JP2012150924A - Magnesium secondary battery electrolyte, magnesium secondary battery and electrolyte manufacturing method - Google Patents

Magnesium secondary battery electrolyte, magnesium secondary battery and electrolyte manufacturing method Download PDF

Info

Publication number
JP2012150924A
JP2012150924A JP2011007251A JP2011007251A JP2012150924A JP 2012150924 A JP2012150924 A JP 2012150924A JP 2011007251 A JP2011007251 A JP 2011007251A JP 2011007251 A JP2011007251 A JP 2011007251A JP 2012150924 A JP2012150924 A JP 2012150924A
Authority
JP
Japan
Prior art keywords
secondary battery
electrolyte
magnesium secondary
negative electrode
ester
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2011007251A
Other languages
Japanese (ja)
Other versions
JP5617131B2 (en
Inventor
Hidenori Kurihara
英紀 栗原
Masafumi Inamoto
将史 稲本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SAITAMA PREFECTURE
Original Assignee
SAITAMA PREFECTURE
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by SAITAMA PREFECTURE filed Critical SAITAMA PREFECTURE
Priority to JP2011007251A priority Critical patent/JP5617131B2/en
Publication of JP2012150924A publication Critical patent/JP2012150924A/en
Application granted granted Critical
Publication of JP5617131B2 publication Critical patent/JP5617131B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a magnesium secondary battery electrolyte which allows an Mg anode to exhibit its full functionality at charge/discharge times and makes use of the battery in a practically suitable temperature range possible, a magnesium secondary battery using the electrolyte, and a manufacturing method for the electrolyte.SOLUTION: A magnesium secondary battery electrolyte 125 consists of an ester electrolyte with condensed phosphoric acid added thereto. Since an ester electrolyte is used as such, condensed phosphoric acid dissolves in the ester electrolyte, forming Mg ions and a complex. This complex generates, on an Mg metal surface, a coating 131 which permits the Mg ions to penetrate, thereby preventing generation of a passive film P and making charge/discharge possible. Also, its boiling point is sufficiently high, so that a practically suitable temperature range can be covered. Therefore, an Mg anode 130 can exhibit its full functionality at charge/discharge times, making use of a battery in a practically suitable temperature range possible. As a result, a high performance magnesium secondary battery can be realized.

Description

本発明は、マグネシウム二次電池用の電解液、これを用いたマグネシウム二次電池および電解液の製造方法に関する。   The present invention relates to an electrolytic solution for a magnesium secondary battery, a magnesium secondary battery using the electrolytic solution, and a method for producing the electrolytic solution.

近年、リチウムイオン二次電池が実用化され、ノートパソコンや携帯電話機などに利用されている。このようなリチウムイオン二次電池に用いられる電解液として、縮合りん酸添加電解液が開示されている(特許文献1−4参照)。縮合りん酸は正極の発熱を抑制することによる安全性向上、高温でのサイクル特性向上等の効果を発揮する。   In recent years, lithium ion secondary batteries have been put into practical use and are used in notebook personal computers and mobile phones. As an electrolytic solution used for such a lithium ion secondary battery, a condensed phosphoric acid-added electrolytic solution is disclosed (see Patent Documents 1-4). Condensed phosphoric acid exhibits effects such as improving safety by suppressing heat generation of the positive electrode and improving cycle characteristics at high temperatures.

一方、最近では、安全性などの面からマグネシウム二次電池が注目されるようになり、これに適した電解液の開発が望まれている。マグネシウム二次電池の電解液には、水、プロトン性有機溶媒、エステル類やアクリロニトリル等の非プロトン性有機溶媒を使用することができない。これらの溶媒を用いると、Mg負極の表面に不動態膜が生じMgイオンを通さないためである。   On the other hand, recently, magnesium secondary batteries have attracted attention in terms of safety and the like, and the development of an electrolyte suitable for this has been desired. For the electrolyte of the magnesium secondary battery, water, protic organic solvents, aprotic organic solvents such as esters and acrylonitrile cannot be used. This is because when these solvents are used, a passive film is formed on the surface of the Mg negative electrode, and Mg ions are not allowed to pass therethrough.

これに対し、エーテル系(THF等)の電解液を用いれば、不動態膜は発生しない。エーテル系(THF等)の電解液としては、例えば、グリニャール試薬(非特許文献1参照)、ジクロロブチルエチルアルミン酸マグネシウム(特許文献5参照)、Mg、トリフルオロメタンスルホン酸アルキル、第四級アンモニウム塩、1,3−アルキルメチルイミダゾリウム塩混合物(特許文献6参照)等のTHF溶液が開示されている。   On the other hand, if an ether-based (THF or the like) electrolyte is used, no passive film is generated. Examples of ether-based (such as THF) electrolytes include Grignard reagents (see Non-Patent Document 1), dichlorobutylethyl magnesium aluminate (see Patent Document 5), Mg, alkyl trifluoromethanesulfonate, and quaternary ammonium salts. , 1,3-alkylmethylimidazolium salt mixtures (see Patent Document 6) and the like are disclosed.

特開2007−220335号公報JP 2007-220335 A 特開2009−301798号公報JP 2009-301798 A 特開2010−251217号公報JP 2010-251217 A 特開2003−151626号公報JP 2003-151626 A 特開2009−21085号公報JP 2009-21085 A 特開2010−015979号公報JP 2010-015979 A

D. Aurbach et al,“Prototype systems for rechargeable magnesium batteries”, Nature 407, p.724-727(2000).D. Aurbach et al, “Prototype systems for rechargeable magnesium batteries”, Nature 407, p.724-727 (2000).

しかしながら、THF等は沸点が67℃と低いため、これ以上の温度域では使用することができない。THF溶液をマグネシウム二次電池の電解液として用いた場合、充放電時にMg負極は機能するものの、温度域が狭く実用的な電解液とは言えない。   However, since THF has a boiling point as low as 67 ° C., it cannot be used in a temperature range higher than this. When a THF solution is used as an electrolyte for a magnesium secondary battery, the Mg negative electrode functions during charging and discharging, but the temperature range is narrow and cannot be said to be a practical electrolyte.

本発明は、このような事情に鑑みてなされたものであり、充放電時にMg負極を十分に機能させ、実用に適した温度域で電池の使用を可能にするマグネシウム二次電池用の電解液、これを用いたマグネシウム二次電池および電解液の製造方法を提供することを目的とする。   The present invention has been made in view of such circumstances, and an electrolyte for a magnesium secondary battery that allows a Mg negative electrode to function sufficiently during charge and discharge and enables use of the battery in a temperature range suitable for practical use. An object of the present invention is to provide a magnesium secondary battery using the same and a method for producing an electrolytic solution.

(1)上記の目的を達成するため、本発明に係るマグネシウム二次電池用の電解液は、縮合りん酸が添加されたエステル系電解液からなることを特徴としている。このように、エステル系電解液を用いていることから、縮合りん酸は、エステル系電解液に溶解し、Mgイオンと錯体を形成する。この錯体が、Mg金属表面にMgイオンを透過可能な被膜を生成し、不動態膜の発生を防止して充放電を可能にする。また、十分に沸点が高く実用に適した温度範囲をカバーできる。これにより、本発明のマグネシウム二次電池用の電解液は、充放電時にMg負極を十分に機能させ、実用に適した温度域で電池を使用可能にする。その結果、高性能なマグネシウム二次電池を実現できる。   (1) In order to achieve the above object, an electrolytic solution for a magnesium secondary battery according to the present invention is characterized by comprising an ester-based electrolytic solution to which condensed phosphoric acid is added. Thus, since the ester electrolyte solution is used, the condensed phosphoric acid dissolves in the ester electrolyte solution and forms a complex with Mg ions. This complex generates a coating film that can transmit Mg ions on the surface of the Mg metal, and prevents the generation of a passive film, thereby enabling charging and discharging. In addition, it has a sufficiently high boiling point and can cover a temperature range suitable for practical use. Thereby, the electrolyte solution for magnesium secondary batteries of this invention makes a Mg negative electrode fully function at the time of charging / discharging, and enables use of a battery in the temperature range suitable for practical use. As a result, a high performance magnesium secondary battery can be realized.

(2)また、本発明に係るマグネシウム二次電池用の電解液は、前記縮合りん酸が、負極表面1×10−4に対するPの割合が1mmol以上3mmol以下の濃度で添加されていることを特徴としている。これにより、過電圧を防止し、充放電のサイクル性を向上させることができる。 (2) Further, in the electrolyte for a magnesium secondary battery according to the present invention, the condensed phosphoric acid is added at a concentration of 1 mmol to 3 mmol of P 2 O 5 with respect to the negative electrode surface 1 × 10 −4 m 2 . It is characterized by being. Thereby, an overvoltage can be prevented and the cycle property of charging / discharging can be improved.

(3)また、本発明に係るマグネシウム二次電池用の電解液は、前記エステル系電解液としてプロピレンカーボネート電解液からなることを特徴としている。これにより、縮合りん酸はプロピレンカーボネート電解液に溶解し、Mg金属表面の被膜生成を抑制できる。また、プロピレンカーボネート電解液は沸点が240℃であり、実用に適した温度範囲をカバーできる。   (3) Moreover, the electrolyte solution for magnesium secondary batteries which concerns on this invention consists of propylene carbonate electrolyte solution as said ester type electrolyte solution. Thereby, condensed phosphoric acid melt | dissolves in a propylene carbonate electrolyte solution, and can suppress the film production | generation on the Mg metal surface. The propylene carbonate electrolyte has a boiling point of 240 ° C. and can cover a temperature range suitable for practical use.

(4)また、本発明に係るマグネシウム二次電池は、上記の電解液を電解液として有することを特徴としている。これにより、充放電時にMg負極を十分に機能させ、実用に適した温度域で使用可能にする高性能なマグネシウム二次電池を実現できる。   (4) Moreover, the magnesium secondary battery which concerns on this invention has said electrolyte solution as electrolyte solution, It is characterized by the above-mentioned. As a result, it is possible to realize a high-performance magnesium secondary battery that allows the Mg negative electrode to function sufficiently during charge and discharge and can be used in a temperature range suitable for practical use.

(5)また、本発明に係るマグネシウム二次電池は、マグネシウム負極の表面にMg−縮合りん酸錯体に起因する被膜を更に有することを特徴としている。不動態膜の生成が防止され、この被膜がMgイオンを透過させることができるためマグネシウム二次電池の充放電が可能になる。   (5) Moreover, the magnesium secondary battery which concerns on this invention has further the film resulting from a Mg-condensed phosphate complex on the surface of a magnesium negative electrode, It is characterized by the above-mentioned. The formation of a passive film is prevented, and this film can permeate Mg ions, so that charge / discharge of the magnesium secondary battery becomes possible.

(6)また、本発明に係る電解液の製造方法は、マグネシウム二次電池用の電解液の製造方法であって、五酸化二りんをエステル系溶液に添加して加熱するステップと、前記エステル系溶液に、Mg塩を含むエステル溶液を添加して加熱するステップと、を含むことを特徴としている。これにより、充放電時にMg負極を十分に機能させ、実用に適した温度域で使用可能にする高性能なマグネシウム二次電池を製造できる。   (6) Moreover, the manufacturing method of the electrolyte solution which concerns on this invention is a manufacturing method of the electrolyte solution for magnesium secondary batteries, Comprising: The step which adds diphosphorus pentoxide to an ester-type solution, is heated, Adding an ester solution containing Mg salt to the system solution and heating. Thereby, the high performance magnesium secondary battery which makes a Mg negative electrode fully function at the time of charging / discharging and can be used in a temperature range suitable for practical use can be manufactured.

本発明によれば、充放電時にMg負極を十分に機能させ、実用に適した温度域で電池を使用可能にする。その結果、高性能なマグネシウム二次電池を実現できる。   According to the present invention, the Mg negative electrode functions sufficiently during charge and discharge, and the battery can be used in a temperature range suitable for practical use. As a result, a high performance magnesium secondary battery can be realized.

マグネシウム二次電池の構成を示す模式図である。It is a schematic diagram which shows the structure of a magnesium secondary battery. (a)〜(c)Mg負極の断面を示す模式図である。(A)-(c) It is a schematic diagram which shows the cross section of Mg negative electrode. 電解液の各成分の濃度を示す表である。It is a table | surface which shows the density | concentration of each component of electrolyte solution. (a)〜(c)各P添加量に対するMg負極の充放電曲線を示すグラフである。It is a graph showing the charge-discharge curves of Mg anode for (a) ~ (c) each P 2 O 5 amount. (d)、(e)各P添加量に対するMg負極の充放電曲線を示すグラフである。(D), is a graph showing charge-discharge curves of Mg anode for (e) the P 2 O 5 amount. (a)、(b)Mg負極のサイクリックボルタモグラムを示すグラフである。(A), (b) It is a graph which shows the cyclic voltammogram of Mg negative electrode. (a)、(b)SB−V正極のサイクリックボルタモグラムを示すグラフである。(A), it is a graph showing a cyclic voltammogram (b) SB-V 2 O 5 positive electrode.

次に、本発明の実施の形態について、図面を参照しながら説明する。   Next, embodiments of the present invention will be described with reference to the drawings.

(マグネシウム二次電池)
図1は、マグネシウム二次電池100の構成を示す模式図である。図1に示すように、マグネシウム二次電池100は、正極110、セパレータ120および負極130を備えている。正極110は、正極集電体(図示せず)および正極活物質115を有している。正極集電体は、正極活物質とともに正極を構成し、放電時に正極活物質に電子を供与する。
(Magnesium secondary battery)
FIG. 1 is a schematic diagram showing the configuration of the magnesium secondary battery 100. As shown in FIG. 1, the magnesium secondary battery 100 includes a positive electrode 110, a separator 120, and a negative electrode 130. The positive electrode 110 includes a positive electrode current collector (not shown) and a positive electrode active material 115. The positive electrode current collector constitutes a positive electrode together with the positive electrode active material, and donates electrons to the positive electrode active material during discharge.

セパレータ120は、正極110と負極130とを隔離し、かつ電解液125を保持して正極110と負極130との間のイオン伝導性を維持する。セパレータ120は、保液能力を有しており、電解液125を保持している。電解液125は、陽イオンを含んでいる。電解液中で酸化還元反応が進むことにより充放電可能となっている。陽イオンには、マグネシウムイオンが用いられる。負極130は、放電時に酸化反応を生じさせる。負極130には、マグネシウムが用いられる。   The separator 120 separates the positive electrode 110 and the negative electrode 130 and holds the electrolytic solution 125 to maintain ionic conductivity between the positive electrode 110 and the negative electrode 130. The separator 120 has a liquid holding ability and holds the electrolytic solution 125. The electrolytic solution 125 contains cations. Charging / discharging is possible as the oxidation-reduction reaction proceeds in the electrolytic solution. As the cation, magnesium ion is used. The negative electrode 130 causes an oxidation reaction during discharge. Magnesium is used for the negative electrode 130.

(電解液)
マグネシウム二次電池用の電解液125は、エステル系電解液に縮合りん酸を添加した溶液である。縮合りん酸は、PC溶液等のエステル系電解液に溶解し、Mgイオンと錯体を形成する。縮合りん酸は、負極表面1×10−4に対するP(五酸化二りん)の割合が1mmol以上3mmol以下の濃度で添加されていることが好ましい。これにより、Mgイオンの透過できる被膜を形成して過電圧を防止し、充放電のサイクル性を向上させることができる。
(Electrolyte)
The electrolyte solution 125 for a magnesium secondary battery is a solution obtained by adding condensed phosphoric acid to an ester electrolyte solution. The condensed phosphoric acid dissolves in an ester electrolyte such as a PC solution, and forms a complex with Mg ions. The condensed phosphoric acid is preferably added at a concentration of 1 mmol to 3 mmol of P 2 O 5 (diphosphorus pentoxide) with respect to the negative electrode surface 1 × 10 −4 m 2 . Thereby, the film which can permeate | transmit Mg ion can be formed, an overvoltage can be prevented, and the cycling property of charging / discharging can be improved.

エステル系電解液としては、プロピレンカーボネート電解液(PC溶液)を用いることが好ましい。これにより、縮合りん酸はプロピレンカーボネート電解液に溶解し、Mgイオンと錯体を形成する。   As the ester electrolyte, a propylene carbonate electrolyte (PC solution) is preferably used. Thereby, the condensed phosphoric acid dissolves in the propylene carbonate electrolyte and forms a complex with Mg ions.

この錯体が、Mg金属表面の不動態被膜生成を抑制し、充放電を可能にする。すなわち、Mg負極表面にMg−P錯体(縮合りん酸錯体)に起因する被膜が生成され、この被膜がMgイオンを透過可能であることにより、マグネシウム二次電池の充放電が可能になると考えられる。この被膜は、Mgイオンを通さない不動態膜とは別の被膜である。また、プロピレンカーボネート電解液は沸点が240℃であり、実用に適した温度範囲をカバーできる。 This complex suppresses the formation of a passive film on the Mg metal surface and enables charge and discharge. That is, a film resulting from the Mg—P 2 O 5 complex (condensed phosphate complex) is formed on the surface of the Mg negative electrode, and this film can permeate Mg ions, thereby enabling charging and discharging of the magnesium secondary battery. It is considered to be. This film is a film different from the passive film that does not allow Mg ions to pass through. The propylene carbonate electrolyte has a boiling point of 240 ° C. and can cover a temperature range suitable for practical use.

図2(a)〜(c)は、Mg負極130の断面を示す模式図である。図2(a)〜(c)に示す構造上の相違からMg負極面積とPの量との関係がマグネシウム二次電池100の電極特性に影響する。Mg負極面積に対してPの量が少ない場合には、図2(a)に示すようにMg負極130の表面に不動態膜Pが生じ、充放電が困難である。 2A to 2C are schematic views illustrating a cross section of the Mg negative electrode 130. FIG. 2A to 2C, the relationship between the Mg negative electrode area and the amount of P 2 O 5 affects the electrode characteristics of the magnesium secondary battery 100. When the amount of P 2 O 5 is small with respect to the area of the Mg negative electrode, a passive film P is formed on the surface of the Mg negative electrode 130 as shown in FIG.

一方、Mg負極面積に対してPの量が増加すると、充放電が可能になる。これは、図2(b)に示すようにMg負極130の表面にMg−P錯体に起因する被膜131が生成し、この被膜131がMgイオンを透過させることができるためと考えられる。 On the other hand, when the amount of P 2 O 5 is increased with respect to the Mg negative electrode area, charging / discharging becomes possible. This is presumably because a coating 131 caused by the Mg—P 2 O 5 complex is formed on the surface of the Mg negative electrode 130 as shown in FIG. 2B, and this coating 131 can transmit Mg ions. .

の量がMg金属面積に対して大きくなりすぎると、図2(c)に示すようにMg−P錯体に起因する被膜131が厚くなる。こうなると、Mgイオン透過(析出)の抵抗が大きくなることで過電圧が大きくなり、サイクル特性が劣化する。 When the amount of P 2 O 5 becomes too large with respect to the Mg metal area, the coating 131 resulting from the Mg—P 2 O 5 complex becomes thick as shown in FIG. In this case, the resistance to Mg ion permeation (deposition) increases, so that the overvoltage increases and the cycle characteristics deteriorate.

(マグネシウム二次電池の製造方法)
次に、マグネシウム二次電池100の製造方法を説明する。まず、電解液125を作製する。電解液125の作製では、PC等のエステル系溶液にPを添加し、加熱して溶解する。さらに、この溶液にMgエステル溶液(Mg(ClO/PC)を添加し加熱して作製する。そして、正極活物質115を正極集電体に接触させて正極110を作製する。このようにして得られたMg負極130および電解液125を用いてマグネシウム二次電池100を作製することができる。
(Manufacturing method of magnesium secondary battery)
Next, a method for manufacturing the magnesium secondary battery 100 will be described. First, the electrolytic solution 125 is prepared. In the production of the electrolytic solution 125, P 2 O 5 is added to an ester-based solution such as PC and dissolved by heating. Further, an Mg ester solution (Mg (ClO 4 ) 2 / PC) is added to this solution and heated. Then, the positive electrode active material 115 is brought into contact with the positive electrode current collector to produce the positive electrode 110. The magnesium secondary battery 100 can be manufactured using the Mg negative electrode 130 and the electrolytic solution 125 thus obtained.

Mg塩を含むエステル溶液を一定にし、P濃度および負極1×10−4当たりのPの割合を変えて電解液を作製した。図3は、電解液の各成分の濃度を示す表である。図3に示すように、P濃度は、0〜0.4Mの範囲で変えた。負極1×10−4当たりのPの割合は、0〜3mmolの範囲で変えた。 The ester solution containing Mg salt constant, to prepare an electrolyte solution by changing the ratio of P 2 O 5 concentration and the anode 1 × 10 -4 m 2 per P 2 O 5. FIG. 3 is a table showing the concentration of each component of the electrolytic solution. As shown in FIG. 3, the P 2 O 5 concentration was varied in the range of 0 to 0.4M. The ratio of P 2 O 5 per negative electrode 1 × 10 −4 m 2 was changed in the range of 0 to 3 mmol.

図4(a)〜(c)図5(d)、(e)は、各P添加量に対するMg負極の充放電曲線を示すグラフである。図4(a)〜(c)図5(d)、(e)に示すグラフは、それぞれ比較例、実施例1〜4の充放電曲線に対応しており、各図には、サイクルの回数を表示している。参照電極もMgを使用しているので、各図では原則として0Vより高い曲線が放電曲線、0Vよりも低い曲線が充電曲線を示している。MgからMgが溶解し、MgにMgが析出するため、負極自体は化学的には変化しない。よって、充放電とも0Vが理想である。充電放電とも電圧が0Vから大きく離れると過電圧が大きくなり、電池として性能が低下すること(劣化)を意味する。 FIGS. 4A to 4C are graphs showing charge / discharge curves of the Mg negative electrode with respect to each P 2 O 5 addition amount. 4 (a) to (c) The graphs shown in FIGS. 5 (d) and 5 (e) correspond to the charge / discharge curves of Comparative Example and Examples 1 to 4, respectively. Is displayed. Since the reference electrode also uses Mg, in each figure, in principle, a curve higher than 0V indicates a discharge curve, and a curve lower than 0V indicates a charge curve. Since Mg is dissolved from Mg and Mg is precipitated in Mg, the anode itself does not change chemically. Therefore, 0V is ideal for both charging and discharging. In both charging and discharging, when the voltage is far from 0V, the overvoltage increases, which means that the performance of the battery decreases (deteriorates).

図4(a)に示すように、比較例(P無添加)では、充電時の過電圧が増大し、2サイクル目以降、充放電を行うことはできなかった。実施例1(負極1×10−4に対するPの割合が1mmol)では、サイクルとともに過電圧が増大し、サイクル劣化した。実施例2(負極1×10−4に対するPの割合が1.5mmol)、実施例3(負極1×10−4に対するPの割合が2mmol)では、過電圧の極端な増大が起こらず、サイクル性が向上した。 As shown in FIG. 4 (a), Comparative Example (P 2 O 5 with no additive), overvoltage during charging is increased, the second and subsequent cycles, it was not possible to perform charging and discharging. In Example 1 (the ratio of P 2 O 5 to the negative electrode 1 × 10 −4 m 2 was 1 mmol), the overvoltage increased with the cycle and the cycle deteriorated. Example 2 (ratio 1.5mmol of P 2 O 5 with respect to the anode 1 × 10 -4 m 2), Example 3 (the ratio of P 2 O 5 with respect to the anode 1 × 10 -4 m 2 is 2 mmol), overvoltage As a result, the cycle performance was improved.

実施例4(負極1×10−4に対するPの割合が3mmol)では、充放電に伴い過電圧の増大が起こり、サイクル劣化した。実施例3と実施例4とを比較すると、Mg金属面積に対してP量が大きすぎるとサイクル劣化することが分かる。これは、Mg負極表面の被膜が厚くなることでMgイオン透過(析出)の抵抗が大きくなり、過電圧が大きくなったためと考えられる。なお、実施例4の負極を取り出すと、被膜の生成が認められ、この被膜を除去して実験を続行すると、充電過電圧が低下した。このような検証からも、Mg負極に対するPの割合が高いと、Mgイオンを透過させる被膜が厚くなり、充電したとき過電圧が増大すると考えられる。 In Example 4 (the ratio of P 2 O 5 to the negative electrode 1 × 10 −4 m 2 was 3 mmol), the overvoltage increased with charge / discharge, and the cycle deteriorated. Comparing Example 3 and Example 4, it can be seen that if the amount of P 2 O 5 is too large relative to the Mg metal area, cycle deterioration will occur. This is presumably because the Mg ion permeation (precipitation) resistance increased and the overvoltage increased due to the thick coating on the surface of the Mg negative electrode. In addition, when the negative electrode of Example 4 was taken out, the production | generation of the coating film was recognized, and when this coating film was removed and experiment was continued, the charge overvoltage fell. Also from such verification, it is considered that when the ratio of P 2 O 5 to the Mg negative electrode is high, the coating film that allows Mg ions to pass therethrough becomes thick and the overvoltage increases when charged.

図6(a)、(b)は、Mg負極のサイクリックボルタモグラムを示すグラフである。図7(a)、(b)は、SB−V正極のサイクリックボルタモグラムを示すグラフである。いずれも1サイクル目のグラフを示している。負極の電流密度は、P添加により増大、特に還元電流が増大した。正極の電流密度は負極に比べ大きく、P添加により変わらなかった。この結果は、Pの添加によって充電が可能になることを示している。負極の自然電位はP添加により低下した。正極の自然電位は大きな変化はなかった。この結果は電池電圧が向上することを示唆している。 FIGS. 6A and 6B are graphs showing cyclic voltammograms of the Mg negative electrode. FIGS. 7A and 7B are graphs showing cyclic voltammograms of the SB-V 2 O 5 positive electrode. Both show the graphs of the first cycle. The current density of the negative electrode increased with the addition of P 2 O 5 , particularly the reduction current. The current density of the positive electrode was larger than that of the negative electrode and was not changed by the addition of P 2 O 5 . This result shows that charging is possible by addition of P 2 O 5 . The natural potential of the negative electrode decreased with the addition of P 2 O 5 . The natural potential of the positive electrode did not change greatly. This result suggests that the battery voltage is improved.

このように、Mg負極面積に対するPの量を好適な範囲に維持したエステル系電解液を用いることで、(特に充電側において)電流密度が増大し、自然電位が低下することが分かった。 Thus, it was found that the use of an ester electrolyte that maintained the amount of P 2 O 5 with respect to the Mg negative electrode area within a suitable range increased the current density (especially on the charging side) and decreased the natural potential. It was.

なお、Mg−錯体が存在しないと、Mgイオンを透過させる被膜が生成せず、充放電過電圧が大きくなる。したがって、電解液中のMgイオンの濃度が高く、充放電に関与するイオンが多い方が、充放電過電圧は低下し電池性能が向上する。ただし、これは一般的な事実であり、電池性能については電解液中のMgイオンとP量との相関よりもMg負極面積とP量との相関が高い。 In addition, when there is no Mg-complex, a film that allows Mg ions to pass through is not generated, and the charge / discharge overvoltage increases. Therefore, when the concentration of Mg ions in the electrolytic solution is high and there are more ions involved in charge / discharge, the charge / discharge overvoltage is reduced and the battery performance is improved. However, this is a common fact for cell performance high correlation with Mg anode area and P 2 O 5 content than the correlation between the Mg ion and the P 2 O 5 content in the electrolyte.

100 マグネシウム二次電池
110 正極
115 正極活物質
120 セパレータ
125 電解液
130 負極
131 Mg−P錯体(縮合りん酸錯体)に起因する被膜
P 不動態膜
100 Magnesium Secondary Battery 110 Positive Electrode 115 Positive Electrode Active Material 120 Separator 125 Electrolyte 130 Negative Electrode 131 Film P Due to Mg—P 2 O 5 Complex (Condensed Phosphate Complex) Passive Film

Claims (6)

縮合りん酸が添加されたエステル系電解液からなることを特徴とするマグネシウム二次電池用の電解液。   An electrolytic solution for a magnesium secondary battery, comprising an ester electrolytic solution to which condensed phosphoric acid is added. 前記縮合りん酸は、負極表面1×10−4に対するPの割合が1mmol以上3mmol以下の濃度で添加されていることを特徴とする請求項1記載のマグネシウム二次電池用の電解液。 2. The magnesium secondary battery according to claim 1, wherein the condensed phosphoric acid is added at a concentration of 1 mmol to 3 mmol of P 2 O 5 with respect to 1 × 10 −4 m 2 of the negative electrode surface. Electrolytic solution. 前記エステル系電解液としてプロピレンカーボネート電解液からなることを特徴とする請求項1または請求項2記載のマグネシウム二次電池用の電解液。   3. The electrolytic solution for a magnesium secondary battery according to claim 1, wherein the ester electrolytic solution is a propylene carbonate electrolytic solution. 請求項1から請求項3のいずれかに記載の電解液を電解液として有することを特徴とするマグネシウム二次電池。   A magnesium secondary battery comprising the electrolytic solution according to any one of claims 1 to 3 as an electrolytic solution. マグネシウム負極の表面にMg−縮合りん酸錯体に起因する被膜を更に有することを特徴とする請求項4記載のマグネシウム二次電池。   5. The magnesium secondary battery according to claim 4, further comprising a film derived from the Mg-condensed phosphate complex on the surface of the magnesium negative electrode. マグネシウム二次電池用の電解液の製造方法であって、
五酸化二りんをエステル系溶液に添加して加熱するステップと、
前記エステル系溶液に、Mg塩を含むエステル溶液を添加して加熱するステップと、を含むことを特徴とする電解液の製造方法。
A method for producing an electrolytic solution for a magnesium secondary battery,
Adding diphosphorus pentoxide to the ester solution and heating;
Adding an ester solution containing an Mg salt to the ester-based solution and heating the solution.
JP2011007251A 2011-01-17 2011-01-17 Electrolyte for magnesium secondary battery, magnesium secondary battery and method for producing electrolyte Expired - Fee Related JP5617131B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011007251A JP5617131B2 (en) 2011-01-17 2011-01-17 Electrolyte for magnesium secondary battery, magnesium secondary battery and method for producing electrolyte

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011007251A JP5617131B2 (en) 2011-01-17 2011-01-17 Electrolyte for magnesium secondary battery, magnesium secondary battery and method for producing electrolyte

Publications (2)

Publication Number Publication Date
JP2012150924A true JP2012150924A (en) 2012-08-09
JP5617131B2 JP5617131B2 (en) 2014-11-05

Family

ID=46793026

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011007251A Expired - Fee Related JP5617131B2 (en) 2011-01-17 2011-01-17 Electrolyte for magnesium secondary battery, magnesium secondary battery and method for producing electrolyte

Country Status (1)

Country Link
JP (1) JP5617131B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014207092A (en) * 2013-04-11 2014-10-30 株式会社Gsユアサ Nonaqueous electrolyte secondary battery
US9231278B2 (en) 2013-02-28 2016-01-05 National University Corporation Nagoya Institute Of Technology Electrolyte solution for magnesium battery and magnesium battery containing this electrolyte solution
US9722288B2 (en) 2011-08-30 2017-08-01 Nagoya Institute Of Technology Liquid electrolyte for batteries, method for producing the same, and battery comprising the same
JP7452780B2 (en) 2020-12-07 2024-03-19 エルジー エナジー ソリューション リミテッド Battery diagnostic device and method

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001009972A1 (en) * 1999-07-29 2001-02-08 Universita' Degli Studi Di Padova Magnesium-based primary (non-rechargeable) and secondary (rechargeable) batteries

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001009972A1 (en) * 1999-07-29 2001-02-08 Universita' Degli Studi Di Padova Magnesium-based primary (non-rechargeable) and secondary (rechargeable) batteries

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9722288B2 (en) 2011-08-30 2017-08-01 Nagoya Institute Of Technology Liquid electrolyte for batteries, method for producing the same, and battery comprising the same
US9231278B2 (en) 2013-02-28 2016-01-05 National University Corporation Nagoya Institute Of Technology Electrolyte solution for magnesium battery and magnesium battery containing this electrolyte solution
JP2014207092A (en) * 2013-04-11 2014-10-30 株式会社Gsユアサ Nonaqueous electrolyte secondary battery
JP7452780B2 (en) 2020-12-07 2024-03-19 エルジー エナジー ソリューション リミテッド Battery diagnostic device and method

Also Published As

Publication number Publication date
JP5617131B2 (en) 2014-11-05

Similar Documents

Publication Publication Date Title
Li et al. Dendrites issues and advances in Zn anode for aqueous rechargeable Zn‐based batteries
Yang et al. Regulating water activity for rechargeable zinc-ion batteries: progress and perspective
Olbasa et al. High-rate and long-cycle stability with a dendrite-free zinc anode in an aqueous Zn-ion battery using concentrated electrolytes
Yin et al. Electrochemical zinc ion capacitors: fundamentals, materials, and systems
Chen et al. Ultrastable and high-performance Zn/VO2 battery based on a reversible single-phase reaction
US20220376235A1 (en) Composite Negative Electrode Material and Method for Preparing Composite Negative Electrode Material, Negative Electrode Plate of Lithium Ion Secondary Battery, and Lithium Ion Secondary Battery
Hasa et al. Characteristics of an ionic liquid electrolyte for sodium-ion batteries
Markevich et al. Very stable lithium metal stripping–plating at a high rate and high areal capacity in fluoroethylene carbonate-based organic electrolyte solution
Ferrari et al. Solid‐state post Li metal ion batteries: a sustainable forthcoming reality?
Alias et al. Advances of aqueous rechargeable lithium-ion battery: A review
Yu et al. High‐voltage rechargeable aqueous zinc‐based batteries: latest progress and future perspectives
Chen et al. Upgrading electrode/electrolyte interphases via polyamide-based quasi-solid electrolyte for long-life nickel-rich lithium metal batteries
JP6143945B2 (en) Zinc ion secondary battery and manufacturing method thereof
Li et al. In Situ Ag Nanoparticles Reinforced Pseudo‐Zn–Air Reaction Boosting Ag2V4O11 as High‐Performance Cathode Material for Aqueous Zinc‐Ion Batteries
You et al. N, N-dimethylformamide electrolyte additive via a blocking strategy enables high-performance lithium-ion battery under high temperature
Wu et al. High-energy density Li metal dual-ion battery with a lithium nitrate-modified carbonate-based electrolyte
CN103187562B (en) The method of a kind of dual interface coated solution lithium titanate cathode of lithium ion battery flatulence
US9531002B2 (en) Transition metal cyanometallate cathode battery with metal plating anode
Pan et al. High‐performance MnO2/Al battery with in situ electrochemically reformed AlxMnO2 nanosphere cathode
Jin et al. Nonflammable, low-cost, and fluorine-free solvent for liquid electrolyte of rechargeable lithium metal batteries
Tu et al. Terthiophene as electrolyte additive for stabilizing lithium nickel manganese oxide cathode for high energy density lithium-ion batteries
JP2008235260A (en) Secondary battery
Wang et al. A synergistic strategy of organic molecules introduced a high Zn2+ flux solid electrolyte interphase for stable aqueous zinc-ion batteries
Ji et al. A perspective: the technical barriers of Zn metal batteries
JP5617131B2 (en) Electrolyte for magnesium secondary battery, magnesium secondary battery and method for producing electrolyte

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20131220

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140416

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140422

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140618

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140819

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140828

R150 Certificate of patent or registration of utility model

Ref document number: 5617131

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees