JP2012153834A - Rubber composition, method for manufacturing rubber composition, and rubber component - Google Patents
Rubber composition, method for manufacturing rubber composition, and rubber component Download PDFInfo
- Publication number
- JP2012153834A JP2012153834A JP2011015694A JP2011015694A JP2012153834A JP 2012153834 A JP2012153834 A JP 2012153834A JP 2011015694 A JP2011015694 A JP 2011015694A JP 2011015694 A JP2011015694 A JP 2011015694A JP 2012153834 A JP2012153834 A JP 2012153834A
- Authority
- JP
- Japan
- Prior art keywords
- rubber
- rubber composition
- parts
- mass
- natural rubber
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Images
Landscapes
- Compositions Of Macromolecular Compounds (AREA)
Abstract
Description
本発明は、ゴム組成物、ゴム組成物の製造方法及びゴム部品に関する。 The present invention relates to a rubber composition, a method for producing the rubber composition, and a rubber part.
ゴム部品は各種機械の制振部材、建築物の防音部材、衝撃吸収部材等として広く用いられている。ゴムの制振、防音、衝撃吸収性能はいずれも、振動、衝撃といった力学的エネルギーをゴム弾性と呼ばれるゴム特有の性質と粘性とにより分子運動すなわち熱エネルギーへと変換することにより発揮される。 Rubber parts are widely used as vibration damping members for various machines, soundproof members for buildings, shock absorbing members, and the like. The vibration damping, soundproofing, and shock absorbing performances of rubber are all exhibited by converting mechanical energy such as vibration and impact into molecular motion, that is, thermal energy by rubber-specific properties and viscosity called rubber elasticity.
ゴム弾性や粘性は温度に応じて変化するため、力学的エネルギーを熱エネルギーへと変換する速度や効率も温度に応じて変化する。このため、ある温度域で優れた制振性能を示すゴム部品であっても、他の温度域では十分な制振性能を示さない場合がある。 Since rubber elasticity and viscosity change according to temperature, the speed and efficiency of converting mechanical energy into heat energy also change according to temperature. For this reason, even rubber parts that exhibit excellent vibration damping performance in a certain temperature range may not exhibit sufficient vibration damping performance in other temperature ranges.
特許文献1には、架橋可能なポリマー成分100重量部に対し、ガラス転移温度が0℃以上の脂肪族ポリエステル樹脂を0.1〜30重量部、シラノール基を有する無機充填剤を10〜80重量部、金属化合物を0.1〜10重量部及び架橋剤を配合したポリマー組成物を架橋した後、加熱処理をするようにした架橋ポリマー組成物の製造方法が開示されている。この方法によれば、広い温度範囲において優れた制振性、吸音性及び衝撃吸収性を有する架橋性ポリマー組成物が得られると記載されている。 In Patent Document 1, 0.1 to 30 parts by weight of an aliphatic polyester resin having a glass transition temperature of 0 ° C. or more and 10 to 80 parts by weight of an inorganic filler having a silanol group with respect to 100 parts by weight of a crosslinkable polymer component. A method for producing a crosslinked polymer composition is disclosed in which a polymer composition containing 0.1 to 10 parts by weight of a metal compound and a crosslinking agent is crosslinked and then subjected to a heat treatment. According to this method, it is described that a crosslinkable polymer composition having excellent vibration damping properties, sound absorbing properties and shock absorbing properties in a wide temperature range can be obtained.
特許文献1が開示する方法は、広い温度範囲において優れた制振性、吸音性及び衝撃吸収性を有する架橋性ポリマー組成物を与えるとされているが、実施例として記載されている反発弾性及び吸音率の値は20℃又は室温での測定値であり、実際に広い温度範囲、特に30℃以上の高い温度域でこれらの特性を評価した結果は記載されていない。また、同文献の発明の詳細な説明(特に段落[0017])に記載されている通り、特許文献1の方法では「Tgが0℃以上の脂肪族ポリエステル樹脂、シラノール基を有する無機充填剤、金属化合物及び架橋剤のすべてを配合すること及び架橋(一次架橋)の後で更に加熱処理することのうち、いずれかの条件が欠けた場合には、優れた制振性、吸音性及び衝撃吸収性を広い温度範囲で確保することができない」。このため、用いる充填剤が限定されるという問題がある。さらに、一次架橋の後更に加熱処理を行わなければならないため、生産性やコストの面でも欠点を有する。 The method disclosed in Patent Document 1 is said to give a crosslinkable polymer composition having excellent vibration damping properties, sound absorbing properties and shock absorbing properties over a wide temperature range. The value of the sound absorption coefficient is a measured value at 20 ° C. or room temperature, and the results of evaluating these characteristics in a wide temperature range, particularly a high temperature range of 30 ° C. or higher are not described. Further, as described in the detailed description of the invention of the same document (particularly paragraph [0017]), in the method of Patent Document 1, “Tg is 0 ° C. or higher aliphatic polyester resin, inorganic filler having silanol group, If any of the metal compound and the cross-linking agent is added and further heat-treated after the cross-linking (primary cross-linking), if any condition is missing, excellent vibration damping, sound absorption and shock absorption It cannot be secured over a wide temperature range. " For this reason, there exists a problem that the filler to be used is limited. Furthermore, since heat treatment must be performed after the primary crosslinking, there are also disadvantages in terms of productivity and cost.
本発明は上記問題に鑑みなされたものであり、従来知られたゴム組成物よりも高い温度域で高い制振性能や衝撃吸収性能を示すゴム組成物、ゴム組成物の製造方法及びゴム部品を提供することを目的とする。 The present invention has been made in view of the above problems, and includes a rubber composition exhibiting high vibration damping performance and shock absorption performance in a higher temperature range than a conventionally known rubber composition, a method for producing the rubber composition, and a rubber part. The purpose is to provide.
本発明者らは鋭意検討の結果、一般に天然ゴムや合成ゴムの接着性改良剤又は粘着性付与剤として少量配合されるクマロン樹脂を、通常用いられる量を超えて配合することで、従来の制振ゴムよりも高い温度域において高い制振性や衝撃吸収性を発揮させられること、さらにその温度域を任意に設定できることを見出し、本発明を完成した。 As a result of intensive studies, the present inventors generally incorporated a small amount of coumarone resin, which is generally blended as a natural rubber or synthetic rubber adhesion improver or tackifier, in excess of the amount normally used. The present invention has been completed by discovering that high vibration damping and shock absorption can be exhibited in a temperature range higher than that of the vibration rubber and that the temperature range can be arbitrarily set.
すなわち、本発明の第1の観点に係るゴム組成物は、ゴム弾性を有するポリマー100質量部に対しクマロン樹脂を10質量部以上含有する。より好ましくは、ゴム弾性を有するポリマー100質量部に対しクマロン樹脂を20質量部以上含有する。前記ゴム弾性を有するポリマーは天然ゴム、改質天然ゴム又は官能基化天然ゴムであることが好ましい。この中では官能基化天然ゴムがより好ましく、エポキシ化天然ゴムが特に好ましい。 That is, the rubber composition according to the first aspect of the present invention contains 10 parts by mass or more of coumarone resin with respect to 100 parts by mass of the polymer having rubber elasticity. More preferably, 20 parts by mass or more of coumarone resin is contained with respect to 100 parts by mass of the polymer having rubber elasticity. The polymer having rubber elasticity is preferably natural rubber, modified natural rubber or functionalized natural rubber. Of these, functionalized natural rubber is more preferable, and epoxidized natural rubber is particularly preferable.
本発明の第2の観点にかかるゴム部品は、本発明の第1の観点にかかるゴム組成物を用いて得られる。 The rubber component according to the second aspect of the present invention is obtained using the rubber composition according to the first aspect of the present invention.
本発明の第3の観点にかかるゴム組成物の製造方法は、所定の温度で用いられるゴム組成物の製造において、天然ゴム、改質天然ゴム又は官能基化天然ゴム100質量部に対し、下記式により決定される量のクマロン樹脂を配合する工程を含む。
クマロン樹脂の配合量(質量部)=(所定の温度(℃)−1.91)/0.356
The method for producing a rubber composition according to the third aspect of the present invention is as follows. In the production of a rubber composition used at a predetermined temperature, 100 parts by mass of natural rubber, modified natural rubber, or functionalized natural rubber is described below. Blending the amount of coumarone resin determined by the formula.
Blending amount of coumarone resin (parts by mass) = (predetermined temperature (° C.) − 1.91) /0.356
本発明の第4の観点にかかるゴム部品は、本発明の第3の観点に係る方法により製造されたゴム組成物を用いて得られる。 The rubber component according to the fourth aspect of the present invention is obtained using the rubber composition manufactured by the method according to the third aspect of the present invention.
本発明によれば、従来知られたゴム組成物よりも高い温度域で高い制振性能や衝撃吸収性能を示すゴム組成物、ゴム組成物の製造方法及びゴム部品を提供することができる。 ADVANTAGE OF THE INVENTION According to this invention, the rubber composition which shows high damping performance and shock absorption performance in a temperature range higher than a conventionally known rubber composition, the manufacturing method of a rubber composition, and a rubber component can be provided.
以下、本発明の実施形態について説明する。本発明の実施形態に係るゴム組成物は、ベースゴム100質量部に対しクマロン樹脂を配合することにより得られる。 Hereinafter, embodiments of the present invention will be described. The rubber composition according to the embodiment of the present invention is obtained by blending a coumarone resin with 100 parts by mass of the base rubber.
ベースゴムはゴム弾性を有するポリマーであればよく、特に限定されないが、クマロン樹脂と部分的に又は完全に相溶可能なポリマーが好ましい。好ましくは天然ゴムであり、より好ましくは官能基化天然ゴム、特に好ましくはエポキシ化天然ゴムである。 The base rubber is not particularly limited as long as it is a polymer having rubber elasticity, but a polymer that is partially or completely compatible with the coumarone resin is preferable. Natural rubber is preferable, functionalized natural rubber is more preferable, and epoxidized natural rubber is particularly preferable.
クマロン樹脂とは、クマロンと他の芳香族炭化水素、例えばインデン、スチレン等を共重合させて得られる樹脂を指す。商業的には、例えば日塗化学(株)製ニットレジン(登録商標)クマロン等が入手可能である。 The coumarone resin refers to a resin obtained by copolymerizing coumarone and other aromatic hydrocarbons such as indene and styrene. Commercially available are, for example, Knit Resin (registered trademark) Coumarone manufactured by Nikkiso Chemical Co., Ltd.
本発明の実施形態に係る組成物では、クマロン樹脂はベースゴム100質量部に対し10質量部以上配合される。好ましくは10〜200質量部であり、より好ましくは20〜100質量部である。クマロン樹脂の配合量が10質量部未満の場合、低い反発性を示す温度領域が、衝撃吸収材や制振材として通常用いられる温度より低くなってしまい、十分な性能を得ることができない。一方、クマロン樹脂の配合量がこれより多い場合、衝撃吸収性には影響はないが、組成物の粘着性が高くなるため作業性が低下する場合がある。 In the composition according to the embodiment of the present invention, the coumarone resin is blended in an amount of 10 parts by mass or more based on 100 parts by mass of the base rubber. Preferably it is 10-200 mass parts, More preferably, it is 20-100 mass parts. When the blending amount of the coumarone resin is less than 10 parts by mass, the temperature range showing low resilience is lower than the temperature normally used as a shock absorbing material or a vibration damping material, and sufficient performance cannot be obtained. On the other hand, when the amount of the coumarone resin is larger than this, there is no effect on the impact absorbability, but the workability may be lowered because the adhesiveness of the composition is increased.
従来知られた構成では、通常、クマロン樹脂はゴムの接着性改良剤や粘着性付与剤として、ベースゴム100質量部に対し1〜5質量部配合される。これに対し、本発明者らはベースゴム100質量部に対しクマロン樹脂を10質量部以上という高い割合で配合することで高い温度域における制振性や衝撃吸収性が大きく向上すること、さらに、ベースゴムとクマロン樹脂との配合割合を適切に設定することで、従来の制振ゴムより高い温度域においても高い制振性や衝撃吸収性を発揮させられること、さらにその温度域を用途に応じて任意に設定できることを見出したものである。 In a conventionally known configuration, the coumarone resin is usually blended in an amount of 1 to 5 parts by mass with respect to 100 parts by mass of the base rubber as an adhesion improver or tackifier for rubber. On the other hand, the present inventors greatly improve vibration damping and shock absorption in a high temperature range by blending the coumarone resin at a high ratio of 10 parts by mass or more with respect to 100 parts by mass of the base rubber, By appropriately setting the blending ratio of base rubber and coumarone resin, it is possible to exhibit high vibration damping and shock absorption even at a higher temperature range than conventional vibration-damping rubber. And found that it can be set arbitrarily.
本発明に係るゴム組成物は、発明の目的を逸脱しない範囲内で、通常ゴム組成物に用いられるその他の副原料、添加剤等を含むことができる。例えば、充填材、補強材、架橋剤、架橋助剤、酸化防止剤、老化防止剤、加工助剤等を含むことができる。 The rubber composition according to the present invention can contain other auxiliary materials, additives, and the like that are usually used in the rubber composition within a range not departing from the object of the invention. For example, a filler, a reinforcing material, a crosslinking agent, a crosslinking aid, an antioxidant, an anti-aging agent, a processing aid and the like can be included.
充填材又は補強材としては、例えば、シリカ、ケイ藻土等のケイ酸、アルミナ、酸化チタン、酸化カルシウム、酸化マグネシウム、酸化亜鉛、酸化鉄、酸化ベリリウム等の酸化物、水酸化アルミニウム、水酸化マグネシウム、水酸化カルシウム、アルミネート水和物等の水酸化物、クレー、タルク、マイカ、アスベスト、ベントナイト、ゼビオライト、ケイ酸カルシウム、モンモリロナイト等のケイ酸塩、炭酸カルシウム、炭酸マグネシウム、ハイドロタルサイト等の炭酸塩、硫酸塩硫酸カルシウム、亜硫酸塩硫酸カルシウム、硫酸バリウム、亜硫酸カルシウム等の硫酸塩、二硫化モリブデン、チタン酸カリウム、炭化ケイ素、リンター、リネン、サイザル木粉、絹、皮革粉、コラーゲン繊維、ビスコース、アセテート等が挙げられる。 Examples of the filler or reinforcing material include silica, silica, diatomaceous earth and the like, oxides such as alumina, titanium oxide, calcium oxide, magnesium oxide, zinc oxide, iron oxide, and beryllium oxide, aluminum hydroxide, hydroxide Magnesium, calcium hydroxide, aluminate hydrate hydroxides, clay, talc, mica, asbestos, bentonite, zeolite, calcium silicate, montmorillonite and other silicates, calcium carbonate, magnesium carbonate, hydrotalcite Carbonate, sulfate sulfate, calcium sulfite, sulfate, barium sulfate, calcium sulfite, etc., molybdenum disulfide, potassium titanate, silicon carbide, linter, linen, sisal wood flour, silk, leather powder, collagen Examples thereof include fiber, viscose, and acetate.
架橋剤としては、例えば、硫黄、二塩化硫黄、モルホリンジスルフィド等の硫黄系架橋剤、有機過酸化物、金属酸化物等の非硫黄系架橋剤等が挙げられる。 Examples of the crosslinking agent include sulfur-based crosslinking agents such as sulfur, sulfur dichloride and morpholine disulfide, and non-sulfur-based crosslinking agents such as organic peroxides and metal oxides.
架橋助剤としては、例えば、チウラム化合物、チアゾール化合物、スルフェンアミド化合物、スルフィド化合物、チオ尿素化合物等が挙げられる。 Examples of the crosslinking aid include thiuram compounds, thiazole compounds, sulfenamide compounds, sulfide compounds, thiourea compounds, and the like.
酸化防止剤としては、例えば、ジオクチル化ジフェニルアミン等のジフェニルアミン系酸化防止剤、N,N’−ジフェニル−p−フェニレンジアミン等のp−フェニレンジアミン系酸化防止剤等が挙げられる。 Examples of the antioxidant include diphenylamine-based antioxidants such as dioctylated diphenylamine, and p-phenylenediamine-based antioxidants such as N, N′-diphenyl-p-phenylenediamine.
老化防止剤としては、例えば、N−(1,3−ジメチルブチル)−N′−フェニル−p−フェニレンジアミン(6PPD)、N,N′−ジナフチル−p−フェニレンジアミン(DNPD)、N−イソプロピル−N′−フェニル−p−フェニレンジアミン(IPPD)、スチレン化フェノール(SP)等が挙げられる。 Examples of the antioxidant include N- (1,3-dimethylbutyl) -N′-phenyl-p-phenylenediamine (6PPD), N, N′-dinaphthyl-p-phenylenediamine (DNPD), and N-isopropyl. -N'-phenyl-p-phenylenediamine (IPPD), styrenated phenol (SP) and the like.
加工助剤としては、例えば、フタル酸エステル、ジアリルフタレート、アジピン酸エステル、脂肪酸エステル、トリメリット酸エステル等の可塑剤、脂肪酸、トール油等の軟化剤、ロジン、テルペン系樹脂、アルキルフェノール・アルデヒド縮合体等の粘着性付与剤等が挙げられる。 Processing aids include, for example, plasticizers such as phthalate esters, diallyl phthalates, adipic acid esters, fatty acid esters, trimellitic acid esters, softeners such as fatty acids and tall oil, rosin, terpene resins, alkylphenol aldehyde condensation Examples include tackifiers such as body.
(実施例)
以下、実施例を示しながら本発明についてさらに詳細に説明するが、本発明は以下の実施例により限定されるものではない。
(Example)
EXAMPLES Hereinafter, although an Example is shown and this invention is demonstrated further in detail, this invention is not limited by a following example.
(実施例1)
(ゴム組成物の調製)
加圧ニーダー((株)モリヤマ製 DS3−7.5MWH−S型)にエポキシ化天然ゴム(エポキシ化率約50%)1,000gを投入し、樹脂温が60℃になるまで素練りした。ここに酸化亜鉛(井上石灰工業(株)製、メタZ L−40)50g、ステアリン酸10g、ステアリン酸カルシウム40g、老化防止剤(大内新興化学工業(株)製、サンノック)10g、ポリエチレングリコール1.0gを投入し、全体が均一になるまで約2分間混練した。続いて、クレー(ケイ酸アルミニウム、Burgess Pigment社製 バーゲス#30)400g、ポリ塩化ビニル(新第一塩ビ(株)製 ZEST P−21)300g、クマロン樹脂(日塗化学(株)製 ニットレジンクマロンG−90)200g、DOP(ビス−(2−エチルヘキシル)フタレート)150gを投入し、全体が均一になるまで約5分間混練した。混練終了時の樹脂温は約100℃であった。混練終了後、樹脂温が80℃以下になるまで放置した。樹脂温が80℃以下になった後、硫黄(細井化学工業(株)製 粉末硫黄200メッシュ)5g、加硫促進剤CBS(大内新興化学工業(株)製 ノクセラーCZ)10g、加硫促進剤TMTD(大内新興化学工業(株)製 ノクセラーTT)10g、シリコーンオイル(東レ(株)製 SH−200)3g、酸化クロム(日本化学工業社製 グリーンF3)10gを投入し、全体が均一になるまで約2分間混練した。得られたゴム組成物を取り出し、ロール((株)山崎製作所製 14インチロール)でシート状にした。配合を表1に示す。
Example 1
(Preparation of rubber composition)
1,000 g of epoxidized natural rubber (epoxidation rate of about 50%) was put into a pressure kneader (DS3-7.5MWH-S type manufactured by Moriyama Co., Ltd.), and kneaded until the resin temperature reached 60 ° C. Here, 50 g of zinc oxide (manufactured by Inoue Lime Industry Co., Ltd., Meta Z L-40), 10 g of stearic acid, 40 g of calcium stearate, 10 g of anti-aging agent (manufactured by Ouchi Shinsei Chemical Co., Ltd., Sannock), polyethylene glycol 1 0.0 g was added and kneaded for about 2 minutes until the whole became uniform. Subsequently, 400 g of clay (aluminum silicate, Burgess Pigment Co., Burgess # 30), 300 g of polyvinyl chloride (ZEST P-21, Shin-Daiichi Vinyl Co., Ltd.), Coumarone resin (Nikko Chemical Co., Ltd., knit resin) 200 g of Coumarone G-90) and 150 g of DOP (bis- (2-ethylhexyl) phthalate) were added and kneaded for about 5 minutes until the whole became uniform. The resin temperature at the end of kneading was about 100 ° C. After completion of the kneading, the mixture was left until the resin temperature became 80 ° C. or lower. After the resin temperature becomes 80 ° C. or less, 5 g of sulfur (powder sulfur 200 mesh manufactured by Hosoi Chemical Co., Ltd.), 10 g of vulcanization accelerator CBS (Noxeller CZ manufactured by Ouchi Shinsei Chemical Co., Ltd.), vulcanization acceleration 10 g of the agent TMTD (Nouchira TT manufactured by Ouchi Shinsei Chemical Co., Ltd.), 3 g of silicone oil (SH-200 manufactured by Toray Industries, Inc.) and 10 g of chromium oxide (Green F3 manufactured by Nippon Kagaku Kogyo Co., Ltd.) are homogeneous throughout. It kneaded for about 2 minutes until it became. The obtained rubber composition was taken out and formed into a sheet shape with a roll (14-inch roll manufactured by Yamazaki Seisakusho Co., Ltd.). The formulation is shown in Table 1.
(評価用サンプルの成形)
得られたゴム組成物のシートを適当な大きさに切断し、金型(外形寸法240×160×30mm、製品寸法200×120×2mm)にセットした。金型をあらかじめ150℃に設定した油圧成型機((株)ショージ製、出力70t)にセットし、10分間加圧して架橋成形し、評価用ゴムシートを得た。これとは別に、直径30mmの球形の金型を用い、評価用ゴム球を作製した。
(Formation of sample for evaluation)
The obtained rubber composition sheet was cut into an appropriate size and set in a mold (external dimensions 240 × 160 × 30 mm, product dimensions 200 × 120 × 2 mm). The mold was set in a hydraulic molding machine (manufactured by Shoji Co., Ltd., output 70 t) set in advance at 150 ° C., and subjected to crosslinking molding by pressing for 10 minutes to obtain a rubber sheet for evaluation. Separately from this, a rubber ball for evaluation was produced using a spherical mold having a diameter of 30 mm.
(物性評価)
得られた評価用サンプルの各種物性を、以下の方法により評価した。
(引張強度・伸び)
JIS K6251に従って測定した。測定には(株)オリエンテック製卓上材料試験機 STA−1225を用いた。
(引裂強度)
JIS K6252に従って測定した。測定には(株)オリエンテック製卓上材料試験機 STA−1225を用いた。
(硬度)
JIS K6253に従って測定した。測定には(株)古里精機製作所製ゴム・プラスチック硬度計KR−14を用いた。
(損失正接)
エスアイアイ・ナノテクノロジ(株)製 EXTAR DMS6100を用いて測定した。測定は引張モードで行い、周波数は100Hz、歪み率は0.1%とした。
(反発弾性率)
評価用ゴム球を100cmの高さ(基準高さ)から鉄板(150×150×20mm)上に落下させ、跳ね返り高さを測定した。跳ね返り高さ/基準高さ×100=反発弾性率とした。
(衝撃吸収率)
鉄板(150×150×20mm)を平らな面に固定し、その上に評価用ゴムシートを置いた。鉄球(直径11mm、重さ5.4g)を100cmの高さ(基準高さ)から評価用ゴムシート上に落下させ、跳ね返り高さを測定した。100−(跳ね返り高さ/基準高さ×100)=衝撃吸収率とした。
引張強度、伸び、引裂強度を表2に、硬度を表2及び図1に示す。また、損失正接を図2に、反発弾性率を図3に、衝撃吸収率を図4にそれぞれ示す。
(Evaluation of the physical properties)
Various physical properties of the obtained sample for evaluation were evaluated by the following methods.
(Tensile strength / elongation)
It measured according to JIS K6251. For the measurement, a desktop material testing machine STA-1225 manufactured by Orientec Co., Ltd. was used.
(Tear strength)
It measured according to JIS K6252. For the measurement, a desktop material testing machine STA-1225 manufactured by Orientec Co., Ltd. was used.
(hardness)
It measured according to JIS K6253. For the measurement, a rubber / plastic hardness meter KR-14 manufactured by Furusato Seiki Co., Ltd. was used.
(Loss tangent)
The measurement was performed using EXTAR DMS6100 manufactured by SII Nano Technology. The measurement was performed in a tensile mode, the frequency was 100 Hz, and the strain rate was 0.1%.
(Rebound resilience)
A rubber ball for evaluation was dropped from a height of 100 cm (reference height) onto an iron plate (150 × 150 × 20 mm), and the rebound height was measured. Bounce height / reference height × 100 = rebound resilience.
(Shock absorption rate)
An iron plate (150 × 150 × 20 mm) was fixed to a flat surface, and an evaluation rubber sheet was placed thereon. An iron ball (diameter 11 mm, weight 5.4 g) was dropped onto a rubber sheet for evaluation from a height of 100 cm (reference height), and the rebound height was measured. 100− (bounce height / reference height × 100) = shock absorption rate.
Table 2 shows the tensile strength, elongation, and tear strength, and Table 2 and Fig. 1 show the hardness. The loss tangent is shown in FIG. 2, the rebound resilience is shown in FIG. 3, and the shock absorption rate is shown in FIG.
(実施例2〜4)
原料の種類及び配合比を表1に記載の通り変えた他は実施例1と同様の手順により評価用サンプルを作製し、各種物性を測定した。引張強度、伸び、引裂強度を表2に、硬度を表2及び図1に示す。また、損失正接を図2に、反発弾性率を図3に、衝撃吸収率を図4にそれぞれ示す。
(Examples 2 to 4)
Samples for evaluation were prepared by the same procedure as in Example 1 except that the types and mixing ratios of the raw materials were changed as shown in Table 1, and various physical properties were measured. Table 2 shows the tensile strength, elongation, and tear strength, and Table 2 and Fig. 1 show the hardness. The loss tangent is shown in FIG. 2, the rebound resilience is shown in FIG. 3, and the shock absorption rate is shown in FIG.
(比較例)
原料の種類及び配合比を表1に記載の通り変えた他は実施例1と同様の手順により評価用サンプルを作製し、各種物性を測定した。引張強度、伸び、引裂強度を表2に、硬度を表2及び図1に示す。また、損失正接を図2に、反発弾性率を図3に、衝撃吸収率を図4にそれぞれ示す。
(Comparative example)
Samples for evaluation were prepared by the same procedure as in Example 1 except that the types and mixing ratios of the raw materials were changed as shown in Table 1, and various physical properties were measured. Table 2 shows the tensile strength, elongation, and tear strength, and Table 2 and Fig. 1 show the hardness. The loss tangent is shown in FIG. 2, the rebound resilience is shown in FIG. 3, and the shock absorption rate is shown in FIG.
図1に示したように、温度が高くなるほど実施例1〜4に係るゴム組成物の硬度は低下する。クマロン樹脂の配合割合が多くなると温度の上昇による硬度の低下の割合が大きくなる傾向が認められるが、その変化はいずれも連続かつ単調であり、特定の温度域における急激な硬度の変化は認められない。このデータから予想されるのは、クマロン樹脂の配合割合が多くなるほど約30℃以上の温度域におけるゴム組成物の硬度が低下する、ということのみであって、各実施例に係る組成物が特定の温度域において特に優れた衝撃吸収性や制振性を示す、という事実を読み取ることはできない。 As shown in FIG. 1, the hardness of the rubber composition according to Examples 1 to 4 decreases as the temperature increases. When the blending ratio of coumarone resin increases, the ratio of hardness decrease due to temperature rise tends to increase, but the changes are all continuous and monotonous, and abrupt changes in hardness are observed in a specific temperature range. Absent. From this data, it is only expected that the hardness of the rubber composition decreases in a temperature range of about 30 ° C. or higher as the blending ratio of the coumarone resin increases, and the composition according to each example is specified. The fact that it exhibits particularly excellent shock absorption and vibration damping properties in the temperature range cannot be read.
ところが図2を参照すると、各ゴム組成物の損失正接は、比較例及び実施例1〜4でそれぞれ異なる温度域にピークを有することが分かる。これは、クマロン樹脂の配合量に応じて衝撃吸収性能が最大となる温度域が変化することを意味している。すなわち、クマロン樹脂は単に高温域におけるゴム組成物の硬度を低下させるのではなく、ゴム組成物の粘弾性特性を変化させることによって、高温域における高い衝撃吸収性や制振性を付与することが明らかとなった。 However, when FIG. 2 is referred, it turns out that the loss tangent of each rubber composition has a peak in a different temperature range by a comparative example and Examples 1-4, respectively. This means that the temperature range where the impact absorption performance is maximized changes depending on the blending amount of coumarone resin. That is, coumarone resin does not simply reduce the hardness of the rubber composition at high temperatures, but can impart high shock absorption and vibration damping properties at high temperatures by changing the viscoelastic properties of the rubber composition. It became clear.
図3,4には、各実施例において得られたゴム組成物の反発弾性率及び衝撃吸収性の温度依存性を実際に評価した結果が示されている。これらの結果からも、クマロン樹脂の配合量に応じて反発率が最小となる温度が変化することが分かる。図4を見ると、比較例では温度にかかわらず約22%の反発率を示しているのに対し、実施例1〜4はいずれも、最小値は0〜2%と極めて小さい値を示している。この結果は、クマロン樹脂の配合量を調整することによって反発率が最小となる温度域を変化させられることを示していると同時に、反発率の低下が単にゴム組成物の軟化に起因するものではないことを改めて裏付けるものである。 3 and 4 show the results of actual evaluation of the temperature dependence of the impact resilience and impact absorbability of the rubber compositions obtained in each example. Also from these results, it can be seen that the temperature at which the rebound rate is minimized varies depending on the blending amount of coumarone resin. When FIG. 4 is seen, while the comparative example shows a repulsion rate of about 22% regardless of the temperature, each of Examples 1 to 4 shows an extremely small value of 0 to 2%. Yes. This result shows that the temperature range where the rebound rate is minimized can be changed by adjusting the blending amount of coumarone resin, and at the same time, the decrease in the rebound rate is not simply due to the softening of the rubber composition. This is to prove that there is nothing.
以上示したように、本発明に係るゴム組成物は、高い衝撃吸収性能、制振性能を有するため、各種ゴム部品、例えば緩衝材、制振材、防音材等に適している。ここでゴム部品とは、特定の用途に合わせて成形されたものに限られない。用途に応じて切断、研削されて用いられるような基本的なゴム素材、例えばシート、球、円柱、角柱等もここでいうゴム部品に含まれる。さらに、例えば発泡ゴムのように公知の手法によって構造上の特性を付与したゴム部品又はゴム素材も、本発明でいうゴム部品に含まれるものである。 As described above, since the rubber composition according to the present invention has high impact absorbing performance and vibration damping performance, it is suitable for various rubber parts such as shock absorbers, vibration damping materials, and soundproofing materials. Here, the rubber part is not limited to one molded for a specific application. Basic rubber materials, such as sheets, spheres, cylinders, prisms, etc. that are cut and ground according to the application, are also included in the rubber parts here. Furthermore, a rubber part or a rubber material imparted with structural characteristics by a known method such as foamed rubber is also included in the rubber part referred to in the present invention.
なお、本発明に係るゴム組成物は、下記のようにも表され得る。
(付記1)
ゴム弾性を有するポリマー100質量部に対し、クマロン樹脂を10質量部以上含有するゴム組成物。
(付記2)
クマロン樹脂の含有量が20質量部以上である付記1記載のゴム組成物。
(付記3)
前記ゴム弾性を有するポリマーは天然ゴム、改質天然ゴム又は官能基化天然ゴムである、付記1又は2記載のゴム組成物。
(付記4)
前記ゴム弾性を有するポリマーは官能基化天然ゴムである、付記3記載のゴム組成物
(付記5)
前記官能基化天然ゴムはエポキシ化天然ゴムである、付記4記載のゴム組成物。
(付記6)
付記1乃至5のいずれか1つに記載のゴム組成物を用いて得られるゴム部品。
(付記7)
天然ゴム、改質天然ゴム又は官能基化天然ゴム100質量部に対し、下記式により決定される量のクマロン樹脂を配合する工程を含む、所定の温度で用いられるゴム組成物の製造方法。
クマロン樹脂の配合量(質量部)=(所定の温度(℃)−1.91)/0.356
(付記8)
前記官能基化天然ゴムはエポキシ化天然ゴムである、付記7記載のゴム組成物の製造方法。
(付記9)
付記7又は8記載の方法により製造されたゴム組成物を用いて得られるゴム部品。
(付記10)
ゴム弾性を有するポリマー100質量部に対しクマロン樹脂を10質量部以上配合して得られる所定の温度域で用いられるゴム組成物であって、前記所定の温度域において測定した反発率がクマロン樹脂を含まない前記ゴム弾性を有するポリマーの1/5以下であるゴム組成物。
(付記11)
前記反発率がクマロン樹脂を含まない前記ゴム弾性を有するポリマーの1/10以下である、付記10記載のゴム組成物。
(付記12)
ゴム弾性を有するポリマーと、クマロン樹脂と、を含有するゴム組成物であって、ゴム弾性を示す温度域においてその衝撃吸収率が最小となる温度が20℃より高い、ことを特徴とするゴム組成物。
(付記13)
クマロン樹脂の配合量が、ゴム弾性を有するポリマー100質量部に対して10質量部以上である、ことを特徴とする付記12記載のゴム組成物。
The rubber composition according to the present invention can also be expressed as follows.
(Appendix 1)
A rubber composition containing 10 parts by mass or more of coumarone resin with respect to 100 parts by mass of a polymer having rubber elasticity.
(Appendix 2)
The rubber composition according to supplementary note 1, wherein the content of the coumarone resin is 20 parts by mass or more.
(Appendix 3)
The rubber composition according to
(Appendix 4)
The rubber composition according to
The rubber composition according to appendix 4, wherein the functionalized natural rubber is an epoxidized natural rubber.
(Appendix 6)
A rubber part obtained by using the rubber composition according to any one of appendices 1 to 5.
(Appendix 7)
A method for producing a rubber composition used at a predetermined temperature, comprising a step of blending an amount of coumarone resin determined by the following formula with 100 parts by mass of natural rubber, modified natural rubber or functionalized natural rubber.
Blending amount of coumarone resin (parts by mass) = (predetermined temperature (° C.) − 1.91) /0.356
(Appendix 8)
The method for producing a rubber composition according to appendix 7, wherein the functionalized natural rubber is an epoxidized natural rubber.
(Appendix 9)
A rubber part obtained by using the rubber composition produced by the method according to
(Appendix 10)
A rubber composition used in a predetermined temperature range obtained by blending 10 parts by mass or more of a coumarone resin with 100 parts by mass of a polymer having rubber elasticity, wherein the restitution rate measured in the predetermined temperature range is The rubber composition which is 1/5 or less of the polymer which has the rubber elasticity which does not contain.
(Appendix 11)
The rubber composition according to
(Appendix 12)
A rubber composition comprising a polymer having rubber elasticity and a coumarone resin, wherein a temperature at which the impact absorption rate is minimum in a temperature range exhibiting rubber elasticity is higher than 20 ° C. object.
(Appendix 13)
The rubber composition according to appendix 12, wherein the amount of the coumarone resin is 10 parts by mass or more with respect to 100 parts by mass of the polymer having rubber elasticity.
Claims (9)
クマロン樹脂の配合量(質量部)=(所定の温度(℃)−1.91)/0.356 A method for producing a rubber composition used at a predetermined temperature, comprising a step of blending an amount of coumarone resin determined by the following formula with 100 parts by mass of natural rubber, modified natural rubber or functionalized natural rubber.
Blending amount of coumarone resin (parts by mass) = (predetermined temperature (° C.) − 1.91) /0.356
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2011015694A JP2012153834A (en) | 2011-01-27 | 2011-01-27 | Rubber composition, method for manufacturing rubber composition, and rubber component |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2011015694A JP2012153834A (en) | 2011-01-27 | 2011-01-27 | Rubber composition, method for manufacturing rubber composition, and rubber component |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2012153834A true JP2012153834A (en) | 2012-08-16 |
Family
ID=46835903
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2011015694A Pending JP2012153834A (en) | 2011-01-27 | 2011-01-27 | Rubber composition, method for manufacturing rubber composition, and rubber component |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2012153834A (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2017104251A1 (en) * | 2015-12-16 | 2017-06-22 | 東洋ゴム工業株式会社 | Rubber composition for vibration-damping rubber |
CN106987037A (en) * | 2017-04-25 | 2017-07-28 | 黄山全晟密封科技有限公司 | A kind of porous rubber material and preparation method thereof |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH05214165A (en) * | 1992-02-04 | 1993-08-24 | Bando Chem Ind Ltd | High-dampling rubber composition for oscillation-insulating rubber |
JPH0753783A (en) * | 1993-08-09 | 1995-02-28 | Bando Chem Ind Ltd | Highly damping composition for isolator rubber |
JPH10231385A (en) * | 1997-02-20 | 1998-09-02 | Daiso Co Ltd | Composition for damping material |
JP2000281838A (en) * | 1999-03-30 | 2000-10-10 | Tokai Rubber Ind Ltd | High damping material composition |
JP2005179525A (en) * | 2003-12-19 | 2005-07-07 | Yamauchi Corp | Rubber composition for vibration isolation |
JP2012082377A (en) * | 2010-03-05 | 2012-04-26 | Sumitomo Rubber Ind Ltd | High damping composition |
-
2011
- 2011-01-27 JP JP2011015694A patent/JP2012153834A/en active Pending
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH05214165A (en) * | 1992-02-04 | 1993-08-24 | Bando Chem Ind Ltd | High-dampling rubber composition for oscillation-insulating rubber |
JPH0753783A (en) * | 1993-08-09 | 1995-02-28 | Bando Chem Ind Ltd | Highly damping composition for isolator rubber |
JPH10231385A (en) * | 1997-02-20 | 1998-09-02 | Daiso Co Ltd | Composition for damping material |
JP2000281838A (en) * | 1999-03-30 | 2000-10-10 | Tokai Rubber Ind Ltd | High damping material composition |
JP2005179525A (en) * | 2003-12-19 | 2005-07-07 | Yamauchi Corp | Rubber composition for vibration isolation |
JP2012082377A (en) * | 2010-03-05 | 2012-04-26 | Sumitomo Rubber Ind Ltd | High damping composition |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2017104251A1 (en) * | 2015-12-16 | 2017-06-22 | 東洋ゴム工業株式会社 | Rubber composition for vibration-damping rubber |
JP2017110093A (en) * | 2015-12-16 | 2017-06-22 | 東洋ゴム工業株式会社 | Rubber composition for vibration-proof rubber |
CN108350225A (en) * | 2015-12-16 | 2018-07-31 | 东洋橡胶工业株式会社 | Shockproof rubber rubber composition |
CN106987037A (en) * | 2017-04-25 | 2017-07-28 | 黄山全晟密封科技有限公司 | A kind of porous rubber material and preparation method thereof |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN104220227B (en) | Sulfide and preparation method thereof | |
JP5088456B1 (en) | Rubber composition for tire tread | |
JP2007231275A (en) | Silica-containing curable rubber mixture | |
JP2012153834A (en) | Rubber composition, method for manufacturing rubber composition, and rubber component | |
JP2005194501A (en) | Vibration damping composition | |
JP6006828B1 (en) | Anti-vibration rubber | |
JP6283572B2 (en) | Rubber composition and anti-vibration rubber | |
JPWO2014034636A1 (en) | Polylactic acid-based resin composition and molded body formed by molding the same | |
JP2009035729A (en) | Vibration-proof rubber and motor fixing mount | |
JP2007262310A (en) | Rubber composition and crosslinked rubber | |
JP2009215338A (en) | Silica-blended rubber composition, crosslinked product thereof, and method for producing it | |
JP2005133017A (en) | Rubber composition for sidewall | |
JP5098155B2 (en) | Phenolic resin molding material for damping material and damping material formed by molding the same | |
TW201130908A (en) | High decay composition | |
JPWO2007114062A1 (en) | Rubber composition and rubber cross-linked product | |
JP2011057768A (en) | Acrylic rubber composition and molded article thereof | |
JP6609934B2 (en) | Rubber composition for anti-vibration rubber and anti-vibration rubber | |
JP3645469B2 (en) | Rubber composition for laminates with improved fracture characteristics | |
JP2013014706A (en) | Rubber composition for high damping laminate and high damping laminate | |
JP2011038069A (en) | Rubber composition for high damping laminate and high damping laminate | |
JP6307977B2 (en) | Modified polybutadiene and method for producing the same | |
WO2016175277A1 (en) | Vibration-damping rubber | |
CN111479869B (en) | Rubber composition and rubber crosslinked product | |
JP4255606B2 (en) | Chloroprene-based rubber composition | |
JP2007070419A (en) | Composition for vibration-absorbing item |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20131224 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20140521 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20140527 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20141014 |