JP2012151259A - Magnetic material - Google Patents

Magnetic material Download PDF

Info

Publication number
JP2012151259A
JP2012151259A JP2011008375A JP2011008375A JP2012151259A JP 2012151259 A JP2012151259 A JP 2012151259A JP 2011008375 A JP2011008375 A JP 2011008375A JP 2011008375 A JP2011008375 A JP 2011008375A JP 2012151259 A JP2012151259 A JP 2012151259A
Authority
JP
Japan
Prior art keywords
magnetic material
fluorine
reaction
magnetic
powder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2011008375A
Other languages
Japanese (ja)
Inventor
Takayuki Kanda
喬之 神田
Nobuo Abe
信雄 阿部
Yuichi Satsu
祐一 佐通
Matahiro Komuro
又洋 小室
Hiroyuki Suzuki
啓幸 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP2011008375A priority Critical patent/JP2012151259A/en
Publication of JP2012151259A publication Critical patent/JP2012151259A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Hard Magnetic Materials (AREA)
  • Powder Metallurgy (AREA)

Abstract

PROBLEM TO BE SOLVED: To improve the characteristics of a magnetic material without using a rare earth element which is a rare resource.SOLUTION: On the surface of particles of a magnetic powder, a film of a fluorine compound containing hydrogen, nitrogen, fluorine, and a metal element, where hydrogen is contained more than nitrogen and fluorine is contained more than the metal element, is formed. A magnetic material in which the magnetic characteristics of the magnetic powder are improved without using a rare earth element can be obtained by making an element contained in the film intrude between the lattices of a crystal composing the particles of the magnetic powder.

Description

本発明は、希土類元素を使用しない膜により磁気特性が向上した磁性材料とその製造方法に関する。   The present invention relates to a magnetic material whose magnetic properties are improved by a film not using a rare earth element, and a method for producing the same.

特許文献1〜3には、従来のフッ素化合物あるいは酸フッ素化合物を含む希土類磁石について開示されている。また、特許文献4のブラジル特許には、Sm2Fe17をフッ化している例が記載されている。 Patent Documents 1 to 3 disclose conventional rare earth magnets containing a fluorine compound or an oxyfluorine compound. Moreover, the Brazil patent of patent document 4 describes an example in which Sm 2 Fe 17 is fluorinated.

特開2010−027852号公報JP 2010-027852 A 特開2008−147634号公報JP 2008-147634 A 特開2007−116088号公報JP 2007-116088 A ブラジル国特許9701631−4ABrazilian patent 9701631-4A

上記従来の発明は、Nd−Fe−B系磁性材料やSm−Fe系磁性材料にフッ素を含有する化合物を反応させたものであり、これにより磁気特性の向上または低下の防止を行うものである。しかし開示されているフッ素化合物のうち、磁気特性を向上させているものはいずれもSc,Yを含む希土類元素を使用しており、これらの元素が磁性材料中に入り込むことを効果発現の原理としている。そのためフッ素は磁性材料中には入り込まず、希土類元素の単体として使用されているにすぎない。一方で希土類元素はいずれも地殻中の存在比が低く貴重な資源である上に、地域的な偏在があるためその供給は不安定であり、したがってその使用量の削減が求められている。対して、特許文献4のように希土類元素を使用せずにフッ素ガスを用いてSm2Fe17系磁性材料の特性を向上させることも開示されているが、そのキュリー温度は155℃と低く、主相にフッ素が侵入しているかは確認されていない。またフッ素ガスの反応性が極めて高いため、その濃度を極めて低く保ったまま反応を進行させる必要があり、そのため記載されている反応時間は数日から数十日に及ぶ。しかしそれでも反応の進行に伴いSm2Fe17構造の一部分解は避けられず、たとえ主相にフッ素が侵入していたとしても実用的な磁性材料を得ることはできない。 In the above conventional invention, an Nd—Fe—B magnetic material or Sm—Fe magnetic material is reacted with a fluorine-containing compound, thereby improving or preventing the magnetic properties from being lowered. . However, among the disclosed fluorine compounds, those that have improved magnetic properties use rare earth elements including Sc and Y, and the principle of manifesting the effect is that these elements enter the magnetic material. Yes. Therefore, fluorine does not enter the magnetic material, but is only used as a simple element of rare earth elements. On the other hand, rare earth elements are valuable resources with a low abundance ratio in the crust, and their supply is unstable due to local uneven distribution. Therefore, reduction of their use is required. On the other hand, as disclosed in Patent Document 4, it is also disclosed to improve the characteristics of the Sm 2 Fe 17 based magnetic material using fluorine gas without using rare earth elements, but its Curie temperature is as low as 155 ° C. It has not been confirmed whether fluorine has entered the main phase. Further, since the reactivity of fluorine gas is extremely high, it is necessary to proceed the reaction while keeping its concentration extremely low, and therefore the reaction time described ranges from several days to several tens of days. However, even with the progress of the reaction, partial decomposition of the Sm 2 Fe 17 structure is inevitable, and a practical magnetic material cannot be obtained even if fluorine penetrates into the main phase.

希土類元素を用いず、代わりにフッ素を使用し磁性材料の特性を向上させるためには、磁性材料がもつ結晶構造を破壊することなくその格子間にフッ素原子を侵入させることが必要であり、そのためにはフッ素ガスのようなフッ素化剤は反応性が高すぎるために実用的ではない。   In order to improve the properties of magnetic materials by using fluorine instead of rare earth elements, it is necessary to allow fluorine atoms to enter between the lattices without destroying the crystal structure of the magnetic material. However, a fluorinating agent such as fluorine gas is not practical because it is too reactive.

したがって本発明は、磁性材料の持つ結晶構造を破壊させずにその格子間にフッ素原子を侵入させ、希土類元素を使用することなく磁性材料の磁気的性質を向上させることを目的とする。   Therefore, an object of the present invention is to allow fluorine atoms to enter between lattices without destroying the crystal structure of the magnetic material, and to improve the magnetic properties of the magnetic material without using rare earth elements.

上記課題を解決する本発明の磁性材料は、反応性が高く磁性材料の分解を招くフッ素化剤との直接接触から保護する作用と、フッ素原子を透過させる作用の両方を持つ膜が磁性材料の粒子表面に形成され、結晶構造の破壊を招くことなく結晶格子間へのフッ素原子の侵入が行われ、その磁気的性質を向上されていることを特徴とする。   The magnetic material of the present invention that solves the above problems is a magnetic material that has both a function of protecting from direct contact with a fluorinating agent that has high reactivity and causes decomposition of the magnetic material and a function of allowing permeation of fluorine atoms. It is formed on the particle surface, and fluorine atoms enter between crystal lattices without causing destruction of the crystal structure, thereby improving the magnetic properties.

このような性質を有する膜は、構成元素として水素,窒素,フッ素,金属元素を含有し、膜に含まれる原子数は窒素よりも水素が多くかつ金属元素よりフッ素が多いことを特徴とするものである。この条件が満たされることにより、膜はフッ素化剤を遮断できるち密なものとなり、同時にその結晶は十分なフッ素透過性を有するものとなる。そしてこのような膜を形成させた磁性材料にフッ素化剤を作用させることで希土類元素を使用せずに磁気特性を向上させた磁性材料を得る。   A film having such properties contains hydrogen, nitrogen, fluorine, and metal elements as constituent elements, and the film contains more hydrogen than nitrogen and more fluorine than metal elements. It is. By satisfying this condition, the membrane becomes dense enough to block the fluorinating agent, and at the same time, the crystal has sufficient fluorine permeability. A magnetic material with improved magnetic properties can be obtained without using rare earth elements by applying a fluorinating agent to the magnetic material on which such a film is formed.

本発明により希土類元素を用いることなく、フッ素原子が結晶格子間に侵入することで磁気特性のひとつであるキュリー温度が侵入前より50℃以上上昇した磁性材料を得ることができる。また従来の方法に比べて磁性材料の分解は少ない上、より短い時間で磁気特性の向上を行うことができる。   According to the present invention, it is possible to obtain a magnetic material in which the Curie temperature, which is one of the magnetic characteristics, is increased by 50 ° C. or more from the time before the penetration by allowing fluorine atoms to enter between crystal lattices without using rare earth elements. In addition, the magnetic material is less decomposed than the conventional method, and the magnetic characteristics can be improved in a shorter time.

本発明に係るフッ素化合物膜を有する強磁性粒子の典型的な組織を示す図。The figure which shows the typical structure | tissue of the ferromagnetic particle which has the fluorine compound film | membrane which concerns on this invention. 本発明に係るフッ素化合物膜を有する強磁性粒子のXRDパターンを示す図。The figure which shows the XRD pattern of the ferromagnetic particle which has the fluorine compound film | membrane which concerns on this invention. 本発明に係るフッ素化合物膜を有する強磁性粒子のキュリー温度測定結果を示す図。The figure which shows the Curie temperature measurement result of the ferromagnetic particle which has the fluorine compound film | membrane which concerns on this invention.

本発明にかかる鉄系強磁性粒子はその表面にフッ素化合物の被膜が形成されており、そのフッ素化合物は構成元素として水素,窒素,フッ素、および鉄系強磁性粒子を構成する金属元素のうち少なくとも一種類以上を含有し、フッ素化合物を形成している化合物に含まれる原子数は窒素よりも水素が多くかつ前記金属元素よりフッ素が多いことを特徴とする。このような特徴を有するフッ素化合物膜は鉄系強磁性材料が分解し別の結晶構造へと変化してその磁気的性質を失うことを防ぎ、同時に膜中をフッ素原子が移動可能な性質を示す。これにより鉄系強磁性粒子を構成する結晶の格子間に前記フッ素化合物を構成する元素のうちフッ素を含む1種類以上が侵入し、結晶の格子体積が増大しそれに伴い結晶中の鉄原子同士の原子間距離が調整される結果として磁気特性すなわちキュリー温度等を上昇させることが可能である。   The iron-based ferromagnetic particles according to the present invention have a fluorine compound coating formed on the surface thereof, and the fluorine compound has at least hydrogen, nitrogen, fluorine, and metal elements constituting the iron-based ferromagnetic particles as constituent elements. The compound which contains one or more kinds and forms a fluorine compound has a feature that the number of atoms contained in the compound is more hydrogen than nitrogen and more fluorine than the metal element. A fluorine compound film with such characteristics prevents the iron-based ferromagnetic material from decomposing and changing to another crystal structure to lose its magnetic properties, and at the same time exhibits the property of allowing fluorine atoms to move through the film. . As a result, one or more of the elements constituting the fluorine compound enter between the lattices of the crystals constituting the iron-based ferromagnetic particles, and the lattice volume of the crystals is increased. As a result of adjusting the interatomic distance, it is possible to increase the magnetic characteristics, that is, the Curie temperature.

フッ素化合物膜は、鉄系強磁性材料に適当なフッ素化剤を溶液中にて作用させることで形成させることができ、例えばフッ素化剤としてフッ化アンモニウムが使用可能である。一方フッ素ガスなど反応性の高すぎるフッ素化剤は鉄系強磁性粒子を構成する結晶の構造を破壊し、その磁気的性質を失わせるためにそのままでは適用できないが、本発明によるフッ素化合物膜を形成後であれば、磁気的性質を失わせる原因となる鉄系強磁性材料と反応性の高すぎるフッ素化剤との直接接触に伴う反応を防止しつつ、フッ素化剤由来のフッ素を、フッ素化合物膜を介して鉄系強磁性材料内部に拡散させることによりその磁気的性質の向上に利用することが可能となる。   The fluorine compound film can be formed by allowing a suitable fluorinating agent to act on the iron-based ferromagnetic material in a solution. For example, ammonium fluoride can be used as the fluorinating agent. On the other hand, fluorinating agents that are too reactive, such as fluorine gas, are not applicable as they are because they destroy the crystal structure of the iron-based ferromagnetic particles and lose their magnetic properties. After formation, the fluorine derived from the fluorinating agent can be reduced while preventing the reaction due to direct contact between the iron-based ferromagnetic material that causes the loss of magnetic properties and the fluorinating agent that is too reactive. By diffusing into the iron-based ferromagnetic material through the compound film, it can be used to improve its magnetic properties.

以下実施例を説明する。   Examples will be described below.

本実施例では誘電率が10以下である非極性溶媒を用いた磁粉のフッ化処理により、表面に水素,窒素,フッ素,金属元素を含有し、前記フッ素化合物を形成している化合物に含まれる原子数は窒素よりも水素が多くかつ金属元素よりフッ素が多いことを特徴とする膜を有する磁性材料を得る手順について説明する。   In the present embodiment, the magnetic powder is fluorinated using a nonpolar solvent having a dielectric constant of 10 or less, and the surface contains hydrogen, nitrogen, fluorine, and a metal element, and is included in the compound forming the fluorine compound. A procedure for obtaining a magnetic material having a film characterized in that the number of atoms is more hydrogen than nitrogen and more fluorine than metal elements will be described.

まず高沸点飽和炭化水素であるスクアラン(主成分2,6,10,15,19,23−ヘキサメチルテトラコサン)500mlに、粒径0.1〜50μmのSm2Fe17磁粉100gとフッ素化剤であるフッ化アンモニウム粉末25gを加え、容器中で20rpmにて撹拌しながら、オイルバスにより100〜300℃まで昇温し1〜10時間保持しフッ素化処理を行った。反応終了後はフラスコを放冷し上澄みを流しだし、残った粉末を回収し有機溶媒で洗浄後真空乾燥して磁性材料粉末を得た。 First, 100 g of Sm 2 Fe 17 magnetic powder having a particle size of 0.1 to 50 μm and a fluorinating agent are added to 500 ml of squalane (main component 2,6,10,15,19,23-hexamethyltetracosane) which is a high-boiling saturated hydrocarbon. 25 g of ammonium fluoride powder was added, and the mixture was heated to 100 to 300 ° C. with an oil bath and stirred for 1 to 10 hours while stirring in a container at 20 rpm, and fluorination treatment was performed. After completion of the reaction, the flask was allowed to cool and the supernatant was poured out. The remaining powder was recovered, washed with an organic solvent, and then vacuum dried to obtain a magnetic material powder.

この粉末を走査型電子顕微鏡にて観察したところ、図1Aのように磁粉の粒子表面に0.1〜5μmのち密な膜と、さらにその外側に1μm以上の多孔質の膜が見られた。これらについて2次イオン質量分析による組成分析を行ったところ、粒子表面のち密な膜からは、磁粉の構成成分である金属元素Fe,Smおよび、フッ素化剤であるフッ化アンモニウムの構成成分であるH,N,Fが検出され、それぞれの濃度はNよりもHが多く、かつ金属元素よりフッ素が多かった。また、ち密膜で検出された元素H,N,Fについては濃度が低いものの磁粉粒子内部でも検出された。図2の反応後Aに示されるように粉末X線回折では、Sm2Fe17によるX線回折ピークの位置が、フッ素化処理により反応前よりも低角度側にシフトし、Sm2Fe17磁粉の結晶の一部で格子体積が反応前の793nm3に対して反応後は0.794〜0.904nm3となり、0.1〜13%増大していることから、これらH,N,Fの元素のいずれかまたはすべてがSm2Fe17磁粉を構成する結晶の格子間に侵入することでSmおよびFe間の距離を広げていることが分かる。そしてこの格子の膨張により、膨張前には近接しすぎていたFe原子同士が離れるために磁粉の磁気的性質、すなわちキュリー温度および磁化が増加する。各反応条件により得られた格子体積膨張率とキュリー温度は表1のようになった。また、このようなF元素侵入による磁気的性質の改善はF2ガスを使用した場合でも可能であるが、F2ガスの高い反応性によりSm2Fe17の結晶構造が破壊されることを防ぐためガス濃度を低く制御する必要があり、また反応に長時間を必要とする。一方本実施例で得られる膜はFeまたはSmおよびフッ素を含む化合物、たとえば結晶相としてNH4FeF3,(NH43FeF6,NH4Fe26,NH4SmF4などを含み、これらは結晶中の隙間が大きくフッ素が拡散しやすい一方、金属とフッ素の化合物であるためF2ガスよりも反応性が低いため、高濃度のフッ素化剤を用いた場合にもSm2Fe17のフッ素化反応を進行させることが可能である。 When this powder was observed with a scanning electron microscope, as shown in FIG. 1A, a 0.1-5 μm dense film and a porous film of 1 μm or more on the outer surface were observed on the particle surface of the magnetic powder. When these were subjected to composition analysis by secondary ion mass spectrometry, from the dense film on the particle surface, the metal elements Fe and Sm, which are magnetic powder components, and ammonium fluoride, which is a fluorinating agent, are constituent components. H, N, and F were detected, and each concentration had more H than N and more fluorine than metal elements. Further, the elements H, N, and F detected in the dense film were also detected inside the magnetic powder particles although the concentration was low. The powder X-ray diffraction as shown in the reaction after the A in FIG. 2, the position of the X-ray diffraction peak due to Sm 2 Fe 17 is shifted to a lower angle side than before the reaction by the fluorination treatment, Sm 2 Fe 17 magnetic powder In some of the crystals, the lattice volume is 0.794 to 0.904 nm 3 after the reaction with respect to 793 nm 3 before the reaction, and is increased by 0.1 to 13%. It can be seen that any or all of the elements penetrate the interstices of the crystals composing the Sm 2 Fe 17 magnetic powder to increase the distance between Sm and Fe. Then, due to the expansion of the lattice, Fe atoms that are too close to each other before the expansion are separated from each other, so that the magnetic properties of the magnetic powder, that is, the Curie temperature and the magnetization increase. The lattice volume expansion coefficient and the Curie temperature obtained under each reaction condition are as shown in Table 1. Further, the improvement of the magnetic property due to the penetration of the F element is possible even when F 2 gas is used, but the crystal structure of Sm 2 Fe 17 is prevented from being destroyed by the high reactivity of F 2 gas. Therefore, it is necessary to control the gas concentration to be low, and a long time is required for the reaction. On the other hand, the film obtained in this example contains a compound containing Fe or Sm and fluorine, for example, NH 4 FeF 3 , (NH 4 ) 3 FeF 6 , NH 4 Fe 2 F 6 , NH 4 SmF 4 and the like as the crystal phase, These have large gaps in the crystal and easily diffuse fluorine, but are less reactive than F 2 gas because they are a compound of metal and fluorine. Therefore, even when a high concentration fluorinating agent is used, Sm 2 Fe 17 It is possible to proceed the fluorination reaction.

一方で磁粉表面のち密膜より外側にある多孔質膜では、2次イオン質量分析にて他の部分に比べて多くの酸素が検出され、他にFeやFなどが検出された。この多孔質膜は反応環境中に存在した酸素により生成したと考えられる。フッ素化剤は通常吸湿性のものが多く、含有されている水分は酸素供給原となりSm2Fe17を表面から酸化させる。一方で、特にフッ素化剤から水を取り除くことは困難であり、またできたとしても湿気を含む大気中では取り扱うことができず操作性が悪いため、フッ素化反応進行中に酸素を除去できることが望ましい。酸化物膜の形成は反応環境中の酸素の量を減少させる効果があり、なおかつ膜を多孔質とすることによりフッ素化剤の移動経路が確保されるため、酸化反応の後でもフッ素化反応を進行させることが可能である。さらに、磁粉をバインダにより固めてボンド磁石を形成する場合には孔の間にバインダを入り込ませることで、アンカー効果により磁粉同士が強固に接着され、機械的強度の高い磁石を得るために利用できる。 On the other hand, in the porous film on the outer side of the dense film on the surface of the magnetic powder, more oxygen was detected than in other parts by secondary ion mass spectrometry, and Fe, F, etc. were detected in addition. This porous film is thought to be generated by oxygen present in the reaction environment. Most of the fluorinating agents are usually hygroscopic, and the contained water becomes an oxygen supply source and oxidizes Sm 2 Fe 17 from the surface. On the other hand, it is particularly difficult to remove water from the fluorinating agent, and even if it can be done, it cannot be handled in the atmosphere containing moisture and has poor operability, so that oxygen can be removed during the progress of the fluorination reaction. desirable. The formation of an oxide film has the effect of reducing the amount of oxygen in the reaction environment, and since the movement path of the fluorinating agent is secured by making the film porous, the fluorination reaction can be performed even after the oxidation reaction. It is possible to proceed. Furthermore, when magnetic powder is hardened with a binder to form a bonded magnet, the binder is inserted between the holes so that the magnetic powder is firmly bonded by the anchor effect and can be used to obtain a magnet with high mechanical strength. .

Figure 2012151259
Figure 2012151259

本実施例では有極性溶媒を用いた磁粉のフッ化処理により、表面に水素,窒素,フッ素,金属元素を含有し、前記フッ素化合物を形成している化合物に含まれる原子数は窒素よりも水素が多くかつ金属元素よりフッ素が多いことを特徴とする膜を有する磁性材料を得る手順について説明する。   In this example, the magnetic powder using a polar solvent is fluorinated, and the surface contains hydrogen, nitrogen, fluorine, and a metal element, and the number of atoms contained in the compound forming the fluorine compound is more hydrogen than nitrogen. A procedure for obtaining a magnetic material having a film characterized in that it has a large amount of fluorine and more metal elements than fluorine is described.

まず高沸点飽和炭化水素であるスクアラン(主成分2,6,10,15,19,23−ヘキサメチルテトラコサン)450mlと、有極性溶媒である2−(2−ブトキシエトキシ)エタノール50mlを混合し、均一な溶液とした。これに粒径0.1〜50μmのSm2Fe17磁粉100gとフッ素化剤であるフッ化アンモニウム粉末25gを加え、フラスコ中で20rpmにて撹拌しながら、オイルバスにより0.5〜2時間で100〜230℃まで昇温し1〜10時間保持しフッ素化処理を行った。有極性溶媒はフッ素化剤であるフッ化アンモニウムを溶媒中に溶解させる作用があり、溶解したフッ素化剤は固体の状態に比べて効率的に磁粉へ到達するため反応が進行しやすくなる。また、フラスコには溶媒蒸気を冷却するための管が取り付けられており、沸点が約230℃の2−(2−ブトキシエトキシ)エタノールは一部が蒸発してもここで凝縮し液体となって落下し混合溶液へと戻るため補充の必要はない。 First, 450 ml of squalane (main component 2,6,10,15,19,23-hexamethyltetracosane), which is a high-boiling saturated hydrocarbon, and 50 ml of 2- (2-butoxyethoxy) ethanol, which is a polar solvent, are mixed. A homogeneous solution was obtained. To this was added 100 g of Sm 2 Fe 17 magnetic powder having a particle size of 0.1 to 50 μm and 25 g of ammonium fluoride powder as a fluorinating agent, and the mixture was stirred at 20 rpm in a flask in an oil bath for 0.5 to 2 hours. The temperature was raised to 100 to 230 ° C. and held for 1 to 10 hours to perform fluorination treatment. The polar solvent has an action of dissolving ammonium fluoride, which is a fluorinating agent, in the solvent, and the dissolved fluorinating agent reaches the magnetic powder more efficiently than the solid state, so that the reaction easily proceeds. In addition, a tube for cooling the solvent vapor is attached to the flask, and 2- (2-butoxyethoxy) ethanol having a boiling point of about 230 ° C. is condensed and becomes a liquid even if part of it evaporates. It does not need to be replenished because it falls and returns to the mixed solution.

フラスコの加熱終了後はオイルバスを下げ、室温まで放冷し、溶液の上澄みを流しだした後、残った粉末を回収し、有機溶媒で洗浄するとともに真空乾燥した。   After the heating of the flask, the oil bath was lowered, allowed to cool to room temperature, and the supernatant of the solution was poured out, and then the remaining powder was recovered, washed with an organic solvent and vacuum dried.

得られた粉末の走査型電子顕微鏡像は図1Bであり、有極性溶媒を用いない実施例1と比較してち密膜の厚さは増加し、一方で多孔質膜の厚さは減少した。   The scanning electron microscope image of the obtained powder is FIG. 1B, and the thickness of the dense film increased while the thickness of the porous film decreased compared to Example 1 in which no polar solvent was used.

2次イオン質量分析にて組成分析を行ったところ、ち密膜では金属元素よりFの濃度が高く、かつ窒素よりも水素の量が少なかった。また、磁粉の粒子内部でもF,H,N元素が検出された。粉末X線回折は図2の反応後Bであり、実施例1(反応後A)と比較して格子膨張したSm2Fe17相の割合が増加しており、すなわち格子間へ元素が侵入した部分の割合が増加していることを示す。これらは有極性溶媒の添加によりフッ素化剤の反応性が向上に由来すると考えられる。 When composition analysis was performed by secondary ion mass spectrometry, the dense film had a higher concentration of F than the metal element and a smaller amount of hydrogen than nitrogen. Further, F, H, and N elements were also detected inside the magnetic powder particles. The powder X-ray diffraction is B after the reaction in FIG. 2, and the proportion of the Sm 2 Fe 17 phase that has undergone lattice expansion is increased as compared with Example 1 (after reaction A), that is, the element has entered the lattice. Indicates that the proportion of the portion is increasing. These are considered to be derived from the improved reactivity of the fluorinating agent by the addition of a polar solvent.

一方振動試料型磁力計にてキュリー温度を測定したところ、図3に示されるように約240℃(Tc2)となり、反応前の約120℃(Tc1)に対して大幅に上昇していることを確認した。ここで、Sm2Fe17相の反応後の格子体積は反応前より4%以上増加している。 On the other hand, when the Curie temperature was measured with a vibrating sample magnetometer, it was about 240 ° C. (T c2 ) as shown in FIG. 3, which was significantly higher than about 120 ° C. (T c1 ) before the reaction. It was confirmed. Here, the lattice volume after the reaction of the Sm 2 Fe 17 phase is increased by 4% or more than before the reaction.

また、この方法に適用できる極性溶媒としては、2−n−ブトキシエタノールのようなセロソルブ系の溶媒の他に、アルコール系溶媒,アミン系溶媒,グリコール系溶媒,ケトン系溶媒,アルデヒド系溶媒,カルボン酸系溶媒などが利用できる。   In addition to cellosolve solvents such as 2-n-butoxyethanol, polar solvents applicable to this method include alcohol solvents, amine solvents, glycol solvents, ketone solvents, aldehyde solvents, carboxylic solvents. An acid solvent or the like can be used.

Sm2Fe17磁粉をN2およびNH3ガス雰囲気中にて400〜500℃で5〜24時間保持し、Sm2Fe17の格子間に窒素を侵入させてSm2Fe170.1~3.5粉末を得た。この粉末100gとフッ素化剤であるフッ化アンモニウム50gを有極性溶媒である2−(2−ブトキシエトキシ)エタノール500mlに入れ、フラスコ中にて撹拌翼で20rpmの速度で撹拌しながら約230℃にて1〜24時間保持した。フラスコには冷却管が付属しており、これにより蒸発した溶媒が還流するため、内部の温度は自動的に溶媒の沸点近くに保たれる。この温度は、2−(2−ブトキシエトキシ)エタノールの場合約230℃である。 Sm 2 Fe 17 N powder is held in N 2 and NH 3 gas atmosphere at 400 to 500 ° C. for 5 to 24 hours, and nitrogen is intruded between the lattices of Sm 2 Fe 17 to produce Sm 2 Fe 17 N 0.1 to 3.5 powder. Got. 100 g of this powder and 50 g of ammonium fluoride as a fluorinating agent are placed in 500 ml of 2- (2-butoxyethoxy) ethanol as a polar solvent, and the temperature is about 230 ° C. while stirring at 20 rpm with a stirring blade in the flask. For 1 to 24 hours. The flask is equipped with a cooling tube, which causes the evaporated solvent to reflux, so that the internal temperature is automatically kept near the boiling point of the solvent. This temperature is about 230 ° C. for 2- (2-butoxyethoxy) ethanol.

窒素と反応させた後のSm2Fe17は格子間への元素侵入によりその化学的耐久性が向上しており、未反応のSm2Fe17に比べて酸化しにくくなっているが、同時にフッ素化剤との反応性は低下している。一方、実施例2と異なり溶媒としてスクアランを使用せず、有極性溶媒のみとすることで、フッ素化剤の溶解を促進させ反応性を向上することができる。ただし酸素や水が溶解しづらい性質を持つスクアランを使用しないことにより、溶媒が磁粉を酸化から保護する性能は低下するため、格子間に元素の侵入していないSm2Fe17を使用することは酸化が多く生じるため望ましくない。 Sm 2 Fe 17 after reacting with nitrogen has improved its chemical durability due to element intrusion into the interstitial space, and is less oxidized than unreacted Sm 2 Fe 17. The reactivity with the agent is reduced. On the other hand, unlike Example 2, by not using squalane as a solvent and using only a polar solvent, dissolution of the fluorinating agent can be promoted and the reactivity can be improved. However, since the performance of the solvent to protect the magnetic powder from oxidation is reduced by not using squalane, which is difficult to dissolve oxygen and water, it is not possible to use Sm 2 Fe 17 in which no element penetrates between the lattices. It is not desirable because much oxidation occurs.

反応終了後は、上澄み液を流しだし、残留物を有機溶媒で洗浄し真空乾燥することで磁性材料粉末を得た。この粉末について走査型電子顕微鏡による断面観察を行ったところ、磁粉の粒子の表面0.1〜2μmの部分にち密な膜がみられ、波長分散型X線解析より組成を分析したところ、Feなどの金属元素の濃度が4〜20原子%、Fの濃度が20〜60原子%であった。また、粒子内部ではF濃度が0.1〜16原子%であり、その濃度は粒子中心部に近づくほど低くなった。これより、溶液中での加熱処理によりSm2Fe170.1~3.5の表面にFおよびFeを含有する膜が形成され、この膜の中をFが移動することで粒子内部のFを置換していったことが示される。また、粉末X線回折ではFeまたはSmおよびフッ素を含む化合物、たとえばNH4FeF3,(NH43FeF6,NH4Fe26,NH4SmF4などの結晶相が検出された。これらNH4を含む化合物中では、NH4はFeまたはSmとFからなる結晶格子の間に充填された構造をとっており、比較的動きやすい状態となっているため、粒子内部で置換されたNは比較的容易に膜中に取り込まれるため、置換されたNがN2ガスとなりこれら膜と粒子界面で剥離させるようなことはなく、結果として膜は粒子を酸素や高濃度のFなどの分解因子から保護しつつ、格子間の元素の置換に必要な物質移動を可能とする。結果として、Sm2Fe17の結晶格子間にNおよびFが侵入したことにより、その格子体積は0.5〜12%増加した。これに伴い磁粉の磁気的性質も向上し、キュリー温度は約280〜550℃の値を示した。ここで、キュリー温度は反応前より160℃以上上昇している。また、この方法に適用できる極性溶媒としては、2−(2−ブトキシエトキシ)エタノールのようなセロソルブ系の溶媒の他に、アルコール系溶媒,アミン系溶媒,グリコール系溶媒,ケトン系溶媒,アルデヒド系溶媒,カルボン酸系溶媒などが利用できるが、反応の進行には高温とすることが有利であり、反応温度は溶媒の沸点により制限されるため、できる限り高沸点のものを選択することが望ましい。 After completion of the reaction, the supernatant liquid was poured out, and the residue was washed with an organic solvent and vacuum dried to obtain a magnetic material powder. When the cross section of this powder was observed with a scanning electron microscope, a dense film was observed on the surface of the magnetic powder particles of 0.1 to 2 μm, and the composition was analyzed by wavelength dispersion X-ray analysis. The concentration of the metal element was 4 to 20 atomic%, and the concentration of F was 20 to 60 atomic%. In addition, the F concentration in the particles was 0.1 to 16 atomic%, and the concentration became lower as the particle central part was approached. As a result, a film containing F and Fe is formed on the surface of Sm 2 Fe 17 N 0.1 to 3.5 by heat treatment in the solution, and F moves inside the film to replace F inside the particle. It is shown that it was done. Further, in powder X-ray diffraction, a crystal phase such as a compound containing Fe or Sm and fluorine, for example, NH 4 FeF 3 , (NH 4 ) 3 FeF 6 , NH 4 Fe 2 F 6 , NH 4 SmF 4 was detected. Among these NH 4 -containing compounds, NH 4 has a structure filled between Fe or Sm and F crystal lattices, and is relatively easy to move. Since N is relatively easily taken into the film, the substituted N becomes N 2 gas and does not peel off at the particle interface with these films. As a result, the film does not remove particles such as oxygen or high-concentration F. It enables mass transfer necessary for substitution of elements between lattices while protecting against decomposition factors. As a result, the lattice volume increased by 0.5 to 12% due to the penetration of N and F between the crystal lattices of Sm 2 Fe 17 . Along with this, the magnetic properties of the magnetic powder were improved, and the Curie temperature showed a value of about 280 to 550 ° C. Here, the Curie temperature has increased by 160 ° C. or more from before the reaction. In addition to cellosolve solvents such as 2- (2-butoxyethoxy) ethanol, polar solvents applicable to this method include alcohol solvents, amine solvents, glycol solvents, ketone solvents, aldehyde solvents. Although a solvent, a carboxylic acid solvent, etc. can be used, it is advantageous to use a high temperature for the progress of the reaction, and the reaction temperature is limited by the boiling point of the solvent. .

Sm2Fe17磁粉100gをフッ素化剤であるフッ化アンモニウム10gと共にスクアラン中に入れ、フラスコ中で撹拌翼を20rpmで回転させて撹拌しながら170℃で1時間加熱した。次いで反応溶液中にフッ化スズ50gを追加し、同様に撹拌しながら270℃で1〜5時間保持した。フッ化スズは加熱により液体となり、フラスコ内部の液体は2層に分かれ、上層はスクアラン、下層はフッ化スズ液体であり、Sm2Fe17は比重が大きいためにフッ化スズ液体中に存在した。1回目のフッ化アンモニウムとの加熱によりSm2Fe17の表面には実施例1と同様の膜が形成され、安定したフッ素化が可能な状態になるが、フッ化アンモニウムの使用量を抑えてあるため粒子内部のフッ素化はそれほど進行しない。そこでここへ別のフッ素化剤であるフッ化スズを追加することで粒子内部のフッ素化を進行させることができる。フッ化スズは融点が230℃〜260℃であり、溶液の沸点以下でそれ自身の液化が可能でありフッ素濃度が高く反応性の高いフッ素化合物液体が得られる。しかしSm2Fe17に直接作用させると反応性が高すぎるためにSm2Fe17の一部分解を引き起こし、FeF2やFeF3などの常温非磁性のフッ素化合物に変化してしまい磁気的性質の低下を招いてしまう。対してフッ化スズを作用させる前にフッ化アンモニウムによりFの移動が可能な保護被膜を形成しておくことで、フッ化スズとSm2Fe17の直接の反応を避けつつ反応を進行させることができる。結果としてSm2Fe17粒子はフッ化アンモニウムにより形成した膜を介して、フッ化アンモニウムなどが溶解した溶液に比べてF濃度の高いフッ化スズ液体に囲まれることとなり、この大きなF濃度差が存在することにより大きな化学ポテンシャルが生じ、これを駆動力としてSm2Fe17粒子にFが拡散していき、同時にFeとFを含む膜を介しているためにSm2Fe17構造の分解は抑えられ、その格子間にFが侵入する反応が優先的に生じる。 100 g of Sm 2 Fe 17 magnetic powder was placed in squalane together with 10 g of ammonium fluoride as a fluorinating agent, and the mixture was heated at 170 ° C. for 1 hour with stirring while rotating the stirring blade at 20 rpm. Next, 50 g of tin fluoride was added to the reaction solution, and the mixture was kept at 270 ° C. for 1 to 5 hours with stirring in the same manner. Tin fluoride became a liquid by heating, the liquid inside the flask was divided into two layers, the upper layer was squalane, the lower layer was a tin fluoride liquid, and Sm 2 Fe 17 was present in the tin fluoride liquid because of its high specific gravity. . By the first heating with ammonium fluoride, a film similar to that of Example 1 is formed on the surface of Sm 2 Fe 17 and stable fluorination is possible, but the amount of ammonium fluoride used is suppressed. Therefore, the fluorination inside the particles does not progress so much. Therefore, by adding tin fluoride, which is another fluorinating agent, fluorination inside the particles can be advanced. Tin fluoride has a melting point of 230 ° C. to 260 ° C. and can liquefy itself below the boiling point of the solution, and a fluorine compound liquid having a high fluorine concentration and high reactivity can be obtained. However, when it is directly applied to Sm 2 Fe 17 , the reactivity is too high, causing partial decomposition of Sm 2 Fe 17 and changing to a non-magnetic fluorine compound such as FeF 2 or FeF 3 , resulting in a decrease in magnetic properties. Will be invited. On the other hand, by forming a protective film that can move F with ammonium fluoride before acting on tin fluoride, the reaction can proceed while avoiding direct reaction between tin fluoride and Sm 2 Fe 17 Can do. As a result, the Sm 2 Fe 17 particles are surrounded by a tin fluoride liquid having a higher F concentration than a solution in which ammonium fluoride is dissolved through a film formed of ammonium fluoride, and this large F concentration difference The presence of a large chemical potential causes the diffusion of F into the Sm 2 Fe 17 particles using this as a driving force, and at the same time, since the film contains Fe and F, the decomposition of the Sm 2 Fe 17 structure is suppressed. The reaction in which F enters between the lattices occurs preferentially.

反応終了後はフッ化スズが液体である270℃の時点でフラスコの外から磁石を用いて吸着させることで磁粉をスクアラン相へ移動させ、そのまま室温まで放冷した。スクアラン相には酸素や水分が入り込みにくく、反応後の磁粉を大気から保護することができ、室温でも液体であるからその後の回収は容易である。もしフッ化スズ中に磁粉を置いたまま冷却するとフッ化スズは固化し回収は難しくなるが、粉砕しフッ化水素酸等で洗浄することで回収することも可能である。スクアラン中で冷却し回収した磁粉について走査型電子顕微鏡で観察すると、Sm2Fe17粒子表面には実施例1と同様のフッ化アンモニウムとの反応により生じたち密な膜が存在し、その外側にフッ化スズの残留成分からなる膜が存在しそのフッ素濃度は反応前のフッ化スズより10原子%以上低い値を示した。このフッ化スズ残留成分は金属Ca粉末などを混合し加熱することで高融点のフッ素化合物に変化するため、ボンド磁石を形成する場合のバインダ剤の原料としても使用可能であり、磁粉表面によく密着していることから高い機械的性質が期待できる。またSm2Fe17格子間へのFの侵入によりSm2Fe17相の格子体積は9〜14%増加し、磁粉の磁気的性質は改善し、振動試料型磁力計においてキュリー温度を測定したところ、330℃〜470℃の値を示した。ここで、キュリー温度は反応前より210℃以上上昇している。 After completion of the reaction, the magnetic powder was moved to the squalane phase by adsorbing with a magnet from the outside of the flask at 270 ° C. when the tin fluoride was liquid, and allowed to cool to room temperature as it was. Oxygen and moisture are less likely to enter the squalane phase, and the magnetic powder after the reaction can be protected from the atmosphere. Since it is liquid even at room temperature, subsequent recovery is easy. If the magnetic powder is placed in the tin fluoride and cooled, the tin fluoride solidifies and becomes difficult to recover, but can be recovered by grinding and washing with hydrofluoric acid or the like. When the magnetic particles cooled and recovered in squalane are observed with a scanning electron microscope, a dense film is formed on the surface of the Sm 2 Fe 17 particles by the same reaction with ammonium fluoride as in Example 1, and on the outside thereof. There was a film composed of a residual component of tin fluoride, and the fluorine concentration thereof was 10 atomic% lower than that of tin fluoride before the reaction. Since this tin fluoride residual component changes into a high melting point fluorine compound by mixing and heating metal Ca powder, etc., it can be used as a raw material for a binder agent when forming a bonded magnet, and it is well applied to the surface of the magnetic powder. High mechanical properties can be expected from the close contact. Lattice volume of Sm 2 Fe 17 phase by addition F from entering into between the Sm 2 Fe 17 grid increased 9-14%, where the magnetic properties of the magnetic powder is improved, to measure the Curie temperature in a vibrating sample magnetometer A value of 330 ° C. to 470 ° C. was exhibited. Here, the Curie temperature has increased by 210 ° C. or more from before the reaction.

Sm2Fe17磁粉50gをフッ素化剤であるフッ化アンモニウム10gと共にスクアラン中に入れ、フッ素樹脂製のフラスコ中で撹拌翼を20rpmで回転させて撹拌しながら170℃で1時間加熱した。次いで100℃まで冷却した後、反応溶液中に別のフッ素化剤としてフッ化キセノン粉末を30g添加し、90〜110℃で3〜12時間保持した。フラスコ中で液は2層に分かれ、上部はスクアラン、下部は液化したフッ化キセノンとなり、磁粉は下部のフッ化キセノン中に存在した。スクアランは吸湿性でかつ水との反応により分解するフッ化キセノンを保護し、またフッ化キセノン自身の揮発を抑える効果がある。反応中はフッ化キセノンの分解に伴いキセノンガスが気泡として放出されるため、フラスコにはキセノン回収用の管を設置したものを使用した。最初のフッ化アンモニウムとの反応により磁粉表面には実施例1と同様のち密膜が形成され、その厚さは0.1〜1μmであった。このち密膜は実施例4と同様にSm2Fe17が反応性の高いフッ素化剤であるフッ化キセノンと直接接触することを防ぎ、結晶の分解を抑制するとともにFを透過させることで反応を進行させる働きがある。ただしフッ化キセノンの沸点は約114℃であり、反応温度をこれ以上あげることができない点は不利であるが、フッ化スズ等よりもフッ素濃度が高く、反応性が大きいためこれらを用いた場合とそん色なくSm2Fe17の結晶格子中へのフッ素侵入が進行する。本実施例で使用したフッ化キセノンは、希ガスであるXeとFの化合物であり常温固体で取り扱いやすく、強力なフッ素化剤であるうえに対象をフッ素化させた後に残るのは極めて反応性の低い希ガスのみであるため、反応後のフッ素化剤残留物除去が容易である。反応後に残留物を残さないフッ素化剤としては他にフッ素ガスF2があげられるが、これは沸点が−188℃であり必然的に気体状態で扱う必要があり、同時に強い毒性を持っているため使用する場合には厳重な安全対策が必要となる。また、フッ化キセノンには、フッ素とキセノンの比の違いによりXeF2,XeF4,XeF6などの種類があるが、XeF2以外は爆発性を有するため取り扱いが難しく使用は推奨されない。さらに、キセノン以外の希ガスであるKrもフッ化クリプトンを形成するため、KrF2などの化合物も同様に使用可能であるが、フッ化キセノンよりも安定性が低いことおよびフッ化クリプトンの合成が難しく供給に不安があることから使用は望ましくない。 50 g of Sm 2 Fe 17 magnetic powder was put into squalane together with 10 g of ammonium fluoride as a fluorinating agent, and the mixture was heated at 170 ° C. for 1 hour with stirring while rotating the stirring blade at 20 rpm in a fluororesin flask. Next, after cooling to 100 ° C., 30 g of xenon fluoride powder as another fluorinating agent was added to the reaction solution, and held at 90 to 110 ° C. for 3 to 12 hours. The liquid was divided into two layers in the flask, the upper part was squalane, the lower part was liquefied xenon fluoride, and the magnetic powder was present in the lower xenon fluoride. Squalane is hygroscopic and has the effect of protecting xenon fluoride which decomposes by reaction with water and suppressing volatilization of xenon fluoride itself. During the reaction, xenon gas was released as bubbles along with the decomposition of xenon fluoride. Therefore, a flask equipped with a xenon recovery tube was used. A dense film similar to that of Example 1 was formed on the surface of the magnetic powder by the first reaction with ammonium fluoride, and the thickness thereof was 0.1 to 1 μm. As in Example 4, this dense film prevents Sm 2 Fe 17 from coming into direct contact with xenon fluoride, which is a highly reactive fluorinating agent, and suppresses the decomposition of crystals while allowing F to permeate. There is work to advance. However, the boiling point of xenon fluoride is about 114 ° C, and it is disadvantageous that the reaction temperature cannot be raised any more. However, when these are used because the fluorine concentration is higher than tin fluoride and the reactivity is high. Fluorine intrusion into the crystal lattice of Sm 2 Fe 17 proceeds without any difference. The xenon fluoride used in this example is a rare gas compound of Xe and F, is a solid at room temperature, is easy to handle, and is a strong fluorinating agent, and it is extremely reactive to remain after fluorinating the target. Therefore, it is easy to remove the residue of the fluorinating agent after the reaction. Another example of the fluorinating agent that does not leave a residue after the reaction is fluorine gas F 2 , which has a boiling point of −188 ° C. and must be handled in a gaseous state, and at the same time has strong toxicity. Therefore, when using it, strict safety measures are required. Further, xenon fluoride includes XeF 2 , XeF 4 , XeF 6 and the like depending on the ratio of fluorine and xenon, but other than XeF 2 is explosive and difficult to handle and is not recommended for use. Furthermore, since Kr, which is a rare gas other than xenon, also forms krypton fluoride, a compound such as KrF 2 can be used as well, but it is less stable than xenon fluoride and the synthesis of krypton fluoride is also possible. Use is not desirable because it is difficult and uneasy to supply.

反応後の磁粉は回収洗浄後、走査型電子顕微鏡で観察したところ、ち密膜は残存していた。一方でその周囲にはフッ化キセノンの残留は確認できず、反応せずキセノンガスとして飛散しなかったものも有機溶媒での洗浄により取り除くことができた。得られた磁粉はSm2Fe17相の格子体積が10〜14%増加していた。さらに振動試料型磁力計にてキュリー温度の測定を行ったところ300〜420℃となった。また2Tの磁場中における磁化は150〜170emu/gとなり、実施例4の場合と比較して10%以上高い値を示した。この磁化の増加は、非磁性の残留フッ素化剤が残留していないことによる。ここで、キュリー温度は反応前より180℃以上上昇している。 The magnetic powder after the reaction was recovered and washed, and observed with a scanning electron microscope. As a result, a dense film remained. On the other hand, no xenon fluoride remained in the surrounding area, and those that did not react and did not scatter as xenon gas could be removed by washing with an organic solvent. In the obtained magnetic powder, the lattice volume of the Sm 2 Fe 17 phase was increased by 10 to 14%. Further, when the Curie temperature was measured with a vibrating sample magnetometer, it was 300 to 420 ° C. The magnetization in a 2T magnetic field was 150 to 170 emu / g, which was 10% or more higher than that in Example 4. This increase in magnetization is due to the absence of non-magnetic residual fluorinating agent. Here, the Curie temperature has increased by 180 ° C. or more from before the reaction.

また、本実施例ではフッ化キセノンの水に対する感受性が高いため、反応系に有極性溶媒を添加すると水分の浸入を招き反応が進行しないだけでなく、種類によっては有極性溶媒自身との反応が生じ危険なため推奨されない。   In addition, since the sensitivity of xenon fluoride to water is high in this example, addition of a polar solvent to the reaction system causes not only the invasion of water and the reaction does not proceed, but also depending on the type, the reaction with the polar solvent itself may occur. Not recommended because of danger.

1mol%の水酸化セシウム水溶液200mlを0.2mol%のフッ化水素酸1000mlに、撹拌しながら徐々に滴下して混合し、この混合液を噴霧加熱乾燥することで粒径0.5〜2μmのフッ化セシウム粉末を約30g得た。この粉末をSm2Fe17磁粉200gおよびフッ化アンモニウム10gと共にスクアラン中に投入し、フラスコ中で撹拌翼にて250rpmで撹拌しながら250℃で0.1〜0.5時間保持した。反応の初期段階ではフッ化セシウムの白色粉末が液中で舞うことにより白濁が見られたが、終了後はほとんど見られず液はほぼ透明の上澄みとなり、容器下部に灰色の粉末状沈殿が残った。上澄みは流しだし、残留物を有機溶媒でろ過洗浄後真空乾燥した。こうして得られた粉末を走査型電子顕微鏡で観察したところ、Sm1Fe17粒子の表面に0.1〜2μmのち密な膜が形成され、さらにその膜の表面はフッ化セシウム粒子により覆われていた。すなわち、Sm2Fe17の保護性を有する被膜の表面にフッ素化剤となるフッ化セシウムの被膜を有する粒子を得た。これを金型に充填し、10MPaで加圧成形し仮成型体としたのちAr雰囲気中350℃の電気炉で3〜8時間加熱した。この処理により仮成型体内部に含まれるフッ化セシウム中のフッ素がち密膜を介してSm2Fe17中に拡散し、Sm2Fe17の結晶構造を損なうことなく結晶格子間に侵入する。またこの加熱処理時はスクアランなどの溶液が存在しないため、溶液の沸点に制限されることなく加熱温度を設定可能である。またフッ化セシウムは他のフッ素化剤に比べて吸湿性が低く、またたとえ吸湿してしまった場合でも100℃での真空乾燥により容易に乾燥させることができるため成型前の粉末は取り扱いおよび保存は容易である。加熱後の成形体は加熱前に比べて体積が5%収縮し、フッ化セシウム反応生成物により結着された。この成形体の断面を光学顕微鏡により観察したところ、1〜20μmの金属光沢を有するSm2Fe17粒子の表面に白色から茶色の色調を有する膜が密に形成されており、その中には反応前のフッ化セシウムに似た白色粒子は見られず、未反応フッ素化剤は残留していないと言える。一方でSm2Fe17相の格子体積は11〜15%増加していた。また振動試料型磁力計を用いてこの加熱後の成形体のキュリー温度を測定したところ、330℃〜440℃であった。ここで、キュリー温度は反応前より210℃以上上昇している。 200 ml of a 1 mol% aqueous cesium hydroxide solution is gradually added dropwise to 1000 ml of 0.2 mol% hydrofluoric acid while stirring, and the mixture is spray-heated and dried to obtain a particle size of 0.5 to 2 μm. About 30 g of cesium fluoride powder was obtained. This powder was put into squalane together with 200 g of Sm 2 Fe 17 magnetic powder and 10 g of ammonium fluoride, and kept at 250 ° C. for 0.1 to 0.5 hours while stirring at 250 rpm with a stirring blade in a flask. In the initial stage of the reaction, white turbidity was observed due to the white powder of cesium fluoride flying in the liquid, but it was hardly seen after completion, and the liquid became almost transparent supernatant, leaving a gray powdery precipitate at the bottom of the container It was. The supernatant was poured out, and the residue was filtered and washed with an organic solvent and then vacuum dried. When the powder thus obtained was observed with a scanning electron microscope, a dense film of 0.1 to 2 μm was formed on the surface of the Sm 1 Fe 17 particles, and the surface of the film was covered with cesium fluoride particles. It was. That is, particles having a coating of cesium fluoride serving as a fluorinating agent on the surface of the coating having a protective property of Sm 2 Fe 17 were obtained. This was filled in a mold, pressure-molded at 10 MPa to form a temporary molded body, and then heated in an electric furnace at 350 ° C. for 3 to 8 hours in an Ar atmosphere. By this treatment, fluorine in cesium fluoride contained in the temporary molded body diffuses into Sm 2 Fe 17 through a dense film and enters between crystal lattices without damaging the crystal structure of Sm 2 Fe 17 . In addition, since there is no solution such as squalane during this heat treatment, the heating temperature can be set without being limited to the boiling point of the solution. Cesium fluoride is less hygroscopic than other fluorinating agents, and even if it has absorbed moisture, it can be easily dried by vacuum drying at 100 ° C. Is easy. The molded body after heating contracted by 5% in volume compared to before heating, and was bound by the cesium fluoride reaction product. When the cross section of this molded body was observed with an optical microscope, a film having a white to brown color tone was densely formed on the surface of Sm 2 Fe 17 particles having a metallic luster of 1 to 20 μm, in which a reaction was observed. White particles similar to the previous cesium fluoride are not seen, and it can be said that no unreacted fluorinating agent remains. On the other hand, the lattice volume of the Sm 2 Fe 17 phase was increased by 11 to 15%. Moreover, when the Curie temperature of this heated molded body was measured using a vibrating sample magnetometer, it was 330 ° C. to 440 ° C. Here, the Curie temperature has increased by 210 ° C. or more from before the reaction.

本実施例においてはフッ化セシウムの他に、フッ化リチウム,フッ化ナトリウム,フッ化カリウム,フッ化ルビジウムも使用可能であるが、これらはフッ化セシウムと比較して反応性が低く、また吸湿時に乾燥させにくいことから効率および取り扱いの点で不利である点に注意を要する。一方でフッ化ナトリウムおよびフッ化カリウムはフッ化セシウムに比べて安価であることから設備が十分な場合にはこれらを使用することは有効である。   In this embodiment, in addition to cesium fluoride, lithium fluoride, sodium fluoride, potassium fluoride, and rubidium fluoride can be used. However, these are less reactive than cesium fluoride and absorb moisture. Note that it is disadvantageous in terms of efficiency and handling because it is sometimes difficult to dry. On the other hand, since sodium fluoride and potassium fluoride are less expensive than cesium fluoride, it is effective to use them when facilities are sufficient.

Nd2Fe17磁粉50gをフッ化アンモニウム10gおよびトリメチルアミン・3フッ化水素200mlと混合しフッ素樹脂製容器に入れ、20rpmで撹拌しながら70℃にて3〜12時間保持した。反応に伴いアンモニアや水素などの気体が発生するため、容器には期待が流通できる管を接続し、その先にはこれらガスを処理するためのスクラバーを設置した。本実施例で用いているトリメチルアミンなどのアミン類はフッ化水素を溶解させる性質があり、トリメチルアミン・3フッ化水素ではその重量の約35%のF原子を含み、これらはすべて液体として存在しているために固体のフッ素化剤を使用する場合と比較してFが移動しやすく100℃以下での反応でも十分なフッ素の拡散が可能である。反応後、内容物中の上澄み液を流しだし、残留物を有機溶媒により洗浄し真空乾燥して磁性材料粉末を得た。この粉末を走査型電子顕微鏡により断面観察を行ったところ、Nd2Fe17粒子の表面に0.1〜0.3μmの薄いち密膜がみられた。さらに二次イオン質量分析ではこの膜の組成はCo4〜12原子,Nd10原子%以下,F20〜60原子%,N1〜14原子%,水素15〜40原子%であった。また、粉末X線回折による分析の結果、Th2Zn17構造を有するNd2Fe17の結晶の格子体積は反応前より1〜14%増加しており、これに伴い振動試料型磁力計によるキュリー温度の測定値は250〜290℃であった(反応前のNd2Fe17磁粉のキュリー温度は約60℃)。ここで、キュリー温度は反応前より190℃以上上昇している。 50 g of Nd 2 Fe 17 magnetic powder was mixed with 10 g of ammonium fluoride and 200 ml of trimethylamine · hydrogen trifluoride, placed in a fluororesin container, and held at 70 ° C. for 3 to 12 hours with stirring at 20 rpm. Since gases such as ammonia and hydrogen are generated during the reaction, a pipe that can be used for expectations is connected to the container, and a scrubber for processing these gases is installed at the end. The amines such as trimethylamine used in this example have the property of dissolving hydrogen fluoride, and trimethylamine and hydrogen trifluoride contain about 35% of F atoms by weight, and these all exist as liquids. Therefore, as compared with the case where a solid fluorinating agent is used, F easily moves, and sufficient fluorine diffusion is possible even in a reaction at 100 ° C. or lower. After the reaction, the supernatant liquid in the contents was poured out, and the residue was washed with an organic solvent and vacuum dried to obtain a magnetic material powder. When this powder was subjected to cross-sectional observation with a scanning electron microscope, a thin dense film having a thickness of 0.1 to 0.3 μm was observed on the surface of the Nd 2 Fe 17 particles. Further, in secondary ion mass spectrometry, the composition of this film was Co 4 to 12 atoms, Nd 10 atom% or less, F 20 to 60 atom%, N 1 to 14 atom%, and hydrogen 15 to 40 atom%. As a result of analysis by powder X-ray diffraction, the lattice volume of the crystal of Nd 2 Fe 17 having a Th 2 Zn 17 structure increased by 1 to 14% from that before the reaction. The measured value of the temperature was 250 to 290 ° C. (the Curie temperature of the Nd 2 Fe 17 magnetic powder before the reaction was about 60 ° C.). Here, the Curie temperature has increased by 190 ° C. or more from before the reaction.

本実施例で用いたトリエチルアミン以外のアミン類もフッ化水素の溶媒として使用でき、これにはたとえばトリメチルアミン,トリエタノールアミン,NN,−ジイソプロピルエチルアミン,ピペリジン,4−ジメチルアミノピリジンなどが使用可能である。また反応後のアミン溶液については、消費されたフッ化水素を補充することで再び反応溶液として使用することも可能であるが、その場合には取り扱い時に混入する水分をシリカゲルやモレキューシーブ等の吸着材、あるいは蒸留などの操作により分離しておくことが望ましい。   Amines other than triethylamine used in this example can also be used as a solvent for hydrogen fluoride. For example, trimethylamine, triethanolamine, NN, -diisopropylethylamine, piperidine, 4-dimethylaminopyridine and the like can be used. . In addition, the amine solution after the reaction can be used again as a reaction solution by replenishing the consumed hydrogen fluoride. In this case, moisture mixed during handling can be removed from silica gel, molecular sieves, etc. It is desirable to separate by an adsorbent or an operation such as distillation.

分子量が1000〜10000のパーフルオロポリエーテル油500mlにTh2Ni17構造を有するY2Fe17磁粉100gとフッ素化剤フッ化アンモニウム粉末40gを入れ、フラスコ中撹拌翼で20rpmにて撹拌しながら280℃で4〜20時間保持した。パーフルポリエーテルは末端がFで置換された分子構造を有し、化学的安定性が高く不燃性であるため安全性が高く、スクアラン等と比較して液体自体のコストは高いが再使用が可能である。さらに構造中に多数のフッ素を含むことからフッ化アンモニウムなどのフッ素化剤を溶解させることが可能である。反応終了後は上澄みを流しだし、残留物をハイドロクロロカーボンで洗浄後真空乾燥した。洗浄液は代替フロン類であり地球温暖化係数が大きいためすべて回収し、蒸留により元のパーフルオロポリエーテルとハイドロクロロカーボンに分離して再使用した。得られた粉末は0.2〜5μmのち密な被膜を有し、その組成はFe4〜18原子,Y10原子%以下,F20〜60原子%,N1〜12原子%,水素13〜40原子%であった。対して磁粉のY2Fe17相の格子体積は10〜12%増加していた。さらに振動試料型磁力計におけるキュリー温度測定において、220〜250℃を示し、処理前の42〜56℃に比べて大幅に上昇した。本方法では、パーフルオロポリエーテル以外のフッ素化油、例えばアルカンの水素の一部またはすべてがフッ素で置換されたフルオロアルカンおよびパーフルオロアルカンを使用することもできる。これらは分子が主に炭素とフッ素から構成されており、安定性はパーフルオロポリエーテルより高いものもあるがコストも高くなることから、工業的生産規模ではパーフルオロポリエーテルの使用が推奨される。 100 g of Y 2 Fe 17 magnetic powder having a Th 2 Ni 17 structure and 40 g of fluorinating ammonium fluoride powder are placed in 500 ml of perfluoropolyether oil having a molecular weight of 1000 to 10000, and stirred at 20 rpm with a stirring blade in a flask at 280. Hold at 4 ° C. for 4-20 hours. Perful polyether has a molecular structure in which the terminal is substituted with F, and has high chemical stability and nonflammability, so it is highly safe. The cost of the liquid itself is higher than that of squalane, but it can be reused. Is possible. Furthermore, since a large number of fluorine is contained in the structure, it is possible to dissolve a fluorinating agent such as ammonium fluoride. After completion of the reaction, the supernatant was poured out, and the residue was washed with hydrochlorocarbon and vacuum dried. The cleaning liquid is an alternative chlorofluorocarbon and has a large global warming potential, so all of it was collected, separated into the original perfluoropolyether and hydrochlorocarbon by distillation, and reused. The obtained powder has a dense film of 0.2 to 5 μm, and its composition is Fe 4 to 18 atoms, Y 10 atom% or less, F 20 to 60 atom%, N 1 to 12 atom%, hydrogen 13 to 40 atom%. there were. On the other hand, the lattice volume of the Y 2 Fe 17 phase of the magnetic powder increased by 10 to 12%. Furthermore, in the Curie temperature measurement in a vibration sample type magnetometer, it showed 220-250 degreeC, and rose significantly compared with 42-56 degreeC before a process. In the present method, it is also possible to use fluorinated oils other than perfluoropolyether, for example, fluoroalkanes and perfluoroalkanes in which part or all of the hydrogen in the alkane is substituted with fluorine. These molecules are mainly composed of carbon and fluorine, and the stability is higher than that of perfluoropolyether, but the cost is also higher, so the use of perfluoropolyether is recommended for industrial production scale. .

Sm2Fe17磁粉300gを酸性フッ化アンモニウム100gと共にスクアラン1000ml中に投入し、容器中で撹拌翼にて20rpmで撹拌しながら180℃で1時間保持した。その後室温まで放冷し、上澄み液を流しだし、残留物を有機溶剤で洗浄し真空乾燥した。こうして得られた粉末を、ガスの供給と内部の加熱が可能な真空容器中に入れ、一旦10-3Paまで排気した後、フッ素化剤としてHFガスを導入し内部の圧力を10kPaとした。その後内部の温度を200℃に保ち、内部の圧力を10±5kPaとなるようガスを適宜導入して調整しながら10時間保持した。その後HFガスの供給を止め、容器内部を室温まで冷却し、次いでArガスを10kPaまで導入し10-3Paまで排気する操作を3回繰り返して内部に残留していたHFガスを除去し、容器を開放し反応後の粉末を得た。HFガスはこのような圧力または分圧でそのままSm2Fe17粉に接触させた場合、Sm2Fe17を構成する結晶格子の破壊を引き起こしてしまうが、事前にフッ化アンモニウムを溶液中で作用させフッ素透過性を有する保護膜を形成させているため分解を伴わずにその結晶格子間にフッ素を導入させることが可能である。また、高濃度のフッ素化剤ガスを利用できるためにその反応は低濃度のガスで処理した場合に比べて短い時間で完了することができる。 300 g of Sm 2 Fe 17 magnetic powder was put into 1000 ml of squalane together with 100 g of ammonium ammonium fluoride, and kept at 180 ° C. for 1 hour while stirring at 20 rpm with a stirring blade in a container. Thereafter, the mixture was allowed to cool to room temperature, the supernatant liquid was poured out, and the residue was washed with an organic solvent and dried in vacuo. The powder thus obtained was placed in a vacuum container capable of supplying gas and heating inside, and after evacuating to 10 −3 Pa, HF gas was introduced as a fluorinating agent to set the internal pressure to 10 kPa. Thereafter, the internal temperature was maintained at 200 ° C., and the internal pressure was maintained for 10 hours while appropriately adjusting and adjusting the internal pressure to 10 ± 5 kPa. Thereafter, the supply of HF gas is stopped, the inside of the container is cooled to room temperature, and then the operation of introducing Ar gas to 10 kPa and exhausting to 10 −3 Pa is repeated three times to remove the HF gas remaining in the container, Was opened to obtain a powder after the reaction. When HF gas is brought into contact with Sm 2 Fe 17 powder as it is at such a pressure or partial pressure, it causes destruction of the crystal lattice constituting Sm 2 Fe 17. Since a protective film having fluorine permeability is formed, fluorine can be introduced between the crystal lattices without being decomposed. Further, since a high concentration fluorinating agent gas can be used, the reaction can be completed in a shorter time compared with the case where the reaction is performed with a low concentration gas.

反応後の粉末はSm2Fe17相の格子体積が13〜15%増加していた。振動試料型磁力計によりキュリー温度を測定したところ、320℃〜350℃を示し、粉末X線回折による分析の結果、Sm2Fe17相の分解に伴い生じるα−Fe相を示すピークの強度は反応前後で有意な差は見られなかった。ここで、キュリー温度は反応前より200℃以上上昇している。 In the powder after the reaction, the lattice volume of the Sm 2 Fe 17 phase was increased by 13 to 15%. When the Curie temperature was measured with a vibrating sample magnetometer, it showed 320 ° C to 350 ° C, and as a result of analysis by powder X-ray diffraction, the intensity of the peak showing the α-Fe phase generated with the decomposition of the Sm 2 Fe 17 phase was There was no significant difference between before and after the reaction. Here, the Curie temperature has increased by 200 ° C. or more from before the reaction.

本実施例と同様の手法でフッ素化剤となるガスにはHF以外のものも使用でき、例えばF2ガス,三フッ化ホウ素,三フッ化窒素,三フッ化塩素,フッ化カルボニル,四フッ化ケイ素等がある。 A gas other than HF can be used as a fluorinating agent in the same manner as in the present embodiment. For example, F 2 gas, boron trifluoride, nitrogen trifluoride, chlorine trifluoride, carbonyl fluoride, tetrafluoride, etc. There are silicon oxide and the like.

Sm2Fe17磁粉100gにフッ素化剤としてフルオロ錯体である(NH42[CoF6]を50g添加し、イオン液体である1−オクチル−3−アリルイミダゾリウムヘキサフロロホスフェート300ml中に入れ、撹拌翼にて300rpmで撹拌しながら200℃で2〜7時間保持した。その後室温まで放冷し、上澄み液を流しだし、内容物を有機溶媒で洗浄後真空乾燥して磁性材料粉末を得た。得られた粉末について走査型電子顕微鏡で分析を行ったところ、Sm2Fe17粒子の表面にち密な膜が形成されていた。また2次イオン質量分析を用いた組成分析では、この膜の組成はFeおよびCoの合計が4〜12原子%,Sm10原子%以下,F20〜60原子%,N1〜14原子%,水素15〜40原子%であった。またSm2Fe17粒子中にもこれら膜中に見られた元素が検出され、粒子中央付近ではFは1原子%以上、Hは0.1原子%以上であり、その濃度は粒子の外周部に近づくにつれて高くなった。また、磁粉へのこれら元素の侵入に伴い、Sm2Fe17相の格子体積は13〜15%増加し、キュリー温度は320℃〜350℃まで上昇した。ここで、キュリー温度は反応前より200℃以上上昇している。 50 g of a fluoro complex (NH 4 ) 2 [CoF 6 ] as a fluorinating agent is added to 100 g of Sm 2 Fe 17 magnetic powder and placed in 300 ml of 1-octyl-3-allylimidazolium hexafluorophosphate which is an ionic liquid, The mixture was held at 200 ° C. for 2 to 7 hours while stirring at 300 rpm with a stirring blade. Thereafter, the mixture was allowed to cool to room temperature, and the supernatant liquid was poured out. The contents were washed with an organic solvent and then vacuum dried to obtain a magnetic material powder. When the obtained powder was analyzed with a scanning electron microscope, a dense film was formed on the surface of the Sm 2 Fe 17 particles. In composition analysis using secondary ion mass spectrometry, the composition of this film is such that the total of Fe and Co is 4 to 12 atomic%, Sm is 10 atomic% or less, F is 20 to 60 atomic%, N is 1 to 14 atomic%, hydrogen is 15 to It was 40 atomic%. The elements found in these films are also detected in the Sm 2 Fe 17 particles. F is 1 atomic% or more and H is 0.1 atomic% or more near the center of the particle. It became higher as it approached. Further, with the penetration of these elements into the magnetic powder, the lattice volume of the Sm 2 Fe 17 phase increased by 13 to 15%, and the Curie temperature increased to 320 ° C. to 350 ° C. Here, the Curie temperature has increased by 200 ° C. or more from before the reaction.

フッ素化剤は本実施例で用いた[CoF62-の構造を持つフルオロ錯体以外も使用可能であり、中心金属イオンとしてFe2+,Co2+,Cu2+,Pb2+,Ti3+,V3+,Cr3+,Mn3+,Fe3+,Co3+,Ni3+,Cu3+,Ir3+,Al3+,Ti4+,V4+,Cr4+,Mn4+,Ni4+,Ru4+,Rh4+,Ir4+,Pd4+,Pt4+,Os4+,Zr4+,U4+,Mo5+,W5+,Ru5+,Ir5+,Re5+,Os5+,Ta5+,Nb5+,Cr5+,Mo5+,W5+,Rh5+,Os5+,Ir5+,Pt5+,U5+,Np5+,Pu5+等を有し、配位子としてF-を1つ以上持つものであれば使用可能である。また、イオン液体も上記のイミダゾリウム塩の他に、ピロリジニウム塩,ピリジニウム塩,アンモニウム塩,ホスホニウム塩,スルホニウム塩等が使用可能である。ただしこれらの中には融点が室温に近く高粘度のものもあり、これらは反応終了後に粉末からの分離が比較的困難なものもあるため、融点が低く低粘度のものを用いることが望ましい。 A fluorinating agent other than the fluoro complex having the [CoF 6 ] 2− structure used in this example can be used, and Fe 2+ , Co 2+ , Cu 2+ , Pb 2+ , Ti can be used as central metal ions. 3+ , V3 + , Cr3 + , Mn3 + , Fe3 + , Co3 + , Ni3 + , Cu3 + , Ir3 + , Al3 + , Ti4 + , V4 + , Cr4 + , Mn 4+ , Ni 4+ , Ru 4+ , Rh 4+ , Ir 4+ , Pd 4+ , Pt 4+ , Os 4+ , Zr 4+ , U 4+ , Mo 5+ , W 5+ , Ru 5+ , Ir5 + , Re5 + , Os5 + , Ta5 + , Nb5 + , Cr5 + , Mo5 + , W5 + , Rh5 + , Os5 + , Ir5 + , Pt5 + , U 5+ , Np 5+ , Pu 5+ and the like, and one or more F as a ligand can be used. As the ionic liquid, pyrrolidinium salt, pyridinium salt, ammonium salt, phosphonium salt, sulfonium salt and the like can be used in addition to the imidazolium salt. However, some of them have a melting point close to room temperature and high viscosity, and some of them are relatively difficult to separate from the powder after completion of the reaction. Therefore, it is desirable to use those having a low melting point and low viscosity.

Claims (8)

鉄系強磁性粒子と、前記鉄系強磁性粒子の表面に存在するフッ素化合物の膜とから構成される磁性材料において、
前記フッ素化合物は水素,窒素,フッ素,金属元素を含有し、
前記フッ素化合物が含有する原子数は、窒素より水素が多く、かつ金属元素よりフッ素が多いことを特徴とする磁性材料。
In a magnetic material composed of iron-based ferromagnetic particles and a fluorine compound film present on the surface of the iron-based ferromagnetic particles,
The fluorine compound contains hydrogen, nitrogen, fluorine, a metal element,
A magnetic material characterized in that the fluorine compound contains more hydrogen than nitrogen and more fluorine than metal elements.
請求項1に記載の磁性材料において、
前記フッ素化合物に含有される原子種であるフッ素,水素または窒素のうちの少なくとも1種が、前記鉄系強磁性粒子を構成する合金の結晶格子間に侵入していることを特徴とする磁性材料。
The magnetic material according to claim 1,
A magnetic material characterized in that at least one of fluorine, hydrogen or nitrogen, which is an atomic species contained in the fluorine compound, penetrates between crystal lattices of an alloy constituting the iron-based ferromagnetic particles .
請求項1または2に記載の磁性材料において、
前記フッ素化合物に含有される原子種が0.1〜15原子%の濃度で侵入していることを特徴とする磁性材料。
The magnetic material according to claim 1 or 2,
A magnetic material in which the atomic species contained in the fluorine compound penetrates at a concentration of 0.1 to 15 atomic%.
請求項3に記載の磁性材料において、
前記鉄系強磁性粒子を構成する合金の結晶格子の体積が侵入前より0.1〜15%膨張していることを特徴とする磁性材料。
The magnetic material according to claim 3,
A magnetic material characterized in that the volume of the crystal lattice of the alloy constituting the iron-based ferromagnetic particles is expanded by 0.1 to 15% from before the penetration.
請求項3に記載の磁性材料において、
前記鉄系強磁性粒子のキュリー温度は侵入前よりも50℃以上上昇していることを特徴とする磁性材料。
The magnetic material according to claim 3,
A magnetic material characterized in that the Curie temperature of the iron-based ferromagnetic particles is increased by 50 ° C. or more than before the penetration.
請求項1乃至5のいずれか1項に記載の磁性材料において、
前記鉄系強磁性粒子の表面に存在するフッ素化合物はNH4FeF3,(NH43FeF6,NH4Fe26,NH4SmF4のうちいずれかの結晶相を含むことを特徴とする磁性材料。
The magnetic material according to any one of claims 1 to 5,
The fluorine compound present on the surface of the iron-based ferromagnetic particles includes any one of the crystal phases of NH 4 FeF 3 , (NH 4 ) 3 FeF 6 , NH 4 Fe 2 F 6 , and NH 4 SmF 4. Magnetic material.
請求項1乃至6のいずれか1項に記載の磁性材料において、
前記鉄系強磁性粒子はSm2Fe17磁粉,Nd2Fe17磁粉またはY2Fe17磁粉であることを特徴とする磁性材料。
The magnetic material according to any one of claims 1 to 6,
The magnetic material, wherein the iron-based ferromagnetic particles are Sm 2 Fe 17 magnetic powder, Nd 2 Fe 17 magnetic powder, or Y 2 Fe 17 magnetic powder.
請求項1乃至7のいずれか1項に記載の磁性材料において、
前記フッ素化合物は、鉄系強磁性材料にフッ化アンモニウムを溶液中にて作用させることで形成させることを特徴とする磁性材料。
The magnetic material according to any one of claims 1 to 7,
The said fluorine compound is formed by making ammonium fluoride act on an iron-type ferromagnetic material in a solution, The magnetic material characterized by the above-mentioned.
JP2011008375A 2011-01-19 2011-01-19 Magnetic material Pending JP2012151259A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011008375A JP2012151259A (en) 2011-01-19 2011-01-19 Magnetic material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011008375A JP2012151259A (en) 2011-01-19 2011-01-19 Magnetic material

Publications (1)

Publication Number Publication Date
JP2012151259A true JP2012151259A (en) 2012-08-09

Family

ID=46793250

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011008375A Pending JP2012151259A (en) 2011-01-19 2011-01-19 Magnetic material

Country Status (1)

Country Link
JP (1) JP2012151259A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11365464B2 (en) 2018-08-31 2022-06-21 Lg Chem, Ltd. Method for preparing magnetic powder and magnetic material

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11365464B2 (en) 2018-08-31 2022-06-21 Lg Chem, Ltd. Method for preparing magnetic powder and magnetic material

Similar Documents

Publication Publication Date Title
Hua et al. Selective extraction of rare earth elements from NdFeB scrap by molten chlorides
JP5884957B1 (en) Method for producing RTB-based sintered magnet
JP6414597B2 (en) Method for producing RTB-based sintered magnet
Sissmann et al. The deleterious effect of secondary phases on olivine carbonation yield: Insight from time-resolved aqueous-fluid sampling and FIB-TEM characterization
TWI378477B (en)
ul Hassan et al. Post-decontamination treatment of MXene after adsorbing Cs from contaminated water with the enhanced thermal stability to form a stable radioactive waste matrix
Yan et al. Selective dissolution and separation of rare earths using guanidine-based deep eutectic solvents
US9434664B2 (en) Preparation method for edge-fluorinated graphite via mechanic-chemical process
JP6733533B2 (en) Method for manufacturing RTB-based sintered magnet
JP2012151259A (en) Magnetic material
Grasser et al. Low Temperature Activation of Tellurium and Resource‐Efficient Synthesis of AuTe2 and Ag2Te in Ionic Liquids
Klaumünzer et al. Phase transition behavior and oriented aggregation during precipitation of In (OH) 3 and InOOH nanocrystals
WO2015118621A1 (en) Method and apparatus for separating rare earth elements
WO2017170901A1 (en) Dust core coated with silica-based insulation, method for manufacturing same, and electromagnetic circuit component
CN114728334A (en) Soft magnetic powder coated with silicon oxide and method for producing same
Wang et al. Tunable optical and magnetic properties of Ni-doped CuSe nanowires using an anodic aluminum oxide template assisted hydraulic method
WO2011046139A1 (en) Fluorine storage device
Mondal et al. Unusual reactivity of MoS 2 nanosheets
Kim et al. Etch characteristics of magnetic tunnel junction materials using H2/NH3 reactive ion beam
JP6743650B2 (en) Method for manufacturing RTB-based sintered magnet
Bartolucci et al. Ion beam-induced hydroxylation controls molybdenum disulfide growth
Tian et al. Fabrication of nano-scaled polymer-derived SiAlCN ceramic components using focused ion beam
Porrati et al. Binary Mn–Si nanostructures prepared by focused electron beam induced deposition from the precursor SiH3Mn (CO) 5
Lei et al. Novel approach for the simultaneous recovery of Nd from Nd2O3-Containing slag and the preparation of high-purity Si
JPWO2017068946A1 (en) Method for producing RTB-based sintered magnet and RTB-based sintered magnet

Legal Events

Date Code Title Description
RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20120521