JP2012154765A - Optical measurement device - Google Patents

Optical measurement device Download PDF

Info

Publication number
JP2012154765A
JP2012154765A JP2011013669A JP2011013669A JP2012154765A JP 2012154765 A JP2012154765 A JP 2012154765A JP 2011013669 A JP2011013669 A JP 2011013669A JP 2011013669 A JP2011013669 A JP 2011013669A JP 2012154765 A JP2012154765 A JP 2012154765A
Authority
JP
Japan
Prior art keywords
height
light
phase
wavelength
measurement
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2011013669A
Other languages
Japanese (ja)
Inventor
Shigeaki Morimoto
茂明 森本
Masaru Takeda
勝 武田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Rexxam Co Ltd
Original Assignee
Rexxam Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Rexxam Co Ltd filed Critical Rexxam Co Ltd
Priority to JP2011013669A priority Critical patent/JP2012154765A/en
Publication of JP2012154765A publication Critical patent/JP2012154765A/en
Pending legal-status Critical Current

Links

Images

Abstract

PROBLEM TO BE SOLVED: To provide a high accuracy optical measurement device by suppressing the influence of a variety of noise components included in a phase shift image in a height measurement device using an interference fringe by a phase shift method.SOLUTION: A relation between the height of the measuring plane of a measuring object and the phase of the part in which the brightness of each point in an interference fringe image varies by the light having a plurality of different wavelengths according to the height of the measuring plane is mathematically formulated into a predetermined computing equation. The combination of the height of the measuring plane of the measuring object and the phase of the part in which the brightness of each point in an interference fringe image varies by the light having a plurality of different wavelengths according to the height of the measuring plane is calculated based on the mathematically formulated predetermined computing equation. The phase information obtained by the calculation is reflected to a phase code conversion table. Then, the height of the measuring plane of the measuring object can be measured.

Description

本願発明は、例えば半導体ウエハ、液晶ディスプレ、ガラス基板、機械部品の表面テクスチャ、金属膜のような微小物体の段差面等の高さを、波長の異なる単色光を利用して計測する光学的計測装置の構成に関するものである。   The present invention is an optical measurement that uses monochromatic light with different wavelengths to measure the height of, for example, semiconductor wafers, liquid crystal displays, glass substrates, surface textures of machine parts, step surfaces of minute objects such as metal films, etc. It relates to the configuration of the apparatus.

今例えば図5に、そのような従来の微小物体の段差面等の高さを計測する光学的計測装置の構成の一例を示している。この光学的計測装置は、複数の異なる波長の光(例えばR・G・B)を発生する第1、第2、第3の光発生手段L1、L2、L3と、これら第1,第2,第3の光発生手段からの各波長の光を波長毎に分岐選択して透過させる第1,第2,第3の狭帯域フィルタF1、F2、F3と、それら第1,第2,第3の狭帯域フィルタF1、F2、F3を介して分岐された光を所定の方向に向けて合流させるとともに、測定対象物Wの測定面への照射光と参照ミラーMRへの参照光との2つの光に分けて照射する第1、第2、第3、第4のビームスプリッタB1、B2、B3、B4と、上記参照光を形成する参照ミラーRMと、該参照ミラーRMを左右両方向に回転させる回転駆動手段Dと、測定対象物Wと、該測定対象物Wを光軸方向に所定量だけ微小移動して光路長を変えるナノステージSTと、該ナノステージSTにより光路長を変えられた各波長の光による干渉画像を波長ごとに選択して撮影するための狭帯域フィルタを内蔵しているCCD等の撮像手段(カメラ)CAMとを備えて構成されている。   Now, for example, FIG. 5 shows an example of the configuration of an optical measuring device for measuring the height of a stepped surface or the like of such a conventional minute object. This optical measuring device includes first, second, and third light generating means L1, L2, and L3 that generate a plurality of light beams having different wavelengths (for example, R, G, and B), First, second, and third narrowband filters F1, F2, and F3 for branching and selecting light of each wavelength from the third light generating means for each wavelength, and the first, second, and third The light branched through the narrow-band filters F1, F2, and F3 are merged in a predetermined direction, and the two lights, the irradiation light to the measurement surface of the measurement object W and the reference light to the reference mirror MR The first, second, third, and fourth beam splitters B1, B2, B3, and B4 that irradiate the light separately, the reference mirror RM that forms the reference light, and the reference mirror RM are rotated in both the left and right directions. Rotation driving means D, measurement object W, and measurement object W are finely moved by a predetermined amount in the optical axis direction. It incorporates a nanostage ST that moves slightly to change the optical path length, and a narrow band filter for selecting and shooting an interference image by light of each wavelength whose optical path length has been changed by the nanostage ST for each wavelength. An imaging means (camera) CAM such as a CCD is provided.

上記第1,第2,第3の複数の光発生手段L1、L2、L3から照射されたR・G・B各波長の光は、上記第1,第2,第3の狭帯域フィルタF1、F2、F3を介して波長毎に正確に分岐された後に、先ず第1,第2,第3のビームスプリッタB1、B2、B3でそれぞれ第4のビームスプリッタB4方向に反射され、同第4のビームスプリッタB4部分で測定対象物Wへの照射光と参照ミラーRMへの参照光との2つの光に分けられて照射されるようになっている。   The R, G, and B wavelengths emitted from the first, second, and third light generating means L1, L2, and L3 are the first, second, and third narrowband filters F1, After being accurately branched for each wavelength via F2 and F3, the light beams are first reflected by the first, second, and third beam splitters B1, B2, and B3 toward the fourth beam splitter B4, respectively. The beam splitter B4 portion irradiates the measurement object W by being divided into two lights, that is, irradiation light to the measurement object W and reference light to the reference mirror RM.

そして、測定対象物Wからの反射光、及び参照ミラーRMからの反射光は、それぞれ再び第4のビームスプリッタB4部分で合流して干渉像を形成しながら、撮像手段CAMに入力され、その波長こどの干渉画像を撮像することで、各波長ごとの干渉画像が観察される。   Then, the reflected light from the measurement object W and the reflected light from the reference mirror RM are input again to the imaging unit CAM while forming an interference image again at the fourth beam splitter B4 part, and the wavelength thereof. By capturing the interference image of the child, an interference image for each wavelength is observed.

すなわち、上述のナノメータステージSTを光軸方向に数ナノメートル単位で微小移動させ、光路長を所望の所定の距離(ΔL)毎に変化させると、上記ナノメータステージST上に設置されている測定対象物Wの測定面からの反射光と参照光との光路長に差異が生じて干渉状態が変化するため、形成される干渉画像の明るさは正弦波状に変わっていく。これは光路長の差異が、第1,第2,第3の光発生手段L1、L2、L3の波長の1波長分だけ変化すれば、像の明るさは各波長の1周期分変化する位相として記録できることを意味する。   That is, when the above-mentioned nanometer stage ST is slightly moved in the optical axis direction in units of several nanometers, and the optical path length is changed for each desired predetermined distance (ΔL), the measurement object installed on the nanometer stage ST Since the optical path length between the reflected light from the measurement surface of the object W and the reference light is different and the interference state is changed, the brightness of the formed interference image changes in a sine wave shape. This is because if the difference in optical path length changes by one wavelength of the first, second, and third light generating means L1, L2, and L3, the brightness of the image changes by one period of each wavelength. It can be recorded as.

今例えば、上記ナノメータステージSTを光軸方向に所定の距離移動させる時の移動量の単位(ΔL)として、光の波長の約数となる単位波長(例えば波長が660nmならば、5nm、10nm等)を選定し、この単位量(単位波長ΔL)ごとに各波長の光の明るさ変化を求めると、図6のように単位量(単位波長ΔL)ごとの明るさ変化の位相として記録することができる。   Now, for example, as a unit of movement (ΔL) when the nanometer stage ST is moved by a predetermined distance in the optical axis direction, a unit wavelength that is a divisor of the wavelength of light (for example, 5 nm, 10 nm, etc. if the wavelength is 660 nm) ) Is selected, and the change in brightness of light of each wavelength is obtained for each unit amount (unit wavelength ΔL), the phase of brightness change for each unit amount (unit wavelength ΔL) is recorded as shown in FIG. Can do.

また図7のように、段差面を持つサンプルを測定対象物Wとして用いた場合、光路長の差異は測定対象物Wの表面の凹凸に応じて場所ごとに異なるため、干渉画像中の明るさ変化の分布は各画素によって異なっており、この各画素ごとの明るさの違いは、上記ナノメータステージSTを光軸方向に移動させる時の単位量(単位波長ΔL)ごとの明るさ変化量に相当する。   In addition, when a sample having a stepped surface is used as the measurement object W as shown in FIG. 7, the difference in the optical path length differs depending on the location according to the unevenness of the surface of the measurement object W, so the brightness in the interference image The distribution of change differs for each pixel, and the difference in brightness for each pixel corresponds to the brightness change amount for each unit amount (unit wavelength ΔL) when the nanometer stage ST is moved in the optical axis direction. To do.

つまり、図6のように、単位量(単位波長ΔL)ごとの明るさ変化の位相を予め求めて記録しておけば、干渉画像中の各画素ごとの明るさ変化から、「1周期の単位量(単位波長ΔL)に対する単位量あたりの測定回数の割合」を導き、さらに「測定回数の割合」と「単位量(単位波長ΔL)」との積算によって各画素間の相対高さHを求めることができる。   That is, as shown in FIG. 6, if the phase of the brightness change for each unit amount (unit wavelength ΔL) is obtained and recorded in advance, the brightness change for each pixel in the interference image can be expressed as “one cycle unit”. The ratio of the number of measurements per unit quantity relative to the quantity (unit wavelength ΔL) ”is derived, and the relative height H between the pixels is obtained by integrating the“ ratio of the number of measurements ”and the“ unit quantity (unit wavelength ΔL) ”. be able to.

ところで、図6から分るように、正弦波状の明るさ変化は波長の1周期で元に戻るため、1波長の光源だけでは光路長の差異が1波長分となる高さまでしか干渉縞として表現できない。また、図5に示した計測装置の構成から分るように、光路長の差異は第4のビームスプリッタB4から測定対象物Wまでの距離の往復間で生じるため、光路長の差異が1波長分となる高さ、すなわち1波長で計測可能な高さHは、光源波長の半分(λ/2)となる。   By the way, as can be seen from FIG. 6, since the sine wave-like brightness change is restored in one period of the wavelength, only the light source of one wavelength is expressed as an interference fringe only up to a height at which the difference in optical path length is equivalent to one wavelength. Can not. Further, as can be seen from the configuration of the measuring apparatus shown in FIG. 5, the difference in optical path length occurs between round trips of the distance from the fourth beam splitter B4 to the measurement object W, so that the difference in optical path length is one wavelength. The minute height, that is, the height H that can be measured at one wavelength is half the wavelength of the light source (λ / 2).

このように1波長の光源での計測可能な高さHは、光源波長の半分(λ/2)に限られ、しかも1枚の干渉画像だけでは測定対象物Wのどの部分が突出しているのか、或いは凹んでいるのかがわからず、単に各画素間での相対的な高さしか判断できない。   Thus, the height H that can be measured with a light source of one wavelength is limited to half the wavelength of the light source (λ / 2), and which part of the measuring object W protrudes with only one interference image. Alternatively, it is impossible to determine whether it is recessed, and only the relative height between the pixels can be determined.

そこで、上記図5の計測装置では、複数の異なる波長の光源を使用して、図8のように位相シフトするようにしている。このようにすれば、光路長の差異による明るさ変化の周期は各波長に依存しているので、可干渉距離内での数周期の干渉縞を観察すると、各光源波長の半分(λ/2)で繰り返される明るさ変化が、波長によって少しずつずれて繰り返されることになる。   Therefore, in the measurement apparatus of FIG. 5, a plurality of light sources having different wavelengths are used, and the phase is shifted as shown in FIG. In this way, since the period of the brightness change due to the difference in the optical path length depends on each wavelength, when observing several periods of interference fringes within the coherent distance, half of each light source wavelength (λ / 2) The brightness change repeated in step) is repeated with a slight shift depending on the wavelength.

つまり、図9のように、ある1つの波長が1周期を終えて原点に戻っても、他の波長がまだ変化の途中にあるので、複数波長の明るさの組合せを利用すれば、単一波長の場合の計測距離より遥かに長い距離での、明るさ変化と位相シフト量との記録をとることができる。   That is, as shown in FIG. 9, even if one wavelength ends one cycle and returns to the origin, the other wavelengths are still in the middle of change. It is possible to record the brightness change and the phase shift amount at a distance much longer than the measurement distance in the case of the wavelength.

これは、例えば図10のように、可干渉距離内で現れる各波長の干渉縞の明るさ変化のズレを、単位量(単位波長ΔL)ごとの明るさの組合せとみなし、光源(波長)1と光源(波長)2との明るさ変化の組合せを位相コード変換テーブルとして記録しておけば、各波長の明るさ変化をλ/2より細かな分解能で分割することができる上、いずれの光源波長の1波長分よりも大きい距離での計測が可能になることを意味している。   For example, as shown in FIG. 10, the deviation of the brightness change of the interference fringes of each wavelength appearing within the coherent distance is regarded as a combination of brightness for each unit amount (unit wavelength ΔL), and the light source (wavelength) 1 And the light source (wavelength) 2 brightness change combination as a phase code conversion table, the brightness change of each wavelength can be divided with a resolution finer than λ / 2, and any light source This means that measurement at a distance larger than one wavelength is possible.

例えば、図10のように、単位量(単位波長ΔL)で見て、光源1では0−4の5段階、光源2では0-3の4段階で評価している場合、その組み合わせ数は20種類となる。これは単一波長での計測可能な高さと比べると、光源1では4倍、光源2では5倍に計測可能な距離が増加することを意味する。   For example, as shown in FIG. 10, when the light source 1 is evaluated in five levels 0-4 for the light source 1 and four levels 0-3 for the light source 2, the number of combinations is 20 as shown in FIG. It becomes a kind. This means that the distance that can be measured increases by four times for the light source 1 and five times for the light source 2 compared to the height that can be measured at a single wavelength.

これら2つの波長を用いて、同じ明るさ変化の組合せが再び現れるまでの数値を一覧表にすれば、例えば図11のような位相コード変換テーブルになる。なお、図11は、説明を簡単にするために、一例として2波長の場合で作成しているが、上述の図5の3つの波長の光を利用すれば、3次元構造となる。   If these two wavelengths are used to list values until the same combination of brightness changes appears again, for example, a phase code conversion table as shown in FIG. 11 is obtained. 11 is created in the case of two wavelengths as an example for the sake of simplicity, but a three-dimensional structure is obtained by using the light of the three wavelengths in FIG. 5 described above.

そして、このような位相コード変換テーブルを利用して高さ計測をするためには、上述した図5の計測装置を用いて、上記ナノメータステージSTを光軸方向に上記単位量(単位波長ΔL)ごとに移動させて干渉縞の明るさを変化させながら、上述した図7のような段差を持つ測定対象物Wの干渉縞画像を撮像するか、或いは同図5の計測装置の参照ミラーRMを故意に傾け、同参照ミラーRMと測定対象物Wとの間の反射光の光路長に差異を設けて干渉縞の明るさを変化させた干渉縞画像を撮像することなどにより、各画素位置ごとの複数波長による干渉縞の位相の組合せを求めて、それらをパラメータとして各波長の位相コード変換テーブルを参照するようにすれば、所望の高さHを算出することができる(特許文献1,2を参照)。   In order to perform height measurement using such a phase code conversion table, the unit quantity (unit wavelength ΔL) is set in the direction of the optical axis by using the measurement apparatus of FIG. 5 described above. The interference fringe image of the measuring object W having the step as shown in FIG. 7 described above is captured while moving each time to change the brightness of the interference fringes, or the reference mirror RM of the measurement apparatus of FIG. By deliberately tilting and capturing an interference fringe image in which the brightness of the interference fringes is changed by providing a difference in the optical path length of the reflected light between the reference mirror RM and the measurement object W, for each pixel position If a combination of phases of interference fringes of a plurality of wavelengths is obtained and the phase code conversion table of each wavelength is referred to using them as parameters, the desired height H can be calculated (Patent Documents 1 and 2). See).

特願2009-028723号(平成21年2月10日出願の明細書および図面)Japanese Patent Application No. 2009-028723 (Details and drawings of application filed on Feb. 10, 2009) 特願2007-219054号(平成19年8月24日出願の明細書および図面)Japanese Patent Application No. 2007-219054 (details and drawings of application filed on August 24, 2007)

ところが、上記のような従来の計測装置の場合、上述のように事前に画像データを準備しなければならないことから、当該画像取得時点でノイズ(例えば振動、カメラの熱雑音など)を内包している問題がある。   However, in the case of the conventional measuring apparatus as described above, since image data must be prepared in advance as described above, noise (for example, vibration, thermal noise of the camera, etc.) is included at the time of image acquisition. There is a problem.

すなわち、上記図11の位相コード変換テーブル作成のためには、上述のように複数枚の位相シフト画像、または参照ミラーRMを故意に傾けて、参照ミラーRMと測定対象物Wとの反射光の光路に差異を設けて干渉縞の明るさを変化させた干渉縞画像を事前に準備しておかなければいけないが、以下のような理由により、各種のノイズ成分を内包してしまう。   That is, in order to create the phase code conversion table shown in FIG. 11, a plurality of phase shift images or the reference mirror RM is intentionally tilted as described above, and the reflected light from the reference mirror RM and the measurement object W is reflected. Although it is necessary to prepare an interference fringe image in which the brightness of the interference fringe is changed by providing a difference in the optical path, various noise components are included for the following reasons.

例えば、複数波長での干渉縞の明るさ変化の組合せから位相コード変換表を作成する際、上記ナノメータステージSTを、ある単位量(単位波長ΔL)ごとに移動させて、その時に得た明るさ変化の組合せをシフト量(=高さ=単位波長×測定回数)に対応させて、コード表を作成していたが、その場合にナノメータステージSTのヒステリシスによる位置ズレやナノメータステージST駆動時の振動などによるノイズ成分を画像情報内に内包してしまう。   For example, when creating a phase code conversion table from combinations of brightness variations of interference fringes at a plurality of wavelengths, the nanometer stage ST is moved for each unit amount (unit wavelength ΔL), and the brightness obtained at that time is obtained. The code table was created by making the combination of changes corresponding to the shift amount (= height = unit wavelength × number of measurements). In that case, positional deviation due to hysteresis of the nanometer stage ST and vibration at the time of driving the nanometer stage ST Such noise components are included in the image information.

また、複数の画像を取得する間に、CCD等撮像カメラ特有の熱雑音やショット雑音がランダムに発生することで、画像間の位相情報に差異が生じることもある。   In addition, thermal noise and shot noise peculiar to an imaging camera such as a CCD are randomly generated during acquisition of a plurality of images, so that there may be a difference in phase information between images.

また、次に測定光の波長が区切りの良い数値でないことによる問題もある。   Another problem is that the wavelength of the measurement light is not a good numerical value.

例えば干渉縞を発生させるための光源波長が、450nm、600nmのような区切りのよい数値となるのは稀で、453nm、667nmのような端数となりやすく、また、他の光学部品の影響で、本来想定している波長域からずれてしまうこともある。そのため、仮にナノメータステージSTを単位量(単位波長ΔL)ごとに移動させることができたとしても、図5のナノメータステージSTの上下動による位相シフトでの明るさ変化を、波長[nm]のような物理的な単位量(例えば450nm、600nmに対する、5nmや10nmのような公約数等)で分割してコード表を作成することができず、コード表の軸方向データが光源波長と不整合となってしまい、高さ情報を規則正しく並べることができなくなる。   For example, the light source wavelength for generating interference fringes rarely has a good value such as 450 nm and 600 nm, tends to be a fraction such as 453 nm and 667 nm, and is inherently affected by other optical components. It may deviate from the assumed wavelength range. Therefore, even if the nanometer stage ST can be moved for each unit amount (unit wavelength ΔL), the brightness change due to the phase shift due to the vertical movement of the nanometer stage ST in FIG. A code table cannot be created by dividing a physical unit amount (for example, a common divisor such as 5 nm or 10 nm for 450 nm and 600 nm), and the axial direction data of the code table is inconsistent with the light source wavelength. It becomes impossible to arrange the height information regularly.

さらに、波長[nm]のような物理的な単位量で分割しやすくするために、例えば453nm→450nm、607nm→605nmのように近似量とするようにしても、コード間の高さデータに不整合が生じてしまい、測定対象の高さが高くなるほどコード間の不整合による影響を受けて誤差が累積していくため、例えば上記特許文献2中に示されているような、補正作業を別途付随させていく必要が生じる。   Furthermore, in order to make it easy to divide by a physical unit quantity such as wavelength [nm], even if an approximate quantity is set, for example, 453 nm → 450 nm, 607 nm → 605 nm, the height data between codes is not effective. As matching occurs and the error is accumulated due to the influence of mismatch between codes as the height of the measurement object increases, for example, correction work as shown in Patent Document 2 is separately performed. Need to accompany it.

本願発明は、このような課題を解決するためになされたもので、段差面等の高さと段差面等の高さに応じた複数の異なる波長の光による干渉縞画像の画像内の各点の明るさが変化する部分の位相との関係を数式化し、段差面等の高さと段差面等の高さに応じた複数の異なる波長の光による干渉縞画像の画像内の各点の明るさが変化する部分の位相との組合せを、同数式による演算によって求めた位相情報を反映させた位相分割方式のものとすることによって、上述のような問題を生じさせることなく、微小物体の高さ等を正確に計測することができるようにした光学的計測装置を提供することを目的とするものである。   The present invention has been made in order to solve such a problem, and each point in the image of the interference fringe image by the light of a plurality of different wavelengths according to the height of the step surface and the height of the step surface. The relationship between the phase of the part where the brightness changes is expressed numerically, and the brightness of each point in the image of the interference fringe image due to the light of a plurality of different wavelengths according to the height of the step surface and the like is determined. By combining the phase of the changing part with the phase division method that reflects the phase information obtained by the calculation based on the formula, the height of the minute object can be obtained without causing the above problems. It is an object of the present invention to provide an optical measuring device capable of accurately measuring the above.

本願発明は、同目的を達成するために、次のような課題解決手段を備えて構成されている。   In order to achieve the same object, the present invention is configured with the following problem solving means.

(1) 請求項1の発明
この発明の課題解決手段は、複数の異なる波長の光を発生する光発生手段と、この光発生手段から発せられた光を上記複数の波長の光に分岐し、それぞれ光路長の異なる別々の光路を通した後に再び重ね合わせて、それら光路長の差に応じた干渉縞を生じさせる干渉縞発生手段と、この干渉縞発生手段によって生じた干渉縞を撮像する撮像手段と、この撮像手段で得た干渉縞画像から、上記光の波長ごとの明るさ変化と位相との関係を解析する画像解析手段と、測定対象物の測定面の高さに応じて干渉縞画像内の各点の明るさが変化する部分の位相を上記光の複数の異なる波長ごとに求めて、当該測定面の高さと位相とを組み合わせた位相コード変換テーブルと、上記画像解析手段によって得た位相情報をパラメータとして、上記位相コード変換テーブルを参照することにより、上記測定対象物の測定面の高さを求める高さ演算手段とを備えてなる光学的計測装置であって、上記測定対象物の測定面の高さと上記測定面の高さに応じた複数の異なる波長の光による干渉縞画像内の各点の明るさが変化する部分の位相との関係を所定の演算式に数式化するとともに、上記測定対象物の測定面の高さと同測定面の高さに応じた上記複数の異なる波長の光による干渉縞画像内の各点の明るさが変化する部分の位相との組合せを、同数式化した所定の演算式に基いて演算し、この演算により求めた位相情報を上記位相コード変換テーブルに反映させることによって、上記測定対象物の測定面の高さを計測するようにしたことを特徴としている。
(1) Invention of Claim 1 The problem-solving means of the present invention includes a light generating means for generating a plurality of lights having different wavelengths, and a light emitted from the light generating means is branched into the light having a plurality of wavelengths. Interference fringe generating means for generating interference fringes corresponding to the differences in the optical path lengths after passing through separate optical paths having different optical path lengths, and imaging for picking up the interference fringes generated by the interference fringe generating means Means, image analysis means for analyzing the relationship between the brightness change and the phase for each wavelength of the light from the interference fringe image obtained by the imaging means, and interference fringes according to the height of the measurement surface of the measurement object The phase of the portion where the brightness of each point in the image changes is obtained for each of a plurality of different wavelengths of the light, and is obtained by the phase code conversion table combining the height and phase of the measurement surface and the image analysis means. Parameter with phase information An optical measurement apparatus comprising a height calculating means for obtaining the height of the measurement surface of the measurement object by referring to the phase code conversion table, the measurement surface of the measurement object The relationship between the height of the light and the phase of the portion where the brightness of each point in the interference fringe image due to a plurality of different wavelengths of light according to the height of the measurement surface changes is formulated into a predetermined arithmetic expression, and The combination of the height of the measurement surface of the object to be measured and the phase of the portion where the brightness of each point in the interference fringe image changes due to the light of the plurality of different wavelengths according to the height of the measurement surface The height of the measurement surface of the measurement object is measured by calculating based on the predetermined calculation formula and reflecting the phase information obtained by this calculation in the phase code conversion table. Yes.

以上の構成では、従来のように、明るさ変化と位相の組合せを表す単位量を、上記ナノメータステージSTを光軸方向に移動させる時の単位量として取得した画像をもとに位相コード変換テーブルを作成するのではなくて、上記測定対象物の測定面の高さと上記測定面の高さに応じた複数の異なる波長の光による干渉縞画像内の各点の明るさが変化する部分の位相との関係を所定の演算式に数式化するとともに、上記測定対象物の測定面の高さと同測定面の高さに応じた上記複数の異なる波長の光による干渉縞画像内の各点の明るさが変化する部分の位相との組合せを、同数式化した所定の演算式に基いて演算し、この演算により求めた位相情報を上記位相コード変換テーブルに反映させ、それによって、上記測定対象物の測定面の高さを計測するようにしている。   In the above configuration, as in the prior art, the phase code conversion table is based on an image obtained by using a unit amount representing a combination of brightness change and phase as a unit amount when the nanometer stage ST is moved in the optical axis direction. The phase of the portion in which the brightness of each point in the interference fringe image changes due to the light of a plurality of different wavelengths according to the height of the measurement surface of the measurement object and the height of the measurement surface. And the brightness of each point in the interference fringe image due to the light of the plurality of different wavelengths according to the height of the measurement surface of the measurement object and the height of the measurement surface. The combination with the phase of the portion whose length changes is calculated based on a predetermined arithmetic expression expressed in the same formula, and the phase information obtained by this calculation is reflected in the phase code conversion table, thereby the measurement object. Measure the height of the measurement surface It is way.

したがって、例えば分光器などによって、光源の中心波長を予めデータとして取得しておけば、計算によって求まる高さ計測が可能な範囲において、波長を異にする複数の光源からの光の干渉によって得られる干渉縞の位相変化と高さとの関係(組み合わせ)を位相をコード変換テーブルとして記録することができるようになるため、位相をシフトさせるためのナノメータステージによる位置ズレや、ナノメータステージ駆動時の振動による雑音、またはCCD等撮像カメラ特有の雑音、さらに複数の光源の中心波長のズレによる位相コード変換テーブルのデータ不整合、或いは同複数の光源の中心波長ズレに対応した別途の補正作業に起因する問題を解消することができる。   Therefore, if the center wavelength of the light source is acquired as data in advance by a spectroscope or the like, it can be obtained by interference of light from a plurality of light sources having different wavelengths within a range where height measurement can be obtained by calculation. The relationship (combination) between the phase change and the height of the interference fringes can be recorded as a code conversion table. Therefore, the position is shifted by the nanometer stage for shifting the phase, and the vibration is generated when driving the nanometer stage. Problems caused by noise or noise peculiar to imaging cameras such as CCDs, data mismatch in the phase code conversion table due to misalignment of center wavelengths of multiple light sources, or separate correction work corresponding to misalignment of center wavelengths of multiple light sources Can be eliminated.

従来法では、上述のように複数枚の位相シフト画像、または参照ミラーRMを故意に傾けることで、参照ミラーRMと測定対象物Wとの反射光の光路に差異を設け、干渉縞の明るさを変化させた干渉縞画像を予め複数枚準備するうちに、作成した位相コード変換テーブルに各種のノイズ成分を内包してしまうため、複数の波長の光(R・G・B)による干渉画像をもとに高さデータへ変換しても、後述する図3の画像のように精度の悪い演算結果となってしまう。   In the conventional method, as described above, by deliberately tilting the plurality of phase-shifted images or the reference mirror RM, a difference is made in the optical path of the reflected light between the reference mirror RM and the measurement object W, and the brightness of the interference fringes Since various noise components are included in the created phase code conversion table while preparing a plurality of interference fringe images with different values, interference images with light of multiple wavelengths (R, G, B) are included. Even if it is converted into height data, the calculation result is inaccurate as shown in the image of FIG. 3 described later.

一方、この発明によると、段差面等の高さと、段差面等の高さに応じた複数の異なる波長の光による干渉縞画像の画像内の各点の明るさが変化する部分の位相との関係が正確に反映され、図4のように、高精度に表面形状を表すことができる。   On the other hand, according to the present invention, the height of the step surface and the phase of the portion where the brightness of each point in the image of the interference fringe image due to the light of a plurality of different wavelengths according to the height of the step surface changes. The relationship is accurately reflected, and the surface shape can be expressed with high accuracy as shown in FIG.

(2) 請求項2の発明
この発明の課題解決手段は、上記請求項1の発明の課題解決手段の構成において、所定の演算式に基く干渉画像内各点の光の明るさ変化に対応した位相情報の演算は、予じめ光発生手段からの各光の中心波長をデータとして取得して置き、同取得した光の中心波長を基にして演算するようになっていることを特徴としている。
(2) Invention of Claim 2 The problem solving means of the present invention corresponds to the change in brightness of light at each point in the interference image based on a predetermined arithmetic expression in the configuration of the problem solving means of the invention of Claim 1 above. The calculation of the phase information is characterized in that the center wavelength of each light from the preliminary light generating means is acquired and set as data, and is calculated based on the center wavelength of the acquired light. .

このような構成の場合、上述の如く、例えば分光器などによって、光源である発生手段からの光のの中心波長を予めデータとして取得しておけば、計算によって求まる高さ計測が可能な範囲において、波長を異にする複数の光源からの光の干渉によって得られる干渉縞の位相変化(シフト量)と高さとの関係(組み合わせ)を位相コード変換テーブルとして正確に記録することができるため、従来のような位相をシフトさせるためのナノメータステージによる位置ズレや、ナノメータステージ駆動時の振動による雑音、またはCCD等撮像カメラ特有の雑音、さらに複数の光源の中心波長のズレによる位相コード変換テーブルのデータ不整合、或いは同複数の光源の中心波長ズレに対応した別途の補正作業に起因する問題等を解消することができる。   In the case of such a configuration, as described above, if the center wavelength of the light from the generating means, which is a light source, is acquired as data in advance, for example, by a spectroscope, the height measurement can be obtained by calculation. The relationship (combination) between the phase change (shift amount) and height of interference fringes obtained by interference of light from a plurality of light sources having different wavelengths can be accurately recorded as a phase code conversion table. Phase code conversion table data due to position shift due to nanometer stage to shift phase, noise due to vibration when driving nanometer stage, noise peculiar to imaging cameras such as CCD, and center wavelength shift of multiple light sources It is possible to solve problems caused by inconsistency or separate correction work corresponding to the center wavelength shift of the plurality of light sources. Kill.

以上の結果、本願発明によると、前述した従来の光学的計測装置の問題を略確実に解決することができる。   As a result, according to the present invention, the above-described problems of the conventional optical measuring device can be solved almost certainly.

本願発明の実施の形態に係る複数の波長の光(RGB)の干渉画像を利用した微小物体の高さ等の光学的計測装置の位相コード変換テーブル作成過程における位相シフト量と干渉縞の各色の周期との関係を示す図(後述の図9のデータ高さを正規化した図)である。Phase shift amounts and interference fringe colors in the process of creating a phase code conversion table of an optical measuring device such as the height of a minute object using interference images of light (RGB) of a plurality of wavelengths according to an embodiment of the present invention It is a figure which shows the relationship with a period (figure which normalized the data height of FIG. 9 mentioned later). 本願発明の実施の形態に係る複数の波長の光(RGB)の干渉画像を利用した微小物体の高さ等の光学的計測装置の位相コード変換テーブル作成過程における波長1のコードと波長2のコードの関係を示す図(高さデータを格納する順番を示す図)である。なお、図中の0〜7は、干渉縞明るさ変化の位相の組合せから求まった高さデータを格納するインデックスの配置が、位相の組合せによって変化していく順番を表している。Wavelength 1 code and wavelength 2 code in the process of creating a phase code conversion table of an optical measurement device such as the height of a minute object using interference images of light (RGB) of a plurality of wavelengths according to an embodiment of the present invention FIG. 5 is a diagram (a diagram illustrating an order of storing height data). In the figure, 0 to 7 represent the order in which the arrangement of the indexes for storing the height data obtained from the combination of the interference fringe brightness change phases changes according to the combination of phases. 従来の複数の波長の光(RGB)による干渉画像から測定対象物の高さを算出し、高さデータをグレイスケールで表現した画像である。干渉画像から求めた位相組み合わせからの高さ変換では、従来例(波長ベース)で作成した改善前の位相コード変換テーブルを利用している。なお、複数の波長の光(RGB)による干渉画像は、図4と同じものを使用している。This is an image in which the height of a measurement object is calculated from a conventional interference image using a plurality of wavelengths of light (RGB) and the height data is expressed in gray scale. In the height conversion from the phase combination obtained from the interference image, the phase code conversion table before improvement created in the conventional example (wavelength base) is used. In addition, the same interference image by the light (RGB) of a some wavelength is used as FIG. 本願発明の実施の形態に係る複数の波長の光(RGB)による干渉画像から測定対象物の高さを算出し、高さデータをグレイスケールで表現した画像である。干渉画像から求めた位相組み合わせからの高さ変換では、本願発明(位相ベース)で作成した改善後の位相コード変換テーブルを利用しており、改善向上効果を示している。なお、複数の波長の光(RGB)による干渉画像は、図3と同じものを使用している。It is the image which calculated the height of the measuring object from the interference image by the light (RGB) of a plurality of wavelengths concerning an embodiment of the invention in this application, and expressed height data in gray scale. In the height conversion from the phase combination obtained from the interference image, the improved phase code conversion table created in the present invention (phase base) is used, and the improvement improvement effect is shown. In addition, the same interference image by the light (RGB) of a some wavelength is used as FIG. 本願発明が前提とする従来例に係る光の干渉画像を利用した光学的計測装置の構成(共通)を示す図である。It is a figure which shows the structure (common) of the optical measuring device using the interference image of the light based on the prior art which this invention presupposes. 同装置における光路長の変化に対した測定対象物からの反射光と参照光との干渉状態の変化による測定画像の明るさ変化(サイン波状の変化)を示す説明図である。It is explanatory drawing which shows the brightness change (sine wave-like change) of the measurement image by the change of the interference state of the reflected light from a measurement target object and the reference light with respect to the change of the optical path length in the same apparatus. 同装置における測定画像の明るさ変化(サイン波状の変化)に対応した位相差Δθから測定対象物の高さの差を測定できることを示す説明図である。It is explanatory drawing which shows that the difference of the height of a measurement object can be measured from phase difference (DELTA) (theta) corresponding to the brightness change (sine wave-like change) of the measurement image in the same apparatus. 同装置における各波長の光の位相シフト量と干渉縞の明るさとの関係を示すサイン波形図である。It is a sine waveform figure which shows the relationship between the phase shift amount of the light of each wavelength in the same apparatus, and the brightness of an interference fringe. 同装置における複数のレーザ光の光路長変化による明るさ変化が、レーザ光の波長によって決まるため、複数のレーザ光を組み合わせることによって波長以上の計測ができることを示す説明図(位相シフト量と干渉縞の各色の周期との関係を示す図)である。Explanatory diagram showing that measurement of wavelength or more can be performed by combining multiple laser beams, because the brightness change due to the optical path length variation of multiple laser beams in the same device is determined by the wavelength of the laser beam (phase shift amount and interference fringes) FIG. 4 is a diagram showing a relationship with a period of each color. 同装置において光路長をΔL毎に移動させて明るさ変化のサイン波の位相θをΔL毎にコード化し、同コードの組み合わせで1波長以上の長さを計測する場合のコード化方法を示す説明図である。Description of an encoding method in the case where the optical path length is moved for each ΔL in the same apparatus, and the phase θ of the sine wave of the brightness change is coded for each ΔL, and the length of one wavelength or more is measured by the combination of the codes. FIG. 同装置における位相コードを高さに変換する位相コード−高さ変換テーブルの構成を示す図である。It is a figure which shows the structure of the phase code-height conversion table which converts the phase code into height in the same apparatus.

次に、本願発明を実施するための形態について、図1〜図5を参照して詳細に説明する。   Next, the form for implementing this invention is demonstrated in detail with reference to FIGS.

先ず図1は、本願発明の実施の形態における光学的計測装置の位相コード変換テーブル作成過程における位相シフト量(高さ)と干渉縞の各色の周期との関係を示す図(前述の図9の光源毎のデータ高さを正規化した図)である。   First, FIG. 1 is a diagram showing the relationship between the phase shift amount (height) and the period of each color of interference fringes in the process of creating the phase code conversion table of the optical measuring device according to the embodiment of the present invention (in FIG. 9 described above). (The figure which normalized the data height for every light source).

また、図2は、同本実施の形態の光学的計測装置の位相コード変換テーブル作成過程における波長1のコードと波長2のコードの関係を示す図(高さデータを格納する順番を示す図)である。   FIG. 2 is a diagram showing the relationship between the wavelength 1 code and the wavelength 2 code in the phase code conversion table creation process of the optical measurement apparatus of the present embodiment (a diagram showing the order in which the height data is stored). It is.

なお、図中の0〜7は、干渉縞明るさ変化の位相の組合せから求まった高さデータを格納するインデックスの配置が、位相の組合せによって変化していく順番を表している。   In the figure, 0 to 7 represent the order in which the arrangement of the indexes for storing the height data obtained from the combination of the interference fringe brightness change phases changes according to the combination of phases.

また、図3は、従来の波長分割方式の位相コード変換テーブルを採用して、複数の波長の光(RGB)による干渉画像から測定対象物の高さを算出し、同高さデータをグレイスケールで表現した測定面画像図である。   In addition, FIG. 3 employs a conventional wavelength division phase code conversion table to calculate the height of the measurement object from interference images of light (RGB) of a plurality of wavelengths, and the same height data is converted to gray scale. FIG.

また、図4は、位相分割方式の位相コード変換テーブルを採用した、本願発明の実施の形態に係る複数の波長の光(RGB)による干渉画像から測定対象物の高さを算出し、同高さデータをグレイスケールで表現した測定面画像図である。   Further, FIG. 4 calculates the height of the measurement object from the interference image by the light (RGB) of a plurality of wavelengths according to the embodiment of the present invention, which employs the phase code conversion table of the phase division method, It is a measurement surface image figure which expressed thickness data in gray scale.

また、図5は、本願発明が前提とする前述した従来例に係る光の干渉画像を利用した光学的計測装置の構成(共通)を示す図である。   FIG. 5 is a diagram showing a configuration (common) of an optical measurement apparatus using an optical interference image according to the above-described conventional example on which the present invention is based.

この実施の形態の場合、上述した図5の装置構成を利用する点では従来例と全く同様であるが、従来のように明るさ変化と位相の組合せを表す単位量を、ナノメータステージSTを光軸方向に移動させる時の単位量として取得した画像をもとに位相コード変換テーブルを作成するのではなく、予じめ光源である第1,第2,第3の光発生手段L1〜L3の光の中心波長をデータとして取得しておき、同取得した各光源の中心波長を基に、ソフトウェアで、以下に述べるような数式(1)〜(5)を用い、同式(1)〜(5)中に含まれる単位量(単位位相θ)を基に干渉縞の明るさ(輝度)変化の位相情報を計算し、この位相情報を前述した図11の位相コード変換テーブルへ反映させるようにしたことを特徴としている。   In the case of this embodiment, it is exactly the same as the conventional example in that the apparatus configuration of FIG. 5 described above is used, but the unit amount representing the combination of the brightness change and the phase is changed to the nanometer stage ST as the conventional example. Rather than creating a phase code conversion table based on an image acquired as a unit amount when moving in the axial direction, the first, second, and third light generating means L1 to L3 that are the preliminary light sources are used. The center wavelength of light is acquired as data, and based on the acquired center wavelength of each light source, the equations (1) to (5) 5) Based on the unit amount (unit phase θ) included therein, the phase information of the brightness (brightness) change of the interference fringes is calculated, and this phase information is reflected in the phase code conversion table of FIG. It is characterized by that.

Figure 2012154765
Figure 2012154765

すなわち、この実施の形態では、先ず図5の第1,第2,第3の光発生手段L1〜L3の3種類の波長の光源(R・G・B)による干渉縞の明るさ変化(輝度変化)に対応する数式を上記(1)〜(5)とし、以下の手順[1]〜[5]でコード表を作成する。   That is, in this embodiment, first, changes in the brightness of the interference fringes (luminance) by the light sources (R, G, B) of the three wavelengths of the first, second, and third light generating means L1 to L3 in FIG. The formula corresponding to (change) is set to the above (1) to (5), and a code table is created by the following procedures [1] to [5].

これら(1)〜(5)式の内、(1)式は高さ計測が可能なレンジを示しており、また(2)〜(4)式は上述した第1,第2,第3の光発生手段L1〜L3のRGB各光源の波長に対応した高さ(位相シフト量)演算式であり、縞となって現れる高さHと位相θとの関係を示している。さらに、(5)式は、測定対象物Wの段差面等の測定面の高さは、本来R・G・B何の波長の光で測定しても同一である筈であるから、上記(2)〜(4)で演算したR・G・B各波長ごとの高さの差が最小(理論的にはゼロ)になることを示している。   Among these formulas (1) to (5), formula (1) represents a range in which height measurement is possible, and formulas (2) to (4) represent the above-described first, second, and third. This is a height (phase shift amount) calculation formula corresponding to the wavelengths of the RGB light sources of the light generating means L1 to L3, and shows the relationship between the height H appearing as a stripe and the phase θ. Furthermore, since the height of the measurement surface such as the stepped surface of the measurement object W should be the same regardless of the wavelengths of R, G, and B, the equation (5) should be equal to the above ( It shows that the difference in height for each wavelength of R, G and B calculated in 2) to (4) is minimized (theoretically zero).

[1]先ず上記R・G・B3種類の光源波長の中心波長(λ)と半値全幅(Δλ)を求め、上述の数式(1)に基づいて各光源R・G・Bの中心波長での単位量(単位位相θ)の計測可能な範囲(計測レンジL)を算出する。   [1] First, the central wavelength (λ) and the full width at half maximum (Δλ) of the three types of light source wavelengths of R, G, and B are obtained, and the center wavelength of each light source R, G, and B is calculated based on the above formula (1). The measurable range (measurement range L) of the unit amount (unit phase θ) is calculated.

そして、式(2)〜(4)中の変数 i、j、k の組合せを全て求める。これは、位相差が1波長を越える場合の各単位位相θの組合せを表しており、測定対象物Wの高さHに応じた光源波長の位相変化が1波長を越えた場合でも、高さデータが図11の位相コード変換テーブル内に収まるようなインデックスの組合せを調べることに相当する。   Then, all combinations of variables i, j, and k in equations (2) to (4) are obtained. This represents a combination of the unit phases θ when the phase difference exceeds one wavelength, and the height of the light source wavelength according to the height H of the measurement object W exceeds the height even when the phase change exceeds one wavelength. This corresponds to checking the combination of indexes such that the data fits in the phase code conversion table of FIG.

[2]続いて、先に求めた変数i、j、kの組合せごとに、上記R・G・B各光源の波長に対応した演算式(2)〜(4)中の単位量(単位位相θ・・・単位は[rad]であり、図11の位相コード変換テーブルのインデックスに相当する)の組合せを、全てソフトウェアで計算する。   [2] Subsequently, for each combination of the variables i, j, and k obtained previously, the unit amount (unit phase) in the arithmetic expressions (2) to (4) corresponding to the wavelengths of the R, G, and B light sources. θ ... The unit is [rad], which corresponds to the index of the phase code conversion table in FIG.

これらの式(2)〜(4)は、単位量の組合せが、位相差が1波長以下である場合の単位位相θの組合せであることを表し、またR・G・B複数光源による干渉縞位相のすべての組合せが、1波長内の変化量として図11の位相コード変換テーブルに収まるようなインデックスを作成することに相当する。   These formulas (2) to (4) indicate that the combination of unit quantities is a combination of unit phases θ when the phase difference is one wavelength or less, and interference fringes due to multiple R, G, and B light sources. This is equivalent to creating an index in which all combinations of phases fall within the phase code conversion table of FIG. 11 as the amount of change within one wavelength.

例えば、各波長による干渉縞の明るさ(輝度)変化1周期(360 [rad])を、位相 5 [rad]単位で分割して図11の位相コード変換テーブルを作成する場合、各波長に相当する光軸成分を72[個](= 360[rad]÷5[rad])とすることができ、例えば2つの波長の光源を用いるとすれば、その場合の位相の組合せは72×72=5,184 通りとなる。   For example, when the phase code conversion table of FIG. 11 is created by dividing one cycle (360 [rad]) of brightness (brightness) change of interference fringes by each wavelength in units of phase 5 [rad], it corresponds to each wavelength. 72 [pieces] (= 360 [rad] ÷ 5 [rad]). For example, if light sources having two wavelengths are used, the phase combination in that case is 72 × 72 = There are 5,184 ways.

[3]そこで、予め計算した単位位相θの組合せを、上記式(2)〜(4)に代入し、さらに周期中の順番(何番目か)を示す変数 i、j、k の組合せを変化させ、上記R・G・B各波長に該当する高さHR、HG、HBを演算する(但し、上記変数i、j、kは、式(1)の計測レンジ範囲内から選出する)。   [3] Therefore, the combination of unit phases θ calculated in advance is substituted into the above formulas (2) to (4), and the combination of variables i, j, k indicating the order (number) in the cycle is changed Then, the heights HR, HG, and HB corresponding to the R, G, and B wavelengths are calculated (however, the variables i, j, and k are selected from the measurement range range of Equation (1)).

ここで、上記HR、HG、HBはR・G・B3種類の異なる波長によって算出される高さ(位相シフト量)、λはR・G・B各光源の3種類の各波長、θは同各波長λから得た干渉縞の明るさ(輝度値)変化の位相量を表し、i,j,kはゼロを含む定数項(0,1,2,3・・・)を表す。   Here, HR, HG, and HB are heights (phase shift amounts) calculated from three different wavelengths of R, G, and B, λ is each of the three wavelengths of the R, G, and B light sources, and θ is the same. The phase amount of the change in brightness (luminance value) of the interference fringes obtained from each wavelength λ is represented, and i, j, and k represent constant terms (0, 1, 2, 3,...) Including zero.

[4]続いて、上述の式(5)を基に、R・G・B各波長に該当する高さHR、HG、HBの差異が最も少なくなる組合せを求める。   [4] Subsequently, based on the above formula (5), a combination that minimizes the difference in height HR, HG, HB corresponding to each wavelength of R, G, B is obtained.

これは、位相差が1波長を越える場合の各単位位相θi,θj,θkの組合せを表しており、測定対象物Wの段差面の高さHに応じたR・G・B各光源波長の位相変化が1波長を越えた場合でも、高さデータが図11の位相コード変換テーブル内に収まるようなインデックスの組合せを調べることに相当する。   This represents a combination of unit phases θi, θj, and θk when the phase difference exceeds one wavelength, and R, G, and B light source wavelengths corresponding to the height H of the step surface of the measuring object W are shown. Even when the phase change exceeds one wavelength, this corresponds to checking an index combination in which the height data fits in the phase code conversion table of FIG.

[5]そして、上記高さHR、HG、HBの差異が最も少なくなるときの、同高さHR、HG、HBの平均値を求め、該当するインデックスに格納する。   [5] Then, the average values of the heights HR, HG, HB when the differences in the heights HR, HG, HB are the smallest are obtained and stored in the corresponding index.

このようにして、干渉縞明るさ変化の位相の組合せに応じて、検出高さHを格納していくと、例えば図2のように、位相コード値が0から1へと移り、波長1が1波長分変化すれば1から2へと飛んで、さらに2から3へと移り、続いて波長2が1波長分変化すれば3から4へ飛んで、さらに4から5へと移る、という操作が適用範囲(計測レンジLの範囲内)まで繰り返されていくことになる。   In this way, when the detection height H is stored according to the combination of phases of the interference fringe brightness change, the phase code value shifts from 0 to 1 as shown in FIG. If it changes by one wavelength, it jumps from 1 to 2, then moves from 2 to 3, then if wavelength 2 changes by one wavelength, it jumps from 3 to 4 and then moves from 4 to 5 Is repeated up to the applicable range (within the range of the measurement range L).

このような構成の場合、例えば分光器などによって、上記R・G・B3つの波長の光源の中心波長を予めデータとして取得しておけば、計算によって求まる高さ計測が可能な範囲(計測レンジL)において、波長を異にするR・G・B各光源からの光の干渉によって得られる干渉縞の位相変化と高さとの関係(組み合わせ)を位相をコード変換テーブルとして正確に記録することができるため、従来の位相をシフトさせるためのナノメータステージによる位置ズレや、ナノメータステージ駆動時の振動による雑音、またはCCD等撮像カメラ特有の雑音、さらに複数の光源の中心波長のズレによる位相コード変換テーブルのデータ不整合、或いは同複数の光源の中心波長ズレに対応した別途の補正作業に起因する問題を解消することができる。   In the case of such a configuration, for example, if the center wavelengths of the light sources having the three wavelengths R, G, and B are acquired in advance by a spectroscope or the like, a height measurement range that can be obtained by calculation (measurement range L ), The relationship (combination) between the phase change and height of interference fringes obtained by interference of light from R, G, and B light sources having different wavelengths can be accurately recorded as a code conversion table. Therefore, the position shift by the conventional nanometer stage for shifting the phase, the noise due to the vibration when driving the nanometer stage, the noise peculiar to the imaging camera such as CCD, and the phase code conversion table by the shift of the center wavelength of the plurality of light sources It is possible to solve problems caused by data inconsistency or separate correction work corresponding to the center wavelength shift of the plurality of light sources.

今、先ず図3に、前述した従来の波長分割方式によって作成した位相コード変換テーブルを用いて所定の測定対象物Wの段差面(上下方向の下から1/3のライン部分に上下方向の段差がある)の左右方向の高さを測定した時の測定画像図を、また図4に、上記本実施の形態の位相分割方式によって作成した位相コード変換テーブルを用いて同様の測定対象物Wの段差面(上下方向の下から1/3のライン部分に上下方向の段差がある)の左右方向の高さを測定した時の測定画像図を示す。   First, FIG. 3 shows a step surface of a predetermined measurement object W using a phase code conversion table created by the conventional wavelength division method described above (a step in the vertical direction on a line portion of 1/3 from the bottom in the vertical direction. A measurement image when the height in the horizontal direction is measured, and FIG. 4 shows a similar measurement object W using the phase code conversion table created by the phase division method of the present embodiment. The measurement image figure when measuring the height in the left-right direction of a level | step difference surface (the step part of an up-down direction exists in the line part 1/3 from the up-down direction) is shown.

これら図3,図4の画像データを対比すると明らかなように、図3の測定画像の場合には、左側から右側方向に次第に高さHが高くなる段差面の高さ変化のコントラスト(低い方から高い方に次第に薄くなる)が必ずしも明確でなく、実際には左側から右側にかけて次第に高さが高くなっているにもかかわらず、中央部で画像が乱れてしまっており、また左右方向の高さ変化を示す下方側の波形図(チャート)も乱れており、正確な画像データとなっていない。   As is apparent from the comparison of the image data in FIGS. 3 and 4, in the case of the measurement image in FIG. 3, the contrast of the height change of the step surface in which the height H gradually increases from the left to the right (the lower one). It is not always clear, but the image is distorted in the center despite the fact that the height gradually increases from the left side to the right side. The waveform diagram (chart) on the lower side showing the change in height is also distorted and is not accurate image data.

一方、これに対して、図4の場合には、左右方向の高さの変化に応じたコントラストの変化も明瞭で、下方側の左右方向の高さの変化を示す波形図、また上下方向の段差部を表わす右側の波形図も、それぞれ略正確に表わされている。したがって、上述した本実施の形態の光学的計測装置によると、従来のように、ノイズ成分に影響されることなく、高精度な測定が可能になることが分る。   On the other hand, in the case of FIG. 4, the change in contrast according to the change in height in the left-right direction is also clear, and a waveform diagram showing the change in height in the left-right direction on the lower side is also shown. The right-side waveform diagrams representing the stepped portions are also shown approximately accurately. Therefore, according to the above-described optical measurement apparatus of the present embodiment, it can be understood that highly accurate measurement can be performed without being affected by noise components as in the prior art.

なお、以上の場合、図3,図4において、その測定対象面は、図示上下方向の略中央部が選ばれている。   In the above case, in FIG. 3 and FIG. 4, a substantially central portion in the vertical direction of the drawing is selected as the measurement target surface.

L1,L2,L3は第1,第2,第3の光発生手段、B1〜B4は第1〜第4のビームスプリッタ、CAMは撮像手段、F1〜F3は狭帯域フィルタ、RMは参照光ミラー、STはナノメータステージ、Wは測定対象物である。   L1, L2 and L3 are first, second and third light generating means, B1 to B4 are first to fourth beam splitters, CAM is an imaging means, F1 to F3 are narrow band filters, and RM is a reference light mirror. , ST is a nanometer stage, and W is a measurement object.

Claims (2)

複数の異なる波長の光を発生する光発生手段と、この光発生手段から発せられた光を上記複数の波長の光に分岐し、それぞれ光路長の異なる別々の光路を通した後に再び重ね合わせて、それら光路長の差に応じた干渉縞を生じさせる干渉縞発生手段と、この干渉縞発生手段によって生じた干渉縞を撮像する撮像手段と、この撮像手段で得た干渉縞画像から、上記光の波長ごとの明るさ変化と位相との関係を解析する画像解析手段と、測定対象物の測定面の高さに応じて干渉縞画像内の各点の明るさが変化する部分の位相を上記光の複数の異なる波長ごとに求めて、当該測定面の高さと位相とを組み合わせた位相コード変換テーブルと、上記画像解析手段によって得た位相情報をパラメータとして、上記位相コード変換テーブルを参照することにより、上記測定対象物の測定面の高さを求める高さ演算手段とを備えてなる光学的計測装置であって、上記測定対象物の測定面の高さと上記測定面の高さに応じた複数の異なる波長の光による干渉縞画像内の各点の明るさが変化する部分の位相との関係を所定の演算式に数式化するとともに、上記測定対象物の測定面の高さと同測定面の高さに応じた上記複数の異なる波長の光による干渉縞画像内の各点の明るさが変化する部分の位相との組合せを、同数式化した所定の演算式に基いて演算し、この演算により求めた位相情報を上記位相コード変換テーブルに反映させることによって、上記測定対象物の測定面の高さを計測するようにしたことを特徴とする光学的計測装置。   Light generating means for generating light of a plurality of different wavelengths, and the light emitted from the light generating means is branched into light of the plurality of wavelengths, passed through separate optical paths with different optical path lengths, and then superimposed again From the interference fringe generating means for generating the interference fringes according to the difference in the optical path length, the imaging means for imaging the interference fringes generated by the interference fringe generating means, and the interference fringe image obtained by the imaging means, the light Image analysis means for analyzing the relationship between the change in brightness and the phase for each wavelength of the wavelength, and the phase of the portion where the brightness of each point in the interference fringe image changes according to the height of the measurement surface of the measurement object The phase code conversion table obtained by combining the height and phase of the measurement surface and the phase information obtained by the image analysis means as parameters, obtained for each of a plurality of different wavelengths of light, and referring to the phase code conversion table Further, an optical measurement device comprising a height calculation means for obtaining the height of the measurement surface of the measurement object, according to the height of the measurement surface of the measurement object and the height of the measurement surface The relationship between the phase of the portion where the brightness of each point in the interference fringe image with a plurality of different wavelengths of light changes to a predetermined arithmetic expression, and the same measurement surface as the measurement surface height of the measurement object. The combination of the phase of the portion where the brightness of each point in the interference fringe image due to the light of the plurality of different wavelengths according to the height of the light is changed is calculated based on a predetermined calculation formula expressed in the same formula, An optical measurement apparatus characterized in that the height of the measurement surface of the measurement object is measured by reflecting the phase information obtained by calculation in the phase code conversion table. 所定の演算式に基く干渉画像内各点の光の明るさ変化に対応した位相情報の演算は、予じめ光発生手段からの各光の中心波長をデータとして取得して置き、同取得した光の中心波長を基にして演算するようになっていることを特徴とする請求項1記載の光学的計測装置。   The calculation of the phase information corresponding to the brightness change of the light at each point in the interference image based on the predetermined calculation formula is obtained by acquiring the center wavelength of each light from the preliminary light generating means as data and placing it. 2. The optical measuring device according to claim 1, wherein the calculation is based on the center wavelength of the light.
JP2011013669A 2011-01-26 2011-01-26 Optical measurement device Pending JP2012154765A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011013669A JP2012154765A (en) 2011-01-26 2011-01-26 Optical measurement device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011013669A JP2012154765A (en) 2011-01-26 2011-01-26 Optical measurement device

Publications (1)

Publication Number Publication Date
JP2012154765A true JP2012154765A (en) 2012-08-16

Family

ID=46836639

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011013669A Pending JP2012154765A (en) 2011-01-26 2011-01-26 Optical measurement device

Country Status (1)

Country Link
JP (1) JP2012154765A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110243282A (en) * 2018-03-07 2019-09-17 株式会社三丰 Interferometric optical device

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59178304A (en) * 1983-03-30 1984-10-09 Hitachi Ltd Minute gap measuring method and apparatus therefor
JP2002206918A (en) * 2000-11-01 2002-07-26 Seiko Epson Corp Clearance measuring method, device thereof, shape measuring method, device thereof, and manufacturing method of liquid crystal device
JP2006329751A (en) * 2005-05-25 2006-12-07 Sony Corp Surface shape measuring method and surface shape measuring instrument
JP2009052989A (en) * 2007-08-24 2009-03-12 Kagawa Univ Optical measuring apparatus for microscopic object
JP2009216702A (en) * 2008-02-14 2009-09-24 Kagawa Univ Optical measuring instrument
WO2009153067A2 (en) * 2008-06-20 2009-12-23 Mel Mikroelektronik Gmbh Device for contacltess distance measurement

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59178304A (en) * 1983-03-30 1984-10-09 Hitachi Ltd Minute gap measuring method and apparatus therefor
JP2002206918A (en) * 2000-11-01 2002-07-26 Seiko Epson Corp Clearance measuring method, device thereof, shape measuring method, device thereof, and manufacturing method of liquid crystal device
JP2006329751A (en) * 2005-05-25 2006-12-07 Sony Corp Surface shape measuring method and surface shape measuring instrument
JP2009052989A (en) * 2007-08-24 2009-03-12 Kagawa Univ Optical measuring apparatus for microscopic object
JP2009216702A (en) * 2008-02-14 2009-09-24 Kagawa Univ Optical measuring instrument
WO2009153067A2 (en) * 2008-06-20 2009-12-23 Mel Mikroelektronik Gmbh Device for contacltess distance measurement

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110243282A (en) * 2018-03-07 2019-09-17 株式会社三丰 Interferometric optical device
CN110243282B (en) * 2018-03-07 2023-09-19 株式会社三丰 Interferometry optical device

Similar Documents

Publication Publication Date Title
US9329030B2 (en) Non-contact object inspection
US20040130730A1 (en) Fast 3D height measurement method and system
US20100188400A1 (en) Method for simultaneous hue phase-shifting and system for 3-d surface profilometry using the same
EP2183546A1 (en) Non-contact probe
JP5663758B2 (en) Shape measuring method and shape measuring apparatus
JP3065374B2 (en) Optical inspection method for an object, optical inspection apparatus for an object, and interferometer for optical inspection of an object
Xiaoling et al. Calibration of a fringe projection profilometry system using virtual phase calibrating model planes
CN1952594B (en) Surface profile measuring method and apparatus thereof
JP5282929B2 (en) Multi-wavelength interferometer
JP4544103B2 (en) Interface position measuring method and position measuring apparatus
JP2011089897A (en) Form measuring device and method of aligning form data
JP5124485B2 (en) Optical surface sensor
JP5701159B2 (en) Method and apparatus for measuring surface shape by fitting interference fringe model
JP2015230264A (en) Film thickness measurement method and film thickness measurement device
JP2012154765A (en) Optical measurement device
JP6750813B2 (en) Shape measuring method and shape measuring device for transparent plate
JP5493152B2 (en) Shape measuring device
JPWO2003036229A1 (en) Surface shape measuring method and apparatus
JP5544679B2 (en) Step surface shape measuring method and measuring device
JP2011122829A (en) Fizeau interferometer and measurement method for fizeau interferometer
WO2004020937A1 (en) Phase measuring method and apparatus for multi-frequency interferometry
Chen et al. Dual phase-shifting moire projection with tunable high contrast fringes for three-dimensional microscopic surface profilometry
JP6457846B2 (en) Method and apparatus for measuring shape of transparent plate
JP6047764B2 (en) White interferometer, image processing method, and image processing program
JP2004053307A (en) Microstructure measuring method and its measuring apparatus

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20131203

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140620

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140624

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20141021