JP2012157881A - Erosion-resistant cast, method for manufacturing the same and molten metal contacting member - Google Patents

Erosion-resistant cast, method for manufacturing the same and molten metal contacting member Download PDF

Info

Publication number
JP2012157881A
JP2012157881A JP2011018894A JP2011018894A JP2012157881A JP 2012157881 A JP2012157881 A JP 2012157881A JP 2011018894 A JP2011018894 A JP 2011018894A JP 2011018894 A JP2011018894 A JP 2011018894A JP 2012157881 A JP2012157881 A JP 2012157881A
Authority
JP
Japan
Prior art keywords
base metal
layer
region
immersion
melt
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2011018894A
Other languages
Japanese (ja)
Other versions
JP5942119B2 (en
Inventor
Harumi Yanagida
治美 柳田
Masa Abe
雅 阿部
Noboru Takada
高田  昇
Katsumi Koike
勝美 小池
Hiroshi Hirahara
宏 平原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
FURUKAWA CASTEC CO Ltd
Tochigi Prefecture
Original Assignee
FURUKAWA CASTEC CO Ltd
Tochigi Prefecture
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by FURUKAWA CASTEC CO Ltd, Tochigi Prefecture filed Critical FURUKAWA CASTEC CO Ltd
Priority to JP2011018894A priority Critical patent/JP5942119B2/en
Publication of JP2012157881A publication Critical patent/JP2012157881A/en
Application granted granted Critical
Publication of JP5942119B2 publication Critical patent/JP5942119B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

PROBLEM TO BE SOLVED: To provide an erosion-resistant cast which has an erosion resistance extremely more excellent than a conventional one and a molten metal contacting member composed of the cast, and further to provide a method for manufacturing the erosion-resistant cast capable of stably obtaining the erosion-resistant cast excellent in equipment cost or running cost and excellent in the erosion resistance.SOLUTION: The erosion-resistant cast includes a matrix metal layer having a predetermined composition and an oxide layer formed at the surface of the matrix metal layer. A part of the oxide layer is extended in the shape of cilia at the crystal grain boundary of the matrix metal.

Description

本発明は、鋳造品の表面に耐溶損性を有する酸化物層を備える耐溶損性鋳物、その製造方法および該鋳物からなる金属溶湯接触部材に関する。   The present invention relates to a melt resistant casting having an oxide layer having a melt resistant property on the surface of a cast product, a manufacturing method thereof, and a molten metal contact member made of the cast.

近年、アルミニウムやアルミニウム合金は軽量で加工性・耐食性・機械的性質に優れることから、航空機・鉄道車両・自動車の部品やサッシなどの家庭用品に広く用いられている。アルミニウムは多様な方法によって成形可能であり、アルミニウム溶湯を用いた鋳造方法が広く採用されている。   In recent years, aluminum and aluminum alloys are lightweight and excellent in workability, corrosion resistance, and mechanical properties, and thus are widely used in household goods such as aircraft, railway vehicles, automobile parts, and sashes. Aluminum can be formed by various methods, and a casting method using molten aluminum is widely adopted.

従来から、アルミニウム溶湯と接触する部材は鋳鉄から構成されている。しかしながら、アルミニウムの融点は660℃と高いため、当該部材は常時600〜700℃程度の温度に曝されて早期に劣化しアルミニウムと反応して一部が消失する、所謂、溶損してしまう問題点を有していた。
そのような問題点を解決するために、メルティングポット等の高い耐溶損性を要求される部品の構造部材は、耐溶損性を向上させるための表面処理を施すことが一般的に行われている。
鋼材の耐溶損性を向上させる表面処理として一般的なものは、窒化物層を形成する窒化処理と酸化物層を形成する酸化処理が挙げられる。
Conventionally, the member in contact with the molten aluminum is made of cast iron. However, since the melting point of aluminum is as high as 660 ° C., the member is always exposed to a temperature of about 600 to 700 ° C., deteriorates quickly, reacts with aluminum and partially disappears, so-called melting damage. Had.
In order to solve such problems, structural members such as melting pots and the like that are required to have high resistance to melting are generally subjected to surface treatment for improving resistance to melting. Yes.
Common surface treatments for improving the resistance to melting of steel materials include nitriding treatment for forming a nitride layer and oxidation treatment for forming an oxide layer.

窒化処理は鋼材を炉内で500℃程度に加熱しアンモニアガスを供給することで表面に窒化物層を形成するが、窒化物層の表層は窒化鉄(Fe−N)を主体とした所謂白層と呼ばれるものであり、脆く剥がれ落ち易いため好ましくない。窒化鉄を形成しないようにアンモニアガスと水素ガスを供給することで窒素元素を鋼材内部に浸透・固溶させ窒素拡散層なる層を形成することも提案されているが、この窒素拡散層は脆さに改善が認められるものの耐溶損性は満足できるものではない。   In the nitriding treatment, a steel layer is heated to about 500 ° C. in an oven and ammonia gas is supplied to form a nitride layer on the surface. The surface layer of the nitride layer is so-called white that mainly contains iron nitride (Fe—N). It is called a layer and is not preferable because it is brittle and easily peeled off. It has also been proposed to form a nitrogen diffusion layer by supplying ammonia gas and hydrogen gas so as not to form iron nitride so that nitrogen element penetrates and dissolves in the steel material, and this nitrogen diffusion layer is brittle. However, although the improvement is recognized, the melt resistance is not satisfactory.

一方の酸化処理であるが、鋼材を炉内で加熱することで表面に酸化物層を形成することができるが、酸化物層自体の耐溶損性は非常に高いものの熱膨張によって損傷して母材金属から剥がれ落ち易いという問題がある。   Although it is one oxidation treatment, an oxide layer can be formed on the surface by heating the steel material in a furnace. There is a problem that it is easily peeled off from the metal.

そこで、特許文献1には、鋳造用金型の素材として一般的なSKD61(JIS規格)を炉内で500℃程度に加熱しアンモニアガスと水素ガスを供給することで表面に窒素拡散層を形成し、引き続き、炉内に酸素ガスと水素ガスを供給することで酸化鉄のみからなる酸化物層を窒素拡散層の上に形成することで鋳造品の表面に複合層構造を形成した鋳造用金型部材が開示されている。   Therefore, Patent Document 1 discloses that a nitrogen diffusion layer is formed on the surface by supplying ammonia gas and hydrogen gas by heating general SKD61 (JIS standard) as a casting mold material to about 500 ° C. in a furnace. Subsequently, an oxygen layer containing only iron oxide is formed on the nitrogen diffusion layer by supplying oxygen gas and hydrogen gas into the furnace, thereby forming a composite layer structure on the surface of the cast product. A mold member is disclosed.

この特許文献1の技術によれば、最表層の酸化物層はアルミニウムに対して耐溶損性を発揮し、その下層に位置する窒素拡散層は母材金属が熱応力により変形するのを抑制することで酸化物層が剥離することを防ぐ働きがある。   According to the technique disclosed in Patent Document 1, the outermost oxide layer exhibits resistance to melting with respect to aluminum, and the nitrogen diffusion layer located in the lower layer suppresses deformation of the base metal due to thermal stress. This serves to prevent the oxide layer from peeling off.

しかしながら、特許文献1の技術は窒素拡散層と酸化鉄のみからなる酸化物層を積層させるためにアンモニアガス、水素ガス、および酸素ガスを供給可能な専用の熱処理炉を設備する必要があり設備コストが嵩み、また、熱処理中に各種ガスを供給し続ける必要があるためランニングコストが嵩む。   However, in the technique of Patent Document 1, it is necessary to provide a dedicated heat treatment furnace capable of supplying ammonia gas, hydrogen gas, and oxygen gas in order to stack an oxide layer made of only a nitrogen diffusion layer and iron oxide. Moreover, since it is necessary to continue supplying various gases during the heat treatment, the running cost increases.

また、窒素拡散層と酸化鉄のみからなる酸化物層の結合は、PVD法等による異種材料の被覆層と母材金属の結合と比べて大きな強度は有するものの、物理的な特性が変化する界面が存在し、この界面においては白層と呼ばれる窒化鉄が形成される可能性があることから、そこから剥離が発生するおそれがあるという問題がある。   In addition, the bond between the nitrogen diffusion layer and the oxide layer composed only of iron oxide has a higher strength than the bond between the coating layer of the dissimilar material and the base metal by the PVD method, but the interface changes in physical characteristics. Since there is a possibility that iron nitride called a white layer may be formed at this interface, there is a problem that peeling may occur therefrom.

特開2004−237301公報JP-A-2004-237301

本発明は、従来技術の上記問題を解決するものであり、耐溶損性が従来のものより極めて優れた耐溶損性鋳物、設備コストやランニングコストに優れる耐溶損性鋳物の製造方法さらに該鋳物からなる金属溶湯接触部材を提供することを目的とする。   The present invention solves the above-mentioned problems of the prior art, and has a melt resistance that is extremely superior to that of the prior art, a method for producing a melt resistance casting that is superior in equipment cost and running cost, and further from the casting. An object of the present invention is to provide a molten metal contact member.

本発明の耐溶損性鋳物は、組成(重量%)が、C 0.40〜0.70%、Si 0.35〜0.50%、Mn 0.50〜0.70%、P <0.03%、S <0.02%、Cr 4.50〜6.00%、Mo 0.50〜0.75%、Co 0.70〜0.90%、V 0.15〜0.30%、W 0.50〜0.70%、Nb <0.10%、Al <0.10%、残部がFeおよび不可避的不純物元素からなる母材金属層と、該母材金属層の表面に形成された酸化物層と、からなり、前記酸化物層の一部が該母材金属の結晶粒界に伸長している。   The composition (wt%) of the melt-resistant casting of the present invention has a composition of 0.40 to 0.70% for C, 0.35 to 0.50% for Si, 0.50 to 0.70% for Mn, and P <0.00. 03%, S <0.02%, Cr 4.50 to 6.00%, Mo 0.50 to 0.75%, Co 0.70 to 0.90%, V 0.15 to 0.30%, W 0.50 to 0.70%, Nb <0.10%, Al <0.10%, the balance being formed on the base metal layer made of Fe and inevitable impurity elements, and on the surface of the base metal layer And a part of the oxide layer extends to the crystal grain boundary of the base metal.

酸化物層を構成する繊毛状の酸化物は母材金属層の結晶粒界に伸長しており、いわば、大地に根を張るような様相を呈していることから、酸化物層と母材金属層との結合は非常に強固となる。したがって、本発明の耐溶損性鋳物は、耐溶損性の非常に高い酸化物層が繊毛状の酸化物よって母材金属層に非常に強固に保持されていることから、耐溶損性が飛躍的に向上することになる。   The ciliated oxide that constitutes the oxide layer extends to the crystal grain boundary of the base metal layer, so to speak, it appears to be rooted in the earth, so the oxide layer and the base metal The bond with the layer is very strong. Therefore, the melt-resistant casting of the present invention has a drastic resistance to melt damage because the oxide layer having a very high resistance to melt is held very firmly on the base metal layer by the cilia-like oxide. Will be improved.

また、本発明の耐溶損性鋳物の製造方法は、組成(重量%)が、C 0.40〜0.70%、Si 0.35〜0.50%、Mn 0.50〜0.70%、P <0.03%、S <0.02%、Cr 4.50〜6.00%、Mo 0.50〜0.75%、Co 0.70〜0.90%、V 0.15〜0.30%、W 0.50〜0.70%、Nb <0.10%、Al <0.10%、残部がFeおよび不可避的不純物元素からなる金属部材を、炉内で780〜980℃に加熱し、当該温度を保持する工程と、
加熱された前記金属部材を、炉内で30±10℃/時間の降温速度で徐冷する工程と、
を含む。
Moreover, the manufacturing method of the erosion resistant casting of the present invention has a composition (% by weight) of C 0.40 to 0.70%, Si 0.35 to 0.50%, Mn 0.50 to 0.70%. , P <0.03%, S <0.02%, Cr 4.50 to 6.00%, Mo 0.50 to 0.75%, Co 0.70 to 0.90%, V 0.15 0.30%, W 0.50 to 0.70%, Nb <0.10%, Al <0.10%, the balance being Fe and unavoidable impurity elements, 780-980 ° C. in the furnace Heating and maintaining the temperature,
Slowly cooling the heated metal member in a furnace at a rate of temperature decrease of 30 ± 10 ° C./hour;
including.

当該方法により、母材金属層の結晶粒界に繊毛状に伸びる酸化物層を安定して形成することができる。   By this method, an oxide layer extending in a cilia shape can be stably formed at the crystal grain boundary of the base metal layer.

また、本発明の金属溶湯接触部材は、上記のような耐溶損性鋳物からなる。本発明の耐溶損性鋳物は、従来の鋳物に比べて耐溶損性に極めて優れているため、アルミニウムやマグネシウムの金属溶湯に接触する金属溶湯接触部材として好適に用いることができる。   Moreover, the molten metal contact member of the present invention is made of the above-mentioned melt resistant casting. The melt resistant casting of the present invention is extremely excellent in melt resistance compared to conventional castings, and therefore can be suitably used as a molten metal contact member that contacts a molten metal of aluminum or magnesium.

本発明によれば、耐溶損性が極めて優れた耐溶損性鋳物を提供することができ、さらに該鋳物からなる金属溶湯接触部材を提供することができる。また、本発明の耐溶損性鋳物の製造方法によれば、設備コストやランニングコストに優れるとともに、母材金属層の結晶粒界に伸長する繊毛状酸化物を一部に有する酸化物層を備える溶損性に優れた耐溶損性鋳物を安定的に得ることができる。   According to the present invention, it is possible to provide a melt-resistant casting having extremely excellent melt resistance, and it is possible to provide a molten metal contact member made of the cast. In addition, according to the method for producing a melt-resistant casting according to the present invention, it is excellent in equipment cost and running cost, and includes an oxide layer partially including ciliary oxide extending to the crystal grain boundary of the base metal layer. It is possible to stably obtain a melt-resistant casting having excellent melt resistance.

本発明の耐溶損性鋳物の部分断面顕微鏡写真である。(a)が倍率100倍、(b)が倍率200倍、(c)が倍率500倍である。It is a partial cross-sectional microscope picture of the melt-resistant casting of this invention. (A) is 100 times magnification, (b) is 200 times magnification, and (c) is 500 times magnification. 本発明の耐溶損性鋳物の母材金属の表面に形成された耐溶損性の被覆層を形成する工程における温度条件である。It is temperature conditions in the process of forming the melt resistant coating layer formed on the surface of the base metal of the melt resistant cast of the present invention. 本発明の耐溶損性鋳物の母材金属層の表面に形成された耐溶損性の酸化物層のうち繊毛状酸化物の部分を拡大した断面顕微鏡写真(倍率1500倍)である。It is the cross-sectional microscope picture (magnification 1500 times) which expanded the part of the cilia-like oxide among the corrosion-resistant oxide layers formed in the surface of the base metal layer of the melt-resistant casting of this invention. 本発明の耐溶損性鋳物(実施例1)と、従来の金型鋼(比較例1)における、溶損試験の結果を示す写真である。(a)が浸漬前、(b)が浸漬後である。It is a photograph which shows the result of the erosion test in the fusion-resistant casting (Example 1) of this invention, and the conventional mold steel (comparative example 1). (A) is before immersion, and (b) is after immersion. 比較例1の浸漬用テストピースの部分断面顕微鏡写真である。(a)が倍率100倍、(b)が倍率200倍、(c)が倍率400倍である。4 is a partial cross-sectional photomicrograph of an immersion test piece of Comparative Example 1. (A) is 100 times magnification, (b) is 200 times magnification, and (c) is 400 times magnification. 比較例2の浸漬用テストピースの部分断面顕微鏡写真(倍率100倍)である。3 is a partial cross-sectional photomicrograph (magnification 100 times) of a test piece for immersion in Comparative Example 2. 比較例3の浸漬用テストピースの部分断面顕微鏡写真(倍率100倍)である。6 is a partial cross-sectional photomicrograph (magnification 100 times) of a test piece for immersion in Comparative Example 3. 比較例4の浸漬用テストピースの部分断面顕微鏡写真(倍率100倍)である。6 is a partial cross-sectional photomicrograph (magnification 100 times) of a test piece for immersion in Comparative Example 4. 比較例5の浸漬用テストピースの部分断面顕微鏡写真(倍率100倍)である。6 is a partial cross-sectional photomicrograph (magnification 100 times) of a test piece for immersion in Comparative Example 5. 比較例6の浸漬用テストピースの部分断面顕微鏡写真(倍率100倍)である。6 is a partial cross-sectional photomicrograph (magnification 100 times) of a test piece for immersion in Comparative Example 6. 比較例7の浸漬用テストピースの部分断面顕微鏡写真(倍率100倍)である。10 is a partial cross-sectional photomicrograph (magnification 100 times) of a test piece for immersion in Comparative Example 7. 比較例8の浸漬用テストピースの部分断面顕微鏡写真(倍率100倍)である。10 is a partial cross-sectional photomicrograph (magnification 100 times) of a test piece for immersion in Comparative Example 8.

以下、本発明の実施の形態について、図面を用いて説明する。尚、すべての図面において、同様な構成要素には同様の符号を付し、適宜説明を省略する。   Hereinafter, embodiments of the present invention will be described with reference to the drawings. In all the drawings, the same reference numerals are given to the same components, and the description will be omitted as appropriate.

本実施形態の耐溶損性鋳物の断面顕微鏡写真を図1に示す。図1(a)は耐溶損性鋳物の部分断面顕微鏡写真を示し(倍率100倍)、図1(b)は、図1(a)において円で囲まれた部分の部分拡大写真であり、第1領域22を拡大して示している(倍率200倍)。図1(c)は、図1(b)において円で囲まれた部分の部分拡大写真であり、第1領域22をさらに拡大して示している(倍率500倍)。   A cross-sectional photomicrograph of the melt resistant casting of the present embodiment is shown in FIG. FIG. 1 (a) shows a partial cross-sectional photomicrograph of a melt resistant casting (magnification 100 times), and FIG. 1 (b) is a partially enlarged photograph of a portion surrounded by a circle in FIG. 1 (a). One region 22 is shown enlarged (200 × magnification). FIG. 1C is a partially enlarged photograph of a portion surrounded by a circle in FIG. 1B, and further enlarges the first region 22 (magnification 500 times).

図1(a)の断面図(断面顕微鏡写真)に示すように、本実施形態における耐溶損性鋳物1は、母材金属層10と、母材金属層10表面に形成された酸化物層20と、を備える。母材金属層10は、表層部側に結晶構造がフェライト構造であるフェライト領域12を備え、フェライト領域12の下(内部側)に結晶構造がパーライト構造であるパーライト領域14を備える。   As shown in the cross-sectional view (cross-sectional micrograph) of FIG. 1A, the melt-resistant casting 1 in this embodiment includes a base metal layer 10 and an oxide layer 20 formed on the surface of the base metal layer 10. And comprising. The base metal layer 10 includes a ferrite region 12 whose crystal structure is a ferrite structure on the surface layer side, and a pearlite region 14 whose crystal structure is a pearlite structure below (inside) the ferrite region 12.

母材金属層10は、熱間金型の素材として一般的な合金工具鋼のSKD61をベースとして、タングステンとコバルトを添加した合金から構成される。その組成は表1の通りである。   The base metal layer 10 is made of an alloy in which tungsten and cobalt are added based on SKD61, which is a general alloy tool steel as a material for a hot mold. The composition is as shown in Table 1.

上記の組成によれば、耐溶損性を担う、繊毛状酸化物22aを備える酸化物層20の形成に好適であるばかりでなく、SKD61本来の機械的強度も備える。母材金属はSKD61にタングステンとコバルトを添加した合金であると、第2領域と第1領域を安定して形成することができる。   According to said composition, it is suitable not only for formation of the oxide layer 20 provided with the cilia-like oxide 22a which bears melt-resistance, but also has the mechanical strength inherent to SKD61. If the base metal is an alloy obtained by adding tungsten and cobalt to SKD61, the second region and the first region can be formed stably.

酸化物層20は、その一部である繊毛状酸化物22aが、図1(b)および(c)に示す部分拡大断面図に示すように、母材金属層20の結晶粒界(フェライト結晶粒界16)に繊毛状に伸びている。図3は、他の箇所に形成された繊毛状酸化物22aの断面顕微鏡写真(倍率1500倍)であるが、これによると繊毛状酸化物22aがフェライト結晶粒界16に植物の根のように侵入している様子を確認することができる。   The oxide layer 20 has a ciliary oxide 22a as a part thereof, as shown in the partial enlarged cross-sectional views shown in FIGS. 1B and 1C. It extends ciliately at the grain boundaries 16). FIG. 3 is a cross-sectional photomicrograph (magnification 1500 times) of the ciliary oxide 22a formed in another location. According to this, the ciliary oxide 22a is in the ferrite crystal grain boundary 16 like a plant root. You can check the state of intrusion.

このように繊毛状酸化物22aがフェライト結晶粒界16に伸びているので、耐溶損性に優れる酸化物層20は母材金属層10と強固に結合しており剥離が抑制されている。したがって、耐溶損性が飛躍的に向上するとともに、かかる特性の劣化が抑制されている。   Since the cilia-like oxide 22a extends to the ferrite crystal grain boundary 16 in this way, the oxide layer 20 having excellent resistance to melting damage is firmly bonded to the base metal layer 10 and peeling is suppressed. Accordingly, the melt resistance is dramatically improved and the deterioration of the characteristics is suppressed.

図1によれば、酸化物層20は、第1領域22、第2領域24および第3領域26から構成されている。組成の違いにより、便宜的に酸化物層20を3つの領域に区別しているが、これら3つの領域は共に主体が酸化物であり、これら3つの領域間、特に第1領域22と第2領域24との間には、光学顕微鏡写真において物理的な界面は存在していないといえる。そのため、これらの領域間において剥離することはなく、特に第2領域24が第1領域22から剥離することはない。なお、電子線マイクロアナライザ(EPMA)等で定性分析すると、組成の違いによる界面の存在を確認することができる。図1(a)では、EPMAの分析結果に基づいて便宜的に界面を表示している。第1領域22は繊毛状酸化物22aを有しており、この繊毛状酸化物22aが母材金属10のフェライト結晶粒界16に伸長しており、アンカー効果を発揮する。そのため、酸化物層20と母材金属層10を非常に強固に結合し、本実施形態の耐溶損性鋳物は耐溶損性に優れる。   According to FIG. 1, the oxide layer 20 is composed of a first region 22, a second region 24, and a third region 26. Due to the difference in composition, the oxide layer 20 is conveniently divided into three regions, but these three regions are mainly composed of oxides, and between these three regions, in particular, the first region 22 and the second region. 24, it can be said that there is no physical interface in the optical micrograph. Therefore, there is no separation between these regions, and in particular, the second region 24 does not separate from the first region 22. When a qualitative analysis is performed using an electron beam microanalyzer (EPMA) or the like, the presence of an interface due to a difference in composition can be confirmed. In FIG. 1A, the interface is displayed for convenience based on the analysis result of EPMA. The first region 22 has a ciliary oxide 22a, which extends to the ferrite crystal grain boundary 16 of the base metal 10, and exhibits an anchor effect. Therefore, the oxide layer 20 and the base metal layer 10 are bonded very firmly, and the melt resistant casting of the present embodiment is excellent in melt resistance.

本実施形態における耐溶損性鋳物1は、以下のように製造することができる。
まず、上記の組成を有する母材金属を所定の形状に鋳造して金属部材を得た後、酸化物層20を形成する。
The melt-resistant casting 1 according to this embodiment can be manufactured as follows.
First, a base metal having the above composition is cast into a predetermined shape to obtain a metal member, and then the oxide layer 20 is formed.

酸化物層20を形成する工程は、母材金属で構成された金属部材を通常雰囲気の炉内で所定の温度に昇温・保持する第一の工程と、降温速度を制御しながら炉内で徐冷する第二の工程とからなり、その昇温〜保持〜降温条件は図2の通りである。使用する熱処理炉は一般的な焼鈍炉で、特別な雰囲気制御は必要としない。   The step of forming the oxide layer 20 includes a first step of heating and holding a metal member composed of a base metal to a predetermined temperature in a furnace in a normal atmosphere, and a step in the furnace while controlling the temperature drop rate. It consists of a second step of gradual cooling, and the temperature rise-hold-temperature drop conditions are as shown in FIG. The heat treatment furnace used is a general annealing furnace and does not require any special atmosphere control.

金属部材を2時間かけて780〜980℃まで昇温し、そのままの温度で所定の時間保持する。昇温後に保持する温度範囲は、780〜980℃であるがより好ましくは900±30℃にすると良い。保持時間は母材金属で構成された金属部材の厚みに応じ調節するが、例えば、部材の厚みが25mmに対して保持時間を1時間と規定することができる。   The metal member is heated to 780 to 980 ° C. over 2 hours and held at that temperature for a predetermined time. The temperature range maintained after the temperature rise is 780 to 980 ° C., but more preferably 900 ± 30 ° C. The holding time is adjusted according to the thickness of the metal member made of the base metal. For example, the holding time can be defined as 1 hour with respect to the thickness of the member being 25 mm.

この昇温・保持が本実施形態の第一の工程に相当し、母材金属層10の表層部に酸化物層が生成・成長するとともに脱炭層(フェライトトリム)が形成され、遊離した炭素元素が母材金属層10の構成元素と反応して複炭化物28を形成すると考えられる。複炭化物は母材金属層10側の第1領域22に多く分布し、第2領域24上には複炭化物28がほとんど存在しない第3領域26が形成される。そのため、第3領域26は耐溶損性により優れる。
引き続き、母材金属を所定の降温速度で降温するが、降温速度は毎時30±10℃の範囲を維持する。
This temperature rise / holding corresponds to the first step of the present embodiment, and an oxide layer is formed and grown on the surface layer portion of the base metal layer 10 and a decarburized layer (ferrite trim) is formed, and free carbon elements are formed. Is considered to react with the constituent elements of the base metal layer 10 to form the double carbide 28. A large amount of double carbide is distributed in the first region 22 on the base metal layer 10 side, and a third region 26 in which the double carbide 28 hardly exists is formed on the second region 24. Therefore, the third region 26 is more excellent in resistance to melting damage.
Subsequently, the base metal is cooled at a predetermined temperature decrease rate, and the temperature decrease rate maintains a range of 30 ± 10 ° C. per hour.

この降温が本発明の第二の工程に相当し、母材金属層10の表層側はパーライトからフェライトへと結晶構造が変化する。そして、前工程から引き続き成長を続ける酸化物がフェライト結晶粒界16に繊毛状に伸長する。第1領域22の一部である繊毛状酸化物22aは酸化物層20と母材金属層10を非常に強固に結合する。
本発明の最大の特徴である第1領域22は、降温速度を前述の範囲内に維持することで初めて形成されるため、降温制御は厳に行う必要がある。
このような工程を経て、母材金属層10の表面に耐溶損性に優れた酸化物層20が形成される。
This temperature drop corresponds to the second step of the present invention, and the crystal structure of the surface layer side of the base metal layer 10 changes from pearlite to ferrite. Then, the oxide that continues to grow from the previous step extends into the ferrite crystal grain boundary 16 in a cilia-like manner. The ciliary oxide 22a that is a part of the first region 22 bonds the oxide layer 20 and the base metal layer 10 very firmly.
The first region 22 which is the greatest feature of the present invention is formed for the first time by maintaining the temperature drop rate within the above-mentioned range, and therefore it is necessary to strictly control the temperature drop.
Through such steps, the oxide layer 20 having excellent resistance to melting damage is formed on the surface of the base metal layer 10.

本実施形態の耐溶損性鋳物の製造方法によれば、同一の炉内で前記工程を行うことができ、各種ガスを供給可能な専用の熱処理炉を設ける必要がないので、設備コストを低減することができる。さらに、熱処理中に各種ガスを供給し続ける必要もなく、製造する際のランニングコストも低減することができる。
本実施形態の耐溶損性鋳物の製造方法における第2領域24および第1領域22の形成メカニズムの詳細は不明ではあるが、以下の通りであると推測できる。
According to the manufacturing method of the erosion resistant casting of the present embodiment, the process can be performed in the same furnace, and it is not necessary to provide a dedicated heat treatment furnace capable of supplying various gases, thereby reducing the equipment cost. be able to. Furthermore, it is not necessary to continue supplying various gases during the heat treatment, and the running cost in manufacturing can be reduced.
Although the details of the formation mechanism of the second region 24 and the first region 22 in the method for producing the melt resistant casting of the present embodiment are unknown, it can be assumed that the following is true.

第一の工程において、母材金属層10の表層部に酸化物層が生成・成長するとともに脱炭層(フェライトトリム)が形成され、遊離した炭素元素が母材金属の構成元素と反応して複炭化物28を含む第2領域24を形成する。複炭化物28は母材金属層10側の第1領域22に多く分布し、第2領域24の表面側には複炭化物が存在しない第3領域26が形成される。   In the first step, an oxide layer is formed and grown on the surface layer of the base metal layer 10 and a decarburized layer (ferrite trim) is formed, and the liberated carbon element reacts with the constituent elements of the base metal to form a composite. The second region 24 including the carbide 28 is formed. A large amount of the double carbide 28 is distributed in the first region 22 on the base metal layer 10 side, and a third region 26 where no double carbide exists is formed on the surface side of the second region 24.

第二の工程において、母材金属の表層側はパーライトからフェライトへと結晶構造を変化させ、前工程から引き続き成長を続ける酸化物がフェライト結晶粒界に繊毛状に伸長する。   In the second step, the surface layer side of the base metal changes the crystal structure from pearlite to ferrite, and the oxide that continues to grow from the previous step extends into the ferrite crystal grain boundary in a cilia-like manner.

このように、本発明の耐溶損性鋳物の製造方法は、従来の表面処理のように熱処理工程で反応ガスを供給することはなく、昇温温度と保持時間、および降温速度を制御するだけであり、一般的な焼鈍炉を使用することが可能である。
本実施形態の耐溶損性鋳物は、ダイカストマシン、金属溶湯処理装置、金属溶解炉、金型鋳造法に用いられる金型等において、アルミニウムやマグネシウム等の金属溶湯と接触する部材(金属溶湯接触部材)に用いることができる。
ダイカストマシンとしては、ホットチャンバー型ダイカストマシンやコールドチャンバー型ダイカストマシンを挙げることができる。本実施形態の耐溶損性鋳物は、ホットチャンバー型ダイカストマシンにおける、グースネック、ポット、ノズル、スリーブ、プランジャ等の金属溶湯接触部材として用いることができる。また、本実施形態の耐溶損性鋳物は、コールドチャンバー型ダイカストマシンにおける、ラドル、インゴットケース、ストーク撹拌羽根、熱電対保護管、スキムドア等の金属溶湯接触部材として用いることができる。
As described above, the method for producing a erosion-resistant casting according to the present invention does not supply a reaction gas in the heat treatment step as in the conventional surface treatment, but only controls the temperature rising temperature, the holding time, and the temperature lowering rate. Yes, it is possible to use a general annealing furnace.
The melt-resistant casting of the present embodiment is a member (metal melt contact member) that comes into contact with a metal melt such as aluminum or magnesium in a die casting machine, a molten metal processing apparatus, a metal melting furnace, a mold used in a mold casting method, or the like. ).
Examples of the die casting machine include a hot chamber type die casting machine and a cold chamber type die casting machine. The melt resistant casting of the present embodiment can be used as a molten metal contact member such as gooseneck, pot, nozzle, sleeve, plunger in a hot chamber die casting machine. The melt-resistant casting of the present embodiment can be used as a molten metal contact member such as a ladle, an ingot case, a stalk stirring blade, a thermocouple protection tube, and a skim door in a cold chamber die casting machine.

金属溶湯処理装置としては、金属溶湯密閉容器、金属溶湯ポンプ、金属溶湯注湯機、金属溶湯脱ガス装置、金属溶湯へのフラックス分散装置等が挙げられ、本実施形態の耐溶損性鋳物は、これらの装置において金属溶湯と接触する部材に好適に用いることができる。
本実施形態の耐溶損性鋳物は耐溶損性に極めて優れており、当該鋳物をアルミニウムやマグネシウム等の金属溶湯が接触する部材に用いることにより、当該部材を備える各種装置の製品信頼性が向上する。
また、本実施形態の金属溶湯接触部材は、耐溶損性に極めて優れた耐溶損性鋳物から構成されているので、高価なセラミックス製の部材(あるいはセラミックスを鋳包んだ部材)を用いる必要がなく、設備コストや製造コストを低減することができる。
Examples of the molten metal treatment apparatus include a molten metal sealed container, a molten metal pump, a molten metal pouring machine, a molten metal degassing apparatus, a flux dispersion apparatus for molten metal, etc. In these apparatuses, it can be suitably used for a member that contacts the molten metal.
The melt-resistant casting of the present embodiment is extremely excellent in melt resistance, and by using the casting as a member that comes into contact with a molten metal such as aluminum or magnesium, the product reliability of various apparatuses including the member is improved. .
Further, since the molten metal contact member of the present embodiment is composed of a melt-resistant casting having extremely excellent melt resistance, there is no need to use an expensive ceramic member (or a member in which ceramic is cast). Equipment costs and manufacturing costs can be reduced.

以下、実施例において、本発明を説明するが、本発明はこれらの例によって何ら限定されるものではない。   EXAMPLES Hereinafter, although an Example demonstrates this invention, this invention is not limited at all by these examples.

[実施例1]
(浸漬試験)
組成(wt%)が、C 0.50、Si 0.45、Mn 0.70、P 0.02、S 0.01、Cr 5.50、Mo 0.65、Co 0.85、V 0.20、W 0.60、Nb 0.05、Al 0.05、残部がFeおよび不可避的不純物元素からなる母材金属をφ20.1×100.5mmに鋳造し鋼材を得る。
この鋼材を焼鈍炉内で900℃まで2時間掛けて昇温し、その温度で一時間保持してから降温速度30℃/時間で200℃まで炉冷し、炉から取り出して浸漬用テストピースを得る。
[Example 1]
(Immersion test)
The composition (wt%) is C 0.50, Si 0.45, Mn 0.70, P 0.02, S 0.01, Cr 5.50, Mo 0.65, Co 0.85, V 0. 20, Base metal composed of W 0.60, Nb 0.05, Al 0.05, balance Fe and unavoidable impurity elements is cast to φ20.1 × 100.5 mm to obtain a steel material.
The steel material was heated to 900 ° C. in an annealing furnace over 2 hours, held at that temperature for 1 hour, cooled to 200 ° C. at a cooling rate of 30 ° C./hour, taken out from the furnace, and a test piece for dipping was removed. obtain.

この浸漬用テストピースは、図1に示すように母材金属層10の表面には第1領域22、第2領域24および第3領域26からなる酸化物層20が形成されていた。テストピースの重量は240gであった。
浸漬用テストピースを700℃に溶融したアルミニウムに102時間浸漬した。アルミニウムから引き上げた浸漬用テストピースの重量を測定したところ240gであり、残存率(浸漬後の重量÷浸漬前の重量×100)は100%であった。表面の様子も浸漬前と比べて特に変化はなかった。図4(a)は、浸漬前の浸漬用テストピースを示し、図4(b)は、浸漬後の浸漬用テストピースを示す。
In the immersion test piece, as shown in FIG. 1, an oxide layer 20 including a first region 22, a second region 24, and a third region 26 is formed on the surface of the base metal layer 10. The weight of the test piece was 240 g.
The test piece for immersion was immersed in aluminum melted at 700 ° C. for 102 hours. When the weight of the test piece for immersion pulled up from aluminum was measured, it was 240 g, and the residual ratio (weight after immersion ÷ weight before immersion × 100) was 100%. The state of the surface was not particularly changed compared to before immersion. Fig.4 (a) shows the test piece for immersion before immersion, FIG.4 (b) shows the test piece for immersion after immersion.

(強度試験)
前述の母材金属をJIS−14A号試験片(標点距離50mm)に鋳造し、同様の熱処理を施した後に切削加工して機械強度用テストピースを得た。
機械強度用テストピース3個を引張試験機にかけて、引張試験を実施したところ引張強さの平均は250N/mmであり、標準的なSDK61と略同じ引張強度を有していることを確認した。
(Strength test)
The above-mentioned base metal was cast into a JIS-14A test piece (mark distance: 50 mm), subjected to the same heat treatment, and then cut to obtain a test piece for mechanical strength.
When the tensile test was carried out by putting three test pieces for mechanical strength on a tensile tester, the average tensile strength was 250 N / mm 2 , and it was confirmed that the test piece had substantially the same tensile strength as standard SDK61. .

(熱衝撃試験)
前述の母材金属を100×150×12mmに鋳造し、同様の熱処理を施して熱衝撃用テストピースを得た。
熱衝撃用テストピースを、850〜1050℃に加熱→水冷を3回繰り返したところ、多少の歪みが認められたが表面状態に変化はなかった。このことから、実施例1の耐溶損性鋳物を、アルミニウム等の金属溶湯の接触部材として用いた場合においても、割れやひび等の劣化を生じないことが推測された。
(Thermal shock test)
The aforementioned base metal was cast to 100 × 150 × 12 mm and subjected to the same heat treatment to obtain a thermal shock test piece.
When the test piece for thermal shock was heated to 850 to 1050 ° C. → water cooling was repeated three times, some distortion was observed, but the surface state was not changed. From this, it was speculated that even when the erosion-resistant casting of Example 1 was used as a contact member of a molten metal such as aluminum, deterioration such as cracks and cracks did not occur.

[比較例1]
市販のSKD61(すなわち、実施例1の組成のうちタングステンとコバルトを添加しない組成の母材金属)の圧延引き抜き材で、寸法がφ18.7×101mmの鋼材を浸漬用テストピースとして用意した。
この浸漬用テストピースは、加熱条件下において圧延されるため図5に示すように、母材金属層10の表面には第3領域26が形成されているが、繊毛状酸化物を有する第1領域は認められなかった。テストピースの重量は220gであった。
浸漬用テストピースを700℃に溶融したアルミニウムに102時間浸漬した。アルミニウムから引き上げた浸漬用テストピースは著しく溶損しており、重量を測定したところ140gであり、残存率は63.6%であった。図4(a)は、浸漬前の浸漬用テストピースを示し、図4(b)は、浸漬後の浸漬用テストピースを示す。
[Comparative Example 1]
A steel material having a size of φ18.7 × 101 mm, which is a rolled drawn material of commercially available SKD61 (that is, a base metal having a composition in which tungsten and cobalt are not added in the composition of Example 1), was prepared as a test piece for immersion.
Since this immersion test piece is rolled under heating conditions, a third region 26 is formed on the surface of the base metal layer 10 as shown in FIG. The area was not recognized. The weight of the test piece was 220 g.
The test piece for immersion was immersed in aluminum melted at 700 ° C. for 102 hours. The test piece for immersion pulled up from aluminum was significantly melted and measured for its weight. As a result, it was 140 g and the residual rate was 63.6%. Fig.4 (a) shows the test piece for immersion before immersion, FIG.4 (b) shows the test piece for immersion after immersion.

[比較例2]
実施例1と同じ組成の母材金属を□20×300mmに鋳造した。この母材金属を焼鈍炉内で900℃まで2時間掛けて昇温し、その温度で一時間保持してから降温速度10℃/時間で200℃まで炉冷し、炉から取り出して浸漬用テストピースを得た。
この浸漬用テストピースは、図6に示すように、繊毛状酸化物は認められなかった。このことから、浸漬試験において、浸漬用テストピースが溶損することが推察された。
[Comparative Example 2]
A base metal having the same composition as in Example 1 was cast to 20 × 300 mm. The base metal was heated in an annealing furnace to 900 ° C. over 2 hours, held at that temperature for 1 hour, then cooled to 200 ° C. at a cooling rate of 10 ° C./hour, taken out from the furnace, and tested for immersion. I got a piece.
As shown in FIG. 6, no ciliated oxide was observed in this immersion test piece. From this, it was guessed that the immersion test piece was melted in the immersion test.

[比較例3]
実施例1と同じ組成の母材金属を□20×300mmに鋳造した。この母材金属を焼鈍炉内で760℃まで2時間掛けて昇温し、その温度で一時間保持してから降温速度30℃/時間で200℃まで炉冷し、炉から取り出して浸漬用テストピースを得た。
[Comparative Example 3]
A base metal having the same composition as in Example 1 was cast to 20 × 300 mm. The base metal was heated to 760 ° C. in an annealing furnace over 2 hours, held at that temperature for 1 hour, cooled to 200 ° C. at a temperature drop rate of 30 ° C./hour, taken out from the furnace, and tested for immersion. I got a piece.

この浸漬用テストピースは、図7に示すように、母材金属層10の表面には第3領域26のみが形成されており、繊毛状酸化物は認められなかった。このことから、浸漬試験において、浸漬用テストピースが溶損することが推察された。   In this immersion test piece, as shown in FIG. 7, only the third region 26 was formed on the surface of the base metal layer 10, and ciliated oxide was not observed. From this, it was guessed that the immersion test piece was melted in the immersion test.

[比較例4]
実施例1と同じ組成の母材金属を□20×300mmに鋳造した。この母材金属を焼鈍炉内で1000℃まで2時間掛けて昇温し、その温度で一時間保持してから降温速度30℃/時間で200℃まで炉冷し、炉から取り出して浸漬用テストピースを得た。
[Comparative Example 4]
A base metal having the same composition as in Example 1 was cast to 20 × 300 mm. The base metal is heated up to 1000 ° C. in an annealing furnace over 2 hours, held at that temperature for 1 hour, cooled to 200 ° C. at a cooling rate of 30 ° C./hour, taken out of the furnace and tested for immersion. I got a piece.

この浸漬用テストピースは、図8に示すように、繊毛状酸化物が認められなかった。このことは、フェライト領域12のフェライト粒が粗大化したため、第1領域22から結晶粒界に伸長できず繊毛状酸化物が形成されなかったと考えられる。このことから、浸漬試験において、浸漬用テストピースが溶損することが推察された。また、最表面の第3領域26は容易に剥離してしまった。   As shown in FIG. 8, no ciliated oxide was observed in this immersion test piece. This is probably because the ferrite grains in the ferrite region 12 were coarsened, so that the ciliary oxide was not formed because the ferrite region 12 could not extend from the first region 22 to the crystal grain boundary. From this, it was guessed that the immersion test piece was melted in the immersion test. Moreover, the 3rd area | region 26 of the outermost surface peeled easily.

[比較例5]
比較例1の組成に対し、タングステン0.80wt%、コバルト0.85wt%を添加した組成の母材金属を□20×300mmに鋳造する。
この母材金属を実施例1と同じ条件で熱処理し浸漬用テストピースを得た。
この浸漬用テストピースは、図9に示すように、母材金属層10の表面に第2領域24が形成され、最表面に第3領域26が形成されていたが、母材金属層10と第2領域24の間に繊毛状酸化物を有する第1領域は認められなかった。このことから、浸漬試験において、浸漬用テストピースが溶損することが推察された。
[Comparative Example 5]
A base metal having a composition in which 0.80 wt% of tungsten and 0.85 wt% of cobalt are added to the composition of Comparative Example 1 is cast to 20 × 300 mm.
This base metal was heat-treated under the same conditions as in Example 1 to obtain a test piece for immersion.
As shown in FIG. 9, the immersion test piece has the second region 24 formed on the surface of the base metal layer 10 and the third region 26 formed on the outermost surface. The 1st area | region which has a ciliary oxide between the 2nd area | regions 24 was not recognized. From this, it was guessed that the immersion test piece was melted in the immersion test.

[比較例6]
比較例1の組成に対し、タングステン0.40wt%、コバルト0.85wt%を添加した組成の母材金属を□20×300mmに鋳造する。
この母材金属を実施例1と同じ条件で熱処理し浸漬用テストピースを得た。
この浸漬用テストピースは、図10に示すように、母材金属層10の表面に第2領域24が形成され、最表面に第3領域26が形成されていたが、母材金属層10と第2領域24の間に繊毛状酸化物を有する第1領域は認められなかった。このことから、浸漬試験において、浸漬用テストピースが溶損することが推察された。
[Comparative Example 6]
A base metal having a composition in which 0.40 wt% of tungsten and 0.85 wt% of cobalt are added to the composition of Comparative Example 1 is cast to 20 × 300 mm.
This base metal was heat-treated under the same conditions as in Example 1 to obtain a test piece for immersion.
As shown in FIG. 10, the immersion test piece has the second region 24 formed on the surface of the base metal layer 10 and the third region 26 formed on the outermost surface. The 1st area | region which has a ciliary oxide between the 2nd area | regions 24 was not recognized. From this, it was guessed that the immersion test piece was melted in the immersion test.

[比較例7]
比較例1の組成に対し、タングステン0.60wt%、コバルト1.00wt%を添加した組成の母材金属を□20×300mmに鋳造する。
この母材金属を実施例1と同じ条件で熱処理し浸漬用テストピースを得た。
この浸漬用テストピースは、図11に示すように、母材金属層10の表面に第2領域24が形成され、最表面に第3領域26が形成されていたが、母材金属層10と第2領域24の間に繊毛状酸化物を含む第1領域は認められなかった。このことから、浸漬試験において、浸漬用テストピースが溶損することが推察された。
[Comparative Example 7]
A base metal having a composition in which 0.60 wt% of tungsten and 1.00 wt% of cobalt are added to the composition of Comparative Example 1 is cast to 20 × 300 mm.
This base metal was heat-treated under the same conditions as in Example 1 to obtain a test piece for immersion.
As shown in FIG. 11, the immersion test piece has the second region 24 formed on the surface of the base metal layer 10 and the third region 26 formed on the outermost surface. A first region containing ciliated oxide was not observed between the second regions 24. From this, it was guessed that the immersion test piece was melted in the immersion test.

[比較例8]
比較例1の組成に対し、タングステン0.60wt%、コバルト0.60wt%を添加した組成の母材金属を□20×300mmに鋳造する。
この母材金属を実施例1と同じ条件で熱処理し浸漬用テストピースを得た。
この浸漬用テストピースは、図12に示すように、母材金属層10の表面に第2領域24が形成され、最表面に第3領域26が形成されていたが、母材金属層10と第2領域24の間に繊毛状酸化物を有する第1領域は認められなかった。このことから、浸漬試験において、浸漬用テストピースが溶損することが推察された。
[Comparative Example 8]
A base metal having a composition in which 0.60 wt% of tungsten and 0.60 wt% of cobalt are added to the composition of Comparative Example 1 is cast to □ 20 × 300 mm.
This base metal was heat-treated under the same conditions as in Example 1 to obtain a test piece for immersion.
As shown in FIG. 12, the immersion test piece has the second region 24 formed on the surface of the base metal layer 10 and the third region 26 formed on the outermost surface. The 1st area | region which has a ciliary oxide between the 2nd area | regions 24 was not recognized. From this, it was guessed that the immersion test piece was melted in the immersion test.

以上の結果から、所定の組成を有する母材金属からなる金属部材を、所定温度条件で熱処理することにより得られる本発明の耐溶損性鋳物は、母材金属層10のフェライト結晶粒界16に伸長する繊毛状酸化物22aを備えており、アンカー効果を発揮するため、繊毛状酸化物を備えない耐溶損性鋳物(比較例)と比較して、酸化物層20と母材金属層10とを非常に強固に結合することができ、耐溶損性が向上していると考えられる。   From the above results, the erosion-resistant casting of the present invention obtained by heat-treating a metal member made of a base metal having a predetermined composition under a predetermined temperature condition is formed on the ferrite crystal grain boundary 16 of the base metal layer 10. Since the ciliary oxide 22a is extended and exhibits an anchor effect, the oxide layer 20 and the base metal layer 10 are compared with the melt-resistant casting (comparative example) that does not have ciliary oxide. Can be bonded very firmly, and it is considered that the resistance to melting is improved.

このように、本発明の耐溶損性鋳物は耐溶損性に極めて優れており、さらに引張強度は標準的なSDK61と略同等であり、熱衝撃試験においても優れた特性を有していることが明らかとなった。したがって、本発明の溶損性鋳物からなる金属溶湯接触部材を備える各種装置は、耐溶損性等に優れ、製品信頼性が向上することが推測された。
さらに、本発明の耐溶損性鋳物の製造方法によれば、設備コストやランニングコストに優れるとともに、母材金属層の結晶粒界に伸長する繊毛状酸化物を備える耐溶損性鋳物を安定的に得られることが確認された。
As described above, the melt-resistant casting of the present invention is extremely excellent in melt resistance, and the tensile strength is substantially the same as that of the standard SDK 61, and has excellent characteristics in the thermal shock test. It became clear. Therefore, it was speculated that various apparatuses provided with a molten metal contact member made of the fusible casting of the present invention are excellent in melt resistance and the like, and the product reliability is improved.
Furthermore, according to the manufacturing method of the melt resistant casting of the present invention, it is excellent in equipment cost and running cost, and stably provides a melt resistant cast comprising a ciliary oxide extending to the crystal grain boundary of the base metal layer. It was confirmed that it was obtained.

1 耐溶損性鋳物
10 母材金属層
12 フェライト領域(脱炭層;フェライトトリム)
14 パーライト領域
16 フェライト結晶粒界
20 酸化物層
22 第1領域
22a 繊毛状酸化物
24 第2領域
26 第3領域
28 複炭化物
1 Casting resistant cast 10 Base metal layer 12 Ferrite region (decarburized layer; ferrite trim)
14 Pearlite region 16 Ferrite grain boundary 20 Oxide layer 22 First region 22a Ciliated oxide 24 Second region 26 Third region 28 Double carbide

Claims (3)

組成(重量%)が、C 0.40〜0.70%、Si 0.35〜0.50%、Mn 0.50〜0.70%、P <0.03%、S <0.02%、Cr 4.50〜6.00%、Mo 0.50〜0.75%、Co 0.70〜0.90%、V 0.15〜0.30%、W 0.50〜0.70%、Nb <0.10%、Al <0.10%、残部がFeおよび不可避的不純物元素からなる母材金属層と、該母材金属層の表面に形成された酸化物層と、からなり、
前記酸化物層の一部が、該母材金属層の結晶粒界に伸長していることを特徴とする耐溶損性鋳物。
Composition (% by weight): C 0.40 to 0.70%, Si 0.35 to 0.50%, Mn 0.50 to 0.70%, P <0.03%, S <0.02% , Cr 4.50 to 6.00%, Mo 0.50 to 0.75%, Co 0.70 to 0.90%, V 0.15 to 0.30%, W 0.50 to 0.70% Nb <0.10%, Al <0.10%, the balance being a base metal layer made of Fe and inevitable impurity elements, and an oxide layer formed on the surface of the base metal layer,
A part of the oxide layer extends to a crystal grain boundary of the base metal layer.
組成(重量%)が、C 0.40〜0.70%、Si 0.35〜0.50%、Mn 0.50〜0.70%、P <0.03%、S <0.02%、Cr 4.50〜6.00%、Mo 0.50〜0.75%、Co 0.70〜0.90%、V 0.15〜0.30%、W 0.50〜0.70%、Nb <0.10%、Al <0.10%、残部がFeおよび不可避的不純物元素からなる母材金属で構成された金属部材を、炉内で780〜980℃に加熱し、当該温度を保持する工程と、
加熱された前記金属部材を、炉内で30±10℃/時間の降温速度で徐冷する工程と、
を含むことを特徴とする耐溶損性鋳物の製造方法。
Composition (% by weight): C 0.40 to 0.70%, Si 0.35 to 0.50%, Mn 0.50 to 0.70%, P <0.03%, S <0.02% , Cr 4.50 to 6.00%, Mo 0.50 to 0.75%, Co 0.70 to 0.90%, V 0.15 to 0.30%, W 0.50 to 0.70% , Nb <0.10%, Al <0.10%, the remainder of the metal member composed of the base metal composed of Fe and inevitable impurity elements is heated in a furnace to 780 to 980 ° C. Holding, and
Slowly cooling the heated metal member in a furnace at a rate of temperature decrease of 30 ± 10 ° C./hour;
A method for producing a melt-resistant casting, characterized by comprising:
請求項1に記載の耐溶損性鋳物からなる金属溶湯接触部材。   A molten metal contact member comprising the melt-resistant casting according to claim 1.
JP2011018894A 2011-01-31 2011-01-31 Melting resistant casting, method for producing the same and molten metal contact member Active JP5942119B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011018894A JP5942119B2 (en) 2011-01-31 2011-01-31 Melting resistant casting, method for producing the same and molten metal contact member

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011018894A JP5942119B2 (en) 2011-01-31 2011-01-31 Melting resistant casting, method for producing the same and molten metal contact member

Publications (2)

Publication Number Publication Date
JP2012157881A true JP2012157881A (en) 2012-08-23
JP5942119B2 JP5942119B2 (en) 2016-06-29

Family

ID=46838864

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011018894A Active JP5942119B2 (en) 2011-01-31 2011-01-31 Melting resistant casting, method for producing the same and molten metal contact member

Country Status (1)

Country Link
JP (1) JP5942119B2 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS51112443A (en) * 1975-03-28 1976-10-04 Toyo Kogyo Co Appliance for processing molten aluminum
JPH08260098A (en) * 1995-03-20 1996-10-08 Nisshin Steel Co Ltd Steel sheet for heat treatment high in adhesion of oxidized scale
JP2003154437A (en) * 2001-11-15 2003-05-27 Sumitomo Metal Ind Ltd Metallic mold for casting and its producing method
JP2003226939A (en) * 2002-02-05 2003-08-15 Nippon Koshuha Steel Co Ltd Hot tool steel
JP2004237301A (en) * 2003-02-04 2004-08-26 Honda Motor Co Ltd Member made of steel material with layer and method for manufacturing member
JP2010168639A (en) * 2009-01-26 2010-08-05 Daido Steel Co Ltd Steel for die-casting mold

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS51112443A (en) * 1975-03-28 1976-10-04 Toyo Kogyo Co Appliance for processing molten aluminum
JPH08260098A (en) * 1995-03-20 1996-10-08 Nisshin Steel Co Ltd Steel sheet for heat treatment high in adhesion of oxidized scale
JP2003154437A (en) * 2001-11-15 2003-05-27 Sumitomo Metal Ind Ltd Metallic mold for casting and its producing method
JP2003226939A (en) * 2002-02-05 2003-08-15 Nippon Koshuha Steel Co Ltd Hot tool steel
JP2004237301A (en) * 2003-02-04 2004-08-26 Honda Motor Co Ltd Member made of steel material with layer and method for manufacturing member
JP2010168639A (en) * 2009-01-26 2010-08-05 Daido Steel Co Ltd Steel for die-casting mold

Also Published As

Publication number Publication date
JP5942119B2 (en) 2016-06-29

Similar Documents

Publication Publication Date Title
KR20180040513A (en) Ni-based superalloy powder for lamination molding
JP5972548B2 (en) Method for producing dense solidified body of Fe-based powder with excellent high-temperature strength
KR20120075376A (en) Heat resistant cast steel, manufacturing method of heat resistant cast steel, casting parts of steam turbine and manufacturing method of casting parts of steam turbine
JP6675846B2 (en) Fe-Cr-Ni alloy with excellent high-temperature strength
JP5457018B2 (en) Platinum iridium alloy and method for producing the same
CN105543713A (en) Micro-alloyed high-strength anti-oxidization iron-nickel alloy gas valve steel material and preparation method
WO2022123812A1 (en) Method for manufacturing austenitic stainless steel strip
CN108430662B (en) Hot press molded article having excellent corrosion resistance and method for producing same
KR20190022779A (en) The ferritic heat-resistant steel and the ferrite-based heat conductive member
JP6160942B1 (en) Low thermal expansion super heat resistant alloy and manufacturing method thereof
JP2015030908A (en) Ni-BASED ALLOY, Ni-BASED ALLOY FOR GAS TURBINE COMBUSTOR, MEMBER FOR GAS TURBINE COMBUSTOR, MEMBER FOR LINER, MEMBER FOR TRANSMISSION PIECE, LINER, TRANSMISSION PIECE
JP5942118B2 (en) Melting resistant casting, method for producing the same, and molten metal contact member
JP3410303B2 (en) Fe-Ni-Cr-Al ferrite alloy excellent in molten metal erosion resistance and wear resistance and method for producing the same
CN105861935A (en) Fe-36Ni Invar alloy material good in thermoplasticity and preparation method thereof
JP3608546B2 (en) Mold for casting and manufacturing method thereof
JP2016151065A (en) Nickel-based alloy and method for producing the same
Gupta et al. Effect of microstructure on mechanical properties of refractory Co-Cr-W-Ni alloy
JP5942119B2 (en) Melting resistant casting, method for producing the same and molten metal contact member
KR20110102743A (en) Method for manufacturing of ni based superalloys
JP6661772B2 (en) Hot press-formed product in which fine cracks are suppressed and method for producing the same
CN108884517A (en) The manufacturing method of titanium alloy, clock exterior member material
JP6086444B2 (en) Alloy composition for aluminum die-cast mold and method for producing the same
JP4439881B2 (en) Welding material and roll for continuous casting roll overlay
JP6956625B2 (en) Low pressure casting machine
RU2310004C2 (en) Method for producing carbon-free nickel-base refractory alloys for casting

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20131029

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20131029

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20141029

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20141104

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20141217

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150331

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150528

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150629

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20151124

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160119

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160405

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160411

R150 Certificate of patent or registration of utility model

Ref document number: 5942119

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250