JP2012154815A - Method and apparatus for measuring biogenous physiologically active substance - Google Patents

Method and apparatus for measuring biogenous physiologically active substance Download PDF

Info

Publication number
JP2012154815A
JP2012154815A JP2011014574A JP2011014574A JP2012154815A JP 2012154815 A JP2012154815 A JP 2012154815A JP 2011014574 A JP2011014574 A JP 2011014574A JP 2011014574 A JP2011014574 A JP 2011014574A JP 2012154815 A JP2012154815 A JP 2012154815A
Authority
JP
Japan
Prior art keywords
active substance
measuring
biologically active
protein
derived
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2011014574A
Other languages
Japanese (ja)
Inventor
Katsuya Inada
捷也 稲田
Shigeatsu Endo
重厚 遠藤
Tairyo Hirono
泰亮 廣野
Takaharu Asano
貴春 浅野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kowa Co Ltd
Iwate Medical University
Original Assignee
Kowa Co Ltd
Iwate Medical University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kowa Co Ltd, Iwate Medical University filed Critical Kowa Co Ltd
Priority to JP2011014574A priority Critical patent/JP2012154815A/en
Priority to EP12739322.1A priority patent/EP2669683A4/en
Priority to US13/981,893 priority patent/US20130309704A1/en
Priority to PCT/JP2012/051715 priority patent/WO2012102353A1/en
Publication of JP2012154815A publication Critical patent/JP2012154815A/en
Pending legal-status Critical Current

Links

Images

Abstract

PROBLEM TO BE SOLVED: To improve the accuracy of a measurement when measuring the density of a biogenous physiologically active substance in a specimen by a stirring turbidimetric method, a light scattering method, or an AL-bound beads method, by suppressing aggregation and gelation that is not derived from the physiologically active substance but caused by stirring of liquid mixture.SOLUTION: When a protein aggregation derived from a reaction between AL and a biogenous physiologically active substance is detected by mixing AL and a specimen including the biogenous physiologically active substance while stirring the liquid mixture, a heat-treated predetermined protein is previously added to the liquid mixture so as to suppress the protein aggregation or gelation that is not derived from the reaction between the AL and the biogenous physiologically active substance in the liquid mixture.

Description

本発明は、エンドトキシンやβ−D−グルカンなど、ALとの反応によってゲル化する特性を有する生物由来の生理活性物質を含有する試料中の該生理活性物質を検出しまたはその濃度を測定するための測定方法及び測定装置に関する。   The present invention is for detecting or measuring the concentration of a physiologically active substance in a sample containing a biologically active substance derived from an organism having a property of gelling by reaction with AL, such as endotoxin and β-D-glucan. It relates to a measuring method and a measuring apparatus.

エンドトキシンはグラム陰性菌の細胞壁に存在するリポ多糖であり、最も代表的な発熱性物質である。このエンドトキシンに汚染された輸液、注射薬剤、血液などが人体に入ると、発熱やショックなどの重篤な副作用を惹起するおそれがある。このため、上記の薬剤などは、エンドトキシンにより汚染されることが無いように管理することが義務付けられている。一方で、敗血症患者血液中のエンドトキシンを測定することにより、重篤なエンドトキシンショックの予防や治療に寄与することもある。   Endotoxin is a lipopolysaccharide present in the cell wall of Gram-negative bacteria and is the most typical pyrogen. If an infusion solution, injection drug, blood, or the like contaminated with this endotoxin enters the human body, it may cause serious side effects such as fever and shock. For this reason, it is obliged to manage the above drugs so that they are not contaminated by endotoxin. On the other hand, measuring endotoxin in the blood of septic patients may contribute to the prevention and treatment of severe endotoxin shock.

注射薬などのエンドトキシン汚染を検出するための半定量的試験法として、従前は以下のような方法がとられることがあった。すなわち、体重1.5kg以上の健康なウサギの耳静脈に、37℃に加温した試料を注射し、注射後3時間まで30分以下の間隔で体温を測定する。注射の40分前から注射までの間に30分間隔で2回測定したウサギの体温の平均値を対象体温とし、対象体温と最高体温との差を体温上昇とする。   As a semi-quantitative test method for detecting endotoxin contamination such as injections, the following method has been used in the past. That is, a sample heated to 37 ° C. is injected into the ear vein of a healthy rabbit weighing 1.5 kg or more, and the body temperature is measured at intervals of 30 minutes or less until 3 hours after the injection. The average value of the body temperature of the rabbit measured twice at 30 minute intervals between 40 minutes before the injection and the injection is taken as the subject body temperature, and the difference between the subject body temperature and the maximum body temperature is taken as the body temperature rise.

3匹のウサギを用いて上記の体温上昇を測定し、3匹の体温上昇の合計によって次のような判定が行われる。まず、3匹の体温上昇の合計が1.3℃以下の場合は発熱性物質陰性とし、2.5℃以上の場合は発熱性物質陽性とする。そして、3匹の体温上昇の合計が1.3℃より大きく2.5℃未満である場合にはさらに3匹による試験を追加し、計6匹の体温上昇の合計が3.0℃以下の場合は発熱性物質陰性とし、4.2℃以上の場合は発熱性物質陽性とする。その際の温度上昇の合計が3.0℃より大きく4.2℃未満である場合には、さらに3匹による試験を追加し、計9匹の体温上昇が5.0℃未満であれば発熱性物質陰性とし、5.0℃以上であれば発熱性物質陽性とする。   The above-mentioned body temperature rise is measured using three rabbits, and the following determination is made based on the sum of the three body temperature rises. First, if the total body temperature rise of 3 animals is 1.3 ° C. or less, the exothermic substance is negative, and if it is 2.5 ° C. or more, the exothermic substance is positive. If the total body temperature rise of 3 animals is greater than 1.3 ° C and less than 2.5 ° C, a test with 3 animals is added, and the total body temperature rise of 6 animals is less than 3.0 ° C. If the temperature is 4.2 ° C. or higher, the pyrogen substance is positive. If the total temperature rise is greater than 3.0 ° C and less than 4.2 ° C, a test with 3 animals is added. If the body temperature rise of 9 animals is less than 5.0 ° C, fever occurs. If the temperature is 5.0 ° C. or higher, the exothermic substance is positive.

また、β−D−グルカンは真菌に特徴的な細胞膜を構成しているポリサッカライド(多糖体)である。β−D−グルカンを測定することによりカンジダやアスペルギルス、クリプトコッカスのような一般の臨床でよく見られる真菌のみならず、稀な真菌も含む広範囲で真菌感染症のスクリーニングなどに有効である。   Β-D-glucan is a polysaccharide (polysaccharide) that constitutes a cell membrane characteristic of fungi. By measuring β-D-glucan, it is effective for screening a wide range of fungal infections including not only common fungi such as Candida, Aspergillus, cryptococcus but also rare fungi.

ところで、カブトガニの血球抽出物(以下、「AL :Amoebocyte lysate」ともいう。
)の中には、エンドトキシンやβ−D−グルカンなどによって活性化されるセリンプロテアーゼが存在する。そして、ALとエンドトキシンやβ−D−グルカンとが反応する際には、それらの量に応じて活性化されたセリンプロテアーゼによる酵素カスケードによって、AL中に存在するコアギュロゲンがコアギュリンへと加水分解されて会合し、不溶性のゲルが生成される。このALの特性を用いて、エンドトキシンやβ−D−グルカンを高感度に検出することが可能である。近年、このことを利用して、エンドトキシンなどの検出または濃度測定にALを用いる方法が考案されている。
By the way, a blood cell extract of horseshoe crab (hereinafter also referred to as “AL: Amoebocyte lysate”).
) Include serine proteases activated by endotoxin, β-D-glucan, and the like. When AL reacts with endotoxin or β-D-glucan, coagulogen present in AL is hydrolyzed into coagulin by an enzyme cascade by serine protease activated according to the amount of AL. Associate and produce an insoluble gel. Endotoxin and β-D-glucan can be detected with high sensitivity using the characteristics of AL. In recent years, a method using AL for detection or concentration measurement of endotoxin has been devised using this fact.

このエンドトキシンやβ−D−グルカンなどの、ALによって検出可能な生物由来の生理活性物質(以下、所定生理活性物質ともいう)の検出または濃度測定を行う方法としては、所定生理活性物質の検出または濃度測定(以下、単純に「所定生理活性物質の測定」ともいう。)をすべき試料とALを元に製造された試薬(AL試薬)とを混和した混和液を静置し、一定時間後に容器を転倒させて、試料の垂れ落ちの有無によりゲル化したかど
うかを判定し、試料に一定濃度以上のエンドトキシンが含まれるか否かを調べる半定量的なゲル化法がある。
As a method for detecting or measuring the concentration of biologically active substances derived from organisms (hereinafter also referred to as predetermined physiologically active substances) such as endotoxin and β-D-glucan, detection of predetermined physiologically active substances or A mixture of a sample to be measured for concentration (hereinafter simply referred to as “measurement of a predetermined physiologically active substance”) and a reagent produced based on AL (AL reagent) is allowed to stand, and after a certain period of time. There is a semi-quantitative gelation method in which a container is turned over to determine whether or not the sample has gelled depending on whether or not the sample sags, and whether or not the sample contains endotoxin at a certain concentration or higher.

あるいは、所定生理活性物質の測定をすべき試料とALとを混和した混和液を37℃が維持された状態で静置し、ALと所定生理活性物質との反応によるゲルの生成に伴う試料の濁りを経時的に計測して解析する比濁法がある。この比濁法においては、測定開始後、透過率がある一定値以下に低下した時点をゲル化時間とする。定量は,ゲル化時間が検体中のエンドトキシン量と相関があることを利用する。すなわち、予め既知量のエンドトキシンが混入している複数の標準試料を測定して作成した検量線と、測定によって得られたゲル化時間とから、検体中のエンドトキシン量を算出する。   Alternatively, the mixture of the sample to be measured for the predetermined physiologically active substance and AL is allowed to stand in a state where the temperature is maintained at 37 ° C., and the sample accompanying the generation of the gel by the reaction between AL and the predetermined physiologically active substance is prepared. There is a turbidimetric method that measures and analyzes turbidity over time. In this turbidimetric method, after the start of measurement, the time when the transmittance has dropped below a certain value is defined as the gel time. Quantification uses the fact that gelation time is correlated with the amount of endotoxin in the sample. That is, the amount of endotoxin in the specimen is calculated from a calibration curve prepared by measuring a plurality of standard samples mixed with a known amount of endotoxin in advance and the gelation time obtained by the measurement.

上記の比濁法によって所定生理活性物質の測定を行う場合には、乾熱滅菌処理されたガラス製測定セルに測定試料とALとの混和液を生成させる。そして、混和液を静置してそのゲル化を外部から光学的に測定する。これに対し、AL試薬と混和した検体を攪拌しながら上記比濁法で測定する攪拌比濁法もある。この攪拌比濁法では、ガラス製測定セル内に入っている攪拌子を回転させることによって測定中も試料が攪拌される。そして、上記比濁法と同様、検量線法によって検体中のエンドトキシン量が算出される。攪拌比濁法では、測定中に試料を攪拌することによって上記の比濁法よりも迅速かつ安定に測定が可能である。   When measuring a predetermined physiologically active substance by the turbidimetric method described above, a mixed solution of the measurement sample and AL is generated in a glass measurement cell subjected to dry heat sterilization. And the liquid mixture is left still and the gelation is optically measured from the outside. On the other hand, there is a stirring turbidimetric method in which a sample mixed with an AL reagent is measured by the turbidimetric method while stirring. In this stirring turbidimetric method, the sample is stirred during the measurement by rotating the stirring bar contained in the glass measurement cell. Then, similarly to the turbidimetric method, the endotoxin amount in the specimen is calculated by the calibration curve method. In the stirring turbidimetric method, measurement can be performed more rapidly and stably than the turbidimetric method by stirring the sample during measurement.

また、測定試料とALと共に、表面にALが結合した微粒子(以下、AL結合ビーズともいう。)を含んだ混和液を生成させ、上記攪拌比濁法で測定するAL結合ビーズ法もある。このAL結合ビーズ法では、試料とAL及びAL結合ビーズの反応によって生じるAL結合ビーズの凝集に伴う試料の濁りを経時的に計測して解析する。このAL結合ビーズ法においては、測定開始後、透過率がある一定値以上に上昇した時点をゲル化時間とする。そして、上記攪拌比濁法と同様、検量線法によって検体中のエンドトキシン量が算出される。AL結合ビーズ法は、上記の比濁法や攪拌比濁法よりも迅速に測定をすることができる。これは主にAL結合ビーズ法では、コアギュリンより10から100倍以上大きいAL結合ビーズが凝集するため、透過率の変化が鋭敏となるためである。   There is also an AL-bound bead method in which a mixed solution containing fine particles having AL bound to the surface (hereinafter also referred to as AL-bound beads) together with the measurement sample and AL is generated and measured by the stirring turbidimetric method. In this AL-bound bead method, turbidity of the sample accompanying the aggregation of AL-bound beads caused by the reaction between the sample and AL and the AL-bound beads is measured and analyzed over time. In this AL-bound bead method, the time when the transmittance increases to a certain value or more after the start of measurement is defined as the gel time. Then, similarly to the stirring turbidimetric method, the endotoxin amount in the specimen is calculated by the calibration curve method. The AL-bound bead method can measure more rapidly than the turbidimetric method and the stirring turbidimetric method described above. This is mainly due to the fact that in the AL-bound bead method, AL-bound beads that are 10 to 100 times larger than coagulin agglutinate, and the change in transmittance becomes sharp.

さらに、測定試料とALとの混和液を例えば磁性攪拌子を用いて攪拌することにより、ゲル微粒子を生成せしめ、ゲル粒子により散乱されるレーザー光の強度から、試料中の所定生理活性物質の存在を短時間で測定できるレーザー光散乱粒子計測法(以下、単に光散乱法ともいう。)も提案されている。試料とALとの反応によってゲル粒子が生成され、反応が進行してそれらが互いに凝集すると、散乱光においてスパイク状のピーク信号が検出される。光散乱法においては、これらのピーク信号がある一定の頻度以上で検出した時点を凝集開始時間とする。上記ゲル化時間と同様、凝集開始時間は検体中のエンドトキシン量と相関があるので、これを利用して検量線法によって検体中のエンドトキシン量を算出する。   Furthermore, the mixture of the measurement sample and AL is stirred using, for example, a magnetic stirrer to form gel fine particles. From the intensity of the laser light scattered by the gel particles, the presence of a predetermined physiologically active substance in the sample A laser light scattering particle measurement method (hereinafter also simply referred to as a light scattering method) has been proposed. Gel particles are generated by the reaction between the sample and AL, and when the reaction proceeds and they aggregate with each other, a spike-like peak signal is detected in the scattered light. In the light scattering method, the time point when these peak signals are detected at a certain frequency or higher is set as the aggregation start time. Similar to the gelation time, the aggregation start time has a correlation with the endotoxin amount in the sample, and this is used to calculate the endotoxin amount in the sample by the calibration curve method.

光散乱法でも,ガラス製試料セル内に入っている攪拌子を回転させることによって,測定中も試料が攪拌されるが、攪拌の目的が攪拌比濁法とは異なる。上記ピーク信号は,ゲル粒子が検体に入射したレーザー光を横切ったときに検出される。ゲル粒子がレーザー光を横切ることができるように攪拌によってゲル粒子を移動させるのである。光散乱法は,上記の比濁法や攪拌比濁法よりも迅速,高感度に測定をすることができる。これは主に光散乱法が、ゲル化の初期段階、すなわち、小さなゲル粒子が生成された時点でこれを検出することができることが要因である。   Even in the light scattering method, the sample is stirred during the measurement by rotating the stirring bar contained in the glass sample cell, but the purpose of stirring is different from the stirring turbidimetric method. The peak signal is detected when the gel particles cross the laser beam incident on the specimen. The gel particles are moved by stirring so that the gel particles can cross the laser beam. The light scattering method can measure more rapidly and with higher sensitivity than the turbidimetric method and the stirring turbidimetric method described above. This is mainly due to the fact that the light scattering method can detect this at the initial stage of gelation, that is, when small gel particles are generated.

一方、試薬中に添加した凝固酵素に対する合成基質を予め入れておき、凝固酵素によって分解された合成基質が発色、あるいは、蛍光、さらには発光する現象を測定する方法が
あり、発色を利用した方法は比色法と呼ばれ、所定生理活性物質の重要な測定法の一つとして広く利用されている。比色法には、所定生理活性物質の濃度と、一定反応時間後における発色基の遊離量との間に相関関係があることを利用するエンドポイント−比色法や、所定生理活性物質の濃度と、混和液の収光度あるいは透過率がある一定の値に達するのに要する時間,または発色の経時変化率との間に相関関係があることを利用するカイネティック−比色法がある。
On the other hand, there is a method for measuring a phenomenon in which a synthetic substrate for a coagulation enzyme added in a reagent is previously stored, and the synthetic substrate decomposed by the coagulation enzyme develops color, or fluorescence, and further emits light. Is called a colorimetric method, and is widely used as one of important measurement methods for a predetermined physiologically active substance. In the colorimetric method, there is an end point-colorimetric method that utilizes the fact that there is a correlation between the concentration of a predetermined physiologically active substance and the amount of liberated chromophore after a certain reaction time, or the concentration of a predetermined physiologically active substance. There is a kinetic-colorimetric method that uses the fact that there is a correlation between the time required for the light absorption or transmittance of the admixture to reach a certain value, or the rate of change with time of color development.

ここで、上記した攪拌比濁法や光散乱法のように、ガラス製試料セル内でAL試薬と試料の混和液を攪拌子によって攪拌する場合、反応曲線(時間に対する透過率/吸光度(攪拌比濁法)、あるいはゲル粒子数(光散乱法))の形状が変化してしまい、測定によって得られるゲル化時間、あるいは凝集開始時間の精度が低下してしまうことが問題となっている(例えば、非特許文献1を参照。)。これらの問題を回避するため、各測定法では、ゲル化時間、あるいは凝集開始時間を決定するアルゴリズムに工夫をこらし,多少の反応曲線の変化が生じても,測定結果に影響が及ばないようにしている(例えば、特許文献1を参照。)。   Here, when the mixture of the AL reagent and the sample is stirred with a stirrer in a glass sample cell as in the stirring turbidimetric method and the light scattering method, the reaction curve (transmittance / absorbance with respect to time (stirring ratio) is used. (Turbidity method) or the number of gel particles (light scattering method)) changes, and the accuracy of the gelation time or aggregation start time obtained by measurement is reduced (for example, , See Non-Patent Document 1.) In order to avoid these problems, each measurement method has been devised to determine the gelation time or aggregation start time so that even if there are some changes in the reaction curve, the measurement results are not affected. (For example, refer to Patent Document 1).

しかしながら、特に希薄な血漿製剤中のエンドトキシンや注射用水そのものを測定する場合などでは、上記の回避策が完全に機能せず、誤った結果が得られる場合があった。攪拌によって反応曲線の形状が変化する原因が特定できておらず,直接的な対策がされていないのが現状である。   However, especially when measuring endotoxin in dilute plasma preparations or water for injection itself, the above-mentioned workaround may not function completely, and erroneous results may be obtained. The cause of the change in the shape of the reaction curve due to agitation has not been identified, and no direct measures have been taken.

特開2010−216878号公報JP 2010-216878 A 特開2004−061314号公報JP 2004-061314 A 特開平10−293129号公報JP-A-10-293129 国際公開第WO2008/038329号パンフレットInternational Publication No. WO2008 / 038329 Pamphlet 特開2009−150723号公報JP 2009-150723 A

高橋学、柴田繁啓、鈴木泰、小鹿雅博、松本尚也、小豆嶋立頼、稲田捷也、遠藤重厚、「エンドトキシン散乱測光法を用いたエンドトキシン測定法の臨床応用における課題」、エンドトキシン血症救命治療研究会誌、第14巻、第1号p.111−119、2010Manabu Takahashi, Shigehiro Shibata, Yasushi Suzuki, Masahiro Oga, Naoya Matsumoto, Tatsuyori Shodoshima, Junya Inada, Shigetatsu Endo, “Problems in Endotoxin Measurement Using Endotoxin Scattering Photometry”, Endotoxemia Lifesaving Journal of Therapeutic Research Society, Vol. 14, No. 1, p. 111-119, 2010

本発明の目的とするところは、カブトガニの血球抽出物であるALと生物由来の生理活性物質との反応に起因する凝集あるいはゲル化を光学的に測定する、生物由来の生理活性物質の測定法において、より高い測定精度を得るための技術を提供することである。   An object of the present invention is to provide a method for measuring a biologically active substance derived from a living organism by optically measuring aggregation or gelation resulting from the reaction between AL, which is a blood cell extract of horseshoe crab, and the biologically active substance derived from the living organism. In other words, a technique for obtaining higher measurement accuracy is provided.

より詳しくは、攪拌比濁法、光散乱法、あるいはAL結合ビーズ法によって試料中の生物由来の生理活性物質の濃度を測定する場合に、AL試薬と試料の混和液の攪拌に起因して生じる、前記生理活性物質に由来しない凝集またはゲル化を抑制することによって、上記測定の測定精度を向上させることを目的とする。   More specifically, it occurs due to the stirring of the mixture of the AL reagent and the sample when the concentration of the biologically active substance derived from the organism in the sample is measured by the stirring turbidimetric method, the light scattering method, or the AL binding bead method. An object of the present invention is to improve the measurement accuracy of the above measurement by suppressing aggregation or gelation not derived from the physiologically active substance.

本発明は、AL試薬と生物由来の生理活性物質を含む試料とを混和させ、混和液を攪拌しつつ、混和液におけるALと生物由来の生理活性物質との反応に起因する蛋白質の凝集またはゲル化を検出する際に、予め熱処理を施した所定の蛋白質を混和液に添加すること
で、該混和液におけるALと生物由来の生理活性物質との反応に起因しない、蛋白質の凝集またはゲル化を抑制することを最大の特徴とする。
The present invention mixes an AL reagent and a sample containing a biologically active substance derived from a living organism, stirs the mixed solution, and aggregates or gels a protein resulting from the reaction between the AL and the biologically active substance derived from the living organism in the mixed solution. When detecting crystallization, by adding a predetermined protein that has been heat-treated in advance to the mixture, protein aggregation or gelation is not caused by the reaction between AL in the mixture and the biologically active substance derived from the organism. The greatest feature is suppression.

より詳しくは、カブトガニの血球抽出物であるALと所定の生物由来の生理活性物質を含む試料の混和液を生成し、該混和液を攪拌しつつ、該混和液におけるALと前記生理活性物質との反応に起因する蛋白質の凝集またはゲル化を検出することで、前記試料中の前記生理活性物質を検出しまたは前記生理活性物質の濃度を測定する、生物由来の生理活性物質の測定方法であって、
前記攪拌をする際には、前記混和液に、予め熱処理を施した所定の蛋白質を添加することで、前記混和液における前記生理活性物質に由来しない凝集またはゲル化を抑制することを特徴とする。
More specifically, a mixed solution of a sample containing AL, which is a blood cell extract of horseshoe crab, and a biologically active substance derived from a predetermined organism is generated, and while stirring the mixed liquid, the AL and the physiologically active substance in the mixed liquid are mixed. This is a method for measuring a biologically active substance derived from a living body, wherein the biologically active substance in the sample is detected or the concentration of the physiologically active substance is measured by detecting protein aggregation or gelation caused by the reaction of And
When the agitation is performed, a predetermined protein that has been heat-treated in advance is added to the admixture to suppress aggregation or gelation that is not derived from the physiologically active substance in the admixture. .

ここで、混和液の攪拌によって試料とAL試薬との反応曲線が変化する現象の原因が以下のものであることが明確になってきた。すなわち、生物由来の生理活性物質の含有量が非常に少ない試料を測定する場合は、攪拌によって、(1)AL試薬および/または試料
中に含まれる蛋白質同士が凝集し、あるいは、(2)攪拌に伴うずり応力(物理的刺激)によってプロクロッティング・エンザイムが切断・活性化され、クロッティング・エンザイムに変化し、生物由来の生理活性物質に由来しない凝集物が生成されることが見出された。
Here, it has become clear that the cause of the phenomenon that the reaction curve between the sample and the AL reagent is changed by stirring the admixture is as follows. That is, when measuring a sample with a very low content of biologically-derived physiologically active substance, (1) the AL reagent and / or the proteins contained in the sample are aggregated by stirring, or (2) stirring. It is found that the shearing stress (physical stimulus) accompanying cleaving causes the proclotting enzyme to be cleaved and activated, changing to the clotting enzyme, and generating aggregates not derived from biologically active substances derived from living organisms. It was.

この生物由来の生理活性物質に由来しない凝集は、攪拌比濁法及び光散乱法の両方の方法においてゲル粒子の発生と同様の信号として検出されてしまうため、反応曲線(タイムコース)の形状に影響を及ぼし、測定精度が低下し、誤計測をもたらす危険性があった。これに対し、発明者らの鋭意研究により、試料とAL試薬の混和時に、予め熱処理した所定の蛋白質を添加することで上記の生物由来の生理活性物質に由来しない凝集またはゲル化の誘発を抑制できることが見出された。さらに、この熱処理した所定の蛋白質を試料に添加しても、生物由来の生理活性物質に由来する凝集またはゲル化の測定に影響がないことが実験によって確認された。   Aggregation not derived from the biologically active substance derived from this organism is detected as a signal similar to the generation of gel particles in both the stirring turbidimetric method and the light scattering method, so that the shape of the reaction curve (time course) is obtained. There was a risk that the measurement accuracy would be reduced, resulting in erroneous measurement. On the other hand, the inventors' diligent research has suppressed the induction of aggregation or gelation not derived from the above-mentioned biologically active substances by adding a predetermined heat-treated protein when mixing the sample and the AL reagent. It was found that it was possible. Furthermore, it was confirmed by experiments that the addition of this heat-treated predetermined protein to the sample had no effect on the measurement of aggregation or gelation derived from biologically active substances derived from living organisms.

本発明によれば、特に生物由来の生理活性物質の含有量の少ない試料とAL試薬との混和液における凝集またはゲル化を攪拌しつつ測定する場合に、攪拌による、生物由来の生理活性物質に起因しない凝集またはゲル化を抑制することができる。その結果、生物由来の生理活性物質の測定における精度を向上させることができる。   According to the present invention, when measuring aggregation or gelation in a mixed solution of a sample having a low biological bioactive substance content and an AL reagent with stirring, the bioactive bioactive substance by stirring is used. Aggregation or gelation which is not caused can be suppressed. As a result, it is possible to improve accuracy in measurement of biologically active substances derived from living organisms.

また、本発明においては、前記予め熱処理を施した所定の蛋白質は、アルブミン、グロブリン、リゾチウムのうちの少なくとも一種としてもよい。これらの蛋白質は、試料とAL試薬の混和時に添加されることにより、生物由来の生理活性物質に由来しない凝集またはゲル化の誘発を抑制できることが確認されているため、より確実に、攪拌による、生物由来の生理活性物質に起因しない凝集またはゲル化を抑制することができる。なお、本発明に用いることのできる蛋白質として、例えば、ヒト血漿中に存在する蛋白質、動植物、あるいは昆虫の蛋白質など多数種類を用いることができると考えられる。説明の都合上、本文書ではアルブミンを中心に記述することにする。   In the present invention, the predetermined protein subjected to the heat treatment in advance may be at least one of albumin, globulin, and lysozyme. These proteins have been confirmed to be able to suppress the induction of aggregation or gelation not derived from biologically active substances derived from living organisms by being added at the time of mixing the sample and the AL reagent. Aggregation or gelation not caused by biologically active substances derived from living organisms can be suppressed. In addition, it is thought that many types, such as protein which exists in human plasma, animal and plant, or an insect protein, can be used as a protein which can be used for this invention, for example. For convenience of explanation, this document will focus on albumin.

また、本発明においては、前記予め熱処理を施した所定の蛋白質がアルブミンの場合は、前記混和液に添加する際の最終濃度は、0.015%以上10%以下としてもよい。これによって、より効果的に、攪拌による生物由来の生理活性物質に起因しない凝集またはゲル化を抑制することができる。なお、上記最終濃度は、望ましくは、0.03%以上5%以下がよい。さらに望ましくは、0.05%以上0.5%以下がよい。   In the present invention, when the predetermined protein subjected to the heat treatment is albumin, the final concentration when added to the mixture may be 0.015% or more and 10% or less. This can more effectively suppress aggregation or gelation that is not caused by a biologically active substance derived from a living organism due to stirring. The final concentration is preferably 0.03% or more and 5% or less. More desirably, it is 0.05% or more and 0.5% or less.

また、本発明においては、所定の蛋白質に予め施す熱処理の温度は70℃以上が望まし
い。また、上記熱処理の時間は10分以上が望ましい。また、所定の蛋白質に予め施す熱処理としては、オートクレーブ滅菌処理を行ってもよいし、アルミブロックヒーターなどの機器を用いた加熱処理を行ってもよい。これらの熱処理によって、熱処理を施さない蛋白質を添加した場合よりも、攪拌による生物由来の生理活性物質に起因しない凝集またはゲル化をより確実に抑制することができる。
In the present invention, the temperature of the heat treatment previously applied to a predetermined protein is desirably 70 ° C. or higher. The heat treatment time is preferably 10 minutes or longer. In addition, as the heat treatment previously applied to a predetermined protein, an autoclave sterilization treatment may be performed, or a heat treatment using a device such as an aluminum block heater may be performed. By these heat treatments, aggregation or gelation that is not caused by biologically active substances derived from organisms due to stirring can be more reliably suppressed than when a protein that is not subjected to heat treatment is added.

なお、上記オートクレーブ滅菌処理の温度は一般に120℃以上である。この温度範囲とすることで、より確実に、攪拌による生物由来の生理活性物質に起因しない凝集またはゲル化を抑制することができる。より詳しくは、オートクレーブ滅菌処理の温度は120℃以上300℃以下が望ましく、120℃以上260℃以下がより望ましい。   The temperature of the autoclave sterilization is generally 120 ° C. or higher. By setting it as this temperature range, the aggregation or gelation which is not caused by the biologically active substance derived from the organism by stirring can be suppressed more reliably. More specifically, the autoclave sterilization temperature is preferably 120 ° C. or higher and 300 ° C. or lower, more preferably 120 ° C. or higher and 260 ° C. or lower.

また、上記オートクレーブ滅菌処理で熱処理を行った場合、熱処理の時間は10分以上とするとよい。この時間範囲とすることで、より確実に、攪拌による生物由来の生理活性物質に起因しない凝集またはゲル化を抑制することができる。より詳しくは、10分以上120分以下とすることが望ましい。この時間範囲とすることで、より確実に、攪拌による生物由来の生理活性物質に起因しない凝集またはゲル化を抑制することができるとともに、蛋白質を汚染している生物由来の生理活性物質をより確実に不活化することができる。   Moreover, when heat processing is performed by the said autoclave sterilization process, it is good for the time of heat processing to be 10 minutes or more. By setting it as this time range, the aggregation or gelation which is not attributed to the biologically active substance derived from the organism by stirring can be suppressed more reliably. In more detail, it is desirable to set it as 10 minutes or more and 120 minutes or less. By setting this time range, it is possible to more reliably suppress aggregation or gelation that is not caused by biologically active substances derived from organisms due to stirring, and more reliably biologically active substances derived from organisms that contaminate proteins. Can be inactivated.

また、アルミブロックヒーターを用いて、120℃よりも低温の95℃での加熱を施した場合でも、10分以上加熱することで、攪拌による生物由来の生理活性物質に起因しない凝集またはゲル化を抑制する効果が確認されている。従って、アルミブロックヒーターを用いて加熱処理を行った場合、熱処理の温度は、95℃以上とするとよい。より詳しくは95℃以上260℃以下としてもよい。また、加熱処理における加熱時間は10分以上とするとよい。より詳しくは10分以上120分以下としてもよい。以上のような熱処理条件を採用することで、より確実に、攪拌による生物由来の生理活性物質に起因しない凝集またはゲル化を抑制することができる。   In addition, even when heating at 95 ° C., which is lower than 120 ° C., using an aluminum block heater, by heating for 10 minutes or more, aggregation or gelation not caused by biologically active substances derived from organisms by stirring is achieved. The inhibitory effect has been confirmed. Therefore, when heat treatment is performed using an aluminum block heater, the temperature of the heat treatment is preferably 95 ° C. or higher. More specifically, the temperature may be 95 ° C. or higher and 260 ° C. or lower. The heating time in the heat treatment is preferably 10 minutes or more. More specifically, it may be 10 minutes or more and 120 minutes or less. By adopting the heat treatment conditions as described above, aggregation or gelation that is not caused by a biologically active substance derived from a living body by stirring can be more reliably suppressed.

しかしながら本発明においては、より効果的に、攪拌による生物由来の生理活性物質に起因しない凝集またはゲル化を抑制することができる蛋白質濃度や加熱温度、加熱時間であれば上記の条件にはこだわらない。例えば、90℃3時間等という条件で、より低い温度であっても長い時間オートクレーブ滅菌処理を行うことで、攪拌による生物由来の生理活性物質に起因しない凝集またはゲル化を抑制するとともに、蛋白質を汚染している生物由来の生理活性物質を充分に失活させることが可能である。   However, in the present invention, the above conditions are not particularly limited as long as the protein concentration, the heating temperature, and the heating time can suppress the aggregation or gelation not caused by the biologically active substance derived from the organism by stirring more effectively. . For example, by performing autoclave sterilization for a long time even at a lower temperature, such as at 90 ° C. for 3 hours, the aggregation or gelation not caused by biologically active substances derived from organisms due to stirring is suppressed, and the protein is It is possible to sufficiently inactivate physiologically active substances derived from contaminated organisms.

また、本発明においては、前記生物由来の生理活性物質は、エンドトキシンまたはβ−D−グルカンであってもよい。   In the present invention, the biologically active substance derived from the organism may be endotoxin or β-D-glucan.

そうすれば、最も代表的な発熱性物質であるエンドトキシンの検出または濃度測定がより正確に行なえ、エンドトキシンに汚染された輸液、注射薬剤、血液などが人体に入り、副作用が惹起されることを抑制できる。同様に、β−D−グルカンの検出または濃度測定がより正確に行なえ、カンジダやスペルギルス、クリプトコッカスのような一般の臨床でよく見られる真菌のみならず、稀な真菌も含む広範囲で真菌感染症のスクリーニングをより正確に行なうことが可能となる。   In this way, endotoxin, the most typical pyrogen, can be detected or measured more precisely, and endotoxin-contaminated fluids, injections, blood, etc. can enter the human body and prevent side effects. it can. Similarly, β-D-glucan can be detected or measured more accurately, and a wide range of fungal infections including not only common clinical fungi such as Candida, Spergillus, and Cryptococcus but also rare fungi can be detected. Screening can be performed more accurately.

また、本発明は、カブトガニの血球抽出物であるALを含み、所定の生物由来の生理活性物質を含む試料との混和液を生成し、該混和液を攪拌しつつ、前記生理活性物質に起因する蛋白質の凝集またはゲル化を検出することで、前記試料中の前記生理活性物質を検出しまたは前記生理活性物質の濃度を測定するための、生物由来の生理活性物質の測定用試薬であって、予め熱処理を施した所定の蛋白質が添加され、前記混和液における前記生理
活性物質に由来しない凝集またはゲル化を抑制可能としたこと特徴とする生物由来の生理活性物質の測定用試薬であってもよい。また、その場合は、前記予め熱処理を施した所定の蛋白質は、アルブミン、グロブリン、リゾチウムのうちの少なくとも一種としてもよい。
In addition, the present invention includes AL, which is a blood cell extract of horseshoe crab, generates a mixed solution with a sample containing a biologically active substance derived from a predetermined organism, and agitates the mixed liquid while causing the physiologically active substance to A reagent for measuring a biologically active substance derived from a living organism for detecting the physiologically active substance in the sample or measuring the concentration of the physiologically active substance by detecting aggregation or gelation of the protein A reagent for measuring a biologically active substance derived from a living organism, characterized in that a predetermined protein that has been heat-treated in advance is added, and aggregation or gelation not derived from the physiologically active substance in the mixed solution can be suppressed. Also good. In that case, the predetermined protein subjected to the heat treatment in advance may be at least one of albumin, globulin, and lysozyme.

また、本発明は、所定の生物由来の生理活性物質を含む試料とカブトガニの血球抽出物であるALとの混和液を光の入射が可能な状態に保持するとともに該混和液における反応を進行させる混和液保持手段と、
前記混和液保持手段中の前記混和液を攪拌する攪拌手段と、
前記混和液保持手段中の混和液に光を入射する光入射手段と、
前記入射光の前記混和液における透過光または散乱光を受光し電気信号に変換する受光手段と、
前記受光手段において変換された電気信号から前記試料中における前記生理活性物質とALとの反応開始時刻を判定する判定手段と、
予め定められた、前記反応開始時刻と前記生理活性物質の濃度との関係より、前記試料中の前記生理活性物質の存在または濃度を導出する導出手段と、を備える生物由来の生理活性物質の測定装置であって、
前記攪拌手段によって、前記混和液を攪拌する際に、予め熱処理を施した所定の蛋白質を前記混和液に添加する蛋白質添加手段をさらに備えることを特徴とする生物由来の生理活性物質の測定装置であってもよい。
In addition, the present invention maintains a mixed solution of a sample containing a physiologically active substance derived from a predetermined organism and AL, which is a blood cell extract of horseshoe crab, in a state where light can be incident and promotes a reaction in the mixed solution. A mixture holding means;
Stirring means for stirring the mixed liquid in the mixed liquid holding means;
A light incident means for making light incident on the mixed liquid in the mixed liquid holding means;
A light receiving means for receiving transmitted light or scattered light in the admixture of the incident light and converting it into an electrical signal;
Determination means for determining the reaction start time of the physiologically active substance and AL in the sample from the electrical signal converted in the light receiving means;
Measurement of a biologically active substance derived from an organism, comprising: a derivation means for deriving the presence or concentration of the physiologically active substance in the sample from a predetermined relationship between the reaction start time and the concentration of the physiologically active substance. A device,
An apparatus for measuring a biologically active substance derived from a living organism, further comprising protein addition means for adding a predetermined protein that has been previously heat-treated to the admixture when the admixture is agitated by the agitation means. There may be.

この装置によれば、試料とAL試薬との混和液を攪拌する際に、自動的に、予め熱処理を施した所定の蛋白質を前記混和液に添加することができ、より簡単に、該混和液における前記生理活性物質に由来しない、蛋白質の凝集またはゲル化を抑制することができる。   According to this apparatus, when the mixed solution of the sample and the AL reagent is stirred, a predetermined protein that has been previously heat-treated can be automatically added to the mixed solution. Protein aggregation or gelation not derived from the physiologically active substance in can be suppressed.

この装置においても、蛋白質添加手段によって添加される蛋白質は、アルブミン、グロブリン、リゾチウムのうちの少なくとも一種としてもよい。また、添加される蛋白質がアルブミンの場合は、混和液に添加する際の最終濃度は、0.015%以上10%以下とするとよい。また、添加される蛋白質に予め施す熱処理として、例えばオートクレーブ滅菌処理を行ってもよい。その場合、オートクレーブ滅菌処理の温度は120℃以上で、オートクレーブ滅菌処理の時間は10分以上としてもよい。また、添加される蛋白質に予め施す熱処理として、例えばアルミブロックヒーターなどの機器を用いた加熱処理を行ってもよい。その場合、熱処理の温度は、95℃以上とするとよい。また、加熱処理における加熱時間は10分以上とするとよい。さらに、生物由来の生理活性物質は、エンドトキシンまたはβ−D−グルカンとしてもよい。   Also in this apparatus, the protein added by the protein addition means may be at least one of albumin, globulin, and lysozyme. When the protein to be added is albumin, the final concentration when added to the mixture is preferably 0.015% or more and 10% or less. Moreover, you may perform an autoclave sterilization process, for example as heat processing performed beforehand to the protein added. In that case, the temperature of the autoclave sterilization treatment may be 120 ° C. or more, and the time of the autoclave sterilization treatment may be 10 minutes or more. Moreover, you may perform the heat processing using apparatuses, such as an aluminum block heater, as the heat processing given beforehand to the protein added, for example. In that case, the temperature of the heat treatment is preferably 95 ° C. or higher. The heating time in the heat treatment is preferably 10 minutes or more. Furthermore, the biologically active substance derived from a living body may be endotoxin or β-D-glucan.

なお、上記した本発明の課題を解決する手段については、可能なかぎり組み合わせて用いることができる。   The means for solving the above-described problems of the present invention can be used in combination as much as possible.

本発明にあっては、攪拌比濁法、光散乱法、あるいはAL結合ビーズ法によって試料中の生物由来の生理活性物質の濃度を測定する場合に、混和液の攪拌に起因して生じる、前記生理活性物質に由来しない凝集またはゲル化を抑制することによって、上記測定の測定精度を向上させることができる。   In the present invention, when the concentration of a biologically active substance derived from a living organism in a sample is measured by a stirring turbidimetric method, a light scattering method, or an AL binding bead method, By suppressing aggregation or gelation not derived from a physiologically active substance, the measurement accuracy of the above measurement can be improved.

本発明の実施例1における光散乱粒子計測装置の概略構成を示す図である。It is a figure which shows schematic structure of the light-scattering particle | grain measuring apparatus in Example 1 of this invention. 従来の、試料中のエンドトキシン濃度とゲル化検出時間との関係と、検量線とを示すグラフである。It is a graph which shows the relationship between the endotoxin density | concentration in a sample and gelation detection time, and a calibration curve conventionally. 試料とAL試薬との混和液に添加するヒト血清アルブミン(HSA)の濃度と、ゲル化検出時間との関係を示すグラフである。It is a graph which shows the relationship between the density | concentration of the human serum albumin (HSA) added to the liquid mixture of a sample and AL reagent, and gelation detection time. HSAを添加した場合と、HSA未添加の場合の検量線及び相関係数を示す図である。It is a figure which shows the calibration curve and correlation coefficient when HSA is added and when HSA is not added. 攪拌回転数とゲル化検出時間との関係を示すグラフである。It is a graph which shows the relationship between stirring rotation speed and gelation detection time. 本発明の実施例1における比濁計測装置の概略構成を示す図である。It is a figure which shows schematic structure of the turbidimetric measuring apparatus in Example 1 of this invention. 本発明の実施例2における光散乱粒子計測装置の概略構成を示す図である。It is a figure which shows schematic structure of the light-scattering particle | grain measuring apparatus in Example 2 of this invention. 本発明の実施例2における比濁計測装置の概略構成を示す図である。It is a figure which shows schematic structure of the turbidimetric measuring apparatus in Example 2 of this invention. エンドトキシンまたはβ―D−グルカンにより、ALがゲル化する過程及び、その検出方法について説明するための概略図である。It is the schematic for demonstrating the process which AL gelatinizes by an endotoxin or (beta) -D-glucan, and its detection method.

<実施例1>
ALとエンドトキシンとが反応してゲルが生成される過程(以下、リムルス反応ともいう。)はよく調べられている。すなわち、図9に示すように、エンドトキシンがAL中のセリンプロテアーゼであるC因子に結合すると、C因子は活性化して活性型C因子となり、活性型C因子はAL中の別のセリンプロテアーゼであるB因子を加水分解して活性化させ活性化B因子とする。この活性化B因子は直ちにAL中の凝固酵素の前駆体を加水分解して凝固酵素とし、さらに、この凝固酵素がAL中のコアギュロゲンを加水分解してコアギュリンを生成する。そして、生成したコアギュリンが互いに会合して不溶性のゲルをさらに生成し、AL全体がこれに巻き込まれてゲル化すると考えられている。
<Example 1>
The process by which AL and endotoxin react to form a gel (hereinafter also referred to as the Limulus reaction) is well investigated. That is, as shown in FIG. 9, when endotoxin binds to factor C which is a serine protease in AL, factor C is activated to become active factor C, and active factor C is another serine protease in AL. Factor B is hydrolyzed and activated to obtain activated factor B. This activated factor B immediately hydrolyzes the precursor of the clotting enzyme in AL to form a clotting enzyme, and this clotting enzyme hydrolyzes the coagulogen in AL to produce coagulin. And it is thought that the produced coagulin associates with each other to further generate an insoluble gel, and the entire AL is involved and gelled.

また、同様にβ−D−グルカンがAL中のG因子に結合すると、G因子は活性化して活性型G因子となる、活性型G因子はAL中の凝固酵素の前駆体を加水分解して凝固酵素とする。その結果、エンドトキシンとALとの反応と同様、コアギュリンが生成され、生成したコアギュリンが互いに会合して不溶性のゲルをさらに生成する。   Similarly, when β-D-glucan binds to factor G in AL, factor G is activated to become active factor G. Active factor G hydrolyzes the precursor of coagulation enzyme in AL. Coagulation enzyme. As a result, similarly to the reaction between endotoxin and AL, coagulin is produced, and the produced coagulin associates with each other to further produce an insoluble gel.

この一連の反応は哺乳動物に見られるクリスマス因子やトロンビンなどのセリンプロテアーゼを介したフィブリンゲルの生成過程に類似している。このような酵素カスケード反応はごく少量の活性化因子であっても、その後のカスケードを連鎖して活性化していくために非常に強い増幅作用を有する。従って、ALを用いた所定生理活性物質の測定法によれば、サブピコグラム/mLオーダーのきわめて微量の所定生理活性物質を検出することが可能になっている。   This series of reactions is similar to the fibrin gel formation process mediated by serine proteases such as Christmas factors and thrombin found in mammals. Such an enzyme cascade reaction has a very strong amplification action because even a very small amount of activator is activated by linking the subsequent cascade. Therefore, according to the method for measuring a predetermined physiologically active substance using AL, it is possible to detect a very small amount of the predetermined physiologically active substance on the order of subpicogram / mL.

エンドトキシンならびにβ―D−グルカンを定量するための試薬としては、カブトガニの血球抽出物(AL:Amoebocyte lysate)を原料としたリムルス試薬、ならびに、リムルス試薬に凝固酵素により加水分解され着色強度、蛍光強度、または化学発光強度のいずれかが増加する合成基質を添加した試薬が使用される。また、リムルス試薬中のC因子の組換え体(リコンビナントC因子)とその合成基質(着色、蛍光、化学発光かの手段は問わない)の混合試薬などが使用される場合もある。さらに、リムルス試薬中のG因子の組換え体(リコンビナントG因子)とその合成基質(着色、蛍光、化学発光かの手段は問わない)の混合試薬などを使用することも可能である。   Reagents for quantifying endotoxin and β-D-glucan include Limulus reagent made from horseshoe crab blood cell extract (AL: Amoebocyte lysate), and coloring intensity and fluorescence intensity hydrolyzed by coagulase to Limulus reagent. Or a reagent with a synthetic substrate that increases either the chemiluminescence intensity is used. Moreover, a mixed reagent of a recombinant of factor C (recombinant factor C) in a Limulus reagent and its synthetic substrate (regardless of coloring, fluorescence, chemiluminescence) may be used. Furthermore, it is also possible to use a mixed reagent of a recombinant of factor G (recombinant factor G) in a Limulus reagent and its synthetic substrate (regardless of coloring, fluorescence, chemiluminescence).

エンドトキシンやβ−D−グルカンなどの所定生理活性物質とALとの反応に起因して変化する物理量は、試薬の種類に応じて選択すればよい。試料の光透過率または、濁度、散乱光強度、光散乱粒子数、吸光度、蛍光強度、化学発光強度などの光学的な物理量の変化を検出するか、試料のゲル化に伴う試料の粘性、電気伝導度などの物理量の変化を検出すればよい。これらの物理量の検出には、濁度計、吸光光度計、光散乱光度計、レーザー光散乱粒子計測計、蛍光光度計、フォトンカウンターなどの光学機器、ならびに、これらを応用した専用の測定装置を使用することができる。また、粘度計、電気伝導率計やこれらを応用した専用の測定装置を使用しても構わない。   The physical quantity that changes due to the reaction between a predetermined physiologically active substance such as endotoxin or β-D-glucan and AL may be selected according to the type of reagent. Detects the light transmittance of the sample or changes in optical physical quantities such as turbidity, scattered light intensity, number of light scattering particles, absorbance, fluorescence intensity, chemiluminescence intensity, or viscosity of the sample as the sample gels, What is necessary is just to detect the change of physical quantities, such as electrical conductivity. For the detection of these physical quantities, turbidimeters, absorptiometers, light scattering photometers, laser light scattering particle measuring instruments, fluorescent photometers, photon counters, and other optical instruments, as well as dedicated measuring devices that apply them, are used. Can be used. Moreover, you may use a viscometer, an electrical conductivity meter, and the measuring apparatus for exclusive use which applied these.

所定生理活性物質を定量する測定法としては前述のように攪拌比濁法ならびに光散乱法が挙げられる。図9に示すように、これらの測定法はALの酵素カスケード反応によって生成されるコアギュリンの会合物を前者は試料の濁りとして、後者は系内に生成されるゲルの微粒子の数として検出することで、高感度な測定を可能にしている。   Examples of the measurement method for quantifying the predetermined physiologically active substance include the stirring turbidimetric method and the light scattering method as described above. As shown in FIG. 9, these measurement methods detect the coagulin aggregation produced by the enzyme cascade reaction of AL as the turbidity of the sample, and the latter as the number of gel fine particles produced in the system. This enables highly sensitive measurement.

次に、本実施例において散乱光を取得するために使用した光散乱粒子計測装置について説明する。なお、以下の説明においては、所定生理活性物質としてエンドトキシンを例にとって説明するが、以下の説明はβ−D−グルカンなど他の生理活性物質にも適用可能である。図1には、本実施例におけるエンドトキシンの測定装置としての光散乱粒子計測装置1の概略構成を示す。光散乱粒子計測装置1に使用される光源2にはレーザー光源が用いられているが、他に、超高輝度LEDなどを用いてもよい。光源2から照射された光は、入射光学系3で絞られ、試料セル4に入射する。この試料セル4にはエンドトキシンの測定をすべき試料とAL試薬の混和液が保持されている。試料セル4に入射した光は、混和液中の粒子(コアギュロゲンモノマー、ならびに、コアギュロゲンオリゴマーなどの測定対象)で散乱される。   Next, a light scattering particle measuring apparatus used for acquiring scattered light in this embodiment will be described. In the following description, endotoxin will be described as an example of the predetermined physiologically active substance. However, the following description is applicable to other physiologically active substances such as β-D-glucan. In FIG. 1, schematic structure of the light-scattering particle | grain measuring apparatus 1 as an endotoxin measuring apparatus in a present Example is shown. Although a laser light source is used as the light source 2 used in the light scattering particle measuring apparatus 1, an ultra-high brightness LED or the like may be used. The light emitted from the light source 2 is focused by the incident optical system 3 and enters the sample cell 4. The sample cell 4 holds a mixture of a sample to be measured for endotoxin and the AL reagent. The light incident on the sample cell 4 is scattered by particles (coagulogen monomer, measurement object such as coagulogen oligomer) in the mixture.

試料セル4の、入射光軸の側方には出射光学系5が配置されている。また、出射光学系5の光軸の延長上には、試料セル4内の混和液中の粒子で散乱され出射光学系5で絞られた散乱光を受光し電気信号に変換する受光素子6が配置されている。受光素子6には、受光素子6で光電変換された電気信号を増幅する増幅回路7、増幅回路7によって増幅された電気信号からノイズを除去するためのフィルタ8、ノイズが除去された後の電気信号のピーク数からゲル粒子数を演算し、さらにゲル化検出時間を判定してエンドトキシンの濃度を導出する演算装置9及び、結果を表示する表示器10が電気的に接続されている。   An emission optical system 5 is arranged on the side of the incident optical axis of the sample cell 4. In addition, on the extension of the optical axis of the output optical system 5, there is a light receiving element 6 that receives scattered light that is scattered by particles in the mixed liquid in the sample cell 4 and is narrowed by the output optical system 5 and converts it into an electrical signal. Has been placed. The light receiving element 6 includes an amplifying circuit 7 for amplifying the electric signal photoelectrically converted by the light receiving element 6, a filter 8 for removing noise from the electric signal amplified by the amplifying circuit 7, and the electricity after the noise is removed. A calculation device 9 for calculating the number of gel particles from the number of signal peaks, further determining the gelation detection time to derive the endotoxin concentration, and a display 10 for displaying the result are electrically connected.

また、試料セル4には、外部から電磁力を及ぼすことで回転し、試料としての混和液を攪拌する攪拌子11が備えられており、試料セル4の外部には、攪拌器12が備えられている。これらにより、攪拌の有無及び攪拌速度の調整が可能となっている。   Further, the sample cell 4 is provided with a stirrer 11 that rotates by applying electromagnetic force from the outside and stirs the mixed liquid as a sample, and a stirrer 12 is provided outside the sample cell 4. ing. Thus, it is possible to adjust the presence / absence of stirring and the stirring speed.

ここで、試料セル4は本実施例の混和液保持手段に相当する。光源2及び入射光学系3は光入射手段に相当する。攪拌子11及び攪拌器12は攪拌手段に相当する。出射光学系5及び受光素子6は受光手段に相当する。演算装置9は判定手段及び導出手段に相当する。   Here, the sample cell 4 corresponds to the admixture holding means of the present embodiment. The light source 2 and the incident optical system 3 correspond to light incident means. The stirrer 11 and the stirrer 12 correspond to stirring means. The emission optical system 5 and the light receiving element 6 correspond to a light receiving means. The arithmetic device 9 corresponds to determination means and derivation means.

上記の光散乱粒子計測装置1においては、リムルス反応の最終段階であるコアギュリンゲル粒子の出現時間(ゲル化検出時間=ゲル化時間)を測定し、エンドトキシン濃度とゲル化検出時間の間に成立する検量関係を用いて検体中のエンドトキシン濃度を算出する。例えば、0.01、0.001及び0.0001EU/mL(1EU/mL≒100〜200pg/mL)のエンドトキシン溶液を測定したときのゲル化検出時間は(AL試薬の種類やロットによるが)20〜30、40〜60及び80〜150分程度となり、両対数グラフ上で直線の検量線が得られる。   In the light scattering particle measuring apparatus 1 described above, the appearance time (gelation detection time = gelation time) of the coagulin gel particles, which is the final stage of the Limulus reaction, is measured and established between the endotoxin concentration and the gelation detection time. The endotoxin concentration in the sample is calculated using the calibration relationship. For example, the gelation detection time when measuring endotoxin solutions of 0.01, 0.001, and 0.0001 EU / mL (1 EU / mL≈100 to 200 pg / mL) is 20 (depending on the type and lot of the AL reagent). It becomes about -30, 40-60 and 80-150 minutes, and a linear calibration curve is obtained on the log-log graph.

しかしながら、実際には図2に示すように、0.0001EU/mLよりもさらに低濃度に調製したエンドトキシン溶液または注射用水を測定した場合にも、80〜150分程度でゲル化が検出され、低濃度の領域において測定結果が検量線から外れる傾向があった。従って、上記の検量線を用いてそのまま判定を行うと、エンドトキシン濃度の測定値は本来の濃度よりも高めとなり、偽陽性判定が生じるおそれがあった。なお、図2の測定に用いたAL試薬はES−IIシングルテストワコー(和光純薬製)である。   However, in actuality, as shown in FIG. 2, even when measuring an endotoxin solution or water for injection prepared at a concentration lower than 0.0001 EU / mL, gelation was detected in about 80 to 150 minutes, and low In the concentration region, the measurement results tended to deviate from the calibration curve. Therefore, if the determination is made as it is using the above calibration curve, the measured value of endotoxin concentration becomes higher than the original concentration, which may cause false positive determination. The AL reagent used for the measurement in FIG. 2 is ES-II Single Test Wako (manufactured by Wako Pure Chemical Industries).

これは、(1)攪拌子11及び攪拌器12による攪拌の刺激によって蛋白質が変性し不
溶性の凝集体が生成する、(2)攪拌の刺激によって凝固酵素が活性化しコアギュリンゲルが生成する、といったエンドトキシンに由来しない凝集物(ゲル粒子)の生成に起因することが発明者らの検討によって明らかになってきた。従って、0.0001EU/mL以下の低濃度のエンドトキシンを正確に測定し、偽陽性判定を防止するには、上記のエンドトキシンに由来しない凝集を抑制する必要がある。
This is because (1) the protein is denatured and insoluble aggregates are generated by stimulation of stirring by the stirrer 11 and the stirrer 12, and (2) the coagulation enzyme is activated and coagulin gel is generated by stimulation of stirring. It has been clarified by the inventors' investigation that it is caused by the formation of aggregates (gel particles) not derived from endotoxin. Therefore, in order to accurately measure a low concentration of endotoxin of 0.0001 EU / mL or less and prevent false positive determination, it is necessary to suppress aggregation that is not derived from the endotoxin.

これに対し、発明者らの鋭意研究により、ヒト血清アルブミン(HSA)の添加によってエンドトキシンに由来しない凝集を抑制できることが分かった。本実施例においては、エンドトキシンフリーのヒト血清アルブミン(HSA)溶液(オートクレーブ滅菌済み)であるエンドトキシン検出用抽出液(Wako293−51601:和光純薬製)を使用し、これによるエンドトキシンに由来しない凝集の抑制効果を調べた。また、本測定においてもAL試薬としてはES−IIシングルテストワコー(和光純薬製)を用いた。なお、上記においてオートクレーブ滅菌処理は、予め行われる熱処理に相当する。   In contrast, the inventors' diligent research has revealed that addition of human serum albumin (HSA) can suppress aggregation not derived from endotoxin. In this example, an endotoxin-free human serum albumin (HSA) solution (autoclaved) was used as an endotoxin detection extract (Wako 293-51601: manufactured by Wako Pure Chemical Industries). The inhibitory effect was investigated. In this measurement, ES-II Single Test Wako (manufactured by Wako Pure Chemical Industries, Ltd.) was used as the AL reagent. In the above, the autoclave sterilization treatment corresponds to a heat treatment performed in advance.

上記測定の結果を図3に示す。図3の横軸は混和液中のHSA濃度であり、縦軸はゲル化検出時間である。図3から分かるように、HSAが含まれる場合は、HSAが含まれない場合と比較してゲル化検出時間が遅くなる傾向があった。そして、特にHSAの濃度が0.125%〜0.25%であるときに、ゲル化検出時間が顕著に遅くなった。これにより、HSAを適量、例えばHSA濃度が0.015%以上10%以下となるように添加すれば、エンドトキシンに由来しない凝集を抑制できることが示唆された。   The result of the measurement is shown in FIG. The horizontal axis in FIG. 3 is the HSA concentration in the mixture, and the vertical axis is the gelation detection time. As can be seen from FIG. 3, when HSA was included, the gelation detection time tended to be delayed as compared with the case where HSA was not included. In particular, when the concentration of HSA is 0.125% to 0.25%, the gelation detection time is remarkably delayed. Thereby, it was suggested that aggregation not derived from endotoxin can be suppressed by adding an appropriate amount of HSA such as an HSA concentration of 0.015% or more and 10% or less.

上記のように、HSAを混和液に添加することによりエンドトキシンに由来しない凝集が抑制されることが認められたことを受け、HSAが添加された状態でエンドトキシン溶液のゲル化検出時間を測定し、検量線を作成した。HSAを添加した場合と、HSA未添加の場合の検量線を図4に示す。図4(a)はHSAを添加した場合の検量線、図4(b)HSAを未添加の場合の検量線を示す。なお、本測定においてもAL試薬としてはES−IIシングルテストワコー(和光純薬製)を用いた。また、図4(a)における測定では、AL試薬に、各濃度のエンドトキシン溶液200μLとともに、エンドトキシン検出用抽出液(Wako293−51601:和光純薬製)を10μL添加し、混和液中のHSA濃度を0.24%とした。   As described above, it was recognized that aggregation not derived from endotoxin was suppressed by adding HSA to the mixture, and the gelation detection time of the endotoxin solution was measured with HSA added. A calibration curve was created. FIG. 4 shows calibration curves when HSA is added and when HSA is not added. FIG. 4A shows a calibration curve when HSA is added, and FIG. 4B shows a calibration curve when HSA is not added. In this measurement, ES-II single test Wako (manufactured by Wako Pure Chemical Industries, Ltd.) was used as the AL reagent. 4A, 10 μL of endotoxin detection extract (Wako293-51601: manufactured by Wako Pure Chemical Industries, Ltd.) is added to the AL reagent together with 200 μL of each concentration of endotoxin solution, and the HSA concentration in the mixture is determined. The content was 0.24%.

図4より判るように、まず、HSAを添加した場合にはエンドトキシン濃度が0.01〜0.0001EU/mLの範囲で、HSA添加時のゲル化検出時間が未添加時より遅くなることはなかった。これは、HSAがリムルス反応を阻害することはないことを示している。また、HSAを添加した場合は、1〜0.00001EU/mLの範囲で相関係数0.992という、良好な直線性を有する検量線を得ることができた。これは、HSA添加によりエンドトキシンに由来しない凝集が抑制された効果と考えられる。なお、上記においてはヒト血清アルブミン(HSA)溶液(オートクレーブ滅菌済み)をエンドトキシン検出用抽出液として使用し、これによるエンドトキシンに由来しない凝集の抑制効果を調べたが、治療用のヒト血清アルブミン製剤(アルブミナー、CSLベーリング社)を加熱することによっても同様の効果が確認された。また、グロブリンあるいはリゾチウムは、アルブミンと類似した特性を有する蛋白質であるので、これらを使用した場合にも、上記と同様の効果があると考えられる。   As can be seen from FIG. 4, when HSA is added, the endotoxin concentration is in the range of 0.01 to 0.0001 EU / mL, and the gelation detection time when HSA is added does not become slower than when it is not added. It was. This indicates that HSA does not inhibit the Limulus reaction. When HSA was added, a calibration curve having a good linearity with a correlation coefficient of 0.992 in the range of 1 to 0.00001 EU / mL could be obtained. This is considered to be an effect of suppressing aggregation not derived from endotoxin by addition of HSA. In the above, human serum albumin (HSA) solution (autoclaved) was used as an extract for endotoxin detection, and the effect of suppressing aggregation caused by endotoxin was investigated. The same effect was confirmed by heating (Albuminer, CSL Behring). Moreover, since globulin or lysozyme is a protein having properties similar to albumin, it is considered that the same effect as described above can be obtained when these are used.

次に、上記のエンドトキシンに由来しない凝集が、攪拌子11及び攪拌器12による混和液の攪拌によって引き起こされていると考えられることから、混和液に対する攪拌の回転数を低減することを検討した。通常1000rpmの攪拌回転数を600〜1200rpmの間で変化させつつ注射用水のゲル化検出時間の測定を行った。測定結果を図5に示す。図5において横軸は攪拌子11の攪拌回転数である。また、縦軸はゲル化検出時間である。図から判るように、攪拌子11の攪拌回転数を変えてもゲル化検出時間が有意に遅
くなることはなかった。これにより、エンドトキシンに由来しない凝集を抑制する策として、攪拌回転数の低減は効果が期待できないことが判った。
Next, since the aggregation not derived from the endotoxin is considered to be caused by the stirring of the mixed solution by the stirrer 11 and the stirrer 12, it was studied to reduce the number of rotations of stirring with respect to the mixed solution. Usually, the gelation detection time of water for injection was measured while changing the number of revolutions of stirring at 1000 rpm between 600 and 1200 rpm. The measurement results are shown in FIG. In FIG. 5, the horizontal axis represents the stirring rotation speed of the stirrer 11. The vertical axis represents the gelation detection time. As can be seen from the figure, the gelation detection time was not significantly delayed even when the stirring rotation speed of the stirrer 11 was changed. As a result, it was found that the effect of reducing the number of stirring revolutions cannot be expected as a measure for suppressing aggregation not derived from endotoxin.

上記の実施例においては、本発明を、光散乱粒子計測装置1を用いた光散乱法によってエンドトキシン濃度を測定する場合に適用した例について説明したが、本発明が適用されるのは、光散乱法による場合だけでないことはもちろんである。例えば、攪拌比濁法によってエンドトキシン濃度を測定する場合に適用してもよい。以下に、攪拌比濁法に用いられる比濁計測装置について説明する。   In the above embodiment, the example in which the present invention is applied to the case where the endotoxin concentration is measured by the light scattering method using the light scattering particle measuring apparatus 1 is described. However, the present invention is applied to the light scattering. Of course, not only by law. For example, you may apply when measuring an endotoxin density | concentration by the stirring turbidimetric method. Below, the turbidimetric measuring apparatus used for the stirring turbidimetric method will be described.

図6には、本実施例のエンドトキシンの測定装置の別の例としての比濁計測装置21の概略構成を示す。この比濁計測装置21では、攪拌比濁法によってエンドトキシンの測定を行う。比濁計測装置21においても、調製した希釈系列のエンドトキシンを含んだ試料を混和液保持手段としての測定用ガラス容器(以下、キュベット)22に移注する。キュベット22の周囲を囲うように保温器25が設けられている。この保温器25の内部には図示しない電熱線が備えられており、この電熱線に通電されることにより、キュベット22を約37℃に保温するようになっている。このキュベット22の中にはステンレス製の攪拌子23が備えられている。この攪拌子23は、キュベット22の下部に設置された攪拌器24の作用によってキュベット22の中で回転する。すなわち、攪拌器24はモータ24aとモータ24aの出力軸に設けられた永久磁石24bとからなっている。そして、モータ24aに通電されることで永久磁石24bが回転する。この永久磁石24bからの磁界が回転するために、ステンレス製の攪拌子23が回転磁界の作用で回転する。この攪拌子23と攪拌器24とは攪拌手段に相当する。   FIG. 6 shows a schematic configuration of a turbidimetric measurement apparatus 21 as another example of the endotoxin measurement apparatus of the present embodiment. In this turbidimetric measuring device 21, endotoxin is measured by a stirring turbidimetric method. Also in the turbidimetric measurement device 21, the prepared sample containing diluted series of endotoxin is transferred to a measuring glass container (hereinafter referred to as cuvette) 22 as a mixed liquid holding means. A warmer 25 is provided so as to surround the cuvette 22. A heating wire (not shown) is provided inside the heat insulator 25, and the cuvette 22 is kept at about 37 ° C. by energizing the heating wire. The cuvette 22 is provided with a stainless stirrer 23. The stirrer 23 rotates in the cuvette 22 by the action of a stirrer 24 installed at the lower part of the cuvette 22. That is, the stirrer 24 includes a motor 24a and a permanent magnet 24b provided on the output shaft of the motor 24a. And the permanent magnet 24b rotates by supplying with electricity to the motor 24a. Since the magnetic field from the permanent magnet 24b rotates, the stainless steel stirrer 23 rotates by the action of the rotating magnetic field. The stirrer 23 and the stirrer 24 correspond to a stirring means.

なお、比濁計測装置21には光入射手段としての光源26と受光手段としての受光素子29が設置されている。光源26から出射した光はアパーチャ27を通過した後、保温器25に設けられた入射孔25aを通過してキュベット22中の試料に入射される。キュベット22中の試料を透過した光は保温器25に設けられた出射孔25bから出射され、アパーチャ28を通過して受光素子29に照射される。受光素子29では、受光した光の強度に応じた光電信号を出力する。この光電信号の出力は、判定手段及び導出手段としての演算装置30に入力される。演算装置30においては、予め格納されたプログラム(アルゴリズム)に従い、反応開始時刻の判定及び、エンドトキシン濃度の導出が行われる。なお、この他に導出されたエンドトキシン濃度を表示する表示装置を含めて比濁計測装置21としてもよい。   The turbidimetric measurement device 21 is provided with a light source 26 as a light incident means and a light receiving element 29 as a light receiving means. The light emitted from the light source 26 passes through the aperture 27 and then enters the sample in the cuvette 22 through the incident hole 25 a provided in the heat insulator 25. The light transmitted through the sample in the cuvette 22 is emitted from the emission hole 25 b provided in the heat insulator 25, passes through the aperture 28, and is irradiated on the light receiving element 29. The light receiving element 29 outputs a photoelectric signal corresponding to the intensity of the received light. The output of the photoelectric signal is input to the arithmetic unit 30 as a determination unit and a derivation unit. In the arithmetic unit 30, the reaction start time is determined and the endotoxin concentration is derived according to a program (algorithm) stored in advance. In addition, the turbidimetric measurement device 21 may be included including a display device that displays the derived endotoxin concentration.

なお、表1には、試料とAL試薬の混和液に、非加熱のHSAを添加した場合と、オートクレーブ滅菌処理(120℃、15〜120分)にて予め熱処理を施したHSAを添加した場合のゲル化検出時間を示す。なお、混和液中のHSA濃度は、いずれの場合も0.25%である。表1より判るように、予め熱処理を施したHSAを添加した方が、非加熱のHSAを添加した場合よりも、ゲル化検出時間が遅くなる傾向があった。これによって、予め熱処理を施したHSAを添加することで、攪拌による生物由来の生理活性物質に起因しない凝集またはゲル化をより確実に抑制できることが示された。   Table 1 shows the case where non-heated HSA is added to the mixture of the sample and the AL reagent, and the case where HSA that has been heat-treated in advance in an autoclave sterilization process (120 ° C., 15 to 120 minutes) is added. The gelation detection time is shown. The HSA concentration in the mixed solution is 0.25% in any case. As can be seen from Table 1, the gelation detection time tended to be delayed when the preheated HSA was added than when the non-heated HSA was added. By this, it was shown that aggregation or gelation not caused by biologically active substances derived from organisms due to stirring can be more reliably suppressed by adding HSA that has been previously heat-treated.

Figure 2012154815
Figure 2012154815

また、表2には、試料とAL試薬の混和液に、非加熱のヒト血清アルブミン製剤(アルブミナー)を添加した場合と、アルミブロックヒーターによる加熱処理(95℃、5〜3
0分)にて予め熱処理を施したアルブミナーを添加した場合のゲル化検出時間を示す。この場合も、混和液中のアルブミン濃度は、いずれの場合も0.25%である。表2より判るように、この場合も、予め熱処理を施したアルブミナーを添加した方が、非加熱のアルブミナーを添加した場合よりも、ゲル化検出時間が遅くなる傾向があった。これによって、予め熱処理を施したアルブミナーを添加することで、攪拌による生物由来の生理活性物質に起因しない凝集またはゲル化をより確実に抑制できることが示された。
Table 2 also shows the case where a non-heated human serum albumin preparation (Albminer) is added to the mixture of the sample and the AL reagent, and the heat treatment (95 ° C., 5 to 3) using an aluminum block heater.
0 min) shows the gelation detection time in the case of adding the albumin that has been previously heat-treated. Also in this case, the albumin concentration in the mixed solution is 0.25% in any case. As can be seen from Table 2, also in this case, the gelation detection time tended to be delayed when the albumin that had been previously heat-treated was added, compared to when the non-heated albumin was added. Thus, it was shown that aggregation or gelation not caused by a biologically active substance derived from a living body by stirring can be more reliably suppressed by adding albumin that has been heat-treated in advance.

Figure 2012154815
Figure 2012154815

<実施例2>
上記の実施例1においては、一般的な光散乱粒子計測装置1及び、比濁計測装置21を用いて、試料とAL試薬の混和液に対してHSAを添加する例について説明したが、本発明を実施するために、試料とAL試薬の混和液に対して自動的にHSAを添加する特別な光散乱粒子計測装置及び、比濁計測装置を用いることとしてもよい。
<Example 2>
In Example 1 described above, the example in which HSA is added to the mixed solution of the sample and the AL reagent using the general light scattering particle measurement device 1 and the turbidimetric measurement device 21 has been described. Therefore, a special light scattering particle measuring device and a turbidimetric measuring device that automatically add HSA to the mixed solution of the sample and the AL reagent may be used.

図7には、試料とAL試薬の混和液に対してHSAなどの蛋白質を自動的に添加する蛋白質添加装置13を備えた光散乱粒子計測装置31について示す。図1で説明した光散乱粒子計測装置1との相違点は、蛋白質貯留部13aと、蛋白質添加管13bを有している点である。この蛋白質貯留部13aには、測定に先立ち、熱処理されたHSA溶液を精密に測定された量だけ貯留しておく。そして、測定時に試料とAL試薬の混和液が測定位置にセットされた際に、図示しないスイッチがONされ、例えば小型ポンプ13cによって、蛋白質貯留部13aに空気圧が作用する。そして、蛋白質貯留部13aに貯留されたHSA溶液が、蛋白質添加管13bを介してキュベット内に添加される。   FIG. 7 shows a light scattering particle measuring device 31 provided with a protein addition device 13 for automatically adding a protein such as HSA to a mixed solution of a sample and an AL reagent. The difference from the light scattering particle measuring apparatus 1 described with reference to FIG. 1 is that it has a protein reservoir 13a and a protein addition tube 13b. Prior to the measurement, the protein storage unit 13a stores the heat-treated HSA solution in a precisely measured amount. When the mixed solution of the sample and the AL reagent is set at the measurement position at the time of measurement, a switch (not shown) is turned on, and air pressure acts on the protein reservoir 13a by, for example, the small pump 13c. Then, the HSA solution stored in the protein storage unit 13a is added into the cuvette via the protein addition tube 13b.

本実施例によれば、より簡単に、混和液を攪拌する場合に生じる、エンドトキシンに由来しない凝集を低減することができ、エンドトキシン測定の測定精度を向上することができる。上記の蛋白質添加装置13は蛋白質添加手段に相当する。   According to this example, aggregation that is not caused by endotoxin, which occurs when the mixture is stirred, can be reduced more easily, and the measurement accuracy of endotoxin measurement can be improved. The protein adding device 13 corresponds to protein adding means.

なお、本実施例における蛋白質添加装置13は、上記の構成によるものに限定されないことは当然である。例えば、精密に吐出量を制御可能な液体吐出装置によって、オートクレーブ滅菌処理されたHSA溶液を、測定時に試料とAL試薬の混和液が測定位置にセットされた際に、吐出するようにしてもよい。あるいは、オートクレーブ滅菌処理されたHSA溶液を必要量吸い上げたスポイトをセットしておき、スポイトの可撓性のポンプ部を圧縮することで、HSA溶液を、ガラス製試料セル4内の混和液に添加するようにしてもよい。   Of course, the protein addition apparatus 13 in the present embodiment is not limited to the one having the above-described configuration. For example, an HSA solution that has been sterilized by autoclaving may be discharged by a liquid discharge device capable of precisely controlling the discharge amount when the mixed solution of the sample and the AL reagent is set at the measurement position at the time of measurement. . Alternatively, set a dropper that sucks up the required amount of the HSA solution that has been sterilized by autoclaving, and add the HSA solution to the mixture in the glass sample cell 4 by compressing the flexible pump part of the dropper. You may make it do.

なお、熱処理されたHSA溶液を試料とAL試薬の混和液に添加するタイミングは、攪拌子11による攪拌が開始する前であることが望ましい。これによって、より確実に、混和液を攪拌する場合に生じる、エンドトキシンに由来しない凝集を抑制することができる。しかしながら、攪拌子11による攪拌の開始と同時あるいは、攪拌が開始した後であっても、熱処理されたHSA溶液を試料とAL試薬の混和液に添加することで、エンドトキシンに由来しない凝集を抑制する効果は得ることができる。   It is desirable that the heat-treated HSA solution be added to the mixed solution of the sample and the AL reagent before the stirring by the stirrer 11 is started. By this, the aggregation which does not originate in endotoxin which arises when stirring a liquid mixture more reliably can be suppressed. However, even when the stirring by the stirrer 11 is started or after stirring is started, the heat-treated HSA solution is added to the mixed solution of the sample and the AL reagent to suppress aggregation not derived from endotoxin. An effect can be obtained.

図8には、同様に、試料とAL試薬の混和液に対してHSAなどの蛋白質を自動的に添加する蛋白質添加装置33を備えた比濁計測装置41について示す。図6で説明した比濁計測装置21との相違点は、シリンジ33a、ピストン33b及びピストン押圧部33cからなる蛋白質添加装置33を有している点である。ここでは、シリンジ33aには、オ
ートクレーブ滅菌処理されたHSA溶液が必要量吸い上げられている。そして、測定時に試料とAL試薬の混和液を保持するキュベット22が測定位置にセットされた際に、図示しないスイッチがONされ、ピストン押圧部33cがピストン33bを押圧し、シリンジ33a内のHSA溶液が、キュベット22内に添加される。このような比濁計測装置41によっても、より簡単に、混和液を攪拌する場合に生じる、エンドトキシンに由来しない凝集を低減することができ、エンドトキシン測定の測定精度を向上することができる。
Similarly, FIG. 8 shows a turbidimetric measurement device 41 including a protein addition device 33 that automatically adds a protein such as HSA to a mixed solution of a sample and an AL reagent. The difference from the turbidimetric measurement device 21 described in FIG. 6 is that a protein addition device 33 including a syringe 33a, a piston 33b, and a piston pressing portion 33c is provided. Here, a necessary amount of the HSA solution that has been autoclaved is sucked into the syringe 33a. When the cuvette 22 that holds the mixed solution of the sample and the AL reagent at the time of measurement is set at the measurement position, a switch (not shown) is turned on, and the piston pressing portion 33c presses the piston 33b, and the HSA solution in the syringe 33a. Is added into the cuvette 22. Even with such a turbidimetric measurement device 41, aggregation that is not caused by endotoxin, which occurs when the mixture is stirred, can be reduced more easily, and the measurement accuracy of endotoxin measurement can be improved.

なお、本実施例における蛋白質添加装置33も、上記の構成によるものに限定されないことは当然であり、同等の機能を有するものであれば、いかなる装置を使用してもよい。   Of course, the protein addition apparatus 33 in the present embodiment is not limited to the apparatus having the above-described configuration, and any apparatus may be used as long as it has an equivalent function.

1・・・光散乱粒子計測装置
2・・・光源
3・・・入射光学系
4・・・試料セル
5・・・出射光学系
6・・・受光素子
7・・・増幅回路
8・・・ノイズ除去フィルタ
9・・・演算装置
10・・・表示器
11・・・攪拌子
12・・・攪拌器
13・・・蛋白質添加装置
21・・・比濁計測装置
22・・・ガラス容器(キュベット)
23・・・攪拌子
24・・・攪拌器
24a・・・モータ
24b・・・磁石
25・・・保温器
25a・・・入射孔
25b・・・出射孔
26・・・光源
27・・・アパーチャ
28・・・アパーチャ
29・・・受光素子
30・・・演算装置
31・・・蛋白質添加装置を備えた光散乱粒子計測装置
33・・・蛋白質添加装置
41・・・蛋白質添加装置を備えた比濁計測装置
DESCRIPTION OF SYMBOLS 1 ... Light-scattering particle measuring device 2 ... Light source 3 ... Incident optical system 4 ... Sample cell 5 ... Outgoing optical system 6 ... Light receiving element 7 ... Amplifying circuit 8 ... Noise removal filter 9 ... arithmetic device 10 ... display 11 ... stirrer 12 ... stirrer 13 ... protein addition device 21 ... turbidimetric measurement device 22 ... glass container (cuvette) )
23 ... Stirrer 24 ... Stirrer 24a ... Motor 24b ... Magnet 25 ... Insulator 25a ... Incident hole 25b ... Emission hole 26 ... Light source 27 ... Aperture 28 ... Aperture 29 ... Light receiving element 30 ... Arithmetic unit 31 ... Light scattering particle measuring device 33 with protein addition device ... Protein addition device 41 ... Ratio with protein addition device Turbidity measuring device

Claims (19)

カブトガニの血球抽出物であるALと所定の生物由来の生理活性物質を含む試料の混和液を生成し、該混和液を攪拌しつつ、該混和液におけるALと前記生理活性物質との反応に起因する蛋白質の凝集またはゲル化を検出することで、前記試料中の前記生理活性物質を検出しまたは前記生理活性物質の濃度を測定する、生物由来の生理活性物質の測定方法であって、
前記攪拌をする際には、前記混和液に、予め熱処理を施した所定の蛋白質を添加することで、前記混和液における前記生理活性物質に由来しない凝集またはゲル化を抑制することを特徴とする生物由来の生理活性物質の測定方法。
Resulting from the reaction between AL and the physiologically active substance in the mixed solution while producing a mixed liquid containing AL, which is a blood cell extract of horseshoe crab, and a biologically active substance derived from a predetermined organism and stirring the mixed liquid A method for measuring a biologically active substance derived from a living body, wherein the biologically active substance in the sample is detected or the concentration of the physiologically active substance is measured by detecting aggregation or gelation of the protein,
When the agitation is performed, a predetermined protein that has been heat-treated in advance is added to the admixture to suppress aggregation or gelation that is not derived from the physiologically active substance in the admixture. A method for measuring biologically active physiological substances.
前記予め熱処理を施した所定の蛋白質は、アルブミン、グロブリン、リゾチウムのうちの少なくとも一種であることを特徴とする請求項1に記載の生物由来の生理活性物質の測定方法。   The method for measuring a biologically active substance derived from an organism according to claim 1, wherein the predetermined protein subjected to the heat treatment is at least one of albumin, globulin and lysozyme. 前記予め熱処理を施した所定の蛋白質はアルブミンであり、
前記混和液に、予め熱処理を施した所定の蛋白質を添加する際の最終濃度は、0.015%以上10%以下であることを特徴とする請求項1または2に記載の生物由来の生理活性物質の測定方法。
The predetermined protein subjected to the heat treatment in advance is albumin,
The biologically-derived physiological activity according to claim 1 or 2, wherein the final concentration when a predetermined protein that has been heat-treated in advance is added to the mixed solution is 0.015% or more and 10% or less. Method for measuring substances.
前記熱処理は、加熱処理であり、その処理温度が95℃以上であることを特徴とする請求項1から3のいずれか一項に記載の生物由来の生理活性物質の測定方法。   The method for measuring a biologically active substance derived from a living body according to any one of claims 1 to 3, wherein the heat treatment is a heat treatment, and the treatment temperature is 95 ° C or higher. 前記熱処理は、加熱処理であり、その処理時間が10分以上であることを特徴とする請求項1から4のいずれか一項に記載の生物由来の生理活性物質の測定方法。   The method for measuring a biologically active biological substance according to any one of claims 1 to 4, wherein the heat treatment is a heat treatment, and the treatment time is 10 minutes or more. 前記熱処理は、オートクレーブ滅菌処理であり、該オートクレーブ滅菌処理の処理温度が120℃以上で、オートクレーブ滅菌処理の時間が10分以上であることを特徴とする請求項1から3のいずれか一項に記載の生物由来の生理活性物質の測定方法。   The heat treatment is an autoclave sterilization treatment, the treatment temperature of the autoclave sterilization treatment is 120 ° C or higher, and the time of the autoclave sterilization treatment is 10 minutes or more. A method for measuring a biologically active substance derived from the organism described above. 前記生物由来の生理活性物質は、エンドトキシンまたはβ−D−グルカンであることを特徴とする請求項1から6のいずれか一項に記載の生物由来の生理活性物質の測定方法。   The method for measuring a biologically active substance of biological origin according to any one of claims 1 to 6, wherein the biologically active substance of biological origin is endotoxin or β-D-glucan. カブトガニの血球抽出物であるALを含み、所定の生物由来の生理活性物質を含む試料との混和液を生成し、該混和液を攪拌しつつ、前記生理活性物質に起因する蛋白質の凝集またはゲル化を検出することで、前記試料中の前記生理活性物質を検出しまたは前記生理活性物質の濃度を測定するための、生物由来の生理活性物質の測定用試薬であって、
予め熱処理を施した所定の蛋白質が添加され、前記混和液における前記生理活性物質に由来しない凝集またはゲル化を抑制可能としたこと特徴とする生物由来の生理活性物質の測定用試薬。
An agglutination or gel of a protein caused by the physiologically active substance is produced while producing a mixed liquid with a sample containing a biologically active substance derived from a predetermined organism, containing AL which is a blood cell extract of horseshoe crab, and stirring the mixed liquid A reagent for measuring a biologically active substance derived from a living body for detecting the physiologically active substance in the sample or measuring the concentration of the physiologically active substance by detecting oxidization,
A reagent for measuring a biologically active substance derived from a living organism, wherein a predetermined protein that has been previously heat-treated is added so that aggregation or gelation not derived from the physiologically active substance in the mixed solution can be suppressed.
前記予め熱処理を施した所定の蛋白質は、アルブミン、グロブリン、リゾチウムのうちの少なくとも一種であることを特徴とする請求項8に記載の生物由来の生理活性物質の測定用試薬。   9. The reagent for measuring a biologically active substance derived from a living body according to claim 8, wherein the predetermined protein subjected to the heat treatment is at least one of albumin, globulin, and lysozyme. 前記熱処理は、加熱処理であり、その処理温度が95℃以上であることを特徴とする請求項8または9に記載の生物由来の生理活性物質の測定用試薬。   The reagent for measuring a biologically active substance of biological origin according to claim 8 or 9, wherein the heat treatment is a heat treatment, and the treatment temperature is 95 ° C or higher. 前記熱処理は、加熱処理であり、その処理時間が10分以上であることを特徴とする請求項8から10のいずれか一項に記載の生物由来の生理活性物質の測定用試薬。   The reagent for measuring a biologically active substance derived from an organism according to any one of claims 8 to 10, wherein the heat treatment is a heat treatment, and the treatment time is 10 minutes or more. 前記熱処理は、オートクレーブ滅菌処理であり、該オートクレーブ滅菌処理の処理温度が120℃以上で、オートクレーブ滅菌処理の時間が10分以上であることを特徴とする請求項8または9に記載の生物由来の生理活性物質の測定用試薬。   The biological treatment according to claim 8 or 9, wherein the heat treatment is an autoclave sterilization treatment, a treatment temperature of the autoclave sterilization treatment is 120 ° C or higher, and a time of the autoclave sterilization treatment is 10 minutes or more. Reagent for measuring physiologically active substances. 所定の生物由来の生理活性物質を含む試料とカブトガニの血球抽出物であるALとの混和液を光の入射が可能な状態に保持するとともに該混和液における反応を進行させる混和液保持手段と、
前記混和液保持手段中の前記混和液を攪拌する攪拌手段と、
前記混和液保持手段中の混和液に光を入射する光入射手段と、
前記入射光の前記混和液における透過光または散乱光を受光し電気信号に変換する受光手段と、
前記受光手段において変換された電気信号から前記試料中における前記生理活性物質とALとの反応開始時刻を判定する判定手段と、
予め定められた、前記反応開始時刻と前記生理活性物質の濃度との関係より、前記試料中の前記生理活性物質の存在または濃度を導出する導出手段と、を備える生物由来の生理活性物質の測定装置であって、
前記攪拌手段によって、前記混和液を攪拌する際に、予め熱処理を施した所定の蛋白質を前記混和液に添加する蛋白質添加手段をさらに備えることを特徴とする生物由来の生理活性物質の測定装置。
A mixed liquid holding means for holding a mixed liquid of a sample containing a physiologically active substance derived from a predetermined organism and AL, which is a blood cell extract of horseshoe crab, in a state where light can be incident, and for allowing a reaction in the mixed liquid to proceed;
Stirring means for stirring the mixed liquid in the mixed liquid holding means;
A light incident means for making light incident on the mixed liquid in the mixed liquid holding means;
A light receiving means for receiving transmitted light or scattered light in the admixture of the incident light and converting it into an electrical signal;
Determination means for determining the reaction start time of the physiologically active substance and AL in the sample from the electrical signal converted in the light receiving means;
Measurement of a biologically active substance derived from an organism, comprising: a derivation means for deriving the presence or concentration of the physiologically active substance in the sample from a predetermined relationship between the reaction start time and the concentration of the physiologically active substance. A device,
An apparatus for measuring a biologically active substance derived from a living body, further comprising protein addition means for adding a predetermined protein that has been previously heat-treated to the admixture when the admixture is agitated by the agitation means.
前記蛋白質添加手段によって添加される蛋白質は、アルブミン、グロブリン,リゾチウムのうちの少なくとも一種であることを特徴とする請求項13に記載の生物由来の生理活性物質の測定装置。   The biologically active substance measuring apparatus according to claim 13, wherein the protein added by the protein adding means is at least one of albumin, globulin, and lysozyme. 前記蛋白質添加手段によって添加される蛋白質は、アルブミンであり、前記蛋白質添加手段によって、前記混和液に予め熱処理を施した所定の蛋白質を添加する際の最終濃度は、0.015%以上10%以下であることを特徴とする請求項13または14に記載の生物由来の生理活性物質の測定装置。   The protein added by the protein addition means is albumin, and the final concentration when the predetermined protein that has been pre-heated to the admixture is added by the protein addition means is 0.015% or more and 10% or less. The biologically active substance-measuring device for living organisms according to claim 13 or 14, 前記熱処理は、加熱処理であり、その処理温度が95℃以上であることを特徴とする請求項13から15のいずれか一項に記載の生物由来の生理活性物質の測定装置。   The biological heat-active substance measuring apparatus according to any one of claims 13 to 15, wherein the heat treatment is a heat treatment, and a treatment temperature thereof is 95 ° C or higher. 前記熱処理は、加熱処理であり、その処理時間が10分以上であることを特徴とする請求項13から16のいずれか一項に記載の生物由来の生理活性物質の測定装置。   The biological heat-active substance measuring apparatus according to any one of claims 13 to 16, wherein the heat treatment is a heat treatment, and the treatment time is 10 minutes or more. 前記熱処理は、オートクレーブ滅菌処理であり、該オートクレーブ滅菌処理の処理温度が120℃以上で、オートクレーブ滅菌処理の時間が10分以上であることを特徴とする請求項13から15のいずれか一項に記載の生物由来の生理活性物質の測定装置。   The heat treatment is an autoclave sterilization treatment, the treatment temperature of the autoclave sterilization treatment is 120 ° C or higher, and the time of the autoclave sterilization treatment is 10 minutes or more. The biologically active substance measuring apparatus according to the description. 前記生物由来の生理活性物質は、エンドトキシンまたはβ−D−グルカンであることを特徴とする請求項13から18のいずれか一項に記載の生物由来の生理活性物質の測定装置。   The biologically active substance measuring apparatus according to any one of claims 13 to 18, wherein the biologically active substance derived from an organism is endotoxin or β-D-glucan.
JP2011014574A 2011-01-26 2011-01-26 Method and apparatus for measuring biogenous physiologically active substance Pending JP2012154815A (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2011014574A JP2012154815A (en) 2011-01-26 2011-01-26 Method and apparatus for measuring biogenous physiologically active substance
EP12739322.1A EP2669683A4 (en) 2011-01-26 2012-01-26 Method and apparatus for measuring physiologically active biological substance
US13/981,893 US20130309704A1 (en) 2011-01-26 2012-01-26 Method and apparatus for measuring physiologically active substance derived from organism
PCT/JP2012/051715 WO2012102353A1 (en) 2011-01-26 2012-01-26 Method and apparatus for measuring physiologically active biological substance

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011014574A JP2012154815A (en) 2011-01-26 2011-01-26 Method and apparatus for measuring biogenous physiologically active substance

Publications (1)

Publication Number Publication Date
JP2012154815A true JP2012154815A (en) 2012-08-16

Family

ID=46836685

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011014574A Pending JP2012154815A (en) 2011-01-26 2011-01-26 Method and apparatus for measuring biogenous physiologically active substance

Country Status (1)

Country Link
JP (1) JP2012154815A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021100367A1 (en) * 2019-11-19 2021-05-27 富士フイルム株式会社 Inspection device

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07151760A (en) * 1993-10-08 1995-06-16 Wako Pure Chem Ind Ltd Method for stabilizing endotoxin in aqueous solution
JP2006284606A (en) * 1996-10-21 2006-10-19 Seikagaku Kogyo Co Ltd Limulus reaction activating substance, inactivation method and measuring method for the substance, and method of measuring limulus reaction
WO2006129662A1 (en) * 2005-05-30 2006-12-07 Daiichi Sankyo Company, Limited Test method for endotoxin
WO2009148132A1 (en) * 2008-06-05 2009-12-10 興和株式会社 Method of assaying physiologically active substance of biological origin, kit for assaying physiologically active substance of biological origin and apparatus for assaying physiologically active substance of biological origin
WO2011104871A1 (en) * 2010-02-26 2011-09-01 興和株式会社 Measurement method for physiologically active substance of biological origin, and reagent kit for measurement

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07151760A (en) * 1993-10-08 1995-06-16 Wako Pure Chem Ind Ltd Method for stabilizing endotoxin in aqueous solution
JP2006284606A (en) * 1996-10-21 2006-10-19 Seikagaku Kogyo Co Ltd Limulus reaction activating substance, inactivation method and measuring method for the substance, and method of measuring limulus reaction
WO2006129662A1 (en) * 2005-05-30 2006-12-07 Daiichi Sankyo Company, Limited Test method for endotoxin
WO2009148132A1 (en) * 2008-06-05 2009-12-10 興和株式会社 Method of assaying physiologically active substance of biological origin, kit for assaying physiologically active substance of biological origin and apparatus for assaying physiologically active substance of biological origin
WO2011104871A1 (en) * 2010-02-26 2011-09-01 興和株式会社 Measurement method for physiologically active substance of biological origin, and reagent kit for measurement

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021100367A1 (en) * 2019-11-19 2021-05-27 富士フイルム株式会社 Inspection device
JPWO2021100367A1 (en) * 2019-11-19 2021-05-27
JP7340034B2 (en) 2019-11-19 2023-09-06 富士フイルム株式会社 inspection equipment

Similar Documents

Publication Publication Date Title
JP5426937B2 (en) Optical reaction measuring device and optical reaction measuring method
JP4886785B2 (en) Gelation measuring device and sample cell
KR101255420B1 (en) Gel particle measuring apparatus
KR101485233B1 (en) Gel particle measurement device
JP5188311B2 (en) Measuring method and measuring apparatus for biologically active substances derived from living organisms
JPWO2008139544A1 (en) Gelation measuring device and sample cell
US8790885B2 (en) Coagulogen raw material, process for producing the same, and method and apparatus for measuring physiologically active substance of biological origin using the same
US20120003745A1 (en) Method for measuring physiologically active substance of biological origin, program for implementing the same, and apparatus for measuring physiologically active substance of biological origin
WO2009148132A1 (en) Method of assaying physiologically active substance of biological origin, kit for assaying physiologically active substance of biological origin and apparatus for assaying physiologically active substance of biological origin
JP2012215461A (en) Measuring method and measuring device of physiologically active substance derived from organisms
JP5401115B2 (en) Measuring method and measuring apparatus for biologically active substances derived from living organisms
WO2012102353A1 (en) Method and apparatus for measuring physiologically active biological substance
CN103168243B (en) Gel particles measures reagent and uses its assay method
JP2012154815A (en) Method and apparatus for measuring biogenous physiologically active substance
JP5421622B2 (en) Measuring method and measuring apparatus for biologically active substances derived from living organisms
WO2012029171A1 (en) Method for measuring physiologically active substance of biological origin
WO2010038628A1 (en) Gel particle generating instrument and gel particle measuring device using same
WO2013168695A1 (en) Method for measuring organism-originated physiologically active substance in hyaluronic acid preparation
JP5489680B2 (en) Biologically-derived physiologically active substance measuring method, program for executing the same, and biologically-derived physiologically active substance measuring apparatus
JP2012255679A (en) Method and apparatus for measuring bio-based physiological active substance

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140117

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150203

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20150602