JP2012152061A - Vehicle driving apparatus - Google Patents

Vehicle driving apparatus Download PDF

Info

Publication number
JP2012152061A
JP2012152061A JP2011009960A JP2011009960A JP2012152061A JP 2012152061 A JP2012152061 A JP 2012152061A JP 2011009960 A JP2011009960 A JP 2011009960A JP 2011009960 A JP2011009960 A JP 2011009960A JP 2012152061 A JP2012152061 A JP 2012152061A
Authority
JP
Japan
Prior art keywords
magnetic flux
motor
magnetic
magnetic path
drive wheels
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2011009960A
Other languages
Japanese (ja)
Inventor
Kiyoshi Morimoto
清 森本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daihatsu Motor Co Ltd
Original Assignee
Daihatsu Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daihatsu Motor Co Ltd filed Critical Daihatsu Motor Co Ltd
Priority to JP2011009960A priority Critical patent/JP2012152061A/en
Publication of JP2012152061A publication Critical patent/JP2012152061A/en
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/64Electric machine technologies in electromobility
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/72Electric energy management in electromobility

Abstract

PROBLEM TO BE SOLVED: To provide a vehicle driving apparatus in which a motor having an epoch-making structure where the motor is not bulky particularly in a radial direction is used, and a torque required for driving right and left drive wheels is generated while allowing the motor not to be bulky in the radial direction to secure a minimum ground clearance.SOLUTION: In the vehicle driving apparatus, a motor 8 driving right and left drive wheels 2l and 2r includes: right and left distributed magnetic path members 6l and 6r extending to right and left from a solenoid 3, respectively; rotors 4l and 4r in which a plurality of branched ends of the right and left distributed magnetic path members are arranged at an outer periphery to form a revolving field, thereby the drive wheels 2l and 2r are driven, respectively; and right and left magnetic flux adjusting means 5l and 5r magnetically adjusting between phases of the right and left distributed magnetic path members 6l and 6r, respectively. A stator is not arranged at inner peripheries and outer peripheries of the rotors 4l and 4r to form an epoch-making structure where the motor is not bulky in a radial direction, and a torque required for driving the right and left drive wheels 2l and 2r is generated while securing a minimum ground clearance.

Description

この発明は、左右の駆動輪をモータにより駆動する車両の駆動装置に関し、詳しくは、モータの嵩張りに起因した最低地上高の確保の困難さの改善に関する。なお、本発明において、「車両」には、左右に二輪、四輪等の二輪以上の駆動輪をもつ四輪、三輪、…の電気自動車、電動二輪車、電動バギー車、電動車椅子などを含むモータ駆動の種々の車両が含まれる。   The present invention relates to a vehicle drive device that drives left and right drive wheels with a motor, and more particularly, to improvement of difficulty in securing a minimum ground clearance due to bulkiness of the motor. In the present invention, the “vehicle” includes a motor including a four-wheel, three-wheel, etc. electric vehicle, an electric two-wheeled vehicle, an electric buggy, an electric wheelchair having two or more driving wheels such as two wheels and four wheels on the left and right. Various types of vehicles are included.

従来、四輪の電気自動車の駆動装置には、左右の駆動輪をかご型誘導モータ等の誘導モータにより駆動するものがある(例えば、特許文献1、2参照)。   2. Description of the Related Art Conventionally, some four-wheel electric vehicle drive devices drive left and right drive wheels by an induction motor such as a squirrel-cage induction motor (see, for example, Patent Documents 1 and 2).

また、特許文献1、2の誘導モータのようなモータには、左右の駆動輪を回転するロータに対して一個のステータを共用するものがある(例えば、特許文献3参照)。   In addition, some of the motors such as the induction motors of Patent Documents 1 and 2 share one stator for the rotor that rotates the left and right drive wheels (see, for example, Patent Document 3).

特開平7−147704号公報JP 7-147704 A 特開平6−46508号公報JP-A-6-46508 特開平4−183204号公報Japanese Patent Laid-Open No. 4-183204

特許文献1〜3の誘導モータ等により左右の駆動輪を駆動する場合、それらのモータは、ロータの外周側又は内周側のステータは各相の突極にコイルを集中巻等して形成される。そのため、ステータは、コイルが十分に巻回できるように、径方向の長さをある程度以上にしなければならず、大型化する。したがって、この種の駆動装置は、モータが、全体として径方向に嵩張って大型化する。   When the left and right drive wheels are driven by the induction motors or the like disclosed in Patent Documents 1 to 3, the motors are formed by concentrically winding coils on the salient poles of each phase on the rotor outer peripheral side or inner peripheral side. The Therefore, the stator needs to have a length in the radial direction more than a certain extent so that the coil can be wound sufficiently, and the stator becomes large. Therefore, in this type of drive device, the motor is bulky in the radial direction as a whole and is increased in size.

ところで、この種の車両においては、規定の最低地上高を確保する必要がある。   By the way, in this kind of vehicle, it is necessary to ensure a prescribed minimum ground clearance.

そして、デファレンシャルギア(以下、「デフギア」という)等を使用し、モータ出力を分割して左右の駆動輪の動力にする場合、モータの発生トルクを十分に大きくしようとすると、モータが全体として径方向に一層嵩張って大型化する。すなわち、モータの発生トルクを増大することと、最低地上高を確保することとが、従来は背反二律の関係にあるので、両方を満足することは困難であり、モータの発生トルクを増大すれば、規定の最低地上高を確保することが困難になる。   When a differential gear (hereinafter referred to as “differential gear”) or the like is used to divide the motor output into power for the left and right drive wheels, if the generated torque of the motor is increased sufficiently, the diameter of the motor as a whole will be reduced. Larger in size and larger in size. In other words, increasing the torque generated by the motor and ensuring the minimum ground clearance are in a trade-off relationship, and it is difficult to satisfy both. For example, it will be difficult to secure the specified minimum ground clearance.

なお、ラジアルタイプのモータにおいて、ロータ及びステータを軸方向に長くすれば、モータの径方向の大型化を抑えたままトルクを増幅することは可能であるが、モータの質量が極めて増大し、実用的でない。また、アキシャルタイプのモータにおいて、軸方向に多数のステータとロータを交互に配置すれば、モータの径方向の大型化を抑えたまトルクを増幅できるが、モータの質量が極めて増大するとともに、コストの増大と信頼性の低下を招き、実現が難しい。   In radial type motors, if the rotor and stator are lengthened in the axial direction, it is possible to amplify the torque while suppressing the increase in the size of the motor in the radial direction, but the mass of the motor is extremely increased and practically used. Not right. In addition, in an axial type motor, if a large number of stators and rotors are alternately arranged in the axial direction, torque can be amplified while suppressing an increase in the size of the motor in the radial direction. Increased and reduced reliability, difficult to realize.

したがって、従来のこの種の車両の駆動制御装置においては、モータが径方向に嵩張らないようにして最低地上高を確保しつつ、左右の駆動輪の駆動に必要なトルクを発生することができない。   Therefore, in the conventional drive control device for this type of vehicle, it is impossible to generate torque necessary for driving the left and right drive wheels while ensuring the minimum ground clearance so that the motor is not bulky in the radial direction.

本発明は、とくに径方向に嵩張らない画期的な構造のモータを使用し、モータが径方向に嵩張らないようにして最低地上高を確保しつつ、左右の駆動輪の駆動に必要なトルクを発生することを目的とする。   The present invention uses a motor with an epoch-making structure that is not bulky in the radial direction, and ensures the minimum ground clearance by preventing the motor from being bulky in the radial direction, while providing the torque necessary for driving the left and right drive wheels. The purpose is to occur.

上記した目的を達成するために、本発明の車両の駆動装置は、左右の駆動輪を駆動するモータが、磁束を発生する磁束発生手段から左右それぞれに延びた左右の分配磁路部材と、左右の前記分配磁路部材の分枝した複数の端部が外周に配置されて回転界磁を形成し、左右の駆動輪それぞれを駆動する左右のロータと、左右の前記分配磁路部材それぞれの相間を磁気的に調整する左右の磁束調整手段とを備えた構成であることを特徴としている(請求項1)。   In order to achieve the above-described object, a vehicle drive device according to the present invention includes a motor for driving left and right drive wheels, left and right distribution magnetic path members extending left and right from magnetic flux generation means for generating magnetic flux, A plurality of branched ends of the distribution magnetic path member are arranged on the outer periphery to form a rotating field, and the left and right rotors that drive the left and right drive wheels respectively, and the phase between the left and right distribution magnetic path members It is the structure provided with the magnetic flux adjustment means on either side which adjusts magnetically (Claim 1).

請求項1に記載の発明によれば、左右の駆動輪を駆動するモータは、磁束発生手段(例えばソレノイドコイル)の発生する磁束が、左右それぞれに延びた左右の分配磁路部材を通って分枝した各端部に到達して回転界磁を形成し、この界磁によって左右のロータを回転する。   According to the first aspect of the present invention, in the motor for driving the left and right drive wheels, the magnetic flux generated by the magnetic flux generating means (for example, the solenoid coil) is distributed through the left and right distribution magnetic path members extending to the left and right respectively. A rotating field is formed by reaching each branched end, and the left and right rotors are rotated by this field.

さらに、左右の磁束調整手段により、車両の直進、左右折等に応じて左右の駆動輪それぞれのロータの手前で磁路が独立して短絡・遮断され、デフギア等相当の機能を発揮する。   Further, the left and right magnetic flux adjusting means independently short-circuit and cut off the magnetic path in front of the rotor of each of the left and right drive wheels according to the vehicle going straight, turning left and right, etc., and exhibit functions equivalent to the differential gear.

そして、従来のモータのようにステータに内装されたソレノイドコイルをロータの内側や外側の近傍に配置する必要がなく、モータが径方向に大きくならない。しかも、磁気的に調整する左右の磁束調整手段により、磁束発生手段から左右のロータに至る界磁磁束を直接増減する構成であるので、左右のロータの回転数とトルクとを独立して増減できる。   And it is not necessary to arrange | position the solenoid coil built in the stator like the conventional motor in the inner side of the rotor or the outer vicinity, and a motor does not become large in radial direction. In addition, since the magnetic field adjustment means that magnetically adjusts the field magnetic flux from the magnetic flux generation means to the left and right rotors, the rotational speed and torque of the left and right rotors can be increased and decreased independently. .

したがって、径方向に嵩張らない画期的な構造のモータを使用し、モータが径方向に嵩張らないようにして最低地上高を確保しつつ、左右の駆動輪の駆動に必要なトルクを発生することができる。また、最低地上高を確保するための等速ジョイントやユニバーサルジョイント、さらに減速ギアやデフギアを不要にでき、低コスト化を図ることができる。   Therefore, use a motor with an epoch-making structure that is not bulky in the radial direction, and generate the torque required to drive the left and right drive wheels while ensuring the minimum ground clearance by preventing the motor from being bulky in the radial direction. Can do. In addition, constant velocity joints and universal joints for securing the minimum ground clearance, as well as reduction gears and differential gears can be dispensed with, and costs can be reduced.

本発明の車両の駆動装置の一実施形態の概略構成の説明図である。It is explanatory drawing of schematic structure of one Embodiment of the drive device of the vehicle of this invention. 図1のソレノイド部の説明図である。It is explanatory drawing of the solenoid part of FIG. 図1のモータの主要な部品配置を示した平面図である。It is the top view which showed the main components arrangement | positioning of the motor of FIG. 図3の側面図である。FIG. 4 is a side view of FIG. 3. (a)〜(d)は図1の磁束調整手段の動作説明図である。(A)-(d) is operation | movement explanatory drawing of the magnetic flux adjustment means of FIG. (a)〜(c)はそれぞれ磁束調整手段の他の例の説明図である。(A)-(c) is explanatory drawing of the other example of a magnetic flux adjustment means, respectively. 磁束調整手段が機械式の場合の説明図である。It is explanatory drawing in case a magnetic flux adjustment means is a mechanical type.

つぎに、本発明をより詳細に説明するため、本発明の一実施形態について、図1〜図7を参照して詳述する。   Next, in order to describe the present invention in more detail, an embodiment of the present invention will be described in detail with reference to FIGS.

図1は本実施形態の車両1の駆動制御装置の全体の概略構成を示し、車両1は例えば四輪の自動車であり、その左右の前輪又は後輪が駆動輪2l、2rである。   FIG. 1 shows an overall schematic configuration of a drive control apparatus for a vehicle 1 according to the present embodiment. The vehicle 1 is, for example, a four-wheel automobile, and left and right front wheels or rear wheels thereof are drive wheels 2l and 2r.

駆動輪2l、2rの間の略中央に本発明の磁束発生手段を形成するソレノイド部3があり、ソレノイド部3は、左右の例えば円筒かご型のロータ4l、4rを駆動する交流電力がn相であればnの倍数個のソレノイド(コイルおよび鉄心部)からなり、前記交流電力がn=3の三相であれば左右のロータ4l、4rにそれぞれU、V、Wの三相磁界を給磁する2組の三相ソレノイド31u、31v、31w(合計6個のソレノイド)からなる。なお、図1では便宜上1組の三相ソレノイド31u、31v、31wを示す。また、例えばn=4の四相なら4の倍数個のソレノイド、n=5の五相なら5の倍数個のソレノイドがソレノイド部3に配置され、それぞれの相数の交流磁界を給磁する。   There is a solenoid part 3 that forms the magnetic flux generating means of the present invention in the approximate center between the drive wheels 2l and 2r, and the solenoid part 3 has an n-phase AC power for driving left and right, for example, cylindrical cage rotors 4l and 4r. If there are three solenoids (coils and iron cores) of n, and the AC power is three-phase with n = 3, three-phase magnetic fields of U, V and W are supplied to the left and right rotors 4l and 4r, respectively. It consists of two sets of three-phase solenoids 31u, 31v, 31w (6 solenoids in total) that magnetize. FIG. 1 shows a set of three-phase solenoids 31u, 31v, 31w for convenience. Further, for example, in the case of four phases of n = 4, multiple solenoids of 4 are arranged in the solenoid unit 3 and in the case of five phases of n = 5, solenoids of multiples of 5 are arranged in the solenoid unit 3 to supply an alternating magnetic field of each number of phases.

図2は1組の三相ソレノイド31u、31v、31wの構成の一例を示し、各ソレノイド31u、31v、31wは、それぞれ例えば鉄心32にコイル33を巻回して形成される。   FIG. 2 shows an example of the configuration of a set of three-phase solenoids 31u, 31v, 31w. Each solenoid 31u, 31v, 31w is formed by winding a coil 33 around an iron core 32, for example.

ソレノイド31u、31v、31wの配置(並べ方)等はどのようであってもよく、各相は磁気的に絶縁してあれば接していても離れていてもよい。そして、例えば同心の円周状、俵積み状、川の字状の配置などであってもよいが、発生交流磁界の漏れ磁束が車両1の走行性能に対して影響がある程に大幅に増えないように考慮して配置することが好ましい。   The solenoids 31u, 31v, 31w may be arranged (arranged) or the like, and the phases may be in contact or separated as long as they are magnetically insulated. For example, it may be a concentric circumferential shape, a stacking shape, a river-shaped arrangement, etc., but the leakage flux of the generated AC magnetic field is greatly increased so as to affect the running performance of the vehicle 1. It is preferable to arrange them so that there is no such problem.

左右のソレノイド31u、31v、31wの各々の鉄心32の両端面は、各相の磁束出力部であり、本発明の磁束調整部5l、5rを介してソレノイド部3から左右それぞれに延びた本発明の左右の分配磁路部材6l、6rに接続される。   Both end surfaces of the iron core 32 of each of the left and right solenoids 31u, 31v, 31w are the magnetic flux output portions of each phase, and the present invention extends from the solenoid portion 3 to the left and right via the magnetic flux adjusting portions 5l and 5r of the present invention. Are connected to the left and right distribution magnetic path members 6l and 6r.

磁束調整部5l、5rは、電気式又は機械式の可動部を有する磁性材(例えば鉄心部材)で形成され、左右のソレノイド31u、31v、31wそれぞれの相間を操舵等に応じて磁気的に短絡・遮断し、ロータ4l、4r側の磁束を調整する。   The magnetic flux adjusting parts 5l and 5r are formed of a magnetic material (for example, an iron core member) having an electric or mechanical movable part, and magnetically short-circuit between the left and right solenoids 31u, 31v, and 31w according to steering or the like. Shut off and adjust the magnetic flux on the rotor 4l, 4r side.

分配磁路部材6l、6rは、ステータ磁極数に応じた磁路分枝(以下、磁束マニホールドと称す)61を形成し、基部は磁束調整部5l、5rの各相の端面に接続され、ロータ4l、4rから車輪2l、2rに延びた左右の駆動軸7l、7rに増幅した必要なトルクを与えるように、各相の極数に磁束を分ける。   Distribution magnetic path members 6l and 6r form magnetic path branches (hereinafter referred to as magnetic flux manifolds) 61 corresponding to the number of stator magnetic poles, and the bases are connected to the end faces of the respective phases of magnetic flux adjusting parts 5l and 5r. The magnetic flux is divided into the number of poles of each phase so as to give amplified necessary torque to the left and right drive shafts 7l and 7r extending from 4l and 4r to the wheels 2l and 2r.

分配磁路部材6l、6rの各磁束マニホールド61により極数×相数に分けられた各相の磁束により、ロータ2l、2rの外周にギャップを設けて周方向に所定間隔で配設された各磁束マニホールド61の端面部62がステータ磁極を形成し、ロータ2l、2rに磁束マニホールド6l、6rで分配された極数の回転界磁を発生する。なお、ロータ2l、2rには回転界磁放射手段が必要数設置される。また、磁束マニホールド61の端面部62の各々は、磁束をロータ2l、2rの方向に直角に曲げるテーパガセット形状の磁束ノズル状に形成されることが好ましい。   The magnetic flux of each phase divided into the number of poles × number of phases by the magnetic flux manifolds 61 of the distribution magnetic path members 6l and 6r provides gaps on the outer circumferences of the rotors 2l and 2r and are arranged at predetermined intervals in the circumferential direction. The end face portion 62 of the magnetic flux manifold 61 forms a stator magnetic pole, and generates a rotating field with the number of poles distributed by the magnetic flux manifolds 6l and 6r to the rotors 2l and 2r. The rotors 21 and 2r are provided with the required number of rotating field radiation means. Each of the end face portions 62 of the magnetic flux manifold 61 is preferably formed in a taper gusset-shaped magnetic flux nozzle shape that bends the magnetic flux at right angles to the directions of the rotors 2l and 2r.

図3は上記のロータ4l、4rおよびソレノイド部3、磁束調整部5l、5r、分配磁路部材6l、6r等が形成するモータ(本発明のモータ)8の主要部(ソレノイド部3、磁束調整部5l、5r、分配磁路部材6l、6rの部分)の平面配置例および、右側のロータ2rの接続を示し、図4は図3の平面配置例の部分を車両1の前後から見た側面図である。   3 shows the main part (solenoid part 3, magnetic flux adjustment) of the motor (motor of the present invention) 8 formed by the rotors 4l and 4r, the solenoid part 3, the magnetic flux adjustment parts 5l and 5r, the distribution magnetic path members 6l and 6r, and the like. FIG. 4 is a side view of a portion of the planar arrangement example of FIG. 3 as viewed from the front and the rear of the vehicle 1. FIG. 4 shows a planar arrangement example of the portions 5 l and 5 r and distribution magnetic path members 6 l and 6 r) and connection of the right rotor 2 r. FIG.

そして、ソレノイド部3、磁束調整部5l、5r、分配磁路部材6l、6r等において、磁路を形成する部材は、電磁鋼板等の薄板短冊積層もしくは巻鉄心、磁性粉体の圧粉固形化物、配管に磁性紛体や磁性流体のコロイド溶液など封入した磁路管などで形成される。また、外部から磁性体の異物が漏れ磁界によって吸引されて各相の隙間に侵入し、意図しない磁束漏れが増大する可能性がある場合は、各磁路の周囲を非磁生体のカバーで覆ったり、非磁生体の固形物で磁路周囲を浸潰し固化させて、それらの異物の侵入を防ぐことが好ましい。   In the solenoid unit 3, the magnetic flux adjusting units 5l and 5r, the distribution magnetic path members 6l and 6r, and the like, the members that form the magnetic path are thin strip stacks or wound iron cores such as electromagnetic steel plates, and magnetic powder compacts. The pipe is formed by a magnetic path pipe sealed with a magnetic powder or a colloidal solution of a magnetic fluid. If there is a possibility that magnetic foreign matter is attracted by the leakage magnetic field from the outside and enters the gaps between the phases and unintentional magnetic flux leakage may increase, cover each magnetic path with a non-magnetic living body cover. It is preferable to immerse and solidify the periphery of the magnetic path with a solid material of a non-magnetic body to prevent entry of these foreign substances.

円筒かご型のロータ4l、4rは、例えば一般的な誘導モータと同様のかご型ロータであり、前記のエアギャップを維持するように軸受け等を用いて設置され、その左右方向の回転軸出力を左右の駆動輪2l、2rに与える。   Cylindrical cage rotors 4l and 4r are, for example, cage rotors similar to general induction motors, and are installed using bearings or the like so as to maintain the air gap. This is applied to the left and right drive wheels 2l and 2r.

つぎに、上記構成のモータ8の駆動および磁束制御等を説明する。   Next, driving of the motor 8 configured as described above, magnetic flux control, and the like will be described.

図1に示すように、車両1の駆動用電池(主電池)9の直流電源がマイクロコンピュータ構成の駆動制御部10の電力制御部11の制御により、例えばインバータ部12によって三相の交流電力に変換され、この交流電力がソレノイド部3の左右2組の各相のソレノイド31u、31v、31wのコイル33に給電されて、三相の磁束が発生し、この三相の磁束によりロータ4l、4rが回転してモータ8が駆動される。   As shown in FIG. 1, a DC power source of a driving battery (main battery) 9 of a vehicle 1 is converted into three-phase AC power by, for example, an inverter unit 12 under the control of a power control unit 11 of a drive control unit 10 having a microcomputer configuration. The AC power is converted and supplied to the coils 33 of the left and right sets of solenoids 31u, 31v, 31w of the solenoid unit 3 to generate a three-phase magnetic flux. The three-phase magnetic flux generates the rotors 4l, 4r. Rotates to drive the motor 8.

また、エンジン始動のキースイッチ13の操作信号および、ハンドルの舵角センサ14、シフトポジションセンサ15、アクセルセンサ16、ブレーキ圧センサ17の検出信号、駆動輪2l、2rの車輪速センサ18l、18rの検出信号等が、制御部10の磁束調整のECU19に入力される。   Further, the operation signal of the key switch 13 for starting the engine, the steering angle sensor 14 of the steering wheel, the shift position sensor 15, the accelerator sensor 16, the detection signal of the brake pressure sensor 17, the wheel speed sensors 18l and 18r of the drive wheels 2l and 2r. A detection signal or the like is input to the magnetic flux adjustment ECU 19 of the control unit 10.

そして、ECU19は、車両1が左右に旋回等する際に従来はデフギアが果たしていた左右の駆動輪2l、2rの回転の差を、左右の磁束調整部5l、5rによるロータ4l、4r側への磁束の調整によって実現するため、主にステアリング軸上の舵角センサ14の検出信号に基づいて前記磁束の調整量を演算し、その結果に基づき、磁束調整部5l、5rの磁路開閉を制御する。   Then, the ECU 19 determines the difference in rotation between the left and right drive wheels 2l and 2r, which was conventionally performed by the differential gear when the vehicle 1 turns left and right, to the rotors 4l and 4r by the left and right magnetic flux adjustment units 5l and 5r. In order to achieve this by adjusting the magnetic flux, the adjustment amount of the magnetic flux is calculated mainly based on the detection signal of the steering angle sensor 14 on the steering shaft, and the magnetic path opening / closing of the magnetic flux adjusting units 5l and 5r is controlled based on the result. To do.

図5(a)〜(d)は磁束調整部5l、5rによる磁束の調整例を示し、磁束調整部5l、5rは、例えば各相の磁路の途中にほぼ磁路の横幅を半径とする半球状の磁性体の可動部材51を有し、ECU19により、可動部材51は各相の磁路に完全に組み込まれた角度0の状態から少なくとも90度回転して磁路から半分がはみ出した状態までの任意の角度状態の位置に回動自在に位置決め制御され、可動部材51の各相の磁路からはみ出した部分は磁性体の各相共通の接続部52に摺接し、可動部材51が90度回転したときには、磁束調整部5l、5rの各相の磁路を略完全に遮断し、接続部52、他の相の可動部材51を介して各相の磁路の短絡磁路を形成する。すなわち、車両1の左右の旋回等に基づく可動部材51の回動により、分配磁路部材6l、6rそれぞれの相間が磁気的に短絡・遮断されてロータ4l、4r側の磁束量が調整される。   FIGS. 5A to 5D show examples of magnetic flux adjustment by the magnetic flux adjusters 5l and 5r. The magnetic flux adjusters 5l and 5r have, for example, the lateral width of the magnetic path as a radius in the middle of the magnetic path of each phase. A state in which the movable member 51 of a hemispherical magnetic body is provided, and the ECU 19 rotates at least 90 degrees from the state of the angle 0 completely incorporated in the magnetic path of each phase and the half protrudes from the magnetic path. The position of the movable member 51 protruding from the magnetic path of each phase of the movable member 51 is slidably contacted with the connection portion 52 common to the respective phases of the magnetic material, and the movable member 51 is moved to 90. When the rotation is performed, the magnetic paths of the respective phases of the magnetic flux adjusting units 5l and 5r are almost completely cut off, and a short-circuit magnetic path of the magnetic path of each phase is formed via the connecting part 52 and the movable member 51 of the other phase. . That is, the rotation of the movable member 51 based on the turning of the vehicle 1 left and right, etc., magnetically shorts and blocks the phases of the distribution magnetic path members 6l and 6r, thereby adjusting the amount of magnetic flux on the rotors 4l and 4r side. .

この制御により、ロータ4l、4r側の磁束は、操舵等に応じて例えば図5(a)〜(d)の各矢印線に示すようになり、各矢印線の太さが磁束の量を示す。なお、図5(a)〜(d)は旋回時に紙面左側(ロータ4l側)が内輪側になり、紙面右側(ロータ4r側)が外輪側になるものとする。そして、図5(a)は車両1が直進している場合であり、この場合、磁束調整部5l、5rの可動部材51は各相の磁路に完全に組み込まれた角度0の状態であり、各相の分配磁路部材6l、6rの相間は磁気的に遮断状態である。同図(b)は摩擦抵抗μが低い悪路で空転を防止するために内輪側のトルクを減衰する場合であり、この場合、磁束調整部5lの可動部材51は略45度回転した状態であり、ロータ4l側の分配磁路部材6lの相間は磁気的に不完全(略半分)に短絡の状態であり、ロータ4l側の磁束の半分が分配磁路部材6lの短絡路を通り、ロータ4lで発生するトルクがロータ4rで発生するトルクの略半分になる。同図(c)は車両1が小半径で旋回するために内輪側のトルクを0にする場合であり、この場合、磁束調整部5lの可動部材51は90度回転した状態であり、各相の分配磁路部材6lの相間は磁気的に完全に短絡し、ロータ4l側の磁束は全部が分配磁路部材6lの短絡路を通り、ロータ4lの発生トルクは0になる。同図(d)は駐車時や牽引時の特別な場合であり、この場合は、ハンドルを固定の状態に維持するため、磁束調整部5l、5rの可動部材51はともに90度回転した状態であり、各相の分配磁路部材6l、6rの相間はともに磁気的に完全に短絡の状態になり、ロータ4l、4rの発生トルクはともに0になる。   By this control, the magnetic flux on the rotor 4l, 4r side becomes as indicated by each arrow line in FIGS. 5 (a) to 5 (d), for example, in accordance with steering or the like, and the thickness of each arrow line indicates the amount of magnetic flux. . 5A to 5D, it is assumed that the left side (rotor 4l side) of the drawing is the inner ring side and the right side (rotor 4r side) of the drawing is the outer ring side when turning. FIG. 5A shows a case where the vehicle 1 is traveling straight. In this case, the movable member 51 of the magnetic flux adjusters 5l and 5r is in a state of an angle 0 that is completely incorporated in the magnetic path of each phase. The phase between the distribution magnetic path members 6l and 6r of each phase is magnetically cut off. FIG. 4B shows a case where the torque on the inner ring side is attenuated to prevent idling on a rough road with low frictional resistance μ. In this case, the movable member 51 of the magnetic flux adjusting unit 5l is rotated approximately 45 degrees. The phase of the magnetic distribution member 6l on the rotor 4l side is short-circuited magnetically incomplete (substantially half), and half of the magnetic flux on the rotor 4l side passes through the short circuit of the magnetic distribution member 6l, and the rotor The torque generated at 4l is approximately half of the torque generated at the rotor 4r. FIG. 6C shows a case where the torque on the inner ring side is set to 0 because the vehicle 1 turns with a small radius. In this case, the movable member 51 of the magnetic flux adjusting unit 5l is rotated by 90 degrees, and each phase The phases of the distribution magnetic path member 6l are magnetically completely short-circuited, and the magnetic flux on the rotor 4l side passes through the short-circuit path of the distribution magnetic path member 6l, and the generated torque of the rotor 4l becomes zero. FIG. 6D shows a special case when parking or towing. In this case, the movable member 51 of the magnetic flux adjusting portions 5l and 5r is rotated by 90 degrees in order to maintain the handle in a fixed state. In addition, the phases of the distribution magnetic path members 6l and 6r of each phase are both magnetically completely short-circuited, and the generated torques of the rotors 4l and 4r are both zero.

ところで、図5(a)〜(d)では各相がスター結線状の短絡磁路(バイパス磁路)になる場合に好適な可動部材51を示したが、各相がデルタ結線状の短絡磁路(バイパス磁路)になる場合には、可動部材51に代えて図6(a)に示す半球状の可動部材53を使用すればよく、図6(a)は図5(b)と同様の悪路で空転を防止するために内輪側のトルクを減衰する場合の磁路状態を示す。   Incidentally, in FIGS. 5A to 5D, the movable member 51 suitable for a case where each phase is a star-connected short circuit magnetic path (bypass magnetic path) is shown. However, each phase is a delta-connected short circuit magnet. In the case of a path (bypass magnetic path), a hemispherical movable member 53 shown in FIG. 6A may be used instead of the movable member 51, and FIG. 6A is the same as FIG. 5B. The magnetic path state in the case of attenuating the torque on the inner ring side in order to prevent idling on the rough road is shown.

図6(b)、(c)は可動部材51に代わるさらに他の例の可動部材54、55を示し、同図(b)は各相がデルタ結線状の短絡磁路(バイパス磁路)になる簡易タイプの可動部材54の例であり、この場合、可動部材54の短絡磁路を形成してもロータ4l、4rの磁束は可動部材54を通り、遮断されないので、駆動用電池9の満充電時の保護等に好適である。図6(c)はスライド式の可動部材55の例であり、この場合も、可動部材55を挟んで短絡磁路を形成しても、可動部材54と同様に、ロータ4l、4rの磁束は可動部材55を通り、遮断されないが、可動部材51、53に比して構造が簡単で安価になる利点がある。なお、図6(b)、(c)では旋回時に紙面右側(ロータ4r側)が内輪側になり、紙面左側(ロータ4l側)が外輪側になるものとする。また、図6(c)の矢印線は可動部材55の移動を示す。   FIGS. 6B and 6C show still another example of movable members 54 and 55 in place of the movable member 51. FIG. 6B shows a short-circuit magnetic path (bypass magnetic path) in which each phase is a delta connection. In this case, even if the short-circuit magnetic path of the movable member 54 is formed, the magnetic flux of the rotors 4l and 4r passes through the movable member 54 and is not interrupted. It is suitable for protection during charging. FIG. 6C shows an example of the sliding movable member 55. In this case as well, even if a short-circuit magnetic path is formed across the movable member 55, the magnetic flux of the rotors 4l and 4r is the same as that of the movable member 54. Although passing through the movable member 55 and not being cut off, there is an advantage that the structure is simpler and cheaper than the movable members 51 and 53. In FIGS. 6B and 6C, it is assumed that the right side (rotor 4r side) of the drawing is the inner ring side and the left side (rotor 4l side) of the drawing is the outer ring side when turning. Moreover, the arrow line of FIG.6 (c) shows the movement of the movable member 55. FIG.

以上説明した本実施形態の場合、(1)従来のモータではロータ4l、4rの外周や内周にステータを配置してステータ磁極の突極にコイルを集中巻き等し、コイルの通電極性や通電量を調整して界磁磁束を増減する必要があるので、モータが径方向に嵩張って大きくなるが、本実施形態のモータ8は、ロータ4l、4rの外周や内周にステータを配置せず、ロータ4l、4rの中間に界磁磁束を発生するソレノイド部3を設け、その左右に磁束調整部5l、5rを配置し、分配磁路部材6l、6rの磁束マニホールド61により、磁束調整部5l、5rで調整された磁束をロータ4l、4rの外周に導びくという、従来にない画期的な構造であって、従来モータのステータがなく、その分、径方向に嵩張らず、小型化できる。その結果、車両1に要求される最低地上高を容易に確保しつつ、左右の駆動輪2l、2rの駆動に必要なトルクを発生することができ、最低地上高を確保する複雑な機構(構造)が不要で低コスト化を図ることができる。また、高伝達効率、高信頼、低騒音、省スペース化も図ることができる。   In the case of the present embodiment described above, (1) in a conventional motor, a stator is disposed on the outer periphery or inner periphery of the rotors 4l and 4r, and the coil is concentratedly wound around the salient poles of the stator magnetic poles. Since it is necessary to adjust the energization amount to increase / decrease the field magnetic flux, the motor becomes bulky and large in the radial direction. In the motor 8 of this embodiment, a stator is disposed on the outer periphery or inner periphery of the rotors 4l, 4r. Without providing the solenoid unit 3 for generating the field magnetic flux in the middle of the rotors 4l and 4r, the magnetic flux adjusting units 5l and 5r are arranged on the left and right sides thereof, and the magnetic flux adjustment is performed by the magnetic flux manifold 61 of the distribution magnetic path members 6l and 6r. This is an unprecedented innovative structure that guides the magnetic flux adjusted by the parts 5l and 5r to the outer periphery of the rotors 4l and 4r. There is no conventional motor stator, and it is not bulky in the radial direction. Can be As a result, it is possible to generate the torque necessary for driving the left and right drive wheels 2l and 2r while easily ensuring the minimum ground clearance required for the vehicle 1, and a complicated mechanism (structure for ensuring the minimum ground clearance) ) Is not required, and the cost can be reduced. In addition, high transmission efficiency, high reliability, low noise, and space saving can be achieved.

(2)磁路を短絡・遮断する磁束調整部5l、5rを備え、磁束調整部5l、5rと誘導モータのすべり特性によよる状態遷移の円滑性の両面からデフギアレスの構造が実現し、一層、低コスト、高伝達効率、低騒音、省スペースになる。また、必要に応じて差動の制限力を増減できるリミテッドスリップデフの機能等も付加でき、悪路走破性や高速度安定性のある従来のメカデフギア機能と同等の機能を発揮することが可能である。   (2) Featuring magnetic flux adjusting parts 5l and 5r for short-circuiting and interrupting the magnetic path, a differential gearless structure is realized in terms of smoothness of state transitions due to the magnetic flux adjusting parts 5l and 5r and the slip characteristics of the induction motor. Low cost, high transmission efficiency, low noise and space saving. In addition, a limited slip differential function that can increase / decrease the differential limiting force as required can be added, and it is possible to demonstrate functions equivalent to conventional mechanical differential gear functions with rough road running performance and high speed stability. is there.

(3)減速ギアやデフギアが不要になるので、それらのギアの潤滑および冷却手段のオイル等が不要となり、その温度管理やオイル交換等のメンテナンスが不要になる利点もある。   (3) Since a reduction gear and a differential gear are not required, there is an advantage that maintenance such as temperature management and oil replacement is unnecessary because lubrication of these gears and oil for the cooling means are unnecessary.

(4)この種のモータの質量の最大要因であったステータのヨークを省くことができ、モータ8が軽量化する。   (4) It is possible to omit the stator yoke, which is the largest cause of the mass of this type of motor, and the motor 8 is reduced in weight.

(5)ステータのヨークがなく、ソレノイド部3が開放型であるので、モータ8の内部の発熱が容易に放出され、別途な放熱手段等を必要としない利点もある。   (5) Since there is no stator yoke and the solenoid part 3 is an open type, the heat generated in the motor 8 is easily released, and there is an advantage that no separate heat dissipating means or the like is required.

(6)ソレノイド部3に2組のソレノイド31u、31v、31wを設けてそれらの界磁磁束を磁極毎に分枝する構成であるので、ソレノイドが必要最小個数でよく、電力損失が小さく、その面から軽量、低コストになる利点もある。また、ソレノイド31u、31v、31wのコイル33の鉄心32への巻き線工程において、鉄心32自身を回転させることができるので、高価な巻線機が不要になり利点もある。さらに、ひずみ耐性の少ない軽量線(アルミワイヤ等)による軽量化や、平角線等の高密度巻き(エッジワイズ巻き)にも容易に対応することができ、軽量化、高放熱性、低浮遊静電容量などが達成できる利点もある。   (6) Since the solenoid unit 3 is provided with two sets of solenoids 31u, 31v, and 31w and branches the field magnetic flux for each magnetic pole, the minimum number of solenoids is required and power loss is small. There are also advantages in terms of light weight and low cost. Further, in the winding process of the coils 33 of the solenoids 31u, 31v, 31w to the iron core 32, the iron core 32 itself can be rotated, so that there is an advantage that an expensive winding machine is not required. In addition, it can easily cope with weight reduction with lightweight wires (aluminum wire, etc.) with low strain resistance and high density winding (edgewise winding) with flat wires, etc., making it lightweight, high heat dissipation, low floating static. There is also an advantage that electric capacity can be achieved.

(7)駆動軸方向にモータ8のソレノイド部3、磁束調整部5l、5r、磁束マニホールド6l、6r等の部品を配列すればよいので、前後方向の出っ張りが少なく、車室内に突出したりすることがなく、車両1の車室容積の拡大に貢献できる利点もある。また、上記したように、駆動軸方向にモータ8の各部品を配列すればよいので、各部品が外気と触れ易く、自然空冷や放射による冷却などの安価な手段で温度管理をすることができる利点もある。   (7) Since components such as the solenoid unit 3, the magnetic flux adjusting units 5l and 5r, and the magnetic flux manifolds 6l and 6r of the motor 8 may be arranged in the drive shaft direction, there are few protrusions in the front-rear direction and the protrusions may protrude into the vehicle interior. There is also an advantage that it is possible to contribute to the expansion of the cabin volume of the vehicle 1. Further, as described above, the components of the motor 8 only have to be arranged in the direction of the drive shaft, so that the components can easily come into contact with the outside air, and the temperature can be controlled by inexpensive means such as natural air cooling or cooling by radiation. There are also advantages.

(8)従来モータは、制動時に、駆動用電池9が満充電状態であると、駆動輪からの回転エネルギを吸収できず、ブレーキ等の制動手段が別途必要であった。また、駆動用電池9が満充電状態でモータが連れまわされている状態中は、交流電力ラインおよび直流電力ラインとも高電圧を維持するため、耐電圧の高い部品を使用しなければならず、その結果、コイル33に接続される電気回路の静電容量が増大してスイッチング損失等が大きくなる傾向になるが、本実施形態のモータ8は、磁束調整部5l、5rによる磁束のバイパス機能を備えるので、駆動輪2l、2rからの回転エネルギを電気回路側で吸収しなくてもよくなり、ロータ4l、4rと磁束調整部5l、5r、磁束マニホールド6l、6rの放熱性の高い構造で制動エネルギを吸収できるので、部品の静電容量が少なくスイッチング損失等が減少する。さらに、磁束調整部5l、5rのバイパス機能とソレノイド部3からの磁束の供給との組み合わせによって、ABS(Anti lock Brake System)機能やVSC(Vehicle Stability Control)機能を実現することも可能になる。   (8) In the conventional motor, if the driving battery 9 is fully charged at the time of braking, the rotational energy from the driving wheel cannot be absorbed, and a braking means such as a brake is required separately. In addition, while the drive battery 9 is in a fully charged state and the motor is being driven, in order to maintain a high voltage in both the AC power line and the DC power line, components having a high withstand voltage must be used. As a result, the capacitance of the electric circuit connected to the coil 33 tends to increase and the switching loss and the like tend to increase. However, the motor 8 of this embodiment has a magnetic flux bypass function by the magnetic flux adjusting units 5l and 5r. Therefore, it is not necessary to absorb the rotational energy from the drive wheels 2l and 2r on the electric circuit side, and braking is performed with a structure with high heat dissipation of the rotors 4l and 4r, the magnetic flux adjusting parts 5l and 5r, and the magnetic flux manifolds 6l and 6r. Since energy can be absorbed, the electrostatic capacity of the component is small and switching loss and the like are reduced. Further, by combining the bypass function of the magnetic flux adjusting units 5l and 5r and the supply of the magnetic flux from the solenoid unit 3, it is possible to realize an ABS (Anti-Block Bracket System) function and a VSC (Vehicle Stability Control) function.

なお、近年装着が標準化している前記ABSやVSCの回転速度検出手段の信号を左右の駆動輪2l、2rの速度信号としてECU19に入力すれば、モータ8のための車輪速センサ18l、18rは省くことも可能である。   If the signals of the rotational speed detecting means of the ABS and VSC, which have been standardized in recent years, are input to the ECU 19 as the speed signals of the left and right drive wheels 2l, 2r, the wheel speed sensors 18l, 18r for the motor 8 are obtained. It can be omitted.

つぎに、前記実施形態においては、電気式の磁束調整部5l、5rを設けたが、機械式の磁束調整部5l、5rを設けてもよい。   Next, in the above-described embodiment, the electric magnetic flux adjusting units 5l and 5r are provided. However, mechanical magnetic flux adjusting units 5l and 5r may be provided.

図7は磁束調整部5l、5rに代わる機械式の磁束調整部5l*、5r*の例を示し、この例の場合、磁束調整部5l*、5r*は、ハンドルの操舵操作にしたがってリンク機構20l、20rが作動することで、破線で囲んだ部分の可動部材56が回転等して磁束の短絡・遮断を行なう。   FIG. 7 shows an example of mechanical magnetic flux adjusters 5l * and 5r * instead of the magnetic flux adjusters 5l and 5r. In this example, the magnetic flux adjusters 5l * and 5r * are linked mechanisms according to the steering operation of the steering wheel. When 20l and 20r are actuated, the movable member 56 in a portion surrounded by a broken line rotates to short-circuit / cut off the magnetic flux.

そして、本発明は上記した実施形態に限定されるものではなく、その趣旨を逸脱しない限りにおいて上述したもの以外に種々の変更を行なうことが可能であり、例えば、ロータ4l、4rは円筒かご型に限るものではなく、種々の誘導モータのロータ構造であってよいのは勿論である。   The present invention is not limited to the above-described embodiment, and various modifications other than those described above can be made without departing from the spirit thereof. For example, the rotors 4l and 4r are cylindrical cage types. Of course, the rotor structure of various induction motors may be used.

また、相数や各磁束マニホールド61の端面部62が形成するステータ磁極数等は、どのようであってもよく、磁束発生手段はソレノイド以外の構成であってもよい。   Further, the number of phases, the number of stator magnetic poles formed by the end face portion 62 of each magnetic flux manifold 61, and the like may be any, and the magnetic flux generating means may be configured other than the solenoid.

さらに、駆動制御部10の回路構成や制御手法等はどのようであってもよい。   Further, the circuit configuration and control method of the drive control unit 10 may be whatever.

そして、本発明は、車両1の四輪が駆動輪である場合等にも適用することができるのは勿論、左右に二輪、四輪等の二輪以上の駆動輪をもつ四輪、三輪、…の電気自動車、電動二輪車、電動バギー車、電動車椅子などを含むモータ駆動の種々の車両の駆動制御装置に適用できる。   The present invention can be applied to the case where the four wheels of the vehicle 1 are drive wheels, etc. Of course, four wheels, three wheels, two or more drive wheels such as two wheels and four wheels on the left and right,. The present invention can be applied to drive control devices for various motor-driven vehicles including electric vehicles, electric motorcycles, electric buggy vehicles, electric wheelchairs, and the like.

1 車両
2l、2r 駆動輪
3 ソレノイド部
4l、4r ロータ
5l、5l*、5r、5r* 磁束調整手段
6l、6r 分配磁路部材
8 モータ
DESCRIPTION OF SYMBOLS 1 Vehicle 2l, 2r Drive wheel 3 Solenoid part 4l, 4r Rotor 5l, 5l *, 5r, 5r * Magnetic flux adjustment means 6l, 6r Distribution magnetic path member 8 Motor

Claims (1)

左右の駆動輪をモータにより駆動する車両の駆動装置であって、
前記モータは、
磁束を発生する磁束発生手段から左右それぞれに延びた左右の分配磁路部材と、
左右の前記分配磁路部材の分枝した複数の端部が外周に配置されて回転界磁を形成し、左右の駆動輪それぞれを駆動するロータと、
左右の前記分配磁路部材それぞれの相間を磁気的に調整する左右の磁束調整手段とを備えた構成であることを特徴とする車両の駆動装置。
A vehicle drive device for driving left and right drive wheels by a motor,
The motor is
Left and right distribution magnetic path members extending left and right from magnetic flux generating means for generating magnetic flux, and
A plurality of branched end portions of the left and right distribution magnetic path members are arranged on the outer periphery to form a rotating field, and a rotor that drives each of the left and right drive wheels;
A vehicle drive apparatus comprising: left and right magnetic flux adjusting means for magnetically adjusting the phase between the left and right distribution magnetic path members.
JP2011009960A 2011-01-20 2011-01-20 Vehicle driving apparatus Withdrawn JP2012152061A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011009960A JP2012152061A (en) 2011-01-20 2011-01-20 Vehicle driving apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011009960A JP2012152061A (en) 2011-01-20 2011-01-20 Vehicle driving apparatus

Publications (1)

Publication Number Publication Date
JP2012152061A true JP2012152061A (en) 2012-08-09

Family

ID=46793773

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011009960A Withdrawn JP2012152061A (en) 2011-01-20 2011-01-20 Vehicle driving apparatus

Country Status (1)

Country Link
JP (1) JP2012152061A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103852261A (en) * 2012-12-07 2014-06-11 上汽通用五菱汽车股份有限公司 Method for testing transmission efficiency of automobile transmission system

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103852261A (en) * 2012-12-07 2014-06-11 上汽通用五菱汽车股份有限公司 Method for testing transmission efficiency of automobile transmission system

Similar Documents

Publication Publication Date Title
US7462968B2 (en) Electric wheel
CN101237173B (en) Axial gap motor
EP2158666B1 (en) Nested variable field dynamoelectric machine
JP6081304B2 (en) Transverse magnetic flux type rotating electric machine and vehicle
JP6158022B2 (en) Rotating electric machine and vehicle
WO2015111625A1 (en) Electric motor, electric power steering device, and vehicle
JP5323592B2 (en) Permanent magnet rotating electric machine and electric vehicle using the same
US7325637B2 (en) Hybrid drive device
JP2013219942A (en) Electric vehicle
JP2007060748A (en) Superconducting multishaft motor and vehicle equipped therewith
US20080315698A1 (en) Motor apparatus and method
KR100947509B1 (en) Motor having rotors arranged concentrically and driving apparatus having the motor
KR101331696B1 (en) Apparatus of Driving Wheels for in-wheel System
JP2009011069A (en) Motor-driven apparatus
JP6044077B2 (en) Electric rotating machine and electric rotating system
EP3173282B1 (en) Method of operating an electrically propelled vehicle
JP2012152061A (en) Vehicle driving apparatus
JP3740482B2 (en) Permanent magnet rotating electric machine for electric vehicles
JP2014027834A (en) Rotary machine
JP2010187502A (en) Moving body
JP4982530B2 (en) Electric motor propulsion motor
WO2012149690A1 (en) Generator motor for vehicle
JP5479922B2 (en) Electric car
JPH07131961A (en) Motor and controller thereof
JP6088465B2 (en) Drive unit

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20140401