JP2012151426A - Solar cell module electrical power system - Google Patents

Solar cell module electrical power system Download PDF

Info

Publication number
JP2012151426A
JP2012151426A JP2011021143A JP2011021143A JP2012151426A JP 2012151426 A JP2012151426 A JP 2012151426A JP 2011021143 A JP2011021143 A JP 2011021143A JP 2011021143 A JP2011021143 A JP 2011021143A JP 2012151426 A JP2012151426 A JP 2012151426A
Authority
JP
Japan
Prior art keywords
solar cell
cell module
electric power
diode
power supply
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2011021143A
Other languages
Japanese (ja)
Other versions
JP5613963B2 (en
Inventor
Makoto Fujino
誠 藤野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SHOSHIN CORP
SHOSHIN KK
Original Assignee
SHOSHIN CORP
SHOSHIN KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by SHOSHIN CORP, SHOSHIN KK filed Critical SHOSHIN CORP
Priority to JP2011021143A priority Critical patent/JP5613963B2/en
Publication of JP2012151426A publication Critical patent/JP2012151426A/en
Application granted granted Critical
Publication of JP5613963B2 publication Critical patent/JP5613963B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Landscapes

  • Photovoltaic Devices (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a system for monitoring the electric power generation state of a solar cell module, the system being not provided with a power supply line to supply electric power from outside or a built-in battery, regardless of whether the time when the solar cell module is normally generating electric power or the time when the solar cell module is not generating electric power.SOLUTION: Regardless of whether the time when a solar cell module 2 is generating electric power or the time when the solar cell module 2 is not generating electric power, the operation electric power supply for an electric circuit, namely voltage measuring means 8, communication means 10, CPU p6 and the like, to learn a power generation state is obtained from the solar cell module 2 when the solar cell module 2 is generating electric power, and from another solar battery via the terminals of a bypass diode 4 of the other solar battery when the solar cell module 2 is not generating electric power.

Description

本発明は太陽電池モジュールの監視用回路の電源システムに関する。The present invention relates to a power supply system for a monitoring circuit of a solar cell module.

太陽電池による発電システムは一般的に屋根の上或いは広大な土地に多数のストリングを並べて構成されるのが一般的である。こうした設置状況では,外的要因又は太陽電池モジュールそのものの劣化,寿命などによる発電量の低下等への対処等,太陽電池モジュールの保守は重要である。In general, a power generation system using solar cells is generally configured by arranging a large number of strings on a roof or on a vast land. In such an installation situation, maintenance of the solar cell module is important, such as dealing with external factors, deterioration of the solar cell module itself, reduction in the amount of power generated due to lifetime, etc.

特開2010−263027  JP 2010-263027 特開平9−102622  JP-A-9-102622

一般的な太陽電池発電システムは図1に示すようにストリング1は複数の太陽電池モジュール2で構成され,太陽電池モジュール2は複数の太陽電池セル3で構成される。In a general solar battery power generation system, as shown in FIG. 1, the string 1 includes a plurality of solar battery modules 2, and the solar battery module 2 includes a plurality of solar battery cells 3.

この太陽電池発電システムの発電能力の維持管理の為には太陽電池モジュール2個々の動作状況を把握する必要があり,発電状態を把握する為の電子回路を太陽電池モジュール2内又は近傍に設ける必要がある。太陽電池モジュール2が発電しているときは当該太陽電池モジュール2が発電した電力を上記電子回路に供給することができるが,発電していないときには当該太陽電池モジュール2から電力を得ることができないので,隣接する太陽電池モジュール2又はインバータ5等の外部から或いは太陽電池モジュール2に配された電池から電力を得る必要がある。外部から電力を得る場合は電力供給線が必要であり,電池を使う場合は寿命・コスト等の問題が生じる。In order to maintain and manage the power generation capacity of this solar cell power generation system, it is necessary to grasp the operation status of each solar cell module 2, and it is necessary to provide an electronic circuit in or near the solar cell module 2 for grasping the power generation state. There is. When the solar cell module 2 is generating electric power, the electric power generated by the solar cell module 2 can be supplied to the electronic circuit, but when it is not generating electric power, it cannot be obtained from the solar cell module 2. , It is necessary to obtain electric power from the outside of the adjacent solar cell module 2 or the inverter 5 or from a battery disposed in the solar cell module 2. When power is obtained from outside, a power supply line is required, and when batteries are used, problems such as lifetime and cost arise.

こうした事から太陽電池モジュール2が発電している時或いは発電していない時にかかわらず発電状態を把握する為の電子回路即ち,図1に示す電圧測定手段8,通信手段10及びCPUp6等の電子回路を動作させる為に必要な電力を供給する配線或いは電池が不要な監視システムが期待される。Thus, an electronic circuit for grasping the power generation state regardless of whether the solar cell module 2 is generating power or not generating power, that is, an electronic circuit such as the voltage measuring means 8, the communication means 10 and the CPU p6 shown in FIG. A monitoring system that does not require wiring or batteries for supplying electric power necessary for operating the computer is expected.

一般的に太陽電池発電システムでは,図1に示すように,複数の太陽電池セル3を直列に接続し,バイパスダイオード4と組み合わせて構成される太陽電池モジュール2が直列に接続されてストリング1を構成する。そしてその出力はインバータ5に接続されている。In general, in a solar cell power generation system, as shown in FIG. 1, a plurality of solar cells 3 are connected in series, and a solar cell module 2 configured in combination with a bypass diode 4 is connected in series to form a string 1. Constitute. The output is connected to the inverter 5.

太陽電池発電システムについてはストリング1毎に,或いは太陽電池モジュール2毎に正常に発電しているか或いは発電効率が悪くなっていないか等監視をして太陽電池モジュール2の表面の汚れの清掃,太陽光を遮蔽する落ち葉などの除去或いは太陽電池モジュール2の交換等が必要かを判断し,効率良く運転する事が求められる。As for the solar cell power generation system, the surface of the solar cell module 2 is cleaned by monitoring whether the power is generated normally for each string 1 or for each solar cell module 2 and whether the power generation efficiency is deteriorated. It is required to determine whether it is necessary to remove the fallen leaves that shield the light, or to replace the solar cell module 2, and to operate efficiently.

各太陽電池モジュール2の発電状況はインバータ5に配された通信手段10の出力であるデータ要求線p12がアクティブになるとこれを受けた太陽電池モジュール2の電圧測定手段8は当該太陽電池モジュール2が発電する電圧を測定しこれを通信手段10,データ通信線p11を通じてインバータ5に送信する。送信が完了すると通信手段10の出力であるデータ要求線p12をアクティブにして隣の太陽電池モジュール2に電圧の測定を要求する。要求を受けた太陽電池モジュール2は同様に電圧を測定しこれを通信手段10,データ通信線p11を通じてインバータ5に送信する。以上の手順を順次繰り返す事により各太陽電池モジュール2の電圧値はそれぞれインバータ5に送信される。更には電流測定手段9により測定されたストリング1の電流値及び上記測定された各太陽電池モジュール2の電圧値はデータ通信線b13通じて監視システムセンターへ送信される。When the data request line p12, which is the output of the communication means 10 disposed in the inverter 5, becomes active, the voltage measuring means 8 of the solar cell module 2 that has received this is measured by the solar cell module 2. The voltage to be generated is measured and transmitted to the inverter 5 through the communication means 10 and the data communication line p11. When the transmission is completed, the data request line p12 that is the output of the communication means 10 is activated to request the adjacent solar cell module 2 to measure the voltage. Upon receiving the request, the solar cell module 2 similarly measures the voltage and transmits it to the inverter 5 through the communication means 10 and the data communication line p11. The voltage value of each solar cell module 2 is transmitted to the inverter 5 by sequentially repeating the above procedure. Further, the current value of the string 1 measured by the current measuring means 9 and the measured voltage value of each solar cell module 2 are transmitted to the monitoring system center through the data communication line b13.

この事によって各太陽電池モジュール2がどういった発電状況になっているかを把握する事が可能になる。This makes it possible to grasp what kind of power generation state each solar cell module 2 is in.

上述の測定及び通信は通常,各太陽電池モジュール2に配された電圧測定手段8,通信手段10及びCPUp6(マイコン),インバータ5に配された電流測定手段9,通信手段10及びCPUb7(マイコン)によって実行される。この為にはこれら電子回路を動作させる為の電源が必要となる。The measurement and communication described above are usually performed by voltage measuring means 8, communication means 10 and CPUp6 (microcomputer) arranged in each solar cell module 2, current measurement means 9, communication means 10 and CPUb7 (microcomputer) arranged in the inverter 5. Executed by. For this purpose, a power source for operating these electronic circuits is required.

しかも太陽電池モジュール2個々の発電状況を監視する為には,太陽電池モジュール2が何らかの要因により発電しなくなった場合をも含めて監視する必要があり,上記電圧測定手段8,通信手段10及びCPUp6を動作させる為の電源を他から得るのではなく,また電池を用いることなく太陽電池モジュール2内に或いは近傍に用意する事が重要でありその方法を以下に説明する。Moreover, in order to monitor the power generation status of each of the solar cell modules 2, it is necessary to monitor the situation including the case where the solar cell module 2 stops generating power for some reason, and the voltage measuring means 8, the communication means 10 and the CPU p6. It is important to prepare a power source for operating the solar cell module 2 in or near the solar cell module 2 without using a battery, and the method will be described below.

さて太陽電池モジュール2の出力は通常,大凡15V以上である。この時バイパスダイオード4には逆方向の電圧が印加される事になり電流は流れていない。
この状態(状態1)ではバイパスダイオード4のアノード側が−,カソード側が+である。
Now, the output of the solar cell module 2 is usually about 15V or more. At this time, a reverse voltage is applied to the bypass diode 4 and no current flows.
In this state (state 1), the anode side of the bypass diode 4 is-and the cathode side is +.

次に太陽電池モジュール2が何らかの要因により発電しなくなった場合(状態2)について考察する。この場合は他の太陽電池モジュール2が発電する電流がバイパスダイオード4を通じて流れる事になり,この場合はバイパスダイオード4のアノード側が+,カソード側が−となる。即ちバイパスダイオード4に印加される電圧は反転する事になる。Next, the case where the solar cell module 2 stops generating power for some reason (state 2) will be considered. In this case, the current generated by the other solar cell module 2 flows through the bypass diode 4. In this case, the anode side of the bypass diode 4 is + and the cathode side is −. That is, the voltage applied to the bypass diode 4 is inverted.

即ち,状態1及び状態2のいづれの状態にあっても上記電圧測定手段8,通信手段10及びCPUp6に電力を供給することのできる電源方式が実現できれば好適である事が判る。That is, it can be seen that it is preferable if a power supply system capable of supplying power to the voltage measuring means 8, the communication means 10 and the CPU p6 can be realized regardless of the state 1 or the state 2.

上記状態1或いは状態2において動作する図2に示す電源回路15−1について説明する。状態1の場合では太陽電池モジュール2の出力電圧は大凡15V以上でありバイパスダイオード4には逆方向の電圧が印加されている。この出力はダイオード21を通じてレギュレータ回路16に入力されるので所定の電圧にレギュレートされ,上記電圧測定手段8,通信手段10及びCPUp6で成る負荷25に供給される。又この状態においては昇圧回路17には上記出力がダイオード20によりブロックされているので動作しない。The power supply circuit 15-1 shown in FIG. 2 that operates in the state 1 or the state 2 will be described. In the case of the state 1, the output voltage of the solar cell module 2 is approximately 15 V or more, and a reverse voltage is applied to the bypass diode 4. Since this output is inputted to the regulator circuit 16 through the diode 21, it is regulated to a predetermined voltage and supplied to the load 25 comprising the voltage measuring means 8, the communication means 10 and the CPU p6. In this state, the booster circuit 17 does not operate because the output is blocked by the diode 20.

一方状態2の場合はバイパスダイオード4のフォワードドロッブ電圧がダイオード20のそれより大きいので昇圧回路17を動作させるに十力な電圧が昇圧回路17に印加される。そして昇圧された出力はダイオード19,レギュレータを通じて所定の電圧が負荷25に供給される。尚ここではバイパスダイオード4のフォワードドロップがダイオード20のそれより充分大きく昇圧回路17の動作が可能としたが,バイパスダイオード4を図4に示すように2段以上にする或いはダイオード20にフォワードドロップの低いショットキーダイオードを用いる事も安定した動作の為には有効である。On the other hand, in the case of the state 2, the forward droop voltage of the bypass diode 4 is larger than that of the diode 20, so that a voltage sufficient to operate the booster circuit 17 is applied to the booster circuit 17. The boosted output is supplied to the load 25 through a diode 19 and a regulator. Here, the forward drop of the bypass diode 4 is sufficiently larger than that of the diode 20 to enable the booster circuit 17 to operate. However, the bypass diode 4 has two or more stages as shown in FIG. Using a low Schottky diode is also effective for stable operation.

また太陽電池モジュール2に採用されるバイパスダイオード4のフォワードドロップは1V程度であること,そして家庭用などで一般的に使われる太陽電池モジュール2は,モジュール内を2〜4分割し,個々にバイパスダイオード4が配されている。この場合にはバイパスダイオードのフォワードドロップは2V〜4V程度となるので電源回路15−1の昇圧回路17の動作に充分な電圧が印加される事になる。In addition, the forward drop of the bypass diode 4 employed in the solar cell module 2 is about 1V, and the solar cell module 2 generally used for home use, etc. is divided into 2 to 4 parts and bypassed individually. A diode 4 is arranged. In this case, since the forward drop of the bypass diode is about 2V to 4V, a voltage sufficient for the operation of the booster circuit 17 of the power supply circuit 15-1 is applied.

以上の事からバイパスダイオード4の両端に生じる電圧の極性がプラス,マイナス或いはマイナス,プラスのいずれであっても,負荷25に適切な電力を供給できる事になる。即ち,太陽電池モジュール2が正常に発電しているときは勿論,正常に発電していないとき或いは発電していない場合でも電圧測定手段8,通信手段10及びCPUp6等の電子回路を正常に機能させることが可能となる。From the above, even if the polarity of the voltage generated at both ends of the bypass diode 4 is positive, negative, negative, or positive, appropriate power can be supplied to the load 25. That is, not only when the solar cell module 2 is generating electricity normally but also when it is not generating electricity normally or when it is not generating electricity, the electronic circuits such as the voltage measuring means 8, the communication means 10 and the CPUp6 are functioned normally. It becomes possible.

太陽電池モジュール2が正常に発電している時又は発電していない時に関わらず,バイパスダイオード4の両端から電子回路を駆動する為の電源を得る事ができるので太陽電池モジュール2に外部から電源を供給する為の電源供給線或いは電池を搭載しなくても太陽電池モジュール2の発電状況監視システムが実現できる。Regardless of whether the solar cell module 2 is normally generating power or not generating power, a power source for driving the electronic circuit can be obtained from both ends of the bypass diode 4, so that the solar cell module 2 is powered from the outside. The power generation status monitoring system of the solar cell module 2 can be realized without mounting a power supply line or a battery for supply.

太陽電池構成図Solar cell configuration diagram 電源回路15−1Power supply circuit 15-1 電源回路15−2Power supply circuit 15-2 電源回路15−3Power supply circuit 15-3

ここでは図3,図4に示す電源回路15−2,電源回路15−3について説明する。電源回路15−2は昇圧回路17の出力とレギュレータ回路16の出力をダイオード22でオア接続したものである。上記状態1の場合は電源回路15−1と同様にダイオード21,レギュレータそしてダイオード22を通じて所定の電圧が負荷25に印加される。又状態2の場合はダイオード20を通じて昇圧回路17に電力が供給され,昇圧回路17により得られる所定の電圧がダイオード22を通じて負荷25に供給される。Here, the power supply circuit 15-2 and the power supply circuit 15-3 shown in FIGS. 3 and 4 will be described. The power supply circuit 15-2 is obtained by ORing the output of the booster circuit 17 and the output of the regulator circuit 16 with a diode 22. In the case of the state 1, a predetermined voltage is applied to the load 25 through the diode 21, the regulator, and the diode 22 in the same manner as the power supply circuit 15-1. In the state 2, power is supplied to the booster circuit 17 through the diode 20, and a predetermined voltage obtained by the booster circuit 17 is supplied to the load 25 through the diode 22.

電源回路15−3はダイオード23,及びダイオード24により昇圧降圧型電源回路18に電力を供給するものである。即ち,上記状態1の場合は太陽電池モジュール2の出力電圧はダイオード23を通じて昇圧降圧型電源回路18に供給され,状態2の場合はダイオード24を通じてバイパスダイオード4のフォワードドロップ電圧が昇圧降圧型電源回路18に供給される。即ち状態1,状態2のどちらの場合においても所定の出力電圧に設定された昇圧降圧型電源回路18の出力が負荷25に供給される。The power supply circuit 15-3 supplies power to the step-up / step-down power supply circuit 18 by the diode 23 and the diode 24. That is, in the case of the state 1, the output voltage of the solar cell module 2 is supplied to the step-up / step-down power supply circuit 18 through the diode 23. In the case of state 2, the forward drop voltage of the bypass diode 4 is supplied through the diode 24 to the step-down step-down power supply circuit. 18 is supplied. That is, the output of the step-up / step-down power supply circuit 18 set to a predetermined output voltage is supplied to the load 25 in both the state 1 and the state 2.

尚上記説明した電源回路15−1,電源回路15−2及び電源回路15−3に於いては昇圧回路17或いは昇圧降圧型電源回路18の動作に必要な電圧が印加されるよう配慮する心要がある。特に電源回路15−3の場合はダイオード23及びダイオード24が其々2個直列に接続されるので,バイパスダイオード4のフォワードドロップと使用されるバイパスダイオード4の数の積をダイオード23,ダイオード24のフォワードドロップ及び昇圧降圧型電源回路18の動作に必要な電圧の和より充分高くとる事により安定した動作が可能となる。In the above-described power supply circuit 15-1, power supply circuit 15-2, and power supply circuit 15-3, it is important to consider that a voltage necessary for the operation of the booster circuit 17 or the booster step-down power supply circuit 18 is applied. There is. Particularly, in the case of the power supply circuit 15-3, two diodes 23 and 24 are connected in series, so that the product of the forward drop of the bypass diode 4 and the number of bypass diodes 4 used is the diode 23 and the diode 24. A stable operation is possible by taking a voltage sufficiently higher than the sum of the voltages required for the operation of the forward drop and step-up / step-down power supply circuit 18.

1 ストリング
2 太陽電池モジュール
3 太陽電池セル
4 バイパスダイオード
5 インバータ
6 CPUp
7 CPUb
8 電圧測定手段
9 電流測定手段
10 通信手段
11 データ通信線p
12 データ要求線p
13 データ通信線b
14 データ要求線b
15 電源回路
16 レギュレータ回路
17 昇圧回路
18 昇圧降圧型電源回路
19 ダイオード
20 ダイオード
21 ダイオード
22 ダイオード
23 ダイオード
24 ダイオード
25 負荷
1 String 2 Solar Cell Module 3 Solar Cell 4 Bypass Diode 5 Inverter 6 CPUp
7 CPUb
8 Voltage measuring means 9 Current measuring means 10 Communication means 11 Data communication line p
12 Data request line p
13 Data communication line b
14 Data request line b
DESCRIPTION OF SYMBOLS 15 Power supply circuit 16 Regulator circuit 17 Booster circuit 18 Boosting step-down power supply circuit 19 Diode 20 Diode 21 Diode 22 Diode 23 Diode 24 Diode 25 Load

Claims (1)

太陽電池モジュールが発電する電力又は当該太陽電池モジュールのバイパスダイオードの両端で得られる他の太陽電池モジュールが発電した電力の双方から電力を得て動作する電源回路A power supply circuit that operates by obtaining power from both power generated by the solar cell module or power generated by other solar cell modules obtained at both ends of the bypass diode of the solar cell module
JP2011021143A 2011-01-17 2011-01-17 Solar cell module power supply system Expired - Fee Related JP5613963B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011021143A JP5613963B2 (en) 2011-01-17 2011-01-17 Solar cell module power supply system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011021143A JP5613963B2 (en) 2011-01-17 2011-01-17 Solar cell module power supply system

Publications (2)

Publication Number Publication Date
JP2012151426A true JP2012151426A (en) 2012-08-09
JP5613963B2 JP5613963B2 (en) 2014-10-29

Family

ID=46793370

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011021143A Expired - Fee Related JP5613963B2 (en) 2011-01-17 2011-01-17 Solar cell module power supply system

Country Status (1)

Country Link
JP (1) JP5613963B2 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09102622A (en) * 1995-10-03 1997-04-15 Nissin Electric Co Ltd Failure detector of solar cell module of solar power generation system
JP2002034167A (en) * 2000-07-17 2002-01-31 Oki Electric Ind Co Ltd Power circuit
WO2010125612A1 (en) * 2009-05-01 2010-11-04 オーナンバ株式会社 Apparatus for detecting abnormality of solar cell power generation system and method therefor

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09102622A (en) * 1995-10-03 1997-04-15 Nissin Electric Co Ltd Failure detector of solar cell module of solar power generation system
JP2002034167A (en) * 2000-07-17 2002-01-31 Oki Electric Ind Co Ltd Power circuit
WO2010125612A1 (en) * 2009-05-01 2010-11-04 オーナンバ株式会社 Apparatus for detecting abnormality of solar cell power generation system and method therefor

Also Published As

Publication number Publication date
JP5613963B2 (en) 2014-10-29

Similar Documents

Publication Publication Date Title
US10097035B2 (en) Uninterruptible power supply unit
US10340702B2 (en) Optimizer battery PV energy generation systems
CN105655528B (en) Battery module and driving method thereof
US20130106402A1 (en) Power Source Arrangement and Method of Diagnosing a Power Source Arrangement
US20120299548A1 (en) Battery System
JP2009153306A (en) Photovoltaic power generating system
US10992257B2 (en) State of health mechanisms for energy generation systems
WO2022193165A1 (en) Energy storage system, and power supply method for battery management system
KR101226628B1 (en) Series voltage compensation apparatus for solar generating system
KR100860337B1 (en) Solar photovoltaic system
US10601234B2 (en) Arc fault detection for battery packs in energy generation systems
KR20150033971A (en) Photovoltaics System, apparatus and method for operating of storage battery
JP2021019400A (en) Power storage system
US9876368B2 (en) Alternating current linked power converting apparatus
RU129263U1 (en) DEVICE FOR TESTING SECONDARY POWER SOURCES
JP5947270B2 (en) Power supply system
US20180248372A1 (en) Power storage system and power conditioner
Islam et al. An efficient smart solar charge controller for standalone energy systems
JP5613963B2 (en) Solar cell module power supply system
CN110061556A (en) The photovoltaic system with auxiliary charging module for producing electricl energy
JP6489332B2 (en) Storage battery unit and power storage system
RU118134U1 (en) ELECTRICITY CONTROLLER FOR HYBRID ELECTRICITY SYSTEM
JP2010124597A (en) Energy storage device
KR200418642Y1 (en) Apparatus for Charging Battery Using Sollar Cell
JP2021027616A (en) Power system

Legal Events

Date Code Title Description
A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20140107

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140107

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140410

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20140414

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140422

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140617

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140812

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140822

R150 Certificate of patent or registration of utility model

Ref document number: 5613963

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees