JP2012154891A - Plastic strain amount estimation device and plastic strain amount estimation method - Google Patents

Plastic strain amount estimation device and plastic strain amount estimation method Download PDF

Info

Publication number
JP2012154891A
JP2012154891A JP2011016492A JP2011016492A JP2012154891A JP 2012154891 A JP2012154891 A JP 2012154891A JP 2011016492 A JP2011016492 A JP 2011016492A JP 2011016492 A JP2011016492 A JP 2011016492A JP 2012154891 A JP2012154891 A JP 2012154891A
Authority
JP
Japan
Prior art keywords
plastic strain
kam value
strain amount
measured
reference section
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2011016492A
Other languages
Japanese (ja)
Inventor
Madoka Takahashi
円 高橋
Keiko Morishima
敬子 森島
Yohei Sakakibara
洋平 榊原
Keiji Kubushiro
圭司 久布白
Satoshi Takahashi
聰 高橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
IHI Corp
Original Assignee
IHI Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by IHI Corp filed Critical IHI Corp
Priority to JP2011016492A priority Critical patent/JP2012154891A/en
Publication of JP2012154891A publication Critical patent/JP2012154891A/en
Pending legal-status Critical Current

Links

Landscapes

  • Analysing Materials By The Use Of Radiation (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a plastic strain amount estimation device capable of accurately estimating a plastic strain amount of a cast material.SOLUTION: A plastic strain amount estimation device 10 to estimate a plastic strain amount of a cast material comprises: a crystal orientation measurement means 12 which measures a crystal orientation in a manner that selects a region equal to or less than 10 μm from a crystal grain boundary in a same crystal grain among the crystal grains composing a metallographic structure of a plastically-deformed measurement object, divides the region into a plurality of blocks having a same area, and measures the crystal orientations of the respective blocks; a KAM value calculation means 14 which first obtains crystal orientation differences, with one of the plurality of blocks as a reference block, between the reference block and the plurality of the blocks including the reference block and then calculates a KAM value by averaging the crystal orientation differences; and a plastic strain amount estimation means 16 which estimates the plastic strain amount of the measurement object by comparing the KAM value thereof with the preliminary obtained KAM value of the cast material which has the same composition as the measurement object and is subjected to a known plastic deformation.

Description

本発明は、塑性ひずみ量推定装置及び塑性ひずみ量推定方法に係り、特に、鋳造材の塑性ひずみ量を推定する塑性ひずみ量推定装置及び塑性ひずみ量推定方法に関する。   The present invention relates to a plastic strain amount estimation device and a plastic strain amount estimation method, and more particularly to a plastic strain amount estimation device and a plastic strain amount estimation method for estimating a plastic strain amount of a cast material.

高温環境で用いられているターボチャージャーのインペラ等は使用により塑性変形するので、これらを安全に使用するために塑性変形により生じた塑性ひずみ量を推定する必要がある。例えば、特許文献1には、発電プラントのボイラ部材や原子力プラントの構造材料のクリープ寿命を予測するために、クリープ損傷による結晶粒内のひずみによって生じた結晶方位差に基づいてクリープ歪を推定することが記載されている。   Since turbocharger impellers and the like used in a high temperature environment are plastically deformed by use, it is necessary to estimate the amount of plastic strain caused by the plastic deformation in order to use them safely. For example, in Patent Document 1, in order to predict the creep life of a boiler member of a power plant or a structural material of a nuclear power plant, creep strain is estimated based on a crystal orientation difference caused by strain in crystal grains due to creep damage. It is described.

特許第3252933号公報Japanese Patent No. 3252933

ところで、従来の金属材料の塑性ひずみ量推定技術では、EBSD法(Electron Back Scatter Diffraction)等により結晶粒内の結晶方位を測定し、GOS(Grain Orientation Spread)等により結晶粒内全体の平均結晶方位差を求めて塑性ひずみ量を推定している。金属材料の塑性変形が進行すると結晶粒内の転位密度が上昇するので、転位により結晶が回転し結晶粒内の結晶方位差が大きくなる。そのため、結晶粒内全体の平均結晶方位差を求めることにより、塑性変形した金属材料の塑性ひずみ量を推定することができる。   By the way, in the conventional technique for estimating the plastic strain amount of a metal material, the crystal orientation in a crystal grain is measured by an EBSD method (Electron Back Scatter Diffraction) or the like, and the average crystal orientation in the whole crystal grain by GOS (Grain Orientation Spread) or the like. The plastic strain amount is estimated by obtaining the difference. As the plastic deformation of the metal material proceeds, the dislocation density in the crystal grains increases, so that the crystal rotates due to the dislocations and the crystal orientation difference in the crystal grains increases. Therefore, the amount of plastic strain of the plastically deformed metal material can be estimated by obtaining the average crystal orientation difference in the entire crystal grains.

しかし、鋳造材のように結晶粒径が大きい材料(例えば、結晶粒径1mm以上)は、鍛造材のように結晶粒径が小さい材料(例えば、結晶粒径0.1mm以下)と比較して、塑性変形が進行したときの結晶粒内における転位密度の上昇度合いが小さくなる。また、結晶粒内の結晶方位差は、一般的に、塑性ひずみ量に比例し、バーガースベクトル及び結晶粒径に反比例するので、鋳造材のように結晶粒径が大きい材料では結晶粒内の結晶方位差がより小さくなる。このように、鋳造材の場合には、結晶粒内の平均結晶方位差から塑性ひずみ量を推定することが困難となる可能性がある。   However, a material with a large crystal grain size (for example, a crystal grain size of 1 mm or more) such as a cast material is compared with a material with a small crystal grain size (for example, a crystal grain size of 0.1 mm or less) such as a forged material. When the plastic deformation progresses, the degree of increase in the dislocation density in the crystal grains becomes small. In addition, the crystal orientation difference in the crystal grains is generally proportional to the plastic strain amount and inversely proportional to the Burgers vector and the crystal grain size. Therefore, in a material having a large crystal grain size such as a cast material, The misorientation becomes smaller. Thus, in the case of a cast material, it may be difficult to estimate the amount of plastic strain from the average crystal orientation difference in the crystal grains.

そこで、本発明の目的は、塑性変形した鋳造材の塑性ひずみ量をより精度よく推定できる塑性ひずみ量推定装置及び塑性ひずみ量推定方法を提供することである。   Therefore, an object of the present invention is to provide a plastic strain amount estimation apparatus and a plastic strain amount estimation method capable of estimating the plastic strain amount of a plastically deformed cast material with higher accuracy.

本発明に係る鋳造材の塑性ひずみ量推定装置は、鋳造材の塑性ひずみ量を推定する塑性ひずみ量推定装置であって、塑性変形した被測定物の金属組織を構成する結晶粒のうち、同一結晶粒内の結晶粒界から10μm以内の領域のみを同一面積の複数の区画に分割して、各区画ごとに結晶方位を測定する結晶方位測定手段と、前記複数の区画の1つを基準区画としたときの、前記基準区画と、前記基準区画を囲む複数の区画との間の結晶方位差を各々求めた後に平均して、前記基準区画に対するKAM値を算出するKAM値算出手段と、前記被測定物のKAM値と、予め求めておいた前記被測定物と同一組成で既知の塑性変形を受けた鋳造材のKAM値とを比較して、前記被測定物の塑性ひずみ量を推定する塑性ひずみ量評価手段と、を備えることを特徴とする。   The plastic strain amount estimation device for a cast material according to the present invention is a plastic strain amount estimation device for estimating the plastic strain amount of a cast material, and is the same among the crystal grains constituting the metal structure of the plastically measured object. A crystal orientation measuring means for measuring a crystal orientation in each section by dividing only a region within 10 μm from the grain boundary in the crystal grain into a plurality of sections having the same area, and one of the plurality of sections as a reference section A KAM value calculating means for calculating a KAM value for the reference section by averaging after obtaining the crystal orientation difference between the reference section and a plurality of sections surrounding the reference section, and The KAM value of the object to be measured is compared with the KAM value of a casting material having the same composition as that of the object to be measured and subjected to known plastic deformation, and the amount of plastic strain of the object to be measured is estimated. And a plastic strain amount evaluation means. And wherein the door.

本発明に係る鋳造材の塑性ひずみ量推定装置において、前記KAM値算出手段は、前記基準区画を他の区画へ順次移動させて、前記移動させた基準区画と、前記移動させた基準区画を囲む複数の区画との間の結晶方位差を求めた後に平均して、前記移動させた基準区画に対するKAM値を順次算出し、順次算出された前記移動させた基準区画に対するKAM値を平均して平均KAM値を算出し、前記塑性ひずみ量評価手段は、前記被測定物の平均KAM値と、予め求めておいた前記被測定物と同一組成で既知の塑性変形を受けた鋳造材の平均KAM値とを比較して、前記被測定物の塑性ひずみ量を推定することが好ましい。   In the cast plastic deformation amount estimation apparatus according to the present invention, the KAM value calculating means sequentially moves the reference section to another section, and surrounds the moved reference section and the moved reference section. After calculating the crystal orientation difference between a plurality of sections, it is averaged to sequentially calculate the KAM values for the moved reference section, and the KAM values for the moved reference section are sequentially calculated and averaged. A KAM value is calculated, and the plastic strain amount evaluation means calculates an average KAM value of the measured object and an average KAM value of a casting material that has been obtained in advance and has the same composition as the measured object and has undergone known plastic deformation. It is preferable to estimate the amount of plastic strain of the object to be measured.

本発明に係る鋳造材の塑性ひずみ量推定方法は、鋳造材の塑性ひずみ量を推定する塑性ひずみ量推定方法であって、塑性変形した被測定物の金属組織を電子顕微鏡観察して、同一結晶粒内の結晶粒界から10μm以内の領域のみを同一面積の複数の区画に分割して、各区画ごとに結晶方位を測定する結晶方位測定工程と、前記複数の区画の1つを基準区画としたときの、前記基準区画と、前記基準区画を囲む複数の区画との間の結晶方位差を各々求めた後に平均して、前記基準区画に対するKAM値を算出するKAM値算出工程と、前記被測定物のKAM値と、予め求めておいた前記被測定物と同一組成で既知の塑性変形を受けた鋳造材のKAM値とを比較して、前記被測定物の塑性ひずみ量を推定する塑性ひずみ量評価工程と、を備えることを特徴とする。   The method for estimating the plastic strain amount of a cast material according to the present invention is a plastic strain amount estimation method for estimating the plastic strain amount of a cast material, wherein the same structure is obtained by observing the metal structure of the plastically deformed object under an electron microscope. A crystal orientation measuring step of dividing only a region within 10 μm from a grain boundary in a grain into a plurality of sections having the same area and measuring a crystal orientation for each section; and one of the plurality of sections as a reference section A KAM value calculating step of calculating a KAM value with respect to the reference section after obtaining crystal orientation differences between the reference section and a plurality of sections surrounding the reference section, The plasticity for estimating the plastic strain amount of the object to be measured by comparing the KAM value of the object to be measured with the KAM value of a casting material having the same composition as that of the object to be measured and subjected to known plastic deformation. A strain amount evaluation step. The features.

本発明に係る鋳造材の塑性ひずみ量推定方法において、前記KAM値算出工程は、前記基準区画を他の区画へ順次移動させて、前記移動させた基準区画と、前記移動させた基準区画を囲む複数の区画との間の結晶方位差を求めた後に平均して、前記移動させた基準区画に対するKAM値を順次算出し、順次算出された前記移動させた基準区画に対するKAM値を平均して平均KAM値を算出し、前記塑性ひずみ量評価工程は、前記被測定物の平均KAM値と、予め求めておいた前記被測定物と同一組成で既知の塑性変形を受けた鋳造材の平均KAM値とを比較して、前記被測定物の塑性ひずみ量を推定することが好ましい。   In the method for estimating a plastic strain amount of a cast material according to the present invention, the KAM value calculating step sequentially moves the reference section to another section, and surrounds the moved reference section and the moved reference section. After calculating the crystal orientation difference between a plurality of sections, it is averaged to sequentially calculate the KAM values for the moved reference section, and the KAM values for the moved reference section are sequentially calculated and averaged. A KAM value is calculated, and the plastic strain evaluation step includes an average KAM value of the object to be measured and an average KAM value of a casting material having the same composition as that of the object to be measured and having undergone known plastic deformation. It is preferable to estimate the amount of plastic strain of the object to be measured.

本発明に係る鋳造材の塑性ひずみ量推定方法において、前記領域は、結晶粒界から5μm以内の領域のみであることが好ましい。   In the method for estimating a plastic strain amount of a cast material according to the present invention, the region is preferably only a region within 5 μm from the grain boundary.

本発明に係る鋳造材の塑性ひずみ量推定方法において、前記被測定物は、コロイダルシリカで研磨仕上げされることが好ましい。   In the method for estimating a plastic strain amount of a cast material according to the present invention, the object to be measured is preferably polished and finished with colloidal silica.

本発明に係る鋳造材の塑性ひずみ量推定方法において、前記被測定物のKAM値は、閾値以下であることが好ましい。   In the method for estimating a plastic strain amount of a cast material according to the present invention, the KAM value of the object to be measured is preferably equal to or less than a threshold value.

本発明に係る鋳造材の塑性ひずみ量推定方法において、前記鋳造材はNi基鋳造合金であり、前記鋳造材の結晶粒径が1mm以上であることが好ましい。   In the method for estimating a plastic strain amount of a cast material according to the present invention, the cast material is preferably a Ni-based cast alloy, and the crystal grain size of the cast material is preferably 1 mm or more.

上記構成における塑性ひずみ量推定装置及び塑性ひずみ量推定方法によれば、鋳造材が塑性変形したときに転位が堆積しやすい結晶粒界から10μm以内の領域のみの結晶方位をEBSD法等で測定して、その領域の結晶方位差から求めたKAM(Kernel Average Misorientation、カーネル アベレージ ミスオリエンテーション)値により塑性ひずみ量を推定しているので、鋳造材の塑性ひずみ量をより精度よく推定することができる。   According to the plastic strain amount estimation apparatus and the plastic strain amount estimation method in the above configuration, the crystal orientation of only the region within 10 μm from the grain boundary where dislocations are likely to be deposited when the cast material is plastically deformed is measured by the EBSD method or the like. Since the plastic strain amount is estimated based on the KAM (Kernel Average Misorientation) value obtained from the crystal orientation difference in the region, the plastic strain amount of the cast material can be estimated more accurately.

本発明の実施の形態において、塑性ひずみ量推定装置の構成を示すブロック図である。In embodiment of this invention, it is a block diagram which shows the structure of the plastic strain amount estimation apparatus. 本発明の実施の形態において、塑性ひずみ量推定方法の手順を示すフローチャートである。In embodiment of this invention, it is a flowchart which shows the procedure of the plastic strain amount estimation method. 本発明の実施の形態において、各結晶粒における結晶方位を測定する測定領域を示す模式図である。In embodiment of this invention, it is a schematic diagram which shows the measurement area | region which measures the crystal orientation in each crystal grain. 本発明の実施の形態において、塑性変形した鋳造材における結晶粒界から結晶粒内への平均結晶方位差の変化を模式的に示したグラフである。In the embodiment of the present invention, it is the graph which showed typically the change of the average crystal orientation difference from the crystal grain boundary to the crystal grain in the plastically deformed cast material. 本発明の実施の形態において、結晶粒界近傍における結晶方位の測定領域を示す模式図である。In embodiment of this invention, it is a schematic diagram which shows the measurement area | region of the crystal orientation in the crystal grain boundary vicinity. 本発明の実施の形態において、塑性変形させたNi基鋳造合金Inconel713Cにおける代表的なKAM値(10th)の分布図である。In the embodiment of the present invention, it is a distribution diagram of a typical KAM value (10th) in plastically deformed Ni-base cast alloy Inconel 713C. 本発明の実施の形態において、引張試験片の形状を示す図である。In embodiment of this invention, it is a figure which shows the shape of a tensile test piece. 本発明の実施の形態において、塑性変形前のNi基鋳造合金におけるKAM値(10th)の分布図である。In embodiment of this invention, it is a distribution map of KAM value (10th) in Ni base cast alloy before plastic deformation. 本発明の実施の形態において、塑性ひずみ量1.5%のNi基鋳造合金におけるKAM値(10th)の分布図である。In embodiment of this invention, it is a distribution map of KAM value (10th) in Ni base cast alloy with a plastic strain amount of 1.5%. 本発明の実施の形態において、塑性ひずみ量2.5%のNi基鋳造合金におけるKAM値(10th)の分布図である。In embodiment of this invention, it is a distribution map of KAM value (10th) in Ni base cast alloy with a plastic strain amount of 2.5%. 本発明の実施の形態において、塑性ひずみ量4.41%のNi基鋳造合金におけるKAM値(10th)の分布図である。In embodiment of this invention, it is a distribution map of KAM value (10th) in Ni base cast alloy with 4.41% of plastic strain. 本発明の実施の形態において、結晶粒界から5μm以内の領域のみの平均KAM値(10th)と塑性ひずみ量との関係を示すグラフである。In embodiment of this invention, it is a graph which shows the relationship between the average KAM value (10th) of only the area | region within 5 micrometers from a crystal grain boundary, and the amount of plastic strain. 本発明の実施の形態において、結晶粒全体の領域の平均KAM値(10th)と塑性ひずみ量との関係を示すグラフである。In embodiment of this invention, it is a graph which shows the relationship between the average KAM value (10th) of the area | region of the whole crystal grain, and the amount of plastic strain. 本発明の実施の形態において、塑性ひずみ量1.5%のNi基鋳造合金におけるKAM値(10th)の分布図である。In embodiment of this invention, it is a distribution map of KAM value (10th) in Ni base cast alloy with a plastic strain amount of 1.5%. 本発明の実施の形態において、塑性ひずみ量2.5%のNi基鋳造合金におけるKAM値(10th)の分布図である。In embodiment of this invention, it is a distribution map of KAM value (10th) in Ni base cast alloy with a plastic strain amount of 2.5%. 本発明の実施の形態において、塑性ひずみ量3.5%のNi基鋳造合金におけるKAM値(10th)の分布図である。In embodiment of this invention, it is a distribution map of KAM value (10th) in Ni base cast alloy with a plastic strain amount of 3.5%. 本発明の実施の形態において、塑性ひずみ量4.41%のNi基鋳造合金におけるKAM値(10th)の分布図である。In embodiment of this invention, it is a distribution map of KAM value (10th) in Ni base cast alloy with 4.41% of plastic strain. 本発明の実施の形態において、結晶粒界から5μm以内の領域のみの平均KAM値(10th)と塑性ひずみ量との関係を示すグラフである。In embodiment of this invention, it is a graph which shows the relationship between the average KAM value (10th) of only the area | region within 5 micrometers from a crystal grain boundary, and the amount of plastic strain.

以下に、本発明の実施の形態について図面を用いて詳細に説明する。図1は、塑性ひずみ量推定装置10の構成を示すブロック図である。塑性ひずみ量推定装置10は、Ni基鋳造合金やFe基鋳造合金等の鋳造材の塑性ひずみ量を推定する装置である。塑性ひずみ量推定装置10は、結晶方位測定手段12と、KAM値算出手段14と、塑性ひずみ量評価手段16と、記憶手段18と、出力手段20と、を備えている。塑性ひずみ量推定装置10は、一般的なコンピュータシステムを用いて構成することができる。   Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings. FIG. 1 is a block diagram showing the configuration of the plastic strain amount estimating apparatus 10. The plastic strain amount estimation device 10 is a device that estimates the plastic strain amount of a cast material such as a Ni-base cast alloy or a Fe-base cast alloy. The plastic strain amount estimating apparatus 10 includes crystal orientation measuring means 12, KAM value calculating means 14, plastic strain amount evaluating means 16, storage means 18, and output means 20. The plastic strain amount estimation apparatus 10 can be configured using a general computer system.

結晶方位測定手段12は、塑性変形した被測定物から採取された試料について、電子顕微鏡を用いて結晶粒界近傍の結晶方位を測定する機能を有している。電子顕微鏡には、走査型電子顕微鏡や透過型電子顕微鏡が用いられる。結晶粒界近傍の結晶方位は、例えば、研磨仕上げされた試料に電子ビームを照射して菊池パターンを計測することにより求められる。結晶方位の測定には、広範囲で多くの結晶方位データを容易に取得できることから走査型電子顕微鏡によるEBSD法(電子線後方散乱回折法)を用いることが好ましい。また、結晶粒界近傍は、結晶粒界から10μm以内の領域のみであることが好ましく、結晶粒界から5μm以内の領域のみであることがより好ましい。   The crystal orientation measuring means 12 has a function of measuring a crystal orientation in the vicinity of a grain boundary using an electron microscope for a sample collected from a plastically deformed object to be measured. As the electron microscope, a scanning electron microscope or a transmission electron microscope is used. The crystal orientation in the vicinity of the crystal grain boundary is obtained by, for example, irradiating an electron beam onto a polished sample and measuring the Kikuchi pattern. For measurement of crystal orientation, it is preferable to use an EBSD method (electron beam backscatter diffraction method) using a scanning electron microscope because a large amount of crystal orientation data can be easily obtained over a wide range. Further, the vicinity of the crystal grain boundary is preferably only a region within 10 μm from the crystal grain boundary, and more preferably only a region within 5 μm from the crystal grain boundary.

KAM値算出手段14は、測定された結晶粒界近傍の結晶方位からKAM値を算出する機能を有している。KAM値は、結晶粒内の領域を同一面積の複数の区画(ピクセル)に分割したときに、近隣の区画の間での結晶方位差の平均を算出したものである。なお、KAM値の詳細な算出方法については後述する。   The KAM value calculation means 14 has a function of calculating a KAM value from the measured crystal orientation in the vicinity of the crystal grain boundary. The KAM value is an average of crystal orientation differences between neighboring sections when a region in a crystal grain is divided into a plurality of sections (pixels) having the same area. A detailed method for calculating the KAM value will be described later.

塑性ひずみ量評価手段16は、被測定物のKAM値と、予め求めておいた被測定物と同一組成で既知の塑性変形を受けた鋳造材のKAM値とを比較して、被測定物の塑性ひずみ量を推定する機能を有している。予め、被測定物と同一組成の鋳造材について塑性変形させて、塑性ひずみ量とKAM値との関係を求めておく。そして、被測定物のKAM値を、予め求めておいた被測定物と同一組成の鋳造材における塑性ひずみ量とKAM値との関係(例えば、マスター曲線等のグラフ)と比較することにより、被測定物の塑性ひずみ量を推定することができる。なお、塑性ひずみ量の推定方法の詳細については後述する。   The plastic strain amount evaluation means 16 compares the KAM value of the object to be measured with the KAM value of a cast material that has been obtained in advance and has the same composition as that of the object to be measured and has undergone known plastic deformation. It has a function to estimate the amount of plastic strain. In advance, the cast material having the same composition as the object to be measured is plastically deformed, and the relationship between the plastic strain amount and the KAM value is obtained. Then, the KAM value of the object to be measured is compared with the relationship (for example, a graph such as a master curve) between the plastic strain amount and the KAM value in the cast material having the same composition as the object to be measured. The amount of plastic strain of the measurement object can be estimated. The details of the plastic strain amount estimation method will be described later.

記憶手段18は、結晶方位データ、KAM値、推定された塑性ひずみ量等を格納する機能を有しており、CD−ROMやDVD等で構成されている。記憶手段18には、予め求めておいた塑性ひずみ量とKAM値との関係が各種鋳造材に関連付けして蓄積されている。塑性ひずみ量評価手段16では、鋳造材の種類を検索キーとして記憶手段18から比較対象の鋳造材のデータを呼び出すことができる。   The storage means 18 has a function of storing crystal orientation data, a KAM value, an estimated amount of plastic strain, and the like, and is composed of a CD-ROM, a DVD, or the like. The storage means 18 stores the relationship between the plastic strain amount and the KAM value obtained in advance in association with various cast materials. The plastic strain amount evaluation means 16 can call up the data of the casting material to be compared from the storage means 18 using the type of casting material as a search key.

出力手段20は、結晶方位データ、KAM値、推定された塑性ひずみ量等を出力する機能を有している。出力手段20は、例えば、ディスプレイやプリンタ等で構成される。   The output means 20 has a function of outputting crystal orientation data, KAM value, estimated plastic strain amount, and the like. The output means 20 is composed of, for example, a display or a printer.

次に、鋳造材の塑性ひずみ量推定方法について説明する。   Next, a method for estimating the plastic strain amount of the cast material will be described.

図2は、塑性ひずみ量推定方法の手順を示すフローチャートである。塑性ひずみ量推定方法は、試料準備工程(S10)と、結晶方位測定工程(S12)、KAM値算出工程(S14)と、塑性ひずみ量評価工程(S16)と、出力工程(S18)と、を備えている。   FIG. 2 is a flowchart showing the procedure of the plastic strain amount estimation method. The plastic strain amount estimation method includes a sample preparation step (S10), a crystal orientation measurement step (S12), a KAM value calculation step (S14), a plastic strain amount evaluation step (S16), and an output step (S18). I have.

試料準備工程(S10)は、塑性変形が付与された鋳造材からなる被測定物から金属組織観察用の試料を採取して準備する工程である。引張荷重、圧縮荷重、クリープ荷重等が負荷されて塑性変形した被測定物から金属組織観察のための試料を切り出す。試料は、応力軸方向に沿った面を組織観察するため、応力軸方向に沿って採取される。例えば、被測定物が引張荷重を受けている場合には、試料は、引張応力軸方向に沿って採取される。   The sample preparation step (S10) is a step of preparing a sample for observation of a metal structure from a measurement object made of a cast material to which plastic deformation is applied. A specimen for observing the metal structure is cut out from an object to be plastically deformed under a tensile load, a compressive load, a creep load, or the like. The sample is taken along the stress axis direction in order to observe the structure of the surface along the stress axis direction. For example, when the object to be measured is subjected to a tensile load, the sample is collected along the tensile stress axis direction.

採取された試料は、樹脂埋めされて耐水研磨紙やダイヤモンド、アルミナ研磨材等で研磨された後、電解研磨やコロイダルシリカ等で研磨仕上げされる。アルミナ研磨材には、平均粒径1.0μmの研磨材を用いることが好ましく、コロイダルシリカ研磨材には、平均粒径0.04μmの研磨材を用いることが好ましい。なお、結晶粒界をより明確に組織観察できることから、研磨仕上げにはコロイダルシリカを用いることが好ましい。   The collected sample is filled with resin and polished with water-resistant abrasive paper, diamond, alumina abrasive, etc., and then polished with electrolytic polishing or colloidal silica. As the alumina abrasive, it is preferable to use an abrasive having an average particle size of 1.0 μm, and as the colloidal silica abrasive, it is preferable to use an abrasive having an average particle size of 0.04 μm. In addition, it is preferable to use colloidal silica for polishing finishing because the structure of the crystal grain boundary can be observed more clearly.

結晶方位測定工程(S12)は、研磨仕上げされた試料を電子顕微鏡で観察し、同一結晶粒内(金属組織を構成する結晶粒のうち一の結晶粒内)の結晶粒界近傍を同一面積の複数の区画に分割して、各区画ごとに結晶方位を測定する工程である。結晶方位測定には、上述したようにEBSD法を用いることが好ましい。   In the crystal orientation measurement step (S12), the polished sample is observed with an electron microscope, and the vicinity of the crystal grain boundary in the same crystal grain (in one crystal grain of the crystal grains constituting the metal structure) has the same area. This is a step of dividing a plurality of sections and measuring the crystal orientation for each section. For the crystal orientation measurement, it is preferable to use the EBSD method as described above.

図3は、各結晶粒30における結晶方位を測定する測定領域(S)を示す模式図である。鋳造材の塑性変形の進行に伴って、結晶粒30内の転位32が結晶粒界34へ移動して堆積する。そのため、鋳造材の塑性変形量が大きくなるのに伴って、結晶粒界近傍の転位密度が高くなる。転位密度が高い領域では結晶の回転により結晶方位差が大きくなるので、結晶粒界近傍の結晶方位差の変化から鋳造材の塑性ひずみ量を推定することができる。   FIG. 3 is a schematic diagram illustrating a measurement region (S) in which the crystal orientation in each crystal grain 30 is measured. As the plastic deformation of the cast material proceeds, the dislocations 32 in the crystal grains 30 move to the crystal grain boundaries 34 and accumulate. Therefore, as the amount of plastic deformation of the cast material increases, the dislocation density near the crystal grain boundary increases. In the region where the dislocation density is high, the crystal orientation difference increases due to the rotation of the crystal. Therefore, the plastic strain amount of the cast material can be estimated from the change in the crystal orientation difference near the crystal grain boundary.

結晶方位の測定領域(S)は、各結晶粒30における同一結晶粒内の結晶粒界近傍に設けられている。測定領域(S)は、各結晶粒30の結晶粒界34から粒内方向へ10μm以内の領域のみであることが好ましく、結晶粒界34から粒内方向へ5μm以内の領域のみであることがより好ましい。鋳造材の塑性変形の進行に伴って、転位32は、結晶粒界34から10μm以内の領域に堆積しやすく、結晶粒界34から5μm以内の領域に最も堆積するからである。   The crystal orientation measurement region (S) is provided in the vicinity of a crystal grain boundary in the same crystal grain in each crystal grain 30. The measurement region (S) is preferably only a region within 10 μm from the crystal grain boundary 34 of each crystal grain 30 in the intragranular direction, and is preferably only a region within 5 μm from the crystal grain boundary 34 to the intragranular direction. More preferred. This is because the dislocation 32 is likely to be deposited in a region within 10 μm from the grain boundary 34 and is most deposited in a region within 5 μm from the crystal grain boundary 34 as the plastic deformation of the cast material proceeds.

図4は、塑性変形した鋳造材における結晶粒界から結晶粒内への平均結晶方位差の変化を模式的に示したグラフである。図4のグラフでは、横軸は結晶粒界(0の位置)から結晶粒内方向への位置を表しており、縦軸は平均結晶方位差(結晶方位差の平均値)を表している。   FIG. 4 is a graph schematically showing changes in the average crystal orientation difference from the crystal grain boundaries to the crystal grains in the plastically deformed cast material. In the graph of FIG. 4, the horizontal axis represents the position from the crystal grain boundary (position 0) to the crystal grain inner direction, and the vertical axis represents the average crystal orientation difference (average value of crystal orientation differences).

予備検討では、平均結晶方位差は、結晶粒界から5μmに近づくほど大きくなり、結晶粒界から10μmを越えるとほとんど変化しなかった。予備検討の結果から、鋳造材の塑性変形が進行すると、転位は、結晶粒界から10μm以内の領域に堆積し、結晶粒界から5μm以内の領域に最も堆積することを明らかにした。したがって、結晶粒界から10μm以内の領域のみの結晶方位を測定することにより、転位密度の変化にともなう結晶方位差の変化を精度よく求めることができる。なお、測定領域の結晶粒界に沿う方向の長さは、例えば、50μmから1000μmである。   In a preliminary study, the average crystal orientation difference increased as it approached 5 μm from the crystal grain boundary, and hardly changed when it exceeded 10 μm from the crystal grain boundary. From the results of the preliminary study, it has been clarified that when plastic deformation of the cast material proceeds, dislocations are deposited in a region within 10 μm from the grain boundary and are most deposited in a region within 5 μm from the grain boundary. Therefore, by measuring the crystal orientation only in the region within 10 μm from the crystal grain boundary, the change in crystal orientation difference accompanying the change in dislocation density can be obtained with high accuracy. Note that the length of the measurement region in the direction along the crystal grain boundary is, for example, 50 μm to 1000 μm.

図5は、結晶粒界近傍における結晶方位の測定領域を示す模式図である。同一結晶粒内における結晶粒界近傍の測定領域を同一面積の複数の区画(区画0、区画1a〜1d、区画2a〜2g、区画3a〜3j・・・区画10a〜10p・・・)に分割する。図5に示す模式図では、結晶粒界近傍の測定領域が複数の正六角形の区画に分割されている。結晶方位測定工程(S12)では、EBSD法等により各区画について結晶方位を測定する。結晶方位の測定ピッチT(隣接する区画の中心間の長さ)は、全て同じである。測定ピッチTは、例えば、0.25μmから1μmである。   FIG. 5 is a schematic diagram showing a crystal orientation measurement region in the vicinity of a crystal grain boundary. Divide the measurement region near the grain boundary in the same crystal grain into a plurality of sections (section 0, sections 1a to 1d, sections 2a to 2g, sections 3a to 3j, ... sections 10a to 10p, ...) having the same area. To do. In the schematic diagram shown in FIG. 5, the measurement region in the vicinity of the crystal grain boundary is divided into a plurality of regular hexagonal sections. In the crystal orientation measurement step (S12), the crystal orientation is measured for each section by the EBSD method or the like. The crystal orientation measurement pitch T (the length between the centers of adjacent sections) is the same. The measurement pitch T is, for example, 0.25 μm to 1 μm.

KAM値算出工程(S14)は、測定された結晶方位からKAM値を算出する工程である。KAM値は、測定領域における複数の区画の1つを基準区画としたときの、基準区画と、基準区画を囲む複数の区画との間の結晶方位差を各々求めて平均して算出される。図5に示す模式図に基づいてKAM値の算出方法を具体的に説明する。   The KAM value calculation step (S14) is a step of calculating the KAM value from the measured crystal orientation. The KAM value is calculated by averaging the crystal orientation differences between the reference section and the plurality of sections surrounding the reference section when one of the plurality of sections in the measurement region is set as the reference section. A method for calculating the KAM value will be specifically described based on the schematic diagram shown in FIG.

まず、測定領域における複数の区画の中から基準区画(例えば、区画0とする)を選択する。基準区画(区画0)を囲み、基準区画(区画0)に隣接する区画群を第1番目の区画群(区画1a〜区画1d)とする。基準区画(区画0)を囲み、第1番目の区画群(区画1a〜区画1d)に隣接する区画群を第2番目の区画群(区画2a〜区画2g)とする。このように、第3番目の区画群(区画3a〜区画3j)、・・・第10番目の区画群(区画10a〜区画10p)、・・・第n番目(nは自然数)の区画群のように群分けする。なお、結晶粒界を越える区画や測定領域から外れる区画は各区画群から除外される。   First, a reference section (for example, section 0) is selected from a plurality of sections in the measurement region. A partition group that surrounds the reference section (section 0) and is adjacent to the reference section (section 0) is defined as a first section group (section 1a to section 1d). A partition group that surrounds the reference partition (section 0) and is adjacent to the first partition group (section 1a to section 1d) is defined as a second partition group (section 2a to section 2g). Thus, the third group of sections (section 3a to section 3j),... The tenth section group (section 10a to section 10p),... The nth (n is a natural number) section group. Group them as follows. In addition, the section beyond the crystal grain boundary or the section outside the measurement region is excluded from each section group.

そして、基準区画(区画0)と、第1番目の区画群(区画1a〜区画1d)の各区画との結晶方位差を各々求めて平均したものを基準区画(区画0)に対する第1番目のKAM値(1st)とする。また、基準区画(区画0)と、基準区画(区画0)を囲む第10番目の区画群(区画10a〜10p)の各区画との結晶方位差を各々求めて平均したものを基準区画(区画0)に対する第10番目のKAM値(10th)とする。   The first difference with respect to the reference section (section 0) is obtained by averaging the crystal orientation differences between the reference section (section 0) and each section of the first group of sections (section 1a to section 1d). The KAM value (1st) is assumed. In addition, the difference between the crystal orientation differences between the reference section (section 0) and each section of the tenth group of sections (sections 10a to 10p) surrounding the reference section (section 0) is averaged. The 10th KAM value (10th) for 0).

このようにして、基準区画に対する第n番目(nは自然数)の区画群のKAM値であるKAM値(n)を算出することができる。KAM値(n)は、上記のように近隣の区画との結晶方位差を平均して算出しているので、測定領域における結晶方位差の度合を精度よく求めることができる。   In this way, the KAM value (n) that is the KAM value of the nth (n is a natural number) partition group with respect to the reference partition can be calculated. As described above, the KAM value (n) is calculated by averaging the crystal orientation difference with the neighboring sections, so that the degree of crystal orientation difference in the measurement region can be obtained with high accuracy.

KAM値算出工程(S14)は、基準区画を他の区画へ順次移動させて、移動させた基準区画と、移動させた基準区画を囲む複数の区画との間の結晶方位差を求めた後に平均して、移動させた基準区画に対するKAM値を順次算出し、順次算出された移動させた基準区画に対するKAM値を平均して平均KAM値を算出することが好ましい。図5に示す模式図に基づいて、平均KAM値の算出方法について具体的に説明する。   In the KAM value calculating step (S14), the reference section is sequentially moved to another section, and after calculating the crystal orientation difference between the moved reference section and a plurality of sections surrounding the moved reference section, the average is obtained. Then, it is preferable to calculate the average KAM value by sequentially calculating the KAM value for the moved reference section and averaging the sequentially calculated KAM values for the moved reference section. Based on the schematic diagram shown in FIG. 5, the calculation method of the average KAM value will be specifically described.

まず、第1番目の平均KAM値(1st)の算出方法について説明する。基準区画を区画0から他の区画(区画1a〜1d、区画2a〜2g、区画3a〜3j・・・区画10a〜10p・・・)へ順次移動させて、移動させた基準区画と、移動させた基準区画を囲む複数の区画との間の結晶方位差を求めた後に平均して、移動させた基準区画に対するKAM値を順次算出する。例えば、基準区画を区画2aへ移動させた場合には、基準区画(区画2a)と、第1番目の区画群(区画3a、3b、2b、1a)の各区画との結晶方位差を各々求めた後に平均して基準区画(区画2a)に対する第1番目のKAM値(1st)を算出する。そして、順次算出された移動させた基準区画に対するKAM値(1st)を平均して第1番目の平均KAM値(1st)を算出する。   First, a method for calculating the first average KAM value (1st) will be described. Move the reference section sequentially from section 0 to the other sections (sections 1a to 1d, sections 2a to 2g, sections 3a to 3j,..., Sections 10a to 10p. After obtaining the crystal orientation difference between the plurality of sections surrounding the reference section, the KAM values for the moved reference section are sequentially calculated and averaged. For example, when the reference section is moved to the section 2a, the crystal orientation difference between the reference section (section 2a) and each section of the first section group (sections 3a, 3b, 2b, 1a) is obtained. After that, the first KAM value (1st) for the reference section (section 2a) is calculated on average. Then, the first average KAM value (1st) is calculated by averaging the KAM values (1st) for the moved reference section calculated sequentially.

また、第10番目の平均KAM値(10th)を算出する場合には、基準区画を区画0から他の区画(区画1a〜1d、区画2a〜2g、区画3a〜3j・・・区画10a〜10p・・・)へ順次移動させて、上述した基準区画(区画0)に対する第10番目のKAM値(10th)と同様に計算する。そして、順次算出された移動させた基準区画に対するKAM値(10st)を平均して第10番目の平均KAM値(10th)を算出する。   When calculating the tenth average KAM value (10th), the reference section is divided from section 0 to other sections (sections 1a to 1d, sections 2a to 2g, sections 3a to 3j, ... sections 10a to 10p. ..) And sequentially calculate the same as the tenth KAM value (10th) for the reference section (section 0) described above. Then, the tenth average KAM value (10th) is calculated by averaging the KAM values (10st) for the moved reference section that are sequentially calculated.

このように、複数の区画における各々の区画を基準区画としたときの、基準区画と、基準区画を囲む複数の区画との間の結晶方位差を求めた後に平均して、各々の区画の第n番目(nは自然数)のKAM値(n)を算出し、各々の区画のKAM値(n)を平均して第n番目(nは自然数)の平均KAM値(n)が算出される。なお、基準区画を測定領域における全ての区画へ移動させて、第n番目(nは自然数)の平均KAM値(n)を算出することがより好ましい。   In this way, when the respective sections in the plurality of sections are set as the reference sections, the crystal orientation difference between the reference section and the plurality of sections surrounding the reference section is obtained, and then averaged, The n-th (n is a natural number) KAM value (n) is calculated, and the KAM values (n) of the respective sections are averaged to calculate the n-th (n is a natural number) average KAM value (n). It is more preferable to calculate the nth (n is a natural number) average KAM value (n) by moving the reference section to all sections in the measurement region.

このように平均KAM値(n)を算出することにより、上述したKAM値(n)よりも測定領域の結晶方位差の度合をより精度よく求めることができる。   By calculating the average KAM value (n) in this way, the degree of crystal orientation difference in the measurement region can be determined more accurately than the KAM value (n) described above.

次に、第n番目(nは自然数)のKAM値(n)及び平均KAM値(n)と、結晶方位測定の測定ピッチ(Tμm)と、結晶方位の測定領域における結晶粒界からの最大距離L(μm)との関係について説明する。   Next, the nth (n is a natural number) KAM value (n) and average KAM value (n), the measurement pitch (T μm) of crystal orientation measurement, and the maximum distance from the grain boundary in the crystal orientation measurement region The relationship with L (μm) will be described.

結晶方位の測定領域が結晶粒界からLμm以内の領域のみである場合には、KAM値(n)及び平均KAM値(n)と、測定ピッチTと、結晶粒界からの距離Lとの関係は、nT=L(nは自然数)を満たすことが好ましい。例えば、結晶方位の測定領域が結晶粒界から5μm以内の領域のみである場合には、nT=5(nは自然数)を満たすことが好ましい。   When the measurement region of the crystal orientation is only the region within L μm from the grain boundary, the relationship between the KAM value (n) and the average KAM value (n), the measurement pitch T, and the distance L from the grain boundary Preferably satisfies nT = L (n is a natural number). For example, when the crystal orientation measurement region is only a region within 5 μm from the grain boundary, it is preferable that nT = 5 (n is a natural number) is satisfied.

図4に示すグラフで説明したように、結晶方位の測定領域が結晶粒界から5μm以内の領域のみである場合には、結晶粒界から粒内方向へ5μmの位置で平均結晶方位差が最も大きくなるので、測定ピッチTに対してnT=5を満たす第n番目(nは自然数)のKAM値(n)及び平均KAM値(n)を選択することにより、結晶方位差の度合を精度よく求めることができる。   As described in the graph shown in FIG. 4, when the measurement region of the crystal orientation is only the region within 5 μm from the crystal grain boundary, the average crystal orientation difference is the largest at the position of 5 μm from the crystal grain boundary to the intragranular direction. Therefore, by selecting the nth (n is a natural number) KAM value (n) and the average KAM value (n) satisfying nT = 5 with respect to the measurement pitch T, the degree of crystal orientation difference can be accurately determined. Can be sought.

例えば、測定ピッチを0.25μmとした場合には、第20番目のKAM値(20th)または平均KAM値(20th)を用いることが好ましく、測定ピッチを0.5μmとした場合には、第10番目のKAM値(10th)または平均KAM値(10th)を用いることが好ましく、測定ピッチを1μmとした場合には、第5番目のKAM値(5th)または平均KAM値(5th)を用いることが好ましい。このなかでも、結晶方位測定の測定ピッチを0.5μmとして、第10番目のKAM値(10th)または平均KAM値(10th)を用いることが測定精度等の点でより好ましい。   For example, when the measurement pitch is 0.25 μm, it is preferable to use the 20th KAM value (20th) or the average KAM value (20th), and when the measurement pitch is 0.5 μm, The 5th KAM value (10th) or the average KAM value (10th) is preferably used. When the measurement pitch is 1 μm, the 5th KAM value (5th) or the average KAM value (5th) is used. preferable. Among these, it is more preferable in terms of measurement accuracy and the like that the measurement pitch of crystal orientation measurement is 0.5 μm and the 10th KAM value (10th) or average KAM value (10th) is used.

被測定物のKAM値(n)または平均KAM値(n)は、3箇所から5箇所の測定領域を選択して、各測定領域に対するKAM値(n)または平均KAM値(n)を平均して求められることが好ましい。各測定領域は、同一結晶粒内の結晶粒界近傍からすべて選択されてもよいし、異なる結晶粒内の結晶粒界近傍から各々選択されてもよい。   The KAM value (n) or average KAM value (n) of the object to be measured is selected from 3 to 5 measurement areas, and the KAM value (n) or average KAM value (n) for each measurement area is averaged. It is preferable to be obtained. Each measurement region may be selected from the vicinity of the crystal grain boundary in the same crystal grain, or may be selected from the vicinity of the crystal grain boundary in a different crystal grain.

また、被測定物のKAM値(n)には閾値を設けることが好ましく、閾値以下のKAM値(n)が使用されることが好ましい。   Moreover, it is preferable to provide a threshold value for the KAM value (n) of the object to be measured, and it is preferable to use a KAM value (n) equal to or lower than the threshold value.

図6は、塑性変形させたNi基鋳造合金Inconel713Cにおける代表的なKAM値(10th)の分布図である。Ni基鋳造合金Inconel713Cに付与された塑性ひずみ量は1.5%である。また、結晶方位の測定ピッチは0.5μmである。   FIG. 6 is a distribution diagram of a typical KAM value (10th) in a plastically deformed Ni-base cast alloy Inconel 713C. The amount of plastic strain imparted to the Ni-base cast alloy Inconel 713C is 1.5%. The crystal orientation measurement pitch is 0.5 μm.

図6に示すKAM値(10th)の分布図において、濃淡の濃い部分はKAM値(10th)が高い領域を示しており、濃淡の薄い部分は、KAM値(10th)が低い領域を示している。塑性変形の初期段階においても、KAM値(10th)が高い領域が認められる。このようなKAM値(10th)が高い領域は、鋳造材の塑性変形前から転位が堆積している可能性が高い。そのため、閾値以下のKAM値(n)を用いることにより、塑性変形前から転位が堆積している結晶粒界近傍の領域を避けることができるので、塑性変形により結晶粒界側へ移動してきた転位による結晶方位差の影響をより精度よく求めることができる。閾値は、結晶方位の測定ピッチTと、第n番目のKAM値(n)のnとに基づいて定められる。例えば、結晶方位の測定ピッチ0.5mmで、KAM値(10th)の場合には、閾値は、1.5度である。   In the distribution diagram of the KAM value (10th) shown in FIG. 6, the dark and light portions indicate areas where the KAM value (10th) is high, and the light and light portions indicate areas where the KAM value (10th) is low. . Even in the initial stage of plastic deformation, a region with a high KAM value (10th) is observed. In such a region where the KAM value (10th) is high, there is a high possibility that dislocations have accumulated from before the plastic deformation of the cast material. Therefore, by using the KAM value (n) below the threshold, it is possible to avoid a region in the vicinity of the grain boundary where dislocations are accumulated before plastic deformation, so that the dislocation that has moved to the grain boundary side due to plastic deformation. The influence of the crystal orientation difference due to can be obtained with higher accuracy. The threshold is determined based on the crystal orientation measurement pitch T and n of the nth KAM value (n). For example, in the case of a crystal orientation measurement pitch of 0.5 mm and a KAM value (10th), the threshold value is 1.5 degrees.

閾値は、塑性変形の初期段階から中期段階の塑性ひずみ量を推定する場合に設けられることがより好ましく、塑性変形前から塑性ひずみ量2.5%の間の塑性ひずみ量を推定する場合に設けられることがより好ましい。   More preferably, the threshold is set when estimating the amount of plastic strain from the initial stage to the middle stage of plastic deformation, and is set when estimating the amount of plastic strain between 2.5% before plastic deformation. More preferably.

塑性ひずみ量評価工程(S16)は、被測定物のKAM値から被測定物の塑性ひずみ量を推定する工程である。被測定物の塑性ひずみ量は、被測定物のKAM値(n)または平均KAM値(n)と、予め求めておいた被測定物と同一組成で既知の塑性変形を受けた鋳造材のKAM値(n)または平均KAM値(n)とを比較して推定される。   The plastic strain amount evaluation step (S16) is a step of estimating the plastic strain amount of the measured object from the KAM value of the measured object. The plastic strain amount of the object to be measured is the KAM value (n) or the average KAM value (n) of the object to be measured, and the KAM of the cast material that has been subjected to known plastic deformation with the same composition as the object to be measured previously obtained. It is estimated by comparing the value (n) or the average KAM value (n).

被測定物と同一組成の鋳造材のKAM値(n)または平均KAM値(n)は、上述した被測定物のKAM値(n)または平均KAM値(n)と同じ算出方法で求められる。また、被測定物のKAM値(n)または平均KAM値(n)と、被測定物と同一組成の鋳造材のKAM値(n)または平均KAM値(n)とは、同じ測定ピッチで測定された、同じ第n番目のKAM値(n)が用いられる。例えば、被測定物のKAM値(n)または平均KAM値(n)を測定ピッチ0.5μmで第10番目のKAM値(10th)により算出する場合には、被測定物と同一組成の鋳造材においても測定ピッチ0.5μm、第10番目のKAM値(10th)により算出する。   The KAM value (n) or the average KAM value (n) of the cast material having the same composition as the object to be measured is obtained by the same calculation method as the KAM value (n) or the average KAM value (n) of the object to be measured. Further, the KAM value (n) or average KAM value (n) of the object to be measured and the KAM value (n) or average KAM value (n) of the cast material having the same composition as the object to be measured are measured at the same measurement pitch. The same nth KAM value (n) is used. For example, when the KAM value (n) or the average KAM value (n) of the object to be measured is calculated from the tenth KAM value (10th) at a measurement pitch of 0.5 μm, the cast material having the same composition as the object to be measured Is calculated from the measurement pitch of 0.5 μm and the 10th KAM value (10th).

被測定物と同一組成の鋳造材における塑性変形の形態は、被測定物の塑性変形の形態と同じであることが好ましい。例えば、引張荷重が負荷されて塑性変形した被測定物の塑性ひずみ量を推定する場合には、引張荷重により塑性変形させた被測定物と同一組成の鋳造材についてKAM値(n)または平均KAM値(n)を算出することが好ましい。なお、圧縮荷重やクリープ荷重等が負荷されて塑性変形した被測定物についても同様である。   The form of plastic deformation in the cast material having the same composition as the object to be measured is preferably the same as the form of plastic deformation of the object to be measured. For example, when estimating the amount of plastic strain of a measurement object plastically deformed under a tensile load, the KAM value (n) or the average KAM for a cast material having the same composition as the measurement object plastically deformed by the tensile load. It is preferable to calculate the value (n). The same applies to an object to be measured that has undergone plastic deformation under a compression load, creep load, or the like.

被測定物と同一組成の鋳造材について塑性ひずみ量を変えてKAM値(n)または平均KAM値(n)を求め、例えば、塑性ひずみ量と、KAM値(n)または平均KAM値(n)との関係を示すマスター曲線を作成する。そして、被測定物のKAM値(n)または平均KAM値(n)と、被測定物と同一組成の鋳造材から求めたマスター曲線とを比較することにより、被測定物の塑性ひずみ量が推定される。   The KAM value (n) or the average KAM value (n) is obtained by changing the plastic strain amount of the cast material having the same composition as the object to be measured. For example, the plastic strain amount and the KAM value (n) or the average KAM value (n) Create a master curve showing the relationship between Then, the amount of plastic strain of the object to be measured is estimated by comparing the KAM value (n) or the average KAM value (n) of the object to be measured with a master curve obtained from a cast material having the same composition as the object to be measured. Is done.

記憶手段18には、被測定物と同一組成の鋳造材から求めた上記マスター曲線が鋳造材の種類に関連付けて蓄積されているので、塑性ひずみ量評価手段16は、被測定物のKAM値(n)または平均KAM値(n)を、記憶手段18から呼び出した上記マスター曲線と比較して被測定物の塑性ひずみ量を推定する。   Since the master curve obtained from the casting material having the same composition as the object to be measured is stored in the storage means 18 in association with the type of the casting material, the plastic strain amount evaluating means 16 has a KAM value ( n) or the average KAM value (n) is compared with the master curve called from the storage means 18 to estimate the plastic strain amount of the object to be measured.

出力工程(S18)は、推定された被測定物の塑性ひずみ量等を出力する工程である。プリンタやディスプレイ等に被測定物のKAM値(n)または平均KAM値(n)、被測定物の推定された塑性ひずみ量等が出力される。   The output step (S18) is a step of outputting the estimated plastic strain amount of the object to be measured. The KAM value (n) or average KAM value (n) of the object to be measured, the estimated plastic strain amount of the object to be measured, and the like are output to a printer, a display, or the like.

以上、上記構成によれば、鋳造材が塑性変形したときに転位が移動して堆積しやすい結晶粒界近傍の結晶方位を測定し、結晶方位差からKAM値(n)または平均KAM値(n)を算出しているので、例えば、結晶粒径1.0mm以上の大きい結晶粒からなる鋳造材の場合でも精度よく塑性ひずみ量を推定することができる。   As described above, according to the above configuration, when the cast material is plastically deformed, the crystal orientation in the vicinity of the crystal grain boundary where the dislocations move and deposit easily is measured, and the KAM value (n) or the average KAM value (n ) Is calculated, for example, the amount of plastic strain can be accurately estimated even in the case of a cast material made of large crystal grains having a crystal grain size of 1.0 mm or more.

鋳造材の引張試験を行って、KAM値と塑性ひずみ量の相関関係について評価した。   The cast material was subjected to a tensile test to evaluate the correlation between the KAM value and the amount of plastic strain.

鋳造材には、Ni基鋳造合金Inconel713C(登録商標)を使用した。鋳造後の熱処理は、実施していない。Ni基鋳造合金に引張荷重を負荷して塑性ひずみを導入した。図7は、引張試験片の形状を示す図である。引張試験は、JIS Z2241に準拠して室温で行った。引張試験片の評定部に導入する塑性ひずみ量は、1.5%、2.5%、4.41%とした。各ひずみ量が導入された時点で引張試験を中断した。また、塑性ひずみ量4.41%は、引張試験片が破断したときの破断ひずみである。   As the casting material, a Ni-base casting alloy Inconel 713C (registered trademark) was used. No heat treatment after casting was performed. A plastic strain was introduced by applying a tensile load to the Ni-base cast alloy. FIG. 7 is a diagram showing the shape of a tensile test piece. The tensile test was performed at room temperature according to JIS Z2241. The amount of plastic strain introduced into the evaluation part of the tensile test piece was 1.5%, 2.5%, and 4.41%. The tensile test was interrupted when each strain amount was introduced. The plastic strain amount of 4.41% is the breaking strain when the tensile test piece is broken.

引張試験後、試料の作製を行った。引張試験片の評定部から試料を切り出し、樹脂埋めした。試料の樹脂埋めは、引張応力軸方向に沿った面を観察できるように行った。そして、樹脂埋めした試料を耐水研磨紙で#100番から#1500番で順に研磨した後、アルミナ研磨材で研磨し、電解研磨で研磨仕上げした。アルミナ研磨材には、(株)フジミインコーポレーテッド製のFUJIMI METAPOLISH FM No.3(平均粒径1.0μm)を使用した。電解研磨条件については、電解研磨液に10%過塩素酸エタノールを使用し、電解研磨液の温度を248K〜258K(−25℃〜−20℃)とし、電圧を16Vとし、研磨時間を20秒間とした。   A sample was prepared after the tensile test. A sample was cut out from the evaluation part of the tensile test piece and filled with resin. The sample was filled with resin so that a surface along the tensile stress axis direction could be observed. Then, the resin-filled sample was polished in order from # 100 to # 1500 with water-resistant abrasive paper, then polished with an alumina abrasive and polished by electrolytic polishing. FUJIMI METAPOLISH FM No. manufactured by Fujimi Incorporated is used as the alumina abrasive. 3 (average particle size 1.0 μm) was used. As for the electropolishing conditions, 10% ethanol perchlorate was used as the electropolishing liquid, the temperature of the electropolishing liquid was 248K to 258K (-25 ° C to -20 ° C), the voltage was 16V, and the polishing time was 20 seconds. It was.

研磨仕上げ後、試料を走査型電子顕微鏡で観察した。Ni基鋳造合金の結晶粒径の大きさは、1.0mm以上であった。次に、各試料についてEBSD法で結晶方位測定を行った。結晶方位測定の測定ピッチは、0.5μmとした。まず、金属組織観察した領域を、同一面積の複数の正六角形の区画に分割して、各区画についてKAM値(10th)を算出した。   After polishing, the sample was observed with a scanning electron microscope. The crystal grain size of the Ni-based cast alloy was 1.0 mm or more. Next, the crystal orientation was measured for each sample by the EBSD method. The measurement pitch for crystal orientation measurement was 0.5 μm. First, the region of the metal structure observed was divided into a plurality of regular hexagonal sections having the same area, and a KAM value (10th) was calculated for each section.

図8は、塑性変形前のNi基鋳造合金におけるKAM値(10th)の分布図である。図9は、塑性ひずみ量1.5%のNi基鋳造合金におけるKAM値(10th)の分布図である。図10は、塑性ひずみ量2.5%のNi基鋳造合金におけるKAM値(10th)の分布図である。図11は、塑性ひずみ量4.41%のNi基鋳造合金におけるKAM値(10th)の分布図である。   FIG. 8 is a distribution diagram of the KAM value (10th) in the Ni-base cast alloy before plastic deformation. FIG. 9 is a distribution diagram of the KAM value (10th) in a Ni-based cast alloy having a plastic strain of 1.5%. FIG. 10 is a distribution diagram of KAM values (10th) in a Ni-based cast alloy having a plastic strain amount of 2.5%. FIG. 11 is a distribution diagram of KAM values (10th) in a Ni-based cast alloy having a plastic strain amount of 4.41%.

図8から図11におけるKAM値(10th)の分布図において、濃度が濃い部分がKAM値(10th)が高いことを示している。KAM値(10th)の閾値を1.5度として、結晶粒界近傍のKAM値(10th)が1.5度より大きい領域は除外した。図8から図11のKAM値(10th)の分布図に示すように、結晶粒界から5μm以内の領域のみを抜き出して、平均KAM値(10th)を算出した。平均KAM値(10th)の算出においては、基準区画を測定領域における全ての区画へ移動させて算出した。各塑性ひずみ量を付与した試料に対して、各々3箇所の測定領域について平均KAM値(10th)を算出して更に平均した。   In the distribution diagrams of the KAM value (10th) in FIG. 8 to FIG. 11, the portion where the density is high indicates that the KAM value (10th) is high. The threshold of the KAM value (10th) was set to 1.5 degrees, and the region where the KAM value (10th) in the vicinity of the grain boundary was larger than 1.5 degrees was excluded. As shown in the distribution diagrams of the KAM value (10th) in FIGS. 8 to 11, only the region within 5 μm from the grain boundary was extracted, and the average KAM value (10th) was calculated. In calculating the average KAM value (10th), the reference section was moved to all the sections in the measurement area. The average KAM value (10th) was calculated and further averaged for each of the three measurement regions for the samples to which each plastic strain amount was applied.

また、比較のため結晶粒全体の平均KAM値(10th)を算出した。結晶方位の測定ピッチを0.5μmとした。なお、平均KAM値(10th)の算出方法は、結晶方位の測定領域が結晶粒全体である点が相違しており、その他については上述した平均KAM値(10th)の算出方法と同じである。各塑性ひずみ量を付与した試料に対して、各々3つの結晶粒について平均KAM値(10th)を算出して更に平均した。   For comparison, an average KAM value (10th) of the entire crystal grains was calculated. The measurement pitch of the crystal orientation was 0.5 μm. The average KAM value (10th) is calculated in the same way as the above-described average KAM value (10th) except that the crystal orientation measurement region is the entire crystal grain. The average KAM value (10th) was calculated for each of the three crystal grains for each plastic strain, and the average was further averaged.

[結晶粒界から5μm以内の領域のみの平均KAM値(10th)、3箇所の測定領域の平均値]
変形前(ひずみ量0%) 0.637度
塑性ひずみ量1.5% 0.659度
塑性ひずみ量2.5% 0.810度
塑性ひずみ量4.41% 1.242度
[Average KAM value (10th) only in the region within 5 μm from the grain boundary, average value in three measurement regions]
Before deformation (strain amount 0%) 0.637 degrees Plastic strain amount 1.5% 0.659 degrees Plastic strain amount 2.5% 0.810 degrees Plastic strain amount 4.41% 1.242 degrees

[結晶粒全体の領域の平均KAM値(10th)、3つの結晶粒の平均値]
変形前(ひずみ量0%) 0.859度
塑性ひずみ量1.5% 0.701度
塑性ひずみ量2.5% 0.790度
塑性ひずみ量4.41% 0.783度
[Average KAM value (10th) of the entire crystal grain region, average value of three crystal grains]
Before deformation (strain 0%) 0.859 degrees Plastic strain 1.5% 0.701 degrees Plastic strain 2.5% 0.790 degrees Plastic strain 4.41% 0.783 degrees

図12は、結晶粒界から5μm以内の領域のみの平均KAM値(10th)と塑性ひずみ量との関係を示すグラフである。図13は、結晶粒全体の領域の平均KAM値(10th)と塑性ひずみ量との関係を示すグラフである。図12及び図13に示すグラフの横軸は塑性ひずみ量を示しており、グラフの縦軸は平均KAM値(10th)を示しており、各塑性ひずみ量に対する平均KAM値(10th)のデータが黒丸で示されている。   FIG. 12 is a graph showing the relationship between the average KAM value (10th) and the plastic strain amount only in the region within 5 μm from the crystal grain boundary. FIG. 13 is a graph showing the relationship between the average KAM value (10th) of the entire crystal grain region and the amount of plastic strain. The horizontal axis of the graphs shown in FIGS. 12 and 13 indicates the plastic strain amount, the vertical axis of the graph indicates the average KAM value (10th), and the data of the average KAM value (10th) for each plastic strain amount is Indicated by black circles.

図12のグラフに示すように、結晶粒界から5μm以内の領域のみの平均KAM値(10th)と塑性ひずみ量と関係は、相関関係を示している。つまり、Ni基鋳造合金の塑性ひずみ量が大きくなると、平均KAM値(10th)も大きくなる。このように、塑性ひずみ量と平均KAM値(10th)とは上記関係にあるので、平均KAM値(10th)から塑性ひずみ量を推定することができる。一方、図13のグラフに示すように、結晶粒全体の領域の平均KAM値(10th)と塑性ひずみ量との間には、相関関係は見られなかった。   As shown in the graph of FIG. 12, the relationship between the average KAM value (10th) and the plastic strain amount only in the region within 5 μm from the crystal grain boundary shows a correlation. That is, as the plastic strain amount of the Ni-base cast alloy increases, the average KAM value (10th) also increases. Thus, since the plastic strain amount and the average KAM value (10th) are in the above relationship, the plastic strain amount can be estimated from the average KAM value (10th). On the other hand, as shown in the graph of FIG. 13, no correlation was found between the average KAM value (10th) in the entire crystal grain region and the amount of plastic strain.

次に、試料の研磨仕上げの影響を評価するため、アルミナ研磨材による研磨後に、電解研磨に代えてコロイダルシリカ研磨材を用いて研磨仕上げしたものについて評価した。コロイダルシリカ研磨材には、ストルアス社製のOP−S懸濁液(主成分:コロイド状二酸化シリコン、PH:9.8、平均粒径:約0.04μm)を使用した。鋳造材は、上記電解研磨による評価試験と同じようにNi基鋳造合金Inconel713C(登録商標)を使用した。引張試験法についても、上記評価試験と同じようにJIS Z2241に準拠して室温で行った。   Next, in order to evaluate the influence of the polishing finish of the sample, the polishing finish using a colloidal silica abrasive instead of electrolytic polishing after polishing with an alumina abrasive was evaluated. As the colloidal silica abrasive, an OP-S suspension (main component: colloidal silicon dioxide, PH: 9.8, average particle size: about 0.04 μm) manufactured by Struers was used. As the casting material, the Ni-base casting alloy Inconel 713C (registered trademark) was used in the same manner as in the evaluation test by electrolytic polishing. The tensile test method was also performed at room temperature in accordance with JIS Z2241 as in the above evaluation test.

引張試験片の評定部に導入する塑性ひずみ量は、1.5%、2.5%、3.5%及び4.41%とし、各ひずみ量が導入された時点で引張試験を中断した。試料の研磨方法は、研磨仕上げでコロイダルシリカ研磨材を用いている以外は、上記評価試験と同じである。   The amount of plastic strain introduced into the evaluation part of the tensile test piece was 1.5%, 2.5%, 3.5%, and 4.41%, and the tensile test was interrupted when each strain amount was introduced. The sample polishing method is the same as the above-described evaluation test except that a colloidal silica abrasive is used in the polishing finish.

研磨仕上げ後、試料を走査型電子顕微鏡で観察し、各試料についてEBSD法で結晶方位測定を行った。結晶方位測定の測定ピッチは、0.5μmとした。まず、金属組織観察した領域について、同一面積の複数の正六角形の区画に分割して、各区画についてKAM値(10th)を算出した。   After polishing, the samples were observed with a scanning electron microscope, and the crystal orientation of each sample was measured by the EBSD method. The measurement pitch for crystal orientation measurement was 0.5 μm. First, the region observed in the metal structure was divided into a plurality of regular hexagonal sections having the same area, and a KAM value (10th) was calculated for each section.

図14は、塑性ひずみ量1.5%のNi基鋳造合金におけるKAM値(10th)の分布図である。図15は、塑性ひずみ量2.5%のNi基鋳造合金におけるKAM値(10th)の分布図である。図16は、塑性ひずみ量3.5%のNi基鋳造合金におけるKAM値(10th)の分布図である。図17は、塑性ひずみ量4.41%のNi基鋳造合金におけるKAM値(10th)の分布図である。   FIG. 14 is a distribution diagram of KAM values (10th) in a Ni-based cast alloy having a plastic strain of 1.5%. FIG. 15 is a distribution diagram of KAM values (10th) in a Ni-based cast alloy having a plastic strain amount of 2.5%. FIG. 16 is a distribution diagram of KAM values (10th) in a Ni-base cast alloy having a plastic strain amount of 3.5%. FIG. 17 is a distribution diagram of KAM values (10th) in a Ni-based cast alloy having a plastic strain amount of 4.41%.

図14から図17におけるKAM値(10th)の分布図において、濃度が濃い部分がKAM値(10th)が高いことを示している。図14から図17におけるKAM値(10th)の分布図に示すように、結晶粒界から5μm以内の領域のみを抜き出して、平均KAM値(10th)を算出した。なお、KAM値(10th)の閾値を1.5度として、結晶粒界近傍のKAM値(10th)が1.5度より大きい領域は除外した。平均KAM値(10th)の算出においては、基準区画を測定領域における全ての区画へ移動させて算出した。各塑性ひずみ量を付与した試料に対して、各々3箇所の測定領域について平均KAM値(10th)を算出して更に平均した。   In the distribution diagrams of the KAM value (10th) in FIG. 14 to FIG. 17, the portion where the density is high indicates that the KAM value (10th) is high. As shown in the distribution chart of the KAM value (10th) in FIGS. 14 to 17, only the region within 5 μm from the grain boundary was extracted, and the average KAM value (10th) was calculated. In addition, the threshold value of the KAM value (10th) was set to 1.5 degrees, and the region where the KAM value (10th) near the crystal grain boundary was larger than 1.5 degrees was excluded. In calculating the average KAM value (10th), the reference section was moved to all the sections in the measurement area. The average KAM value (10th) was calculated and further averaged for each of the three measurement regions for the samples to which each plastic strain amount was applied.

[結晶粒界から5μm以内の領域のみの平均KAM値(10th)、3箇所の測定領域の平均値]
変形前(ひずみ量0%) 0.534度
塑性ひずみ量1.5% 0.559度
塑性ひずみ量2.5% 0.682度
塑性ひずみ量3.5% 1.013度
塑性ひずみ量4.41% 1.309度
[Average KAM value (10th) only in the region within 5 μm from the grain boundary, average value in three measurement regions]
Before deformation (strain 0%) 0.534 degrees Plastic strain 1.5% 0.559 degrees Plastic strain 2.5% 0.682 degrees Plastic strain 3.5% 1.013 degrees Plastic strain 4 41% 1.309 degrees

図18は、結晶粒界から5μm以内の領域のみの平均KAM値(10th)と塑性ひずみ量との関係を示すグラフである。図18に示すグラフの横軸は塑性ひずみ量を示しており、グラフの縦軸は平均KAM値(10th)を示しており、各塑性ひずみ量に対する平均KAM値(10th)のデータが黒丸で示されている。   FIG. 18 is a graph showing the relationship between the average KAM value (10th) and the plastic strain amount only in the region within 5 μm from the crystal grain boundary. The horizontal axis of the graph shown in FIG. 18 indicates the plastic strain amount, the vertical axis of the graph indicates the average KAM value (10th), and the data of the average KAM value (10th) for each plastic strain amount is indicated by black circles. Has been.

図18のグラフに示すように、結晶粒界から5μm以内の領域のみの平均KAM値(10th)と塑性ひずみ量と関係は、相関関係を示している。つまり、Ni基鋳造合金の塑性ひずみ量が大きくなると、平均KAM値(10th)も大きくなる。このように、コロイダルシリカ研磨材で研磨仕上げした場合でも、塑性ひずみ量と平均KAM値(10th)とは上記関係にあるので、平均KAM値(10th)から塑性ひずみ量を推定することができる。   As shown in the graph of FIG. 18, the relationship between the average KAM value (10th) and the plastic strain amount only in the region within 5 μm from the grain boundary shows a correlation. That is, as the plastic strain amount of the Ni-base cast alloy increases, the average KAM value (10th) also increases. Thus, even when polished with a colloidal silica abrasive, since the plastic strain amount and the average KAM value (10th) are in the above relationship, the plastic strain amount can be estimated from the average KAM value (10th).

次に、図12に示すグラフと、図18に示すグラフとを比較したところ、塑性ひずみ量が2.5%以上では、研磨仕上げを電解研磨で行うよりも、コロイダルシリカ研磨材で研磨仕上げするほうが、塑性ひずみ量の変化量に対する平均KAM値(10th)の変化量が大きくなった。この結果から、試料の研磨仕上げを電解研磨で行うよりも、コロイダルシリカ研磨材で研磨仕上げするほうが、平均KAM値(10th)から塑性ひずみ量をより精度よく推定できることが明らかとなった。   Next, when the graph shown in FIG. 12 and the graph shown in FIG. 18 are compared, when the plastic strain amount is 2.5% or more, the polishing finish is finished with a colloidal silica abrasive rather than the electrolytic finish. However, the change amount of the average KAM value (10th) with respect to the change amount of the plastic strain was larger. From this result, it has been clarified that the amount of plastic strain can be estimated more accurately from the average KAM value (10th) by polishing the sample with a colloidal silica abrasive rather than by electrolytic polishing.

次に、例えば、所定時間使用したNi基鋳造合金製回転翼からなる実機の塑性ひずみ量を推定する場合について説明する。まず、実機から試料を採取し、樹脂埋めされて耐水研磨紙やダイヤモンド、アルミナ研磨材等で研磨された後、電解研磨による研磨仕上げまたはコロイダルシリカ研磨材で研磨仕上げする。研磨仕上げされた試料を走査型電子顕微鏡で観察し、同一結晶粒内の結晶粒界から5μm以内の領域のみを同一面積の複数の区画に分割して、各区画ごとに結晶方位を測定する。なお、測定ピッチは、0.5μmとする。複数の区画における各々の区画を基準区画としたときの、基準区画と、基準区画を囲む複数の区画との間の結晶方位差を求めて平均し、各々の区画のKAM値(10th)を算出し、各々の区画のKAM値(10th)を平均して平均KAM値(10th)を算出する。   Next, for example, a case where the plastic strain amount of an actual machine made of a Ni-base cast alloy rotor blade used for a predetermined time is estimated will be described. First, a sample is taken from an actual machine, filled with resin, polished with water-resistant abrasive paper, diamond, alumina abrasive, or the like, and then polished by electrolytic polishing or polished with a colloidal silica abrasive. The polished sample is observed with a scanning electron microscope, and only a region within 5 μm from the grain boundary in the same crystal grain is divided into a plurality of sections having the same area, and the crystal orientation is measured for each section. The measurement pitch is 0.5 μm. When each section in a plurality of sections is set as a reference section, the crystal orientation difference between the reference section and the plurality of sections surrounding the reference section is obtained and averaged, and the KAM value (10th) of each section is calculated. Then, the average KAM value (10th) is calculated by averaging the KAM values (10th) of the respective sections.

次に、試料の平均KAM値(10th)と、予め求めておいた試料と同一組成で既知の塑性変形を受けたNi基鋳造合金の平均KAM値(10th)とを比較して、実機の塑性ひずみ量を推定する。予め求めておいた試料と同一組成で既知の塑性変形を受けたNi基鋳造合金の平均KAM値(10th)には、図12に示すグラフのデータまたは図18に示すグラフのデータをマスター曲線として用いればよい。以上により、所定時間使用した実機の塑性ひずみ量を推定することができる。   Next, the average KAM value (10th) of the sample was compared with the average KAM value (10th) of the Ni-based cast alloy having the same composition as the sample and subjected to known plastic deformation, and the plasticity of the actual machine was compared. Estimate the amount of strain. The average KAM value (10th) of the Ni-based cast alloy having the same composition as that of the sample obtained in advance and subjected to known plastic deformation is the data of the graph shown in FIG. 12 or the data of the graph shown in FIG. 18 as a master curve. Use it. As described above, the plastic strain amount of the actual machine used for a predetermined time can be estimated.

10 塑性ひずみ量推定装置、12 結晶方位測定手段、14 KAM値算出手段、16 塑性ひずみ量評価手段、18 記憶手段、20 出力手段   DESCRIPTION OF SYMBOLS 10 Plastic strain amount estimation apparatus, 12 Crystal orientation measuring means, 14 KAM value calculation means, 16 Plastic strain amount evaluation means, 18 Storage means, 20 Output means

Claims (8)

鋳造材の塑性ひずみ量を推定する塑性ひずみ量推定装置であって、
塑性変形した被測定物の金属組織を構成する結晶粒のうち、同一結晶粒内の結晶粒界から10μm以内の領域のみを同一面積の複数の区画に分割して、各区画ごとに結晶方位を測定する結晶方位測定手段と、
前記複数の区画の1つを基準区画としたときの、前記基準区画と、前記基準区画を囲む複数の区画との間の結晶方位差を各々求めた後に平均して、前記基準区画に対するKAM値を算出するKAM値算出手段と、
前記被測定物のKAM値と、予め求めておいた前記被測定物と同一組成で既知の塑性変形を受けた鋳造材のKAM値とを比較して、前記被測定物の塑性ひずみ量を推定する塑性ひずみ量評価手段と、
を備えることを特徴とする塑性ひずみ量推定装置。
A plastic strain amount estimation device for estimating a plastic strain amount of a cast material,
Of the crystal grains constituting the metal structure of the plastically deformed object to be measured, only the region within 10 μm from the grain boundary within the same crystal grain is divided into a plurality of sections having the same area, and the crystal orientation is determined for each section. Crystal orientation measuring means for measuring,
When one of the plurality of sections is set as a reference section, a KAM value for the reference section is averaged after obtaining crystal orientation differences between the reference section and the plurality of sections surrounding the reference section. KAM value calculating means for calculating
The KAM value of the object to be measured is compared with the KAM value of a casting material having the same composition as that of the object to be measured and subjected to known plastic deformation, and the amount of plastic strain of the object to be measured is estimated. A plastic strain amount evaluation means,
An apparatus for estimating the amount of plastic strain, comprising:
請求項1に記載の塑性ひずみ量推定装置であって、
前記KAM値算出手段は、前記基準区画を他の区画へ順次移動させて、前記移動させた基準区画と、前記移動させた基準区画を囲む複数の区画との間の結晶方位差を求めた後に平均して、前記移動させた基準区画に対するKAM値を順次算出し、順次算出された前記移動させた基準区画に対するKAM値を平均して平均KAM値を算出し、
前記塑性ひずみ量評価手段は、前記被測定物の平均KAM値と、予め求めておいた前記被測定物と同一組成で既知の塑性変形を受けた鋳造材の平均KAM値とを比較して、前記被測定物の塑性ひずみ量を推定することを特徴とする塑性ひずみ量推定装置。
The plastic strain amount estimating apparatus according to claim 1,
The KAM value calculating means sequentially moves the reference section to another section, and obtains a crystal orientation difference between the moved reference section and a plurality of sections surrounding the moved reference section. On average, the KAM value for the moved reference section is sequentially calculated, and the average KAM value for the moved reference section is sequentially calculated to calculate the average KAM value.
The plastic strain amount evaluation means compares the average KAM value of the object to be measured with the average KAM value of a casting material that has been obtained in advance and has the same composition as the object to be measured and has undergone known plastic deformation, A plastic strain amount estimating apparatus for estimating a plastic strain amount of the object to be measured.
鋳造材の塑性ひずみ量を推定する塑性ひずみ量推定方法であって、
塑性変形した被測定物の金属組織を電子顕微鏡観察して、同一結晶粒内の結晶粒界から10μm以内の領域のみを同一面積の複数の区画に分割して、各区画ごとに結晶方位を測定する結晶方位測定工程と、
前記複数の区画の1つを基準区画としたときの、前記基準区画と、前記基準区画を囲む複数の区画との間の結晶方位差を各々求めた後に平均して、前記基準区画に対するKAM値を算出するKAM値算出工程と、
前記被測定物のKAM値と、予め求めておいた前記被測定物と同一組成で既知の塑性変形を受けた鋳造材のKAM値とを比較して、前記被測定物の塑性ひずみ量を推定する塑性ひずみ量評価工程と、
を備えることを特徴とする塑性ひずみ量推定方法。
A plastic strain amount estimation method for estimating a plastic strain amount of a cast material,
The microstructure of the plastically deformed object to be measured is observed with an electron microscope, and only the region within 10 μm from the grain boundary in the same crystal grain is divided into a plurality of sections having the same area, and the crystal orientation is measured for each section. A crystal orientation measuring step,
When one of the plurality of sections is set as a reference section, a KAM value for the reference section is averaged after obtaining crystal orientation differences between the reference section and the plurality of sections surrounding the reference section. A KAM value calculating step for calculating
The KAM value of the object to be measured is compared with the KAM value of a casting material having the same composition as that of the object to be measured and subjected to known plastic deformation, and the amount of plastic strain of the object to be measured is estimated. A plastic strain amount evaluation step to perform,
A plastic strain amount estimation method characterized by comprising:
請求項3に記載の塑性ひずみ量推定方法であって、
前記KAM値算出工程は、前記基準区画を他の区画へ順次移動させて、前記移動させた基準区画と、前記移動させた基準区画を囲む複数の区画との間の結晶方位差を求めた後に平均して、前記移動させた基準区画に対するKAM値を順次算出し、順次算出された前記移動させた基準区画に対するKAM値を平均して平均KAM値を算出し、
前記塑性ひずみ量評価工程は、前記被測定物の平均KAM値と、予め求めておいた前記被測定物と同一組成で既知の塑性変形を受けた鋳造材の平均KAM値とを比較して、前記被測定物の塑性ひずみ量を推定することを特徴とする塑性ひずみ量推定方法。
The plastic strain amount estimation method according to claim 3,
After the KAM value calculation step sequentially moves the reference section to another section and obtains a crystal orientation difference between the moved reference section and a plurality of sections surrounding the moved reference section. On average, the KAM value for the moved reference section is sequentially calculated, and the average KAM value for the moved reference section is sequentially calculated to calculate the average KAM value.
The plastic strain amount evaluation step compares the average KAM value of the object to be measured with the average KAM value of a casting material that has been obtained in advance and has the same composition as that of the object to be measured, and has undergone known plastic deformation. A plastic strain amount estimation method for estimating a plastic strain amount of the object to be measured.
請求項3または4に記載の塑性ひずみ量推定方法であって、
前記領域は、結晶粒界から5μm以内の領域のみであることを特徴とする塑性ひずみ量推定方法。
The plastic strain amount estimation method according to claim 3 or 4,
The plastic strain estimation method, wherein the region is only a region within 5 μm from the grain boundary.
請求項3から5のいずれか1つに記載の塑性ひずみ量推定方法であって、
前記被測定物は、コロイダルシリカで研磨仕上げされることを特徴とする塑性ひずみ量推定方法。
The plastic strain amount estimation method according to any one of claims 3 to 5,
A plastic strain amount estimation method, wherein the object to be measured is polished with colloidal silica.
請求項3から6のいずれか1つに記載の塑性ひずみ量推定方法であって、
前記被測定物のKAM値は、閾値以下であることを特徴とする塑性ひずみ量推定方法。
The plastic strain amount estimation method according to any one of claims 3 to 6,
A plastic strain amount estimation method, wherein a KAM value of the object to be measured is equal to or less than a threshold value.
請求項3から7のいずれか1つに記載の塑性ひずみ量推定方法であって、
前記鋳造材はNi基鋳造合金であり、前記鋳造材の結晶粒径が1mm以上であることを特徴とする塑性ひずみ量推定方法。
The plastic strain amount estimation method according to any one of claims 3 to 7,
The method for estimating the amount of plastic strain, wherein the cast material is a Ni-based cast alloy, and the crystal grain size of the cast material is 1 mm or more.
JP2011016492A 2011-01-28 2011-01-28 Plastic strain amount estimation device and plastic strain amount estimation method Pending JP2012154891A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011016492A JP2012154891A (en) 2011-01-28 2011-01-28 Plastic strain amount estimation device and plastic strain amount estimation method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011016492A JP2012154891A (en) 2011-01-28 2011-01-28 Plastic strain amount estimation device and plastic strain amount estimation method

Publications (1)

Publication Number Publication Date
JP2012154891A true JP2012154891A (en) 2012-08-16

Family

ID=46836749

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011016492A Pending JP2012154891A (en) 2011-01-28 2011-01-28 Plastic strain amount estimation device and plastic strain amount estimation method

Country Status (1)

Country Link
JP (1) JP2012154891A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015151486A1 (en) * 2014-04-02 2015-10-08 Jfeスチール株式会社 Iron powder for dust core, and sorting method for iron powder for dust core
JP2015206713A (en) * 2014-04-22 2015-11-19 株式会社Ihi Method for calculating gn dislocation density of metal material
JP2017504032A (en) * 2014-01-28 2017-02-02 アンスティテュ、ナショナール、デ、スィアンス、アプリケ、ド、リヨンInstitut National Des Sciences Appliquees De Lyon Method for mapping crystal orientation in a sample made of polycrystalline material
CN111948042A (en) * 2020-07-13 2020-11-17 首钢集团有限公司 Elastic-plastic deformation evaluation method for strain gauge patch position of tensile sample

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004003922A (en) * 2002-04-01 2004-01-08 Mitsubishi Heavy Ind Ltd Method for measuring remaining lifetime of material, and apparatus for measuring remaining lifetime using the same
JP2005106486A (en) * 2003-09-26 2005-04-21 Mitsubishi Heavy Ind Ltd Method and device for measuring life expectancy
JP2007322151A (en) * 2006-05-30 2007-12-13 Genshiryoku Anzen Syst Kenkyusho:Kk Method of identifying plastic strain of metal material
JP2009052993A (en) * 2007-08-27 2009-03-12 Genshiryoku Anzen Syst Kenkyusho:Kk Measuring method of orientation difference distribution of crystal orientation, and measuring method of local distribution of plastic strain
JP2009092652A (en) * 2007-09-18 2009-04-30 Toshiba Corp Remaining life evaluation method and deformation amount evaluation method for metallic material
JP2009264750A (en) * 2008-04-21 2009-11-12 Nippon Steel Corp Analyzing system of material characteristics of polycrystalline solid, analyzing method of material characteristics of polycrystalline solid, analyzing program of material characteristics of polycrystalline solid and recording medium
JP2010164430A (en) * 2009-01-15 2010-07-29 Toshiba Corp Method and apparatus for evaluating creep damage of metallic material
JP2010197269A (en) * 2009-02-26 2010-09-09 Kyocera Corp Sample observation method
JP2012002614A (en) * 2010-06-16 2012-01-05 Hitachi Ltd Damage evaluation method and apparatus for metallic material

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004003922A (en) * 2002-04-01 2004-01-08 Mitsubishi Heavy Ind Ltd Method for measuring remaining lifetime of material, and apparatus for measuring remaining lifetime using the same
JP2005106486A (en) * 2003-09-26 2005-04-21 Mitsubishi Heavy Ind Ltd Method and device for measuring life expectancy
JP2007322151A (en) * 2006-05-30 2007-12-13 Genshiryoku Anzen Syst Kenkyusho:Kk Method of identifying plastic strain of metal material
JP2009052993A (en) * 2007-08-27 2009-03-12 Genshiryoku Anzen Syst Kenkyusho:Kk Measuring method of orientation difference distribution of crystal orientation, and measuring method of local distribution of plastic strain
JP2009092652A (en) * 2007-09-18 2009-04-30 Toshiba Corp Remaining life evaluation method and deformation amount evaluation method for metallic material
JP2009264750A (en) * 2008-04-21 2009-11-12 Nippon Steel Corp Analyzing system of material characteristics of polycrystalline solid, analyzing method of material characteristics of polycrystalline solid, analyzing program of material characteristics of polycrystalline solid and recording medium
JP2010164430A (en) * 2009-01-15 2010-07-29 Toshiba Corp Method and apparatus for evaluating creep damage of metallic material
JP2010197269A (en) * 2009-02-26 2010-09-09 Kyocera Corp Sample observation method
JP2012002614A (en) * 2010-06-16 2012-01-05 Hitachi Ltd Damage evaluation method and apparatus for metallic material

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017504032A (en) * 2014-01-28 2017-02-02 アンスティテュ、ナショナール、デ、スィアンス、アプリケ、ド、リヨンInstitut National Des Sciences Appliquees De Lyon Method for mapping crystal orientation in a sample made of polycrystalline material
WO2015151486A1 (en) * 2014-04-02 2015-10-08 Jfeスチール株式会社 Iron powder for dust core, and sorting method for iron powder for dust core
CN106163701A (en) * 2014-04-02 2016-11-23 杰富意钢铁株式会社 Iron powder for dust core and the screening technique of iron powder for dust core
JP6052419B2 (en) * 2014-04-02 2016-12-27 Jfeスチール株式会社 Method for selecting iron powder for dust core and iron powder for dust core
JP2015206713A (en) * 2014-04-22 2015-11-19 株式会社Ihi Method for calculating gn dislocation density of metal material
CN111948042A (en) * 2020-07-13 2020-11-17 首钢集团有限公司 Elastic-plastic deformation evaluation method for strain gauge patch position of tensile sample
CN111948042B (en) * 2020-07-13 2023-09-15 首钢集团有限公司 Elastic plastic deformation evaluation method for tensile sample strain gauge patch position

Similar Documents

Publication Publication Date Title
Pouillier et al. A study of intergranular fracture in an aluminium alloy due to hydrogen embrittlement
Hazeli et al. Microstructure-sensitive investigation of magnesium alloy fatigue
Salvati et al. Micro-scale measurement & FEM modelling of residual stresses in AA6082-T6 Al alloy generated by wire EDM cutting
Pilchak et al. Observations of facet formation in near-α titanium and comments on the role of hydrogen
Wilkinson et al. High-resolution electron backscatter diffraction: an emerging tool for studying local deformation
Adams et al. The effects of heat treatment on very high cycle fatigue behavior in hot-rolled WE43 magnesium
Gall et al. In-situ observations of high cycle fatigue mechanisms in cast AM60B magnesium in vacuum and water vapor environments
Keller et al. Influence of a rescanning strategy with different laser powers on the microstructure and mechanical properties of Hastelloy X elaborated by powder bed fusion
Sistaninia et al. Fatigue crack initiation and crystallographic growth in 316L stainless steel
JP2012154891A (en) Plastic strain amount estimation device and plastic strain amount estimation method
Zambrano et al. Fracture toughness and growth of short and long fatigue cracks in ductile cast iron EN‐GJS‐400‐18‐LT
Basu et al. Determination of grain boundary mobility during recrystallization by statistical evaluation of electron backscatter diffraction measurements
JP2009052993A (en) Measuring method of orientation difference distribution of crystal orientation, and measuring method of local distribution of plastic strain
Lorenzino et al. Grain size effects on notch sensitivity
JP2009092652A (en) Remaining life evaluation method and deformation amount evaluation method for metallic material
Nayyeri et al. An instrumented spherical indentation study on high purity magnesium loaded nearly parallel to the c-axis
Adams Investigating microstructural effects on short crack growth and fatigue life behavior of WE43 Magnesium
JP2009281782A (en) Residual stress distribution estimating method, displacement density estimating method, residual stress distribution estimating device, displacement density estimating device, program and recording medium
Liu et al. Quantifying surface deformation around micrometer-scale indents by digital image correlation
Wang Influences of sample preparation on the indentation size effect and nanoindentation pop-in on nickel
Sefer et al. Evaluation of the Bulk and Alpha‐Case Layer Properties in Ti‐6Al‐4V at Micro‐And Nano‐Metric Length Scale
Gavras et al. Fatigue crack growth microstructural mechanisms and texture-sensitive predictive modeling of lightweight structural metals
Oh et al. Low angle boundary migration of shot‐peened pure nickel investigated by electron channeling contrast imaging and electron backscatter diffraction
Tschopp et al. Characterizing Primary Dendritic Microstructures to Quantify the Processing‐Structure‐Property Relationship in Single Crystal Nickel‐Based Superalloys
Gupta et al. Measuring the effect of environment on fatigue crack-wake plasticity in aluminum alloy 2024 using electron backscatter diffraction

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20131126

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140306

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140722

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140825

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20141111