JP2012152675A - Organic waste liquid treating apparatus - Google Patents

Organic waste liquid treating apparatus Download PDF

Info

Publication number
JP2012152675A
JP2012152675A JP2011012281A JP2011012281A JP2012152675A JP 2012152675 A JP2012152675 A JP 2012152675A JP 2011012281 A JP2011012281 A JP 2011012281A JP 2011012281 A JP2011012281 A JP 2011012281A JP 2012152675 A JP2012152675 A JP 2012152675A
Authority
JP
Japan
Prior art keywords
waste liquid
organic waste
fermentation
acid
methane
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2011012281A
Other languages
Japanese (ja)
Other versions
JP5731209B2 (en
Inventor
Shojiro Osumi
省二郎 大隅
Katsutoshi Nakayama
勝利 中山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Osaka Gas Co Ltd
Original Assignee
Osaka Gas Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Osaka Gas Co Ltd filed Critical Osaka Gas Co Ltd
Priority to JP2011012281A priority Critical patent/JP5731209B2/en
Publication of JP2012152675A publication Critical patent/JP2012152675A/en
Application granted granted Critical
Publication of JP5731209B2 publication Critical patent/JP5731209B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E50/00Technologies for the production of fuel of non-fossil origin
    • Y02E50/30Fuel from waste, e.g. synthetic alcohol or diesel

Landscapes

  • Purification Treatments By Anaerobic Or Anaerobic And Aerobic Bacteria Or Animals (AREA)

Abstract

PROBLEM TO BE SOLVED: To biologically and efficiently treat organic waste liquid containing high concentration of sodium chloride and having high pH at a low cost to cause methane fermentation and to utilize gaseous methane as valuables.SOLUTION: A diluting step for diluting the organic waste liquid containing high concentration of sodium chloride and having high pH, an acid fermentation step in which the organic waste liquid in which sodium chloride concentration is diluted is subjected to acidic fermentation, a neutralization step for neutralizing the organic waste liquid subjected to the acidic fermentation, and a methane fermentation step in which the organic waste liquid whose pH becomes 5.5 to 8.5 by the neutralization is subjected to methane fermentation are carried out in series.

Description

本発明は高濃度塩化ナトリウム含有、高pHの有機廃液を処理する方法に関し、その有機廃液をメタン発酵させて有価物として利用する技術に関する。   The present invention relates to a method for treating a high-concentration sodium chloride-containing, high-pH organic waste liquid, and relates to a technique of fermenting the organic waste liquid as a valuable resource by methane fermentation.

たとえば、石鹸製造業における廃液は、グリセリン、脂肪酸等の有機物が含まれているが、従来、この廃液は有価な有機物を回収、再生した後廃棄されていた。しかし、バイオディーゼル製造副産物としてのグリセリンが大量に流通する昨今、廃液からのグリセリンの回収がコスト的に見合わなくなってきており、近年ではこのような廃液を焼却処理等により処分することが主流になってきている。   For example, waste liquids in the soap manufacturing industry contain organic substances such as glycerin and fatty acids. Conventionally, these waste liquids have been discarded after recovering and regenerating valuable organic substances. However, in recent years when glycerin as a by-product of biodiesel production is distributed in large quantities, the recovery of glycerin from waste liquid has become unsuitable for cost, and in recent years, disposal of such waste liquid by incineration etc. has become the mainstream. It has become to.

しかし、このような処理を行うと、エネルギー的に無駄が多く、環境負荷が高いことなどの理由で廃液中の有機物を有効利用することが検討されている。廃液中の有機物の利用形態としては、回収、再生を除けば、他に微生物によるメタン発酵を利用してメタンガスとしてエネルギーを回収することが考えられるが、高濃度塩化ナトリウム含有、高pHの廃液は、メタン発酵を行う微生物が活動する環境としては好ましくなく、上記石鹸製造業における廃液などには適用することができないという実情があった。   However, when such a treatment is performed, it has been studied to effectively use the organic matter in the waste liquid for reasons such as high energy waste and high environmental load. Except for recovery and regeneration, it is possible to recover energy as methane gas using methane fermentation by microorganisms, except for recovery and regeneration. However, it is not preferable as an environment in which microorganisms that perform methane fermentation are active, and there is a situation that it cannot be applied to the waste liquid in the soap manufacturing industry.

尚、本発明では、主に石鹸製造廃液を例に説明を行うが、バイオディーゼル製造業など各種産業廃液についても同様の問題点を抱えており、廃液中の有機物からメタンを生成することが検討されている(特許文献1)。本発明においては、これらの廃液を有機廃液と総称するものとする。   In the present invention, explanation will be given mainly using soap production waste liquid as an example, but various industrial waste liquids such as biodiesel manufacturing industry also have similar problems, and it is considered to generate methane from organic substances in the waste liquid. (Patent Document 1). In the present invention, these waste liquids are collectively referred to as organic waste liquids.

尚、メタン発酵の方法としては、UASB法(上向流嫌気性汚泥床法(Upflow Anaerobic Sludge Blanket))が知られており、UASBによる嫌気性処理装置は汚泥保持濃度が高く、高負荷処理が可能であることから、近年、食品排水を中心に急速に普及している。UASB法は、原水を反応槽の下部より上向流で流入させ、菌の付着担体を用いることなく、汚泥をブロック化または粒状化させて粒径1〜数mmのグラニュール汚泥の汚泥床(スラッジブランケット)を形成させ、反応槽中に高濃度の微生物を保持して、高負荷処理を行う方法であり、好気性活性汚泥法に比べて、反応槽容積当りの有機物負荷が10kg−CODCr/m3/day以上と非常に高い。しかも、曝気のためのエネルギーが不要である;メタンガスとしてエネルギーの回収が可能である;余剰汚泥発生量が少ない;等の優れた特長も備えている。 The UASB method (Upflow Anaerobic Sludge Blanket) is known as a method for methane fermentation, and the UASB anaerobic treatment apparatus has a high sludge retention concentration and high load treatment. Since it is possible, in recent years it has spread rapidly, especially in food wastewater. In the UASB method, raw water is introduced in an upward flow from the lower part of the reaction tank, and sludge is sludge bed of granulated sludge having a particle diameter of 1 to several mm by using sludge blocked or granulated without using a bacterial adhesion carrier ( Sludge blanket), and a high-concentration microorganism is retained in the reaction tank to perform a high-load treatment. Compared with the aerobic activated sludge method, the organic substance load per reaction tank volume is 10 kg-CODCr / It is very high at m 3 / day or more. In addition, it also has excellent features such as no energy for aeration; energy recovery as methane gas; small amount of excess sludge generation;

また、酸発酵とは、酸素の存在しない嫌気状態において酸生成菌により有機物が分解されることである。つまり、酸発酵によると、有機物は無酸素状態において、酸生成菌が生産する酵素の加水分解、脱アミノ作用により低分子化され、有機酸、アルコール、アンモニア等が生成する。このような酸発酵は、通常、汚泥の可溶化、油分の発酵処理等の目的でメタン発酵処理の前処理として行われる場合がある(特許文献2、3参照)。   Acid fermentation is the decomposition of organic substances by acid-producing bacteria in an anaerobic state where oxygen is not present. In other words, according to acid fermentation, organic substances are reduced in molecular weight by hydrolysis and deamination of enzymes produced by acid-producing bacteria in the absence of oxygen, and organic acids, alcohols, ammonia and the like are generated. Such acid fermentation is usually performed as a pretreatment of methane fermentation treatment for the purpose of solubilization of sludge, fermentation treatment of oil, and the like (see Patent Documents 2 and 3).

特開2003−027075号公報JP 2003-027075 A 特開2000−237787号公報JP 2000-237787 A 特開2000−271598号公報JP 2000-271598 A

上記実情に鑑み、本発明は、高濃度塩化ナトリウム含有、高pHの有機廃液を安価にかつ効率よく生物学的に処理し、メタン発酵させて有価物として利用することを目的とする。   In view of the above circumstances, an object of the present invention is to biologically treat an organic waste liquid containing high-concentration sodium chloride and having a high pH inexpensively and efficiently, and methane-fermenting it to use it as a valuable resource.

尚、酸発酵を行う酸生成菌は、特殊な菌ではなく、自然環境中に広く分布する通性および絶対嫌気性細菌であり、増殖に必要なエネルギーを酸発酵により得ているものである。このような酸発酵により有機酸が生成する。
ここで、酸発酵を行う酸生成菌としては、通常の嫌気性処理で用いられる種々のものを使用可能であり、たとえば、Bacillus属、Clostridium属、Lactobacillus属、Bacteroides属、Vibrio属、Staphylococcus属、Micrococcus属、Butyrivibrio属、Fusobacterium属、Enterobacter属、Streptococcus属、Peptococcus属等の菌体が例示される。たとえば、Clostridium属菌では、C.formicoaacetium,C.butyricum ATCC 6014,C.thermoacetium,C.thermocellum,C.thermohydro−sulfuricum等;Lactobacillus属菌では、L.casei IFO 3914、L.brevis IFO 13109等の菌が用いられることが知られている。これら微生物は、たとえば、下水処理場の下水汚泥等に含まれる菌体をそのまま利用することができる。
The acid-producing bacteria that perform acid fermentation are not special bacteria, but are facultative and absolute anaerobic bacteria that are widely distributed in the natural environment, and obtain energy necessary for growth by acid fermentation. Such acid fermentation produces an organic acid.
Here, as an acid-producing bacterium that performs acid fermentation, various bacteria used in normal anaerobic treatment can be used, for example, Bacillus, Clostridium, Lactobacillus, Bacteroides, Vibrio, Staphylococcus, Examples include Micrococcus genus, Butyribibrio genus, Fusobacterium genus, Enterobacter genus, Streptococcus genus, Peptococcus genus and the like. For example, in Clostridium sp. formicoacetium, C.I. butyricum ATCC 6014, C.I. thermoacetium, C.I. thermocellum, C.I. thermohydro-sulfuricum, etc .; in Lactobacillus sp. casei IFO 3914, L.C. It is known that bacteria such as brevis IFO 13109 are used. As these microorganisms, for example, cells contained in sewage sludge or the like in a sewage treatment plant can be used as they are.

また、メタン発酵を行うメタン生成菌としては、特に限定されるものではないが、たとえば、Methanobacterium属、Methanococcus属、Methanosarcina属、Methanosaeta属、Methanogenium属、Methanospirillum属細菌等が好適に使用される。   In addition, the methanogen that performs methane fermentation is not particularly limited. For example, bacteria belonging to the genus Methanobacterium, the genus Methanococcus, the genus Methanocarcina, the genus Methanosaeta, the genus Methanogenium, and the genus Methanospirilum are preferably used.

〔構成1〕
上記目的を達成するための本発明の有機廃液処理方法の特徴構成は、
高濃度塩化ナトリウムを含有し、高pHの有機廃液を希釈する希釈工程、
前記希釈工程で塩化ナトリウム濃度が希釈された有機廃液を、酸発酵する酸発酵工程、
前記酸発酵工程で酸発酵された有機廃液を、pH5.5〜8.5に中和する中和工程、
前記中和工程でpH5.5〜8.5となった有機廃液を、メタン発酵するメタン発酵工程、
を順に行う点にある。
[Configuration 1]
In order to achieve the above object, the characteristic configuration of the organic waste liquid treatment method of the present invention is:
A dilution step for diluting a high pH organic waste liquid containing high concentration sodium chloride;
An acid fermentation process in which the organic waste liquid in which the sodium chloride concentration is diluted in the dilution process is acid-fermented;
A neutralization step of neutralizing the organic liquid waste acid fermented in the acid fermentation step to a pH of 5.5 to 8.5;
A methane fermentation step for methane fermentation of the organic waste liquid having a pH of 5.5 to 8.5 in the neutralization step;
The point is to perform in order.

〔作用効果2〕
希釈工程により、高濃度塩化ナトリウムを含有し、高pHの有機廃液を希釈すると、微生物の生育に好ましくない高い塩化ナトリウム濃度(以下単に塩濃度と称する)を微生物がメタン発酵活性を示す濃度に低下させることができる。
[Operation effect 2]
When diluting organic waste liquid containing high concentration sodium chloride and high pH, the sodium chloride concentration (hereinafter simply referred to as salt concentration), which is undesirable for the growth of microorganisms, is reduced to a concentration at which microorganisms exhibit methane fermentation activity. Can be made.

酸発酵工程により前記希釈工程で塩化ナトリウム濃度が希釈された有機廃液を、酸発酵すると、酸生成菌が有機廃液中の有機物を資化して、前記有機廃液を酸発酵させ、その有機廃液をより流動化させるとともに、含有される有機物をメタン発酵に適したものとすることができる。また、酸発酵により生成した酸は、前記有機廃液の高pH条件を緩和する役割も担う。   When the organic waste liquid in which the sodium chloride concentration is diluted in the dilution process is acid-fermented by the acid fermentation process, the acid-producing bacteria assimilate the organic matter in the organic waste liquid, and the organic waste liquid is acid-fermented. While making it fluid, the organic substance contained can be made suitable for methane fermentation. Moreover, the acid produced | generated by acid fermentation also plays the role which relieve | moderates the high pH conditions of the said organic waste liquid.

中和工程により、前記酸発酵工程で酸発酵された有機廃液を、pH5.5〜8.5に中和すると、中和された有機廃液は、メタン生成菌の生育に適した環境に整えられる。尚、中和処理はpH5.5〜8.5としておけば、微生物の活動に支障が生じにくくかつ、微生物の働きによって、有機廃液のpHがさらに変動したとしても適度な微生物育成環境が維持されるので好ましい。ここで、前記有機廃液は、酸発酵工程を経たものであるから、有機物が適度に低分子化され、メタン発酵の効率よく行われる条件まで消化されていることになり、安定的にメタン発酵を行うことができる。   When the organic waste liquid acid-fermented in the acid fermentation process is neutralized to pH 5.5 to 8.5 by the neutralization process, the neutralized organic waste liquid is adjusted to an environment suitable for the growth of methanogens. . If the neutralization treatment is carried out at a pH of 5.5 to 8.5, it is difficult for microorganisms to interfere with the activity of the microorganisms, and even if the pH of the organic waste liquid further fluctuates due to the action of the microorganisms, an appropriate microorganism growth environment is maintained. Therefore, it is preferable. Here, since the organic waste liquid has undergone an acid fermentation process, the organic matter has been moderately reduced in molecular weight and digested to the conditions under which methane fermentation is efficiently performed. It can be carried out.

具体的には、希釈工程の後、酸発酵工程を行わず、中和工程により中和しただけの有機廃液をメタン発酵工程に供すると、pHを低下させる酸発酵と、有機酸を分解してpHを上昇させるメタン発酵とが同時に起こるため、pHが不安定になりやすく、安定的にメタン発酵を起こさせることが困難である。酸発酵工程を経た有機廃液をメタン発酵工程に供することにより、pHを安定させることが可能となり、良好にメタン発酵が行えることがわかった。   Specifically, after the dilution step, without performing the acid fermentation step, if the organic waste liquid just neutralized by the neutralization step is subjected to the methane fermentation step, acid fermentation that lowers the pH and decomposition of the organic acid Since methane fermentation that raises the pH occurs simultaneously, the pH tends to become unstable, and it is difficult to cause methane fermentation stably. It was found that by using the organic waste liquid that has undergone the acid fermentation process for the methane fermentation process, the pH can be stabilized and methane fermentation can be performed satisfactorily.

〔構成2〕
また、前記メタン発酵工程でメタン発酵された有機廃液を、さらに好気性菌により分解する好気処理工程を行うことが好ましい。
[Configuration 2]
Moreover, it is preferable to perform the aerobic treatment process which decomposes | disassembles the organic waste liquid methane-fermented in the said methane fermentation process by an aerobic microbe further.

〔作用効果2〕
メタン発酵工程において有機物をメタン発酵させてメタンガスに転換したとしても、実際には処理しきれなかった有機物などが有機廃液中に残存することになる。そこで、これらを好気性菌によって分解することによって、残存有機物を二酸化炭素と水に転換してしまえば、環境負荷の少ない比較的清浄な有機排水のみを排出すればよいことになる。したがって、好気処理工程により、有機廃液をさらに高度に処理することができる有機廃液処理装置を提供することができた。
[Operation effect 2]
Even if the organic matter is methane-fermented and converted into methane gas in the methane fermentation process, the organic matter that could not be treated actually remains in the organic waste liquid. Therefore, if these organic substances are decomposed by aerobic bacteria to convert the remaining organic matter into carbon dioxide and water, it is only necessary to discharge only a relatively clean organic wastewater with a low environmental load. Therefore, the organic waste liquid processing apparatus which can process an organic waste liquid further highly according to an aerobic treatment process was able to be provided.

〔構成3〕
また、前記酸発酵工程で酸発酵された有機廃液に、好気処理工程で得られた有機廃液を混合して、前記中和工程を行うことができる。
[Configuration 3]
Moreover, the neutralization process can be performed by mixing the organic waste liquid obtained in the aerobic treatment process with the organic waste liquid subjected to the acid fermentation in the acid fermentation process.

〔作用効果3〕
酸発酵工程を経た有機廃液は、通常、酸性である。一方、好気処理工程を経た有機廃液は酸発酵工程を経た有機廃液を中和するために添加したアルカリ等により、通常アルカリ性化している。そこで、前記中和工程において、酸発酵工程を経た酸性の有機廃液を中和するのに、前記好気処理工程で得られた有機廃液を用いると、中和工程で用いるべきアルカリの量を減量しつつ中和工程を行えるとともに、外部に放流される好気処理工程を経た有機廃液の液性を、より無害化すべく中和処理するような場合にもその中和処理に要する酸性物質量を少なくすることができる。
[Operation effect 3]
The organic waste liquid that has undergone the acid fermentation process is usually acidic. On the other hand, the organic waste liquid that has undergone the aerobic treatment process is usually made alkaline by an alkali or the like added to neutralize the organic waste liquid that has undergone the acid fermentation process. Therefore, in the neutralization process, when the organic waste liquid obtained in the aerobic treatment process is used to neutralize the acidic organic waste liquid that has undergone the acid fermentation process, the amount of alkali to be used in the neutralization process is reduced. The amount of acidic substances required for the neutralization process can be reduced even when neutralization is performed to make the liquidity of the organic waste liquid that has undergone the aerobic treatment process discharged to the outside harmless. Can be reduced.

〔構成4〕
また、前記酸発酵工程で酸発酵された有機廃液に、酸発酵前の有機廃液を混合して前記中和工程を行うことができる。
[Configuration 4]
Moreover, the organic waste liquid before acid fermentation can be mixed with the organic waste liquid acid-fermented in the acid fermentation process to perform the neutralization process.

〔作用効果4〕
先述のように酸発酵工程を経た有機廃液は、通常、酸性である。これに対し、酸発酵前の有機廃液は、高pHである。したがって、前記中和工程において、酸発酵工程を経た酸性の有機廃液を中和するのに、前記酸発酵前の有機廃液を用いることによっても、中和工程で用いるべき酸の量を減量しつつ中和工程を行える。尚、このとき、前記酸発酵前の有機廃液としては、希釈前のものであっても、希釈後のものであってもかまわないが、後続の工程での塩濃度の影響を避けるためには、希釈後の有機廃液を用いることが好ましい。尚、ここで用いられる有機廃液は、中和工程後に酸発酵を経ることなくメタン発酵工程に供されることになるので、メタン発酵工程におけるpH変動を考慮して、使用量を制限して設定することが望ましい。
[Operation effect 4]
As described above, the organic waste liquid that has undergone the acid fermentation step is usually acidic. On the other hand, the organic waste liquid before acid fermentation has a high pH. Accordingly, in the neutralization step, the amount of acid to be used in the neutralization step is reduced by using the organic waste solution before acid fermentation to neutralize the acidic organic waste solution that has undergone the acid fermentation step. A neutralization step can be performed. At this time, the organic waste liquid before the acid fermentation may be either before dilution or after dilution, in order to avoid the influence of salt concentration in the subsequent steps. It is preferable to use diluted organic waste liquid. In addition, since the organic waste liquid used here will be used for the methane fermentation process without passing through the acid fermentation after the neutralization process, the amount used is limited and set in consideration of the pH fluctuation in the methane fermentation process. It is desirable to do.

〔構成5〕
また、前記希釈工程において、有機廃液を塩化ナトリウム濃度が2.0%以下になるように希釈することが好ましい。
[Configuration 5]
In the dilution step, the organic waste liquid is preferably diluted so that the sodium chloride concentration is 2.0% or less.

〔作用効果5〕
通常のUASBで用いられる嫌気性菌は、塩濃度の高い環境下であまり高い活性を示さないが、本発明者らの検討の結果、2.0%以下程度の低塩濃度環境では、十分メタン発酵活性を示すことが後述の実施例より明らかになっている。そのため、前記希釈部において有機廃液を塩化ナトリウム濃度が2.0%以下になるように希釈すると、高い活性のUASBでメタン発酵工程を行い、メタンを生成することができるようになる。
[Operation effect 5]
The anaerobic bacteria used in normal UASB do not show very high activity in an environment with a high salt concentration, but as a result of the study by the present inventors, methane is sufficient in a low salt concentration environment of about 2.0% or less. It is clear from the examples described later that the fermentation activity is exhibited. Therefore, when the organic waste liquid is diluted so that the sodium chloride concentration is 2.0% or less in the dilution section, the methane fermentation process is performed with highly active UASB, and methane can be generated.

〔構成6〕
上記目的を達成するための本発明の有機廃液処理装置の特徴構成は、
高濃度塩化ナトリウム含有、高pHの有機廃液を希釈する希釈部、
前記希釈部で塩化ナトリウム濃度が希釈された有機廃液を、酸発酵する酸発酵部、
前記酸発酵部で酸発酵された有機廃液を、pH5.5〜8.5に中和する中和処理部、
前記中和部でpH5.5〜8.5となった有機廃液を、メタン発酵するメタン発酵部、
を設け、前記メタン発酵部で得られるメタンガスを燃料として消費するガス消費部を設けた点にある。
[Configuration 6]
In order to achieve the above object, the characteristic configuration of the organic waste liquid treatment apparatus of the present invention is:
A dilution section for diluting high-concentration sodium chloride-containing, high-pH organic waste liquid,
An acid fermentation part for acid fermentation of the organic waste liquid in which the sodium chloride concentration is diluted in the dilution part,
A neutralization treatment unit for neutralizing the organic waste liquid acid-fermented in the acid fermentation unit to a pH of 5.5 to 8.5;
A methane fermentation unit for methane fermentation of an organic waste liquid having a pH of 5.5 to 8.5 in the neutralization unit,
The gas consumption part which consumes the methane gas obtained in the said methane fermentation part as a fuel is provided.

〔作用効果6〕
上記有機廃液処理装置によると、先述の有機廃液処理方法における希釈工程を希釈部において行うことができ、酸発酵工程を酸発酵部で行うことができ、中和工程を中和処理部で行うことができ、メタン発酵処理をメタン発酵部で行うことができる。すなわち、有機廃液処理装置によると、先述の有機廃液処理方法における高効率な有機廃液処理が行える。また、ガス消費部を設けてあるから、このようにして生成したメタンガスを、有効に消費することができる。
[Operation effect 6]
According to the organic waste liquid treatment apparatus, the dilution process in the organic waste liquid treatment method described above can be performed in the dilution section, the acid fermentation process can be performed in the acid fermentation section, and the neutralization process is performed in the neutralization section. The methane fermentation treatment can be performed in the methane fermentation section. That is, according to the organic waste liquid treatment apparatus, highly efficient organic waste liquid treatment in the above-described organic waste liquid treatment method can be performed. Moreover, since the gas consumption part is provided, the methane gas produced | generated in this way can be consumed effectively.

〔構成7〕
また、前記希釈部に低濃度塩化ナトリウム含有排水を供給する排水供給部を備えてもよい。
[Configuration 7]
Moreover, you may provide the waste_water | drain supply part which supplies low concentration sodium chloride containing waste_water | drain to the said dilution part.

〔作用効果7〕
高濃度塩化ナトリウム含有、高pHの有機廃液の発生する環境では、低濃度塩化ナトリウム含有排水も同時に発生する場合が多い。これらの有機廃液および有機排水を組み合わせることにより、排水中の有機物を効率よくメタン発酵処理部に供給することができるようになり、排水に含まれる有機物もあわせて有効に利用しながら有価物を生産することができるようになり、2種類の有機廃液、有機排水を同時に処理できることになって効率がよい。
[Operation effect 7]
In an environment where organic waste liquid containing high concentration sodium chloride and high pH is generated, wastewater containing low concentration sodium chloride is often generated at the same time. By combining these organic waste liquid and organic wastewater, it becomes possible to efficiently supply the organic matter in the wastewater to the methane fermentation treatment department, and produce valuable materials while effectively using the organic matter contained in the wastewater. This makes it possible to treat two types of organic waste liquid and organic waste water at the same time, which is efficient.

〔構成8〕
また、前記低濃度塩化ナトリウム含有排水が、石鹸製造塩析工程の冷却水や洗浄排水の混合排水であってもよい。
[Configuration 8]
The low-concentration sodium chloride-containing waste water may be a mixed waste water of cooling water or washing waste water in the soap production salting-out step.

〔作用効果8〕
たとえば、石鹸製造業においては、各工程における冷却水や洗浄排水として塩濃度の低い有機排水が発生する。このような石鹸製造設備の排水は、有機物を高濃度に含有しつつ、塩濃度が低く、pHも中性に近いので、上記低濃度塩化ナトリウム含有排水として前記希釈部に供給するのに適する。
[Operation effect 8]
For example, in the soap manufacturing industry, organic wastewater having a low salt concentration is generated as cooling water or washing wastewater in each process. Since the waste water of such a soap production facility contains organic matter at a high concentration, the salt concentration is low, and the pH is close to neutral, so it is suitable for supplying to the dilution section as the low concentration sodium chloride-containing waste water.

〔構成9〕
前記有機廃液が、石鹸製造における塩析工程の廃液であってもよい。
[Configuration 9]
The organic waste liquid may be a waste liquid from a salting-out step in soap production.

〔作用効果9〕
また、石鹸製造業においては、塩析工程において高濃度塩化ナトリウム含有、高pHの有機廃液が発生し、かつ、高濃度の有機物を含有するので、上記有機廃液処理装置で先述の有機廃液処理方法により処理する廃液として好適である。尚、石鹸製造業において、各工程における冷却水や洗浄排水として発生する塩濃度の低い有機排水と組み合わせると、きわめて高効率で石鹸製造設備の排水を有効に利用しながら有価物を生産することができる
[Effect 9]
In the soap manufacturing industry, high-concentration sodium chloride-containing, high-pH organic waste liquid is generated in the salting-out process, and high-concentration organic substances are contained. It is suitable as a waste liquid to be treated. In addition, in the soap manufacturing industry, when combined with organic wastewater with low salt concentration generated as cooling water or washing wastewater in each process, it is possible to produce valuable materials with extremely high efficiency and effective use of wastewater from soap manufacturing facilities. it can

〔構成10〕
また、前記メタン発酵部が、UASB法によりメタン発酵を行うUASB反応槽を備えることが好ましい。
[Configuration 10]
Moreover, it is preferable that the said methane fermentation part is equipped with the UASB reaction tank which performs methane fermentation by UASB method.

〔作用効果10〕
生物処理法としては、嫌気処理法で一般にメタンを生成することができるので、メタン発酵部としていずれの形態を採用してもかまわないが、メタン発酵部としてUASB法を採用すると、有機廃液中の有機物量に対するメタン転換能力が高く、かつ、反応処理速度も速いので好適である。
[Operation effect 10]
As a biological treatment method, methane can generally be produced by an anaerobic treatment method, so any form may be adopted as the methane fermentation part, but when the UASB method is adopted as the methane fermentation part, It is suitable because it has a high methane conversion capacity with respect to the amount of organic matter and a high reaction treatment speed.

尚、石鹸製造業における排水の組成は、おおよそ表1のようになっている。表中の高濃度排水が塩析工程における排水に相当し、本発明では有機廃液と称している。一方、低濃度排水が各工程における冷却水や洗浄排水として発生する排水に相当し、本発明で有機排水と称している。また、参考に、バイオディーゼルフューエル製造業における排水の物性についても同様に表1に示す。   The composition of waste water in the soap manufacturing industry is roughly as shown in Table 1. The high-concentration waste water in the table corresponds to waste water in the salting-out process, and is referred to as organic waste liquid in the present invention. On the other hand, low-concentration wastewater corresponds to wastewater generated as cooling water or washing wastewater in each process, and is referred to as organic wastewater in the present invention. For reference, the physical properties of wastewater in the biodiesel fuel manufacturing industry are also shown in Table 1.

Figure 2012152675
Figure 2012152675

本発明の有機廃液処理装置の全体図である。1 is an overall view of an organic waste liquid treatment apparatus of the present invention. 各実験例における塩濃度とメタン転換率との関係を示す図である。It is a figure which shows the relationship between the salt concentration and methane conversion rate in each experiment example.

図1は本発明の有機廃液処理装置の一例を示す。尚、以下に、示す有機廃液処理装置は、本発明を具体的に説明するための例示であって、本発明は、この記載に限定されるものではなく、本発明の趣旨を逸脱しない範囲で種々の構成の変更、追加が可能であることは言うまでも無い。   FIG. 1 shows an example of the organic waste liquid treatment apparatus of the present invention. In addition, the organic waste liquid processing apparatus shown below is an illustration for specifically explaining the present invention, and the present invention is not limited to this description, and is within a range not departing from the gist of the present invention. Needless to say, various configurations can be changed and added.

図1に示すように、本発明の有機廃液処理装置は、有機廃液貯留部1、排水供給部として機能する有機排水貯留部2、希釈部3、酸発酵部4、中和処理部5、メタン発酵部6、ガス消費部7、好気処理部8を備え、たとえば、有機廃液1aとしての石鹸製造廃液を処理する構成としてある。   As shown in FIG. 1, the organic waste liquid treatment apparatus of the present invention includes an organic waste liquid storage unit 1, an organic waste water storage unit 2 that functions as a waste water supply unit, a dilution unit 3, an acid fermentation unit 4, a neutralization processing unit 5, and methane. The fermenting unit 6, the gas consuming unit 7, and the aerobic processing unit 8 are provided, and for example, the soap manufacturing waste liquid as the organic waste liquid 1a is processed.

前記有機廃液貯留部1は、有機廃液1aを貯留するタンク10からなり、たとえば、石鹸製造プラントにおける塩析工程の廃液を有機廃液1aとして一時貯留するものである。この有機廃液1aは、通常、先に示した表1に示すように、高濃度塩化ナトリウム含有で高pHとなっており、有機物として高濃度のグリセリンを含んでいる(CODCr40000〜120000mg/L程度)。   The said organic waste liquid storage part 1 consists of the tank 10 which stores the organic waste liquid 1a, for example, temporarily stores the waste liquid of the salting-out process in a soap manufacturing plant as the organic waste liquid 1a. As shown in Table 1, the organic waste liquid 1a usually contains high-concentration sodium chloride and has a high pH, and contains high-concentration glycerin as an organic substance (CODCr 40000 to 120,000 mg / L). .

また、前記有機排水貯留部2は有機排水2aを貯留するタンク20からなり、たとえば、石鹸製造プラントにおける各工程における冷却水や洗浄排水として発生する排水を有機排水2aとして一時貯留するものである。この有機排水2aは、通常、表1に示すように、塩化ナトリウムをほとんど含有せず、ほぼ中性となっており、有機物としてグリセリンを含んでいる(CODCr100〜5000mg/L程度)。   Moreover, the said organic waste_water | drain storage part 2 consists of the tank 20 which stores the organic waste_water | drain 2a, for example, temporarily stores the waste_water | drain generate | occur | produced as the cooling water in each process in a soap manufacturing plant, or washing | cleaning waste_water | drain 2a. As shown in Table 1, this organic waste water 2a usually contains almost no sodium chloride, is almost neutral, and contains glycerin as an organic substance (CODCr 100 to 5000 mg / L or so).

前記希釈部3は、前記有機廃液貯留部1からの有機廃液1aを受けて、前記有機排水貯留部2からの有機排水2aにより希釈する希釈槽30を備えてなり、希釈槽30内の塩濃度が所定値(たとえば2.0%)以下、(さらに好ましくは、1.5%以下)となるように混合希釈して、その希釈された有機廃液3aを希釈槽30外へ排出する希釈工程を行うことができるように構成してある。   The dilution section 3 includes a dilution tank 30 that receives the organic waste liquid 1a from the organic waste liquid storage section 1 and dilutes with the organic waste water 2a from the organic waste water storage section 2, and has a salt concentration in the dilution tank 30. A dilution step in which the diluted organic waste liquid 3a is discharged out of the dilution tank 30 by mixing and diluting so that becomes a predetermined value (for example, 2.0%) or less (more preferably, 1.5% or less). It is configured so that it can be performed.

前記酸発酵部4は、前記希釈部3からの有機廃液3aを酸発酵する酸発酵槽40を備え、前記酸発酵槽40に、有機廃液3aを受ける供給部41を備えるとともに、酸発酵済みの有機廃液4aを排出する排出部42を備えて構成される。酸発酵部4では、内部に通性嫌気性菌(酸生成菌)を主体とする汚泥を収容するとともに、酸発酵槽内の有機廃液4aを酸発酵して酢酸等の有機酸を生成する酸発酵工程を行うことができる構成となっている。   The acid fermentation unit 4 includes an acid fermentation tank 40 for acid fermentation of the organic waste liquid 3a from the dilution unit 3, and the acid fermentation tank 40 includes a supply unit 41 that receives the organic waste liquid 3a, and has been subjected to acid fermentation. A discharge unit 42 for discharging the organic waste liquid 4a is provided. The acid fermentation unit 4 contains sludge mainly composed of facultative anaerobic bacteria (acid-producing bacteria) and acid ferments the organic waste liquid 4a in the acid fermentation tank to produce an organic acid such as acetic acid. It is the structure which can perform a fermentation process.

前記中和処理部5は、前記有機廃液4aを中和する中和反応処理のための反応槽50に、有機廃液4aを供給する供給部51を備え、アルカリ(たとえば水酸化ナトリウム水溶液)5bを投入するためのアルカリ添加部52を備え、前記酸発酵部4からの有機廃液4aを受けて内部で混合反応させ、中和する中和工程を行うことができる構成としてある。この反応は、所定の反応効率を維持するために、前記アルカリ添加部52からのアルカリ5bの添加による中和反応により反応を促進させることができる。そして、反応槽50内のpHが所定範囲(たとえばpH5.5〜8.5)になると、その中和した有機廃液5aを廃液排出部53から反応槽50外へ排出できるように構成してある。   The neutralization processing unit 5 includes a supply unit 51 for supplying the organic waste liquid 4a to the reaction tank 50 for the neutralization reaction process for neutralizing the organic waste liquid 4a, and an alkali (for example, an aqueous sodium hydroxide solution) 5b. An alkali addition unit 52 for charging is provided, and a neutralization step of receiving and mixing and reacting with the organic waste liquid 4a from the acid fermentation unit 4 can be performed. In order to maintain a predetermined reaction efficiency, this reaction can be promoted by a neutralization reaction by adding the alkali 5b from the alkali adding section 52. When the pH in the reaction tank 50 falls within a predetermined range (for example, pH 5.5 to 8.5), the neutralized organic waste liquid 5a can be discharged from the waste liquid discharge unit 53 to the outside of the reaction tank 50. .

前記メタン発酵部6は、図1に示すように、前記UASB反応槽60を備えて構成してあり、前記UASB反応槽60は、下部に嫌気性菌(UASB菌)を主体とする汚泥のグラニュール60aを充填されるスラッジベッド61を備えるとともに、中和処理部5から排出された有機廃液5aを分散供給する有機廃液供給部62を備える。これにより、導入される有機廃液5aの上向流が形成されるとともに、内部の有機廃液5aの循環を促し、流動するグラニュール60aにより有機物をメタン発酵するメタン発酵工程が行われる。前記スラッジベッド61の上部には、グラニュール60aの流失を防止するとともに処理済みの上澄液および生成したメタンガス6bを上方に移流させる分離板63を設けてある。分離板63上方に移流した処理済みの有機廃液6aは、オーバーフロー部64よりUASB反応槽60外へ取出されるとともに、生成したメタンガス6bは、ガス回収部65よりUASB反応槽60外へ取出される構成となっている。また、オーバーフロー部64には有機廃液の一部6cを有機廃液供給部62に循環させる循環処理液循環路66を設けて、必要な滞留時間を維持しながら、塔内の液線速度を適切な値に設定できる構成としている。塔内の液線速度は、速すぎるとグラニュール60aが磨耗あるいは流出し、遅すぎると分解速度が遅くなったり、グラニュール以外の懸濁物質が蓄積されやすくなるため、3m/h程度とすることが好ましい。   As shown in FIG. 1, the methane fermentation unit 6 includes the UASB reaction tank 60, and the UASB reaction tank 60 is sludge granulated mainly with anaerobic bacteria (UASB bacteria) at the bottom. And an organic waste liquid supply unit 62 that disperses and supplies the organic waste liquid 5a discharged from the neutralization processing unit 5. As a result, an upward flow of the introduced organic waste liquid 5a is formed, and circulation of the internal organic waste liquid 5a is promoted, and a methane fermentation process is performed in which organic matter is methane-fermented by the flowing granules 60a. On the upper part of the sludge bed 61, there is provided a separation plate 63 for preventing the granule 60a from flowing out and for transferring the treated supernatant and the generated methane gas 6b upward. The treated organic waste liquid 6a transferred to the upper side of the separation plate 63 is taken out of the UASB reaction tank 60 from the overflow part 64, and the generated methane gas 6b is taken out of the UASB reaction tank 60 from the gas recovery part 65. It has a configuration. The overflow section 64 is provided with a circulation processing liquid circulation path 66 for circulating a part 6c of the organic waste liquid to the organic waste liquid supply section 62, and an appropriate liquid line velocity in the tower is maintained while maintaining a necessary residence time. It can be set to a value. The liquid line velocity in the column is about 3 m / h because if the granule 60a is too fast, the granule 60a will be worn out or will flow out. If it is too slow, the decomposition rate will be slow, and suspended substances other than granules will tend to accumulate. It is preferable.

前記ガス消費部7は、可燃性ガス7aを、前記ガス回収部65から回収されたメタンガス6bとともに混合して燃料ガスとして供給する燃料ガス供給部70を備え、燃料ガスを燃料として消費して蒸気や動力7bを発生するボイラ、エンジン、タービン等からなる。ここで発生した蒸気や動力7bは、たとえば、石鹸製造プラントの熱源や動力源として用いられ、有効利用される。   The gas consumption unit 7 includes a fuel gas supply unit 70 that mixes the combustible gas 7a together with the methane gas 6b recovered from the gas recovery unit 65 and supplies the fuel gas as a fuel gas. And a boiler that generates power 7b, an engine, a turbine, and the like. The steam and power 7b generated here are used as, for example, a heat source or power source of a soap production plant and are effectively used.

前記好気処理部8は、活性汚泥槽、接触曝気槽等の種々公知の廃水処理槽を適用でき、前記メタン発酵部6から供給される有機廃液6aをさらに好気分解処理して、清浄な排水8aとして排出可能に構成する。   The aerobic treatment unit 8 can be applied to various known wastewater treatment tanks such as an activated sludge tank and a contact aeration tank, and the organic waste liquid 6a supplied from the methane fermentation unit 6 is further subjected to aerobic decomposition treatment to be clean. The drainage 8a is configured to be discharged.

尚、中和処理部5には、アルカリ添加部52のほかに、前記希釈部で希釈された有機廃液の一部3bを、酸発酵部4を経ずにバイパス路31より直接供給する原液供給部54を設けて、アルカリ添加部52から供給すべきアルカリ5bの一部または全部を前記有機廃液の一部3bで代用して前記酸発酵を受けた有機廃液4aを中和処理可能に構成してある。   In addition to the alkali addition unit 52, the neutralization processing unit 5 supplies a part of the organic waste liquid 3b diluted in the dilution unit directly from the bypass 31 without passing through the acid fermentation unit 4. The organic waste liquid 4a subjected to the acid fermentation can be neutralized by substituting a part or all of the alkali 5b to be supplied from the alkali addition part 52 with a part 3b of the organic waste liquid. It is.

また、同様に、中和処理部5には、好気処理部8からの排水の一部8bを返送路81より返送供給する排水返送部55を設けアルカリ添加部52から供給すべきアルカリ5bの一部または全部を前記排水の一部8bで代用して前記酸発酵を受けた有機廃液4aを中和処理可能に構成することもできる。   Similarly, the neutralization processing unit 5 is provided with a drainage return unit 55 for supplying a part of the drainage 8b from the aerobic processing unit 8 through the return path 81, and for the alkali 5b to be supplied from the alkali addition unit 52. The organic waste liquid 4a subjected to the acid fermentation may be configured to be neutralized by substituting a part or all of the waste water with a part 8b of the waste water.

以下に、具体的な廃液を上記有機廃液処理装置に供給した場合のメタン生成効率を検討した実験例を示す。以下に示す実験例は、本発明を具体的に示すためのものであって、本発明は、以下の実施例に限られるものではない。   Below, the experiment example which examined the methane production | generation efficiency at the time of supplying a specific waste liquid to the said organic waste liquid processing apparatus is shown. The following experimental examples are for specifically illustrating the present invention, and the present invention is not limited to the following examples.

〔実験例〕
模擬有機廃液および模擬有機排水として、下記性状の有機廃液および有機排水を用意した。
[Experimental example]
As simulated organic waste liquid and simulated organic waste water, organic waste liquid and organic waste water having the following properties were prepared.

有機廃液:
CODCr:130000(mg/L)
塩濃度 :9.9(%)
pH :12
Organic waste liquid:
CODCr: 130000 (mg / L)
Salt concentration: 9.9 (%)
pH: 12

有機排水:
CODCr:500(mg/L)
塩濃度 :0(%)
pH :7.2
Organic wastewater:
CODCr: 500 (mg / L)
Salt concentration: 0 (%)
pH: 7.2

〔実験1〕
上記有機廃液に硫酸を加えてpH7.5に中和した後、上記有機排水と容量比1:9となるように混合した。得られた混合液8mLを容積200mLのバイアル瓶に採り、UASB反応槽の汚泥10mLを加え、気相部分を窒素で置換した上で密封し、55℃で13日間培養した。培養後のバイアル瓶気相部分のガスを採取し、量、メタンガス濃度を測定した結果、添加したCODの99.9%がメタンに転換されたことが明らかになった。
[Experiment 1]
The organic waste liquid was neutralized to pH 7.5 by adding sulfuric acid, and then mixed with the organic waste water so that the volume ratio was 1: 9. 8 mL of the obtained mixed solution was taken in a 200 mL volume vial, 10 mL of UASB reactor sludge was added, the gas phase portion was replaced with nitrogen, sealed, and cultured at 55 ° C. for 13 days. As a result of collecting the gas in the gas phase part of the vial after incubation and measuring the amount and the methane gas concentration, it was revealed that 99.9% of the added COD was converted to methane.

〔実験2〕
実験1における中和後の有機廃液に有機排水を容量比で1:4となるように混合した混合液4mLを容積200mLのバイアル瓶に採った以外は実験1と同様の実験を行った。その結果、添加したCODの90.1%がメタンに転換されたことが明らかになった。
[Experiment 2]
An experiment similar to Experiment 1 was performed except that 4 mL of a mixed solution obtained by mixing organic wastewater after neutralization in Experiment 1 with a volume ratio of 1: 4 was placed in a 200 mL vial. As a result, it was revealed that 90.1% of the added COD was converted to methane.

〔実験3〕
実験1における中和後の有機廃液に有機排水を容量比で1:1となるように混合した混合液1.6mLを容積200mLのバイアル瓶に採った以外は実験1と同様の実験を行った。その結果、添加したCODの63.7%がメタンに転換されたことが明らかになった。
[Experiment 3]
The same experiment as in Experiment 1 was performed except that 1.6 mL of a mixed solution obtained by mixing organic wastewater after neutralization in Experiment 1 with a volume ratio of 1: 1 was taken in a 200 mL vial. . As a result, it was revealed that 63.7% of the added COD was converted to methane.

〔実験4〕
実験1における中和後の有機廃液のみ0.8mLを容積200mLのバイアル瓶に採った以外は実験1と同様の実験を行った。その結果、添加したCODの28.1%がメタンに転換されたことが明らかになった。
[Experiment 4]
The same experiment as in Experiment 1 was performed except that 0.8 mL of only the organic waste liquid after neutralization in Experiment 1 was taken in a 200 mL vial. As a result, it was revealed that 28.1% of the added COD was converted to methane.

実験1〜4の結果を、横軸:塩濃度(%)、縦軸:メタン転換率(%)としてプロットすると図2のようになった。   The results of Experiments 1 to 4 are plotted as horizontal axis: salt concentration (%) and vertical axis: methane conversion rate (%) as shown in FIG.

図2より、本発明でいう有機廃液を有機排水で希釈する場合には、塩濃度を2.0%以下となるように希釈すれば、少ない希釈率でかつ高いメタン転換率を実現でき、また、塩濃度はさらに低下させて、1.5%以下となるように希釈することが望ましいことが示唆された。
〔実機運転例〕
図1に示した有機廃液処理装置に、表1に示す石鹸製造業における有機廃液および有機排水を供給した。
From FIG. 2, when diluting the organic waste liquid in the present invention with the organic waste water, if the salt concentration is diluted to 2.0% or less, a high methane conversion rate can be realized with a small dilution rate. It was suggested that it is desirable to further dilute the salt concentration to 1.5% or less.
[Example of actual operation]
The organic waste liquid treatment apparatus shown in FIG. 1 was supplied with organic waste liquid and organic waste water in the soap manufacturing industry shown in Table 1.

希釈部3における希釈工程は、有機廃液1aを50tに対し、有機排水2aを280t混合して希釈することにより、塩濃度が15000mg/L、pH12、CODが10000Cr(mg/L)程度に希釈された有機廃液3aを得ることができた。   The dilution process in the dilution unit 3 is performed by diluting the organic waste liquid 1a with 50t and the organic waste water 2a with 280t to dilute the salt concentration to about 15000mg / L, pH12, and COD to about 10000Cr (mg / L). Organic waste liquid 3a could be obtained.

次に酸発酵部4における酸発酵工程を行うと、投入された有機廃液3aのpHは約5まで低下し、低分子化された有機廃液4aが得られていることがわかった。   Next, when the acid fermentation process in the acid fermentation unit 4 was performed, the pH of the charged organic waste liquid 3a was reduced to about 5, and it was found that the organic waste liquid 4a having a reduced molecular weight was obtained.

次に中和処理部5における中和工程では、希釈された有機廃液の一部3bを添加して有機廃液4aの中和を図るとともに、最終的なpHをアルカリ(水酸化ナトリウム)5bの添加により目標pH7に調製した。   Next, in the neutralization process in the neutralization processing unit 5, a part 3b of the diluted organic waste liquid is added to neutralize the organic waste liquid 4a, and the final pH is added to the alkali (sodium hydroxide) 5b. To a target pH of 7.

得られた有機廃液5aはメタン発酵部6においてメタン発酵工程に供したところ発酵阻害を生じることなくメタンガス6bを生成し、ガス消費部7に供給することにより蒸気や動力7bに変換して有効利用することができた。   When the obtained organic waste liquid 5a is subjected to a methane fermentation process in the methane fermentation unit 6, it produces methane gas 6b without causing fermentation inhibition and is supplied to the gas consumption unit 7 to be converted into steam or power 7b for effective use. We were able to.

また、このメタン発酵工程から流出する有機廃液6aはpH約7であった。前記有機廃液6aは好気処理部8によって好気処理工程に供され、さらに有機物の除去された清浄な排水8aとすることができた。尚、排水8aのPHは約9であり、酸(硫酸など)を添加することにより中性化して外部に放流することができた。   Moreover, the organic waste liquid 6a which flows out from this methane fermentation process was about pH 7. The organic waste liquid 6a was subjected to an aerobic treatment step by the aerobic treatment unit 8, and further, clean waste water 8a from which organic substances were removed could be obtained. The pH of the waste water 8a was about 9, and it could be neutralized and discharged to the outside by adding an acid (such as sulfuric acid).

尚、本実施の形態においては、中和処理部5における目標pH値を5.5〜8.5としたが、これに限らず、有機廃液の性状に対応して適宜変更することができる。また、希釈部3における塩濃度に関しても同様である。   In the present embodiment, the target pH value in the neutralization processing unit 5 is set to 5.5 to 8.5, but is not limited thereto, and can be appropriately changed according to the properties of the organic waste liquid. The same applies to the salt concentration in the dilution section 3.

1 :有機廃液貯留部
1a :有機廃液
10 :タンク
2 :有機排水貯留部
2a :有機排水
20 :タンク
3 :希釈部
3a :有機廃液
3b :有機廃液の一部
30 :希釈槽
31 :バイパス路
4 :酸発酵部
4a :有機廃液
40 :酸発酵槽
41 :供給部
42 :排出部
5 :中和処理部
5a :有機廃液
5b :アルカリ
50 :反応槽
51 :供給部
52 :アルカリ添加部
53 :廃液排出部
54 :原液供給部
55 :排水返送部
6 :メタン発酵部
6a :有機廃液
6b :メタンガス
6c :有機廃液の一部
60 :UASB反応槽
60a :グラニュール
61 :スラッジベッド
62 :有機廃液供給部
63 :分離板
64 :オーバーフロー部
65 :ガス回収部
66 :循環処理液循環路
7 :ガス消費部
7a :可燃性ガス
7b :蒸気や動力
70 :燃料ガス供給部
8 :好気処理部
8a :排水
8b :排水の一部
81 :返送路
DESCRIPTION OF SYMBOLS 1: Organic waste liquid storage part 1a: Organic waste liquid 10: Tank 2: Organic waste water storage part 2a: Organic waste water 20: Tank 3: Dilution part 3a: Organic waste liquid 3b: Part of organic waste liquid 30: Dilution tank 31: Bypass path 4 : Acid fermentation section 4a: Organic waste liquid 40: Acid fermentation tank 41: Supply section 42: Discharge section 5: Neutralization processing section 5a: Organic waste liquid 5b: Alkali 50: Reaction tank 51: Supply section 52: Alkali addition section 53: Waste liquid Discharge unit 54: Stock solution supply unit 55: Waste water return unit 6: Methane fermentation unit 6a: Organic waste solution 6b: Methane gas 6c: Part of the organic waste solution 60: UASB reaction tank 60a: Granule 61: Sludge bed 62: Organic waste solution supply unit 63: Separator plate 64: Overflow part 65: Gas recovery part 66: Circulating process liquid circulation path 7: Gas consumption part 7a: Combustible gas 7b: Steam and power 70: Fuel gas supply Part 8: aerobic treatment unit 8a: drainage 8b: Some drainage 81: return path

Claims (10)

高濃度塩化ナトリウムを含有し、高pHの有機廃液を希釈する希釈工程、
前記希釈工程で塩化ナトリウム濃度が希釈された有機廃液を、酸発酵する酸発酵工程、
前記酸発酵工程で酸発酵された有機廃液を、pH5.5〜8.5に中和する中和工程、
前記中和工程でpH5.5〜8.5となった有機廃液を、メタン発酵するメタン発酵工程、
を順に行う有機廃液処理方法。
A dilution step for diluting a high pH organic waste liquid containing high concentration sodium chloride;
An acid fermentation process in which the organic waste liquid in which the sodium chloride concentration is diluted in the dilution process is acid-fermented;
A neutralization step of neutralizing the organic liquid waste acid fermented in the acid fermentation step to a pH of 5.5 to 8.5;
A methane fermentation step for methane fermentation of the organic waste liquid having a pH of 5.5 to 8.5 in the neutralization step;
Organic waste liquid treatment method to perform in order.
前記メタン発酵工程でメタン発酵された有機廃液を、さらに好気性菌により分解する好気処理工程を行う請求項1に記載の有機廃液処理方法。   The organic waste liquid processing method of Claim 1 which performs the aerobic process process which decomposes | disassembles the organic waste liquid methane-fermented in the said methane fermentation process further by an aerobic microbe. 前記酸発酵工程で酸発酵された有機廃液に、好気処理工程で得られた有機廃液を混合して、前記中和工程を行う請求項2に記載の有機廃液処理方法。   The organic waste liquid treatment method according to claim 2, wherein the neutralization process is performed by mixing the organic waste liquid obtained in the aerobic treatment process with the organic waste liquid subjected to the acid fermentation in the acid fermentation process. 前記酸発酵工程で酸発酵された有機廃液に、酸発酵前の有機廃液を混合して前記中和工程を行う請求項1〜3のいずれか一項に記載の有機廃液処理方法。   The organic waste liquid processing method as described in any one of Claims 1-3 which mixes the organic waste liquid before acid fermentation with the organic waste liquid acid-fermented at the said acid fermentation process, and performs the said neutralization process. 前記希釈工程において、有機廃液を塩化ナトリウム濃度が2.0%以下になるように希釈する請求項1〜4のいずれか一項に記載の有機廃液処理方法。   The organic waste liquid treatment method according to any one of claims 1 to 4, wherein in the dilution step, the organic waste liquid is diluted so that a sodium chloride concentration is 2.0% or less. 高濃度塩化ナトリウム含有、高pHの有機廃液を希釈する希釈部、
前記希釈部で塩化ナトリウム濃度が希釈された有機廃液を、酸発酵する酸発酵部、
前記酸発酵部で酸発酵された有機廃液を、pH5.5〜8.5に中和する中和処理部、
前記中和処理部でpH5.5〜8.5となった有機廃液を、メタン発酵するメタン発酵部、
を設け、前記メタン発酵部で得られるメタンガスを燃料として消費するガス消費部を設けた有機廃液処理装置。
A dilution section for diluting high-concentration sodium chloride-containing, high-pH organic waste liquid,
An acid fermentation part for acid fermentation of the organic waste liquid in which the sodium chloride concentration is diluted in the dilution part,
A neutralization treatment unit for neutralizing the organic waste liquid acid-fermented in the acid fermentation unit to a pH of 5.5 to 8.5;
A methane fermentation section for methane fermentation of an organic waste liquid having a pH of 5.5 to 8.5 in the neutralization section;
An organic waste liquid treatment apparatus provided with a gas consuming unit that consumes methane gas obtained in the methane fermentation unit as fuel.
前記希釈部に低濃度塩化ナトリウム含有排水を供給する排水供給部を備えた請求項6に記載の有機廃液処理装置。   The organic waste liquid processing apparatus of Claim 6 provided with the waste_water | drain supply part which supplies low concentration sodium chloride containing waste_water | drain to the said dilution part. 前記低濃度塩化ナトリウム含有排水が、石鹸製造塩析工程の冷却水や洗浄排水の混合排水である請求項7に記載の有機廃液処理装置。   The organic waste liquid treatment apparatus according to claim 7, wherein the low-concentration sodium chloride-containing wastewater is a mixed wastewater of cooling water or washing wastewater in a soap production salting-out step. 前記有機廃液が、石鹸製造における塩析工程の廃液である請求項6〜8のいずれか一項に記載の有機廃液処理装置。   The said organic waste liquid is a waste liquid of the salting-out process in soap manufacture, The organic waste liquid processing apparatus as described in any one of Claims 6-8. 前記メタン発酵部が、UASB法によりメタン発酵を行うUASB反応槽を備えるものである請求項6〜9のいずれか一項に記載の有機廃液処理装置。   The organic effluent treatment apparatus according to any one of claims 6 to 9, wherein the methane fermentation section includes a UASB reaction tank that performs methane fermentation by the UASB method.
JP2011012281A 2011-01-24 2011-01-24 Method and apparatus for treating soap production waste liquid Active JP5731209B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011012281A JP5731209B2 (en) 2011-01-24 2011-01-24 Method and apparatus for treating soap production waste liquid

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011012281A JP5731209B2 (en) 2011-01-24 2011-01-24 Method and apparatus for treating soap production waste liquid

Publications (2)

Publication Number Publication Date
JP2012152675A true JP2012152675A (en) 2012-08-16
JP5731209B2 JP5731209B2 (en) 2015-06-10

Family

ID=46835007

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011012281A Active JP5731209B2 (en) 2011-01-24 2011-01-24 Method and apparatus for treating soap production waste liquid

Country Status (1)

Country Link
JP (1) JP5731209B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012152721A (en) * 2011-01-28 2012-08-16 Kurita Water Ind Ltd Treatment method for organic waste water
WO2018143323A1 (en) * 2017-02-03 2018-08-09 パナソニックIpマネジメント株式会社 Liquid processing system and liquid processing method

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62279899A (en) * 1986-05-30 1987-12-04 Ebara Infilco Co Ltd Method and apparatus for treating sewage of excretion system
JP2001252686A (en) * 2000-03-10 2001-09-18 Kurita Water Ind Ltd Anaerobic treatment method for organic waste water
JP2003245631A (en) * 2002-02-27 2003-09-02 Kubota Corp Method for recycling food waste as resources and equipment using this method
JP2003245630A (en) * 2002-02-26 2003-09-02 Kobe Steel Ltd Anaerobic treatment method for organic waste
JP2005270853A (en) * 2004-03-25 2005-10-06 Ataka Construction & Engineering Co Ltd Waste treatment apparatus
JP2006136788A (en) * 2004-11-11 2006-06-01 Ebara Corp Method and apparatus for treating salts-containing organic waste water
JP2006224005A (en) * 2005-02-18 2006-08-31 Osaka Gas Co Ltd Wastewater treatment system
JP2007229581A (en) * 2006-02-28 2007-09-13 Japan Steel Works Ltd:The Treatment method and treatment apparatus of organic waste
JP2010247115A (en) * 2009-04-20 2010-11-04 Ebara Engineering Service Co Ltd Anaerobic treatment apparatus equipped with evaporative concentration means for methane fermentation treated water, and anaerobic treatment method using the same

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62279899A (en) * 1986-05-30 1987-12-04 Ebara Infilco Co Ltd Method and apparatus for treating sewage of excretion system
JP2001252686A (en) * 2000-03-10 2001-09-18 Kurita Water Ind Ltd Anaerobic treatment method for organic waste water
JP2003245630A (en) * 2002-02-26 2003-09-02 Kobe Steel Ltd Anaerobic treatment method for organic waste
JP2003245631A (en) * 2002-02-27 2003-09-02 Kubota Corp Method for recycling food waste as resources and equipment using this method
JP2005270853A (en) * 2004-03-25 2005-10-06 Ataka Construction & Engineering Co Ltd Waste treatment apparatus
JP2006136788A (en) * 2004-11-11 2006-06-01 Ebara Corp Method and apparatus for treating salts-containing organic waste water
JP2006224005A (en) * 2005-02-18 2006-08-31 Osaka Gas Co Ltd Wastewater treatment system
JP2007229581A (en) * 2006-02-28 2007-09-13 Japan Steel Works Ltd:The Treatment method and treatment apparatus of organic waste
JP2010247115A (en) * 2009-04-20 2010-11-04 Ebara Engineering Service Co Ltd Anaerobic treatment apparatus equipped with evaporative concentration means for methane fermentation treated water, and anaerobic treatment method using the same

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012152721A (en) * 2011-01-28 2012-08-16 Kurita Water Ind Ltd Treatment method for organic waste water
WO2018143323A1 (en) * 2017-02-03 2018-08-09 パナソニックIpマネジメント株式会社 Liquid processing system and liquid processing method

Also Published As

Publication number Publication date
JP5731209B2 (en) 2015-06-10

Similar Documents

Publication Publication Date Title
KR102109376B1 (en) Process for treating organic material
CN102190411B (en) Treatment method for acidic organic chemical wastewater with high COD (chemical oxygen demand) and high concentration sulfate radical
CN203890193U (en) Pig farm sewage treatment and biogas production system
CN104404090A (en) Method for promoting residual sludge to carry out anaerobic fermentation to produce acid
Pang et al. Synergistic biological removal of nitrogen and sulfide from saline mariculture wastewater by halophilic consortia
Jin et al. The effect of salinity on waste activated sludge alkaline fermentation and kinetic analysis
Tabatabaei et al. Influential parameters on biomethane generation in anaerobic wastewater treatment plants
Sobhi et al. Selecting the optimal nutrients recovery application for a biogas slurry based on its characteristics and the local environmental conditions: A critical review
Li et al. Mitigating ammonia-inhibition in anaerobic digestion by bioaugmentation: A review
CN103332831A (en) Comprehensive erythromycin thiocyanate mushroom dreg waste water disposal system and method
Zhao et al. Production of bioflocculants prepared from wastewater supernatant of anaerobic co-digestion of corn straw and molasses wastewater treatment
Deng et al. Treatment and utilization of swine wastewater–A review on technologies in full-scale application
KR100352811B1 (en) Methods for rapid digestion of food wastes and for methane production using three-stage methane fermentaion system
CN103043869B (en) Recycling sewage treatment equipment by utilizing automatic backflow reactor and sewage treatment method thereof
CN103342440B (en) Efficient biological treatment method of coal gasification wastewater
Ram et al. A critical review on sustainable biogas production with focus on microbial-substrate interactions: bottlenecks and breakthroughs
Wen et al. Review on research achievements of blackwater anaerobic digestion for enhanced resource recovery
CN108773982B (en) Treatment method of high-concentration wastewater
CN204417278U (en) Culturing wastewater processing system
JP5731209B2 (en) Method and apparatus for treating soap production waste liquid
CN107285583A (en) A kind of sludge treatment technique based on carbon source reuse
CN110204161A (en) A method of sludge, which is improved, using neopelex (SDBS) generates hydrogen
CN104529106A (en) Method for promoting anaerobic digestion of excess sludge through copper sulfate to produce methane
Gao et al. Co-pretreatment (calcium peroxide+ freeze) to improve anaerobic fermentation of waste activated sludge: Method optimization and mechanism insights
CN204369720U (en) Culturing wastewater processing system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20131217

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20141211

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150205

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150312

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150409

R150 Certificate of patent or registration of utility model

Ref document number: 5731209

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150