JP2012155927A - Dye sensitized solar cell - Google Patents

Dye sensitized solar cell Download PDF

Info

Publication number
JP2012155927A
JP2012155927A JP2011012600A JP2011012600A JP2012155927A JP 2012155927 A JP2012155927 A JP 2012155927A JP 2011012600 A JP2011012600 A JP 2011012600A JP 2011012600 A JP2011012600 A JP 2011012600A JP 2012155927 A JP2012155927 A JP 2012155927A
Authority
JP
Japan
Prior art keywords
dye
light
solar cell
sensitized solar
substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2011012600A
Other languages
Japanese (ja)
Inventor
Koji Tanabe
功二 田邉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Original Assignee
Panasonic Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp filed Critical Panasonic Corp
Priority to JP2011012600A priority Critical patent/JP2012155927A/en
Publication of JP2012155927A publication Critical patent/JP2012155927A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/542Dye sensitized solar cells

Landscapes

  • Photovoltaic Devices (AREA)
  • Hybrid Cells (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a dye sensitized solar cell which is mainly used for power sources of various electronic equipment, preventing decrease in light transmittance and having high conversion efficiency.SOLUTION: A plurality of conductive thin metal wires 16, in each of which a titania layer 17 absorbing a dye is formed on outer periphery thereof, are provided in a gap between an upper light transmissive substrate 11 and a lower substrate 12 having an upper face on which a lower conductive layer 13 is formed. Thus, electrons of the dye in the titania layer 17 in the outer periphery of each of the conductive thin metal wires 16 can be excited in a large light reception area with light passing through only the upper substrate 11 and having a transmittance of 90% or higher. Thus can be obtained a dye sensitized solar cell capable of performing power generation at a favorable conversion efficiency from light to electric power of around 10-15%.

Description

本発明は、主に各種電子機器の電源に用いられる色素増感太陽電池に関するものである。   The present invention relates to a dye-sensitized solar cell mainly used as a power source for various electronic devices.

近年、各種電子機器、特に携帯電話や音楽プレーヤ等の携帯用電子機器の高機能化や多様化が進むなか、これらの電源として用いられる各種電池にも、長期間の使用が可能なものが求められている。   In recent years, as various electronic devices, especially portable electronic devices such as mobile phones and music players, have become more sophisticated and diversified, various batteries used as power sources are required to be usable for a long time. It has been.

このような従来の色素増感太陽電池について、図4及び図5を用いて説明する。   Such a conventional dye-sensitized solar cell will be described with reference to FIGS. 4 and 5. FIG.

なお、これらの図面は構成を判り易くするために、部分的に寸法を拡大して表している。   These drawings are partially enlarged in size for easy understanding of the configuration.

図4は従来の色素増感太陽電池の断面図、図5は同分解斜視図であり、同図において、1はフィルム状または薄板状で光透過性の上基板で、この下面には酸化インジウム錫等の光透過性の上導電層2が形成されると共に、上導電層2下面にはルテニウム系やクマリン系色素を吸着した、酸化チタンから形成されたチタニア層3が設けられている。   FIG. 4 is a cross-sectional view of a conventional dye-sensitized solar cell, and FIG. 5 is an exploded perspective view thereof. In FIG. A light transmissive upper conductive layer 2 such as tin is formed, and a titania layer 3 made of titanium oxide adsorbing a ruthenium-based or coumarin-based dye is provided on the lower surface of the upper conductive layer 2.

また、4は上基板1と同様の光透過性の下基板で、この上面には酸化インジウム錫等の上に白金やカーボン等がスパッタ法等によって積層された、光透過性の下導電層5が形成されている。   Reference numeral 4 denotes a light-transmitting lower substrate similar to the upper substrate 1, and a light-transmitting lower conductive layer 5 in which platinum, carbon, or the like is laminated on indium tin oxide or the like on the upper surface by a sputtering method or the like. Is formed.

そして、6は略額縁状で絶縁樹脂製のスペーサで、上基板1下面と下基板4上面の外周内縁に形成されると共に、このスペーサ6によって上基板1と下基板4の外周が貼り合わされ、上基板1と下基板4が所定の空隙を空けて対向している。   A spacer 6 made of an insulating resin having a substantially frame shape is formed on the outer peripheral edge of the upper surface of the upper substrate 1 and the upper surface of the lower substrate 4, and the outer periphery of the upper substrate 1 and the lower substrate 4 is bonded by the spacer 6. The upper substrate 1 and the lower substrate 4 face each other with a predetermined gap.

さらに、7はヨウ素イオン溶液等のレドックス系の電解液で、この電解液7がチタニア層3と下導電層5の間の空隙内に充填されて、色素増感太陽電池が構成されている。   Further, reference numeral 7 denotes a redox electrolyte such as an iodine ion solution. The electrolyte 7 is filled in a gap between the titania layer 3 and the lower conductive layer 5 to constitute a dye-sensitized solar cell.

そして、このように構成された色素増感太陽電池が上基板1を上面にして、携帯電話や音楽プレーヤ、リモコン送信機等の電子機器の表面に装着されると共に、上導電層2と下導電層5端部の電極部2Aと5Aが、コネクタや配線基板(図示せず)等によって機器の電子回路(図示せず)に電気的に接続される。   The dye-sensitized solar cell thus configured is mounted on the surface of an electronic device such as a mobile phone, a music player, or a remote control transmitter with the upper substrate 1 as the upper surface, and the upper conductive layer 2 and the lower conductive layer. The electrode portions 2A and 5A at the end of the layer 5 are electrically connected to an electronic circuit (not shown) of the device by a connector, a wiring board (not shown) or the like.

以上の構成において、太陽光や蛍光灯の光等が上基板1に入射すると、これが上導電層2を通ってチタニア層3の色素の電子を励起し、この励起電子が酸化チタンを介して上導電層2に流れると共に、下導電層5からは電解液7内のイオンを介して、電子がチタニア層3の色素に供給されて発電が行われる。   In the above configuration, when sunlight, light from a fluorescent lamp, or the like is incident on the upper substrate 1, it excites electrons of the dye of the titania layer 3 through the upper conductive layer 2, and the excited electrons pass through the titanium oxide. While flowing to the conductive layer 2, electrons are supplied from the lower conductive layer 5 to the dye of the titania layer 3 through ions in the electrolytic solution 7, thereby generating power.

また、この光によって発電した電力が色素増感太陽電池から、電極部2Aと5Aを介して機器の電子回路に供給され、これによって機器の様々な動作や機能の切換え等が行なわれる。   In addition, the electric power generated by this light is supplied from the dye-sensitized solar cell to the electronic circuit of the device through the electrode portions 2A and 5A, thereby switching various operations and functions of the device.

つまり、上方からの光が光透過性の上基板1と上導電層2を透過し、この光によってチタニア層3の酸化チタンに吸着された色素の電子が励起されることで、色素増感太陽電池の発電が行われるように構成されているものであった。   That is, light from above passes through the light-transmissive upper substrate 1 and the upper conductive layer 2, and the electrons of the dye adsorbed on the titanium oxide of the titania layer 3 are excited by this light, so that the dye-sensitized solar The battery is configured to generate electricity.

なお、この出願の発明に関連する先行技術文献情報としては、例えば、特許文献1が知られている。   As prior art document information related to the invention of this application, for example, Patent Document 1 is known.

特開2003−59545号公報JP 2003-59545 A

しかしながら、上記従来の色素増感太陽電池においては、上基板1下面に光透過性ではあるが上導電層2が形成されているため、上方からの光がこの上導電層2を通ることによって、光の透過率が75〜78%前後の低いものとなってしまうと共に、この弱い光でチタニア層3の色素の電子が励起されて発電が行われるため、光から電力への変換効率も6〜10%程度の小さなものになってしまうという課題があった。   However, in the conventional dye-sensitized solar cell, since the upper conductive layer 2 is formed on the lower surface of the upper substrate 1 but is light transmissive, light from above passes through the upper conductive layer 2, The light transmittance is as low as about 75 to 78%, and the electrons of the dye of the titania layer 3 are excited by this weak light to generate power, so that the conversion efficiency from light to power is also 6 to There was a problem that it would be as small as 10%.

本発明は、このような従来の課題を解決するものであり、光の透過率の低下を防ぎ、変換効率の良好な色素増感太陽電池を提供することを目的とする。   The present invention solves such a conventional problem, and an object of the present invention is to provide a dye-sensitized solar cell that prevents a decrease in light transmittance and has good conversion efficiency.

上記目的を達成するために本発明は、光透過性の上基板と、上面に下導電層が形成された下基板間の空隙内に、外周に色素を吸着したチタニア層が形成された、複数の導電金属細線を配設して色素増感太陽電池を構成したものであり、上基板のみを通った透過率が90%以上の光によって、大きな受光面積で導電金属細線外周のチタニア層の色素の電子の励起が行えるため、光から電力への変換効率が10〜15%前後の、良好な変換効率で発電を行うことが可能な色素増感太陽電池を得ることができるという作用を有するものである。   In order to achieve the above object, the present invention provides a plurality of light-transmitting upper substrates and a titania layer having a dye adsorbed on the outer periphery in a gap between the lower substrate having a lower conductive layer formed on the upper surface. A dye-sensitized solar cell is formed by disposing a conductive metal fine wire, and the dye of the titania layer on the outer periphery of the conductive metal fine wire has a large light receiving area by light having a transmittance of 90% or more passing through only the upper substrate. Since it is possible to excite the electrons, it has the effect of obtaining a dye-sensitized solar cell capable of generating power with good conversion efficiency with a conversion efficiency from light to electric power of around 10 to 15%. It is.

以上のように本発明によれば、光の透過率の低下を防ぎ、変換効率の良好な色素増感太陽電池を実現することができるという有利な効果が得られる。   As described above, according to the present invention, it is possible to obtain an advantageous effect of preventing a decrease in light transmittance and realizing a dye-sensitized solar cell with good conversion efficiency.

本発明の一実施の形態による色素増感太陽電池の断面図Sectional drawing of the dye-sensitized solar cell by one embodiment of this invention 同分解斜視図Exploded perspective view 同部分斜視図Partial perspective view 従来の色素増感太陽電池の断面図Cross-sectional view of conventional dye-sensitized solar cell 同分解斜視図Exploded perspective view

以下、本発明の実施の形態について、図1〜図3を用いて説明する。   Hereinafter, embodiments of the present invention will be described with reference to FIGS.

なお、これらの図面は構成を判り易くするために、部分的に寸法を拡大して表している。   These drawings are partially enlarged in size for easy understanding of the configuration.

(実施の形態)
図1は本発明の一実施の形態による色素増感太陽電池の断面図、図2は同分解斜視図であり、同図において、11は光透過性の上基板で、ポリエステルやポリカーボネート、ポリオレフィン等によってフィルム状、またはガラスやアクリル等によって薄板状に形成されている。
(Embodiment)
FIG. 1 is a cross-sectional view of a dye-sensitized solar cell according to an embodiment of the present invention, FIG. 2 is an exploded perspective view thereof, in which 11 is a light-transmitting upper substrate, such as polyester, polycarbonate, polyolefin, etc. Are formed into a film shape or a thin plate shape with glass, acrylic or the like.

また、12は上基板11と同様の光透過性の下基板で、この上面には酸化インジウム錫や酸化錫等の上に白金やカーボン等がスパッタ法等によって積層された、光透過性の下導電層13が形成されている。   Reference numeral 12 denotes a light-transmitting lower substrate similar to the upper substrate 11. On the upper surface, platinum, carbon, or the like is laminated on indium tin oxide or tin oxide by sputtering or the like. A conductive layer 13 is formed.

そして、14は略額縁状でポリエステルやエポキシ等の絶縁樹脂製のスペーサで、上基板11下面と下基板12上面の外周内縁に形成されると共に、このスペーサ14によって上基板11と下基板12の外周が貼り合わされ、上基板11と下基板12が所定の空隙を空けて対向している。   A spacer 14 made of an insulating resin such as polyester or epoxy is formed on the outer peripheral inner edges of the lower surface of the upper substrate 11 and the upper surface of the lower substrate 12. The spacer 14 allows the upper substrate 11 and the lower substrate 12 to be separated from each other. The outer periphery is bonded, and the upper substrate 11 and the lower substrate 12 face each other with a predetermined gap.

さらに、15はヨウ素イオン溶液等のレドックス系の電解液で、この電解液15が上基板11と下基板12の間の空隙内に充填されている。   Further, 15 is a redox electrolyte such as an iodine ion solution, and the electrolyte 15 is filled in a gap between the upper substrate 11 and the lower substrate 12.

また、16は直径が0.01〜1mm前後の銅や銀等の導電金属細線で、図3の部分斜視図に示すように、この外周にはルテニウム系やクマリン系色素を吸着した、酸化チタンから形成されたチタニア層17が設けられている。   Reference numeral 16 denotes a conductive metal thin wire such as copper or silver having a diameter of about 0.01 to 1 mm. As shown in the partial perspective view of FIG. 3, titanium oxide having ruthenium or coumarin dye adsorbed on its outer periphery. A titania layer 17 formed from is provided.

さらに、この外周にチタニア層17が形成された複数の導電金属細線16が、図2に示すように、所定間隔で略櫛歯状に連結されると共に、これが上基板11と下基板12間の空隙内に、下導電層13と対向するように配設されて、色素増感太陽電池が構成されている。   Further, a plurality of conductive metal wires 16 having a titania layer 17 formed on the outer periphery thereof are connected in a substantially comb-like shape at a predetermined interval as shown in FIG. 2, and this is connected between the upper substrate 11 and the lower substrate 12. A dye-sensitized solar cell is formed in the space so as to face the lower conductive layer 13.

そして、このように構成された色素増感太陽電池が上基板11を上面にして、携帯電話や音楽プレーヤ、リモコン送信機等の電子機器の表面に装着されると共に、導電金属細線16と下導電層13端部の電極部16Aと13Aが、コネクタや配線基板(図示せず)等によって機器の電子回路(図示せず)に電気的に接続される。   The dye-sensitized solar cell configured as described above is mounted on the surface of an electronic device such as a mobile phone, a music player, or a remote control transmitter with the upper substrate 11 as an upper surface, and the conductive metal thin wire 16 and the lower conductive layer. The electrode portions 16A and 13A at the end of the layer 13 are electrically connected to an electronic circuit (not shown) of the device by a connector, a wiring board (not shown) or the like.

以上の構成において、太陽光や蛍光灯の光等が上基板11に入射すると、これが上基板11を通って、複数の導電金属細線16外周のチタニア層17の色素の電子を励起し、この励起電子が酸化チタンを介して導電金属細線16に流れると共に、下導電層13からは電解液15内のイオンを介して、電子がチタニア層17の色素に供給されて発電が行われる。   In the above configuration, when sunlight or light from a fluorescent lamp enters the upper substrate 11, it passes through the upper substrate 11 to excite electrons of the dyes of the titania layer 17 on the outer periphery of the plurality of conductive metal wires 16. Electrons flow to the conductive metal fine wire 16 through titanium oxide, and electrons are supplied from the lower conductive layer 13 to the dye of the titania layer 17 through ions in the electrolytic solution 15 to generate power.

また、この光によって発電した電力が色素増感太陽電池から、電極部16Aと13Aを介して機器の電子回路に供給され、これによって機器の様々な動作や機能の切換え等が行なわれる。   In addition, the electric power generated by this light is supplied from the dye-sensitized solar cell to the electronic circuit of the device through the electrode portions 16A and 13A, whereby various operations and functions of the device are switched.

つまり、上方からの光が光透過性の上基板11を透過し、この光によって複数の導電金属細線16外周に形成されたチタニア層17の、酸化チタンに吸着された色素の電子が励起されることで、色素増感太陽電池の発電が行われるように構成されている。   That is, light from above passes through the light-transmitting upper substrate 11, and the electrons of the dye adsorbed on the titanium oxide in the titania layer 17 formed on the outer periphery of the plurality of thin conductive metal wires 16 are excited by this light. Thus, the dye-sensitized solar cell is configured to generate power.

そして、この時、上方からの光は上基板11のみを通るだけで空隙内に入射するため、90%以上の高い透過率の光によって、複数の導電金属細線16外周のチタニア層17の、色素の電子の励起が行われる。   At this time, since the light from above passes only through the upper substrate 11 and enters the gap, the dye of the titania layer 17 on the outer periphery of the plurality of conductive metal wires 16 is irradiated with light having a high transmittance of 90% or more. The electrons are excited.

すなわち、空隙内に配設された複数のチタニア層17の上方には、上基板11しか配置されていないため、明るさが殆んど損なわれることなく光が空隙内に入射し、この光を複数のチタニア層17が受光できるようになっている。   That is, since only the upper substrate 11 is disposed above the plurality of titania layers 17 disposed in the air gap, the light enters the air gap with almost no loss of brightness. A plurality of titania layers 17 can receive light.

また、所定間隔で略櫛歯状に連結された導電金属細線16外周の、複数のチタニア層17は、略円柱状に細長く形成されているため、上面だけでなく、これに外周の両側面も加わった大きな受光面積で、空隙内に入射した光を各々が受光して発電が行われる。   In addition, since the plurality of titania layers 17 on the outer periphery of the conductive metal thin wires 16 connected in a substantially comb-like shape at a predetermined interval are formed in a substantially cylindrical shape, not only the upper surface but also both side surfaces of the outer periphery. With the added large light receiving area, the light received in the gap is received and electricity is generated.

つまり、一本一本のチタニア層17は細長いが、各々が受光する範囲が広いため、複数のチタニア層17全体としては大きな面積で光を受光でき、光から電力への変換効率が10〜15%前後の、良好な変換効率で発電を行うことが可能なようになっている。   That is, each titania layer 17 is elongated, but each has a wide light receiving range. Therefore, the plurality of titania layers 17 as a whole can receive light in a large area, and the conversion efficiency from light to power is 10-15. It is possible to generate electricity with good conversion efficiency of around%.

さらに、発電を行う複数のチタニア層17が、直径0.01〜1mm前後の細長い導電金属細線16の外周に形成されているため、上基板11と下基板12にフィルムを用いた場合、色素増感太陽電池に多少の曲げが加わった場合でも、全体が比較的容易に弾性変形可能な、屈曲性に優れた構成となっている。   Further, since a plurality of titania layers 17 for generating power are formed on the outer periphery of the thin conductive metal wire 16 having a diameter of about 0.01 to 1 mm, when films are used for the upper substrate 11 and the lower substrate 12, dye increase Even when a slight bending is applied to the solar cell, the entire structure can be elastically deformed relatively easily and has excellent flexibility.

なお、以上の説明では、上面に加え下面の下導電層13も光透過性に形成した構成について説明したが、ニッケル等の上に白金やカーボン等を積層して下導電層13を形成することで、色素増感太陽電池をより安価に形成することができると共に、さらに屈曲性を向上させることも可能となる。   In the above description, the structure in which the lower conductive layer 13 on the lower surface in addition to the upper surface is formed to be light transmissive has been described. However, the lower conductive layer 13 is formed by laminating platinum or carbon on nickel or the like. Thus, the dye-sensitized solar cell can be formed at a lower cost and the flexibility can be further improved.

このように本実施の形態によれば、光透過性の上基板11と、上面に下導電層13が形成された下基板12間の空隙内に、外周に色素を吸着したチタニア層17が形成された、複数の導電金属細線16を配設することで、上基板11のみを通った透過率が90%以上の光によって、大きな受光面積で導電金属細線16外周のチタニア層17の色素の電子の励起が行えるため、光から電力への変換効率が10〜15%前後の、良好な変換効率で発電を行うことが可能な色素増感太陽電池を得ることができるものである。   As described above, according to the present embodiment, the titania layer 17 having the dye adsorbed on the outer periphery is formed in the gap between the light transmissive upper substrate 11 and the lower substrate 12 having the lower conductive layer 13 formed on the upper surface. By disposing the plurality of conductive metal wires 16, the electrons of the dye of the titania layer 17 on the outer periphery of the conductive metal wires 16 with a large light receiving area by light having a transmittance of 90% or more passing through only the upper substrate 11. Therefore, it is possible to obtain a dye-sensitized solar cell capable of generating electric power with good conversion efficiency, with a conversion efficiency from light to electric power of around 10 to 15%.

本発明による色素増感太陽電池は、光の透過率の低下を防ぎ、変換効率の良好なものを得ることができるという有利な効果を有し、主に各種電子機器の電源用として有用である。   The dye-sensitized solar cell according to the present invention has an advantageous effect that it can prevent a decrease in light transmittance and obtain a good conversion efficiency, and is mainly useful as a power source for various electronic devices. .

11 上基板
12 下基板
13 下導電層
13A、16A 電極部
14 スペーサ
15 電解液
16 導電金属細線
17 チタニア層
11 Upper substrate 12 Lower substrate 13 Lower conductive layer 13A, 16A Electrode portion 14 Spacer 15 Electrolytic solution 16 Conductive metal wire 17 Titania layer

Claims (1)

光透過性の上基板と、この上基板と所定の空隙を空けて対向した下基板と、上記上基板下面及び上記下基板上面の外周内縁に形成されたスペーサと、上記空隙内に充填された電解液からなり、上記下基板上面に下導電層を設けると共に、外周に色素を吸着したチタニア層が形成された複数の導電金属細線を、上記空隙内に配設した色素増感太陽電池。 A light transmissive upper substrate, a lower substrate facing the upper substrate with a predetermined gap, spacers formed on the outer peripheral edge of the lower surface of the upper substrate and the upper surface of the lower substrate, and the gap filled A dye-sensitized solar cell comprising a plurality of conductive metal wires made of an electrolytic solution and provided with a lower conductive layer on the upper surface of the lower substrate and having a titania layer having a dye adsorbed on the outer periphery, disposed in the gap.
JP2011012600A 2011-01-25 2011-01-25 Dye sensitized solar cell Pending JP2012155927A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011012600A JP2012155927A (en) 2011-01-25 2011-01-25 Dye sensitized solar cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011012600A JP2012155927A (en) 2011-01-25 2011-01-25 Dye sensitized solar cell

Publications (1)

Publication Number Publication Date
JP2012155927A true JP2012155927A (en) 2012-08-16

Family

ID=46837466

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011012600A Pending JP2012155927A (en) 2011-01-25 2011-01-25 Dye sensitized solar cell

Country Status (1)

Country Link
JP (1) JP2012155927A (en)

Similar Documents

Publication Publication Date Title
US11463039B2 (en) Energy harvester
JP2009081160A (en) Solar cell and electronic device
CN103456243A (en) Curtain wall
RU2015140801A (en) SIMPLE LED MODULE SUITABLE FOR CAPACITIVE EXCITATION
CN203480775U (en) Curtain wall and display apparatus
US8716705B2 (en) Organic light emitting diode module
CN102062959B (en) Liquid crystal display unit
TWI584162B (en) Manufacturing method for touch device
EP2584609A2 (en) Photovoltaic module
JP2012155927A (en) Dye sensitized solar cell
JP5427863B2 (en) Solar cells
US20120085393A1 (en) Solar cell module and method of manufacturing the same
JP5728864B2 (en) Solar cell module
KR100993847B1 (en) Dye-sensitized solar cell molule and manufacturing method thereof
JP6176697B2 (en) Silicon dioxide solar cell
JP2013125633A (en) Solar battery module
CN101834216A (en) Solar battery module
JP2012109170A (en) Transparent electrode substrate and photoelectric conversion element
JP5618274B2 (en) Manufacturing method of solar cell module
JP2011060608A (en) Capacitance type touch switch
KR101530547B1 (en) Large area dye-sensitized solar cell with back contact
JP2005228614A (en) Counter electrode for dye-sensitized solar cell, and dye-sensitized solar cell
CN210156390U (en) Solar cell panel
CN105302370A (en) Solar touch screen
KR101221154B1 (en) Watch Using Dye-Sensitized Solar Cell with adjacent anode and cathode electrode