR elements 3 are connected, a large number of wiring portions exist, but when the magnetic field to be detected includes an alternating magnetic field (or in the case of an alternating magnetic field), electromagnetic induction occurs in the wiring 4 and noise occurs. There is a risk that the S / N ratio is lowered due to the voltage.

特に、図5に示す本発明の他の例のように、配線4がTMR素子3の列の外側を回って配される場合、一対の配線4の間が広がってループ状になり、電磁誘導によりノイズが生じやすい。しかしながら、本実施形態では、一対の主配線部4Aおよび複数対の接続配線部4Bにおいて、隣接する配線部同士の電流方向を互い違いにすると共に互いに近接させることで、ループ状の配線を避け、配線4での電磁誘導が生じ難くなる。
さらに、主配線部4Aが、複数列に並んだTMR素子3の列間に配されているので、列の外側に配線を配する場合に比べて配線長を短縮でき、さらに配線で生じる電磁誘導を抑制することができる。
In particular, as in the other example of the present invention shown in FIG. 5, when the wiring 4 is arranged around the outside of the TMR element 3 column, the space between the pair of wirings 4 expands to form a loop, and electromagnetic induction Due to this, noise is likely to occur. However, in the present embodiment, in the pair of main wiring portions 4A and the plurality of pairs of connection wiring portions 4B, the current directions of the adjacent wiring portions are staggered and brought close to each other, thereby avoiding loop-shaped wiring and wiring. 4 is less likely to cause electromagnetic induction.
Further, since the main wiring portion 4A is arranged between the rows of the TMR elements 3 arranged in a plurality of rows, the wiring length can be shortened compared with the case where the wiring is arranged outside the row, and further, the electromagnetic induction generated in the wiring Can be suppressed.

次に、本発明に係る磁気センサ装置を、実際に作製して評価した結果を説明する。
本実施例として、動作電圧Vdd:5Vの汎用ICに耐電圧Vb:1VのTMR素子を接続数を変えて直列に接続し、絶縁破壊が生じるか否かについて評価した。なお、TMR素子の素子抵抗は10kΩである。
Next, the result of actually producing and evaluating the magnetic sensor device according to the present invention will be described.
As this example, a TMR element with a withstand voltage Vb: 1 V was connected in series to a general-purpose IC with an operating voltage Vdd: 5 V, and whether or not dielectric breakdown occurred was evaluated. The element resistance of the TMR element is 10 kΩ.

<実施例1>
TMR素子4個を直列接続した場合、TMR素子全体の抵抗は40kΩ、耐電圧が4Vとなり、汎用ICの動作電圧Vdd:5Vの1/2である2.5Vよりも高くなることから、絶縁破壊は生じなかった。
<実施例2>
TMR素子10個を直列接続した場合、TMR素子全体の抵抗は100kΩ、耐電圧が10Vとなり、汎用ICの動作電圧Vdd:5Vの1/2である2.5Vよりも高くなることから、絶縁破壊は生じなかった。また、汎用ICの内部抵抗10MΩに比べてTMR素子全体の抵抗が1%以下であるため無視でき、S/N比に大きな影響はない。
<Example 1>
When four TMR elements are connected in series, the resistance of the entire TMR element is 40 kΩ and the withstand voltage is 4 V, which is higher than 2.5 V, which is 1/2 of the operating voltage Vdd of general-purpose IC: 5 V. Did not occur.
<Example 2>
When 10 TMR elements are connected in series, the resistance of the entire TMR element is 100 kΩ and the withstand voltage is 10 V, which is higher than 2.5 V, which is 1/2 of the operating voltage Vdd of general-purpose IC: 5 V. Did not occur. Further, since the resistance of the entire TMR element is 1% or less compared to the internal resistance of 10 MΩ of the general-purpose IC, it can be ignored, and the S / N ratio is not greatly affected.

<比較例1>
TMR素子2個を直列接続した場合、TMR素子全体の抵抗は20kΩ、耐電圧が2Vとなり、汎用ICの動作電圧Vdd:5Vの1/2である2.5Vよりも低くなることから、絶縁破壊が生じた。
<比較例2>
TMR素子20個を直列接続した場合、TMR素子全体の抵抗は200kΩ、耐電圧が20Vとなり、汎用ICの動作電圧Vdd:5Vの1/2である2.5Vよりも高くなることから、絶縁破壊は生じなかった。しかしながら、汎用ICの内部抵抗10MΩに比べてTMR素子全体の抵抗が1%を超えてしまう無視できない大きさとなり、S/N比に影響を与え、高精度な測定が困難になった。
<Comparative Example 1>
When two TMR elements are connected in series, the resistance of the entire TMR element is 20 kΩ, the withstand voltage is 2 V, and it is lower than 2.5 V, which is 1/2 of the operating voltage Vdd of general-purpose IC: 5 V. Occurred.
<Comparative example 2>
When 20 TMR elements are connected in series, the resistance of the entire TMR element is 200 kΩ, and the withstand voltage is 20 V, which is higher than 2.5 V, which is 1/2 of the operating voltage Vdd of general-purpose IC: 5 V. Did not occur. However, the resistance of the entire TMR element exceeds 1% compared to the internal resistance of 10 MΩ of the general-purpose IC, which is a non-negligible magnitude, affecting the S / N ratio and making high-precision measurement difficult.

なお、本発明の技術範囲は上記実施形態および上記実施例に限定されるものではなく、本発明の趣旨を逸脱しない範囲において種々の変更を加えることが可能である。   The technical scope of the present invention is not limited to the above-described embodiments and examples, and various modifications can be made without departing from the spirit of the present invention.

例えば、上記実施形態では、プリント基板上に複数のTMR素子を実装してパターン配線で直列に接続しているが、集積回路技術、リソグラフィー技術等を用いて1チップに複数のTMR素子をまとめて作り込み、微細な配線パターンにより電気的に直列に接続しても構わない。
また、上記実施形態では、6つのTMR素子を2列に配列して直列接続しているが、他の配置において直列接続しても構わない。例えば、他の例として図6に示すように、基板2上に15個のTMR素子3を5個ずつの3つに分けてデンドライト状(樹枝状)に配して実装し、配線4で全てを直列に接続したものでも構わない。
For example, in the above embodiment, a plurality of TMR elements are mounted on a printed circuit board and connected in series by pattern wiring. However, a plurality of TMR elements are integrated on one chip using integrated circuit technology, lithography technology, or the like. They may be electrically connected in series with a fine wiring pattern.
In the above embodiment, six TMR elements are arranged in two rows and connected in series, but may be connected in series in other arrangements. For example, as shown in FIG. 6 as another example, 15 TMR elements 3 are divided into 3 pieces of 5 pieces on a substrate 2 and mounted in a dendrite shape (dendritic shape). May be connected in series.

1…磁気センサ装置、2…基板、3…トンネル磁気抵抗(TMR)素子、3a…電極、4…配線、4a…接続端子、4A…主配線部、4B…接続配線部、5…IC、6…検出回路部   DESCRIPTION OF SYMBOLS 1 ... Magnetic sensor apparatus, 2 ... Board | substrate, 3 ... Tunnel magnetoresistive (TMR) element, 3a ... Electrode, 4 ... Wiring, 4a ... Connection terminal, 4A ... Main wiring part, 4B ... Connection wiring part, 5 ... IC, 6 ... Detection circuit

Claims (3)

基板と、
該基板上に設けられ一対の電極を有した複数のトンネル磁気抵抗素子と、
前記基板上に設けられ複数の前記トンネル磁気抵抗素子を直列に接続すると共に両端に接続端子を有する配線と、
前記トンネル磁気抵抗素子に電圧を印加して抵抗変化を検出するICを有した検出回路部とを備え、
直列に接続された前記トンネル磁気抵抗素子全体の耐電圧をVbとし、前記ICの動作電圧をVddとしたとき、前記耐電圧Vbが、Vdd/2≦Vb≦2Vddの関係に設定されていることを特徴とする磁気センサ装置。
A substrate,
A plurality of tunnel magnetoresistive elements having a pair of electrodes provided on the substrate;
A wiring provided on the substrate for connecting the plurality of tunnel magnetoresistive elements in series and having connection terminals at both ends;
A detection circuit unit having an IC for detecting a resistance change by applying a voltage to the tunnel magnetoresistive element;
When the withstand voltage of the entire tunnel magnetoresistive elements connected in series is Vb and the operating voltage of the IC is Vdd, the withstand voltage Vb is set to have a relationship of Vdd / 2 ≦ Vb ≦ 2Vdd. A magnetic sensor device.
請求項1に記載の磁気センサ装置において、
前記配線が、一対の前記接続端子に接続され互いに平行かつ近接して複数の前記トンネル磁気抵抗素子の間に延在した一対の主配線部と、
前記主配線部から前記トンネル磁気抵抗素子に向けて互いに平行かつ近接して延在し一対の前記電極に接続された複数対の接続配線部とを有していることを特徴とする磁気センサ装置。
The magnetic sensor device according to claim 1,
A pair of main wiring portions connected to the pair of connection terminals and extending between the plurality of tunnel magnetoresistive elements in parallel and close to each other;
A magnetic sensor device comprising: a plurality of pairs of connection wiring portions extending in parallel and close to each other from the main wiring portion toward the tunnel magnetoresistive element and connected to the pair of electrodes. .
請求項2に記載の磁気センサ装置において、
複数の前記トンネル磁気抵抗素子が、複数列に並んで配置され、
一対の前記主配線部が、前記トンネル磁気抵抗素子の列間に配されていると共に、複数対の前記接続配線部が一対の前記主配線部の両側に配されていることを特徴とする磁気センサ装置。
The magnetic sensor device according to claim 2,
A plurality of the tunnel magnetoresistive elements are arranged in a plurality of rows,
A pair of main wiring portions are arranged between the tunnel magnetoresistive element columns, and a plurality of pairs of connection wiring portions are arranged on both sides of the pair of main wiring portions. Sensor device.
JP2011017325A 2011-01-29 2011-01-29 Magnetic sensor device Withdrawn JP2012159308A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011017325A JP2012159308A (en) 2011-01-29 2011-01-29 Magnetic sensor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011017325A JP2012159308A (en) 2011-01-29 2011-01-29 Magnetic sensor device

Publications (1)

Publication Number Publication Date
JP2012159308A true JP2012159308A (en) 2012-08-23

Family

ID=46839989

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011017325A Withdrawn JP2012159308A (en) 2011-01-29 2011-01-29 Magnetic sensor device

Country Status (1)

Country Link
JP (1) JP2012159308A (en)

Similar Documents

Publication Publication Date Title
US9176203B2 (en) Apparatus and method for in situ current measurement in a conductor
KR101682264B1 (en) Magnetic field sensor
EP2682771B1 (en) Push-pull bridge magnetoresistance sensor
JP6474822B2 (en) High sensitivity push-pull bridge magnetic sensor
CN110007123B (en) Offset current sensor structure
US9739850B2 (en) Push-pull flipped-die half-bridge magnetoresistive switch
JP6461946B2 (en) Push-pull bridge type magnetic sensor for high intensity magnetic field
JP6348590B2 (en) Magnetoresistive current limiter
US20170307664A1 (en) Sensors, systems and methods for residual current detection
JP2013084166A5 (en)
JP2017502298A (en) Single-chip reference bridge magnetic sensor for strong magnetic fields
JP2017502298A5 (en)
CN102866365B (en) Tunneling magnetoresistive sensor
JP2016001118A (en) Current detection device, magnetic field detection device, and method thereof
JP4853807B2 (en) Current sensing device
US11519941B2 (en) Current sensing device having an integrated electrical shield
JP2010101871A (en) Current sensor
TWI467204B (en) Magnatoresistive sensing device
US11009569B2 (en) Magnetic field sensing device
JP5057245B2 (en) Current sensor
JP2010256316A (en) Current sensor
CN109738838B (en) TMR sensor, preparation method thereof and resistance value adjusting method
CN104155620B (en) Magnetic sensing device and its inducing method, preparation technology
JP2012159308A (en) Magnetic sensor device
JP5458319B2 (en) Current sensor

Legal Events

Date Code Title Description
A300 Application deemed to be withdrawn because no request for examination was validly filed

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20140401