JP2012150902A - Protection circuit of secondary battery - Google Patents
Protection circuit of secondary battery Download PDFInfo
- Publication number
- JP2012150902A JP2012150902A JP2011006793A JP2011006793A JP2012150902A JP 2012150902 A JP2012150902 A JP 2012150902A JP 2011006793 A JP2011006793 A JP 2011006793A JP 2011006793 A JP2011006793 A JP 2011006793A JP 2012150902 A JP2012150902 A JP 2012150902A
- Authority
- JP
- Japan
- Prior art keywords
- battery
- fuse
- unit
- secondary battery
- series
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000010586 diagram Methods 0.000 description 5
- 229910001416 lithium ion Inorganic materials 0.000 description 4
- HBBGRARXTFLTSG-UHFFFAOYSA-N Lithium ion Chemical compound [Li+] HBBGRARXTFLTSG-UHFFFAOYSA-N 0.000 description 3
- 238000000034 method Methods 0.000 description 2
- 230000005856 abnormality Effects 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 239000011162 core material Substances 0.000 description 1
- 230000002950 deficient Effects 0.000 description 1
- 238000007599 discharging Methods 0.000 description 1
- 230000017525 heat dissipation Effects 0.000 description 1
- 230000020169 heat generation Effects 0.000 description 1
- 150000002500 ions Chemical class 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 229910052987 metal hydride Inorganic materials 0.000 description 1
- 238000012544 monitoring process Methods 0.000 description 1
- 229910052759 nickel Inorganic materials 0.000 description 1
- PXHVJJICTQNCMI-UHFFFAOYSA-N nickel Substances [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 1
- -1 nickel metal hydride Chemical class 0.000 description 1
- 230000002265 prevention Effects 0.000 description 1
- 238000010791 quenching Methods 0.000 description 1
- 230000000171 quenching effect Effects 0.000 description 1
Images
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
Landscapes
- Secondary Cells (AREA)
- Battery Mounting, Suspending (AREA)
Abstract
Description
本発明は、複数の単位電池(ユニットセル)を並列に接続して組電池を構成し、この組電池を複数段直列に接続して高電圧・高電流を発生する、充放電が可能な二次電池(バッテリ)に係り、特に上記単位電池に短絡が生じた場合の保護回路に関する。 In the present invention, a plurality of unit batteries (unit cells) are connected in parallel to form an assembled battery, and the assembled batteries are connected in a plurality of stages in series to generate a high voltage and a high current. The present invention relates to a secondary battery (battery), and particularly to a protection circuit when a short circuit occurs in the unit battery.
ハイブリッド車(HEV)や電気自動車(EV)等の電力駆動エネルギー源として、リチウムイオン電池やニッケル水素電池等が用いられている。これらの単位電池は出力電圧が低く且つ電流容量も小さいため、複数の単位電池を並列に接続して組電池を構成し、この組電池を複数段直列に接続する回路構成や、複数の単位電池を直列接続して組電池を構成し、この組電池を複数列並列に接続する回路構成などからなる二次電池が用いられている。 Lithium ion batteries, nickel metal hydride batteries, and the like are used as power drive energy sources for hybrid vehicles (HEV) and electric vehicles (EV). Since these unit batteries have a low output voltage and a small current capacity, a plurality of unit batteries are connected in parallel to form an assembled battery, and this assembled battery is connected in a plurality of stages in series, or a plurality of unit batteries. Are connected in series to form an assembled battery, and a secondary battery having a circuit configuration in which the assembled batteries are connected in parallel in a plurality of rows is used.
係る二次電池においては、過充電・過放電、負荷短絡、電池内部短絡等への対策が必要である。このため、二次電池の回路全体としての電圧モニタリングを行い、充放電を調整する調整回路や、異常時に対する保護回路を付加している。また、例えば直列接続された単位電池の逆充電状態や過充電状態を検出し、これらを回避する技術が提案されている(特許文献1参照)。 In such secondary batteries, measures against overcharge / overdischarge, load short circuit, battery internal short circuit, and the like are necessary. For this reason, the voltage monitoring as the whole circuit of a secondary battery is performed, and the adjustment circuit which adjusts charging / discharging, and the protection circuit with respect to the time of abnormality are added. Further, for example, a technique for detecting a reverse charge state or an overcharge state of unit batteries connected in series and avoiding them has been proposed (see Patent Document 1).
しかしながら、上記技術は負荷を含む二次電池の回路全体としての保護を行うものであるものの、単位電池を並列に接続して組電池のいずれかに内部短絡が生じた場合に、短絡が生じた単位電池のみを安全に回路系から切り離すことができない。 However, although the above technique protects the entire circuit of the secondary battery including the load, when the unit battery is connected in parallel and an internal short circuit occurs in one of the assembled batteries, a short circuit occurs. Only the unit battery cannot be safely separated from the circuit system.
本発明は、上述の事情に基づいてなされたもので、複数の単位電池を並列に接続して組電池を構成し、この組電池を複数段直列に接続した二次電池において、組電池のいずれかの単位電池に内部短絡が生じた場合に、短絡が生じた単位電池のみを安全に回路系から切り離し、損傷の拡大を防止することができる二次電池の保護回路を提供することを目的とする。 The present invention has been made based on the above-described circumstances. A secondary battery in which a plurality of unit batteries are connected in parallel to form an assembled battery, and the assembled battery is connected in a plurality of stages in series. It is an object of the present invention to provide a secondary battery protection circuit capable of safely separating only a unit battery in which a short circuit has occurred from a circuit system and preventing an increase in damage when an internal short circuit occurs in the unit battery. To do.
本発明の二次電池の保護回路は、複数の単位電池を並列に接続して組電池を構成し、前記単位電池にそれぞれヒューズを直列に接続し、該ヒューズに並列にダイオードを、前記単位電池陽極側にアノードを、反対側にカソードを接続したことを特徴とする。そして、複数の前記組電池を直列に接続して二次電池を構成する。 The secondary battery protection circuit of the present invention comprises a plurality of unit cells connected in parallel to form an assembled battery, each unit battery connected in series with a fuse, a diode connected in parallel to the fuse, and the unit battery An anode is connected to the anode side, and a cathode is connected to the opposite side. A plurality of the assembled batteries are connected in series to form a secondary battery.
これにより、単位電池の内部短絡に対して、該単位電池に直列接続したヒューズが溶断し、該単位電池を回路系から分離することで、損傷の拡大を防止することができる。そして、組電池を構成する各単位電池に直列にダイオードを備えることで、ダイオード両端間の電圧をその順方向電圧にクランプすることができ、溶断時のヒューズに二次電池の高電圧を印加させることなく安全に不具合単位電池を分離することができる。従って、低電圧型のヒューズの使用が可能となり、安全で安価な保護回路を形成できる。 Thereby, with respect to the internal short circuit of the unit battery, the fuse connected in series with the unit battery is blown, and the unit battery is separated from the circuit system, thereby preventing the damage from being expanded. And by providing a diode in series with each unit battery constituting the assembled battery, the voltage across the diode can be clamped to the forward voltage, and the high voltage of the secondary battery is applied to the fuse at the time of fusing The defective unit battery can be safely separated without any trouble. Therefore, it is possible to use a low-voltage type fuse, and a safe and inexpensive protection circuit can be formed.
以下、本発明の実施形態について、図1乃至図6を参照して説明する。なお、各図中、同一または相当する部材または要素には、同一の符号を付して説明する。 Hereinafter, embodiments of the present invention will be described with reference to FIGS. 1 to 6. In addition, in each figure, the same code | symbol is attached | subjected and demonstrated to the same or equivalent member or element.
図1は本発明の一実施例の二次電池を示し、図2はその1組の組電池を示す。本発明の二次電池Uを構成する1組の組電池は、単位電池E1,E2,・・・Enを並列に接続し、各単位電池Eに直列にヒューズF1,F2,・・・Fnを接続し、各ヒューズにダイオードD1,D2,・・・Dnをそれぞれ並列に接続している。それぞれのダイオードは単位電池の陽極側にアノードをその反対側にカソードをそれぞれ接続している。 FIG. 1 shows a secondary battery according to an embodiment of the present invention, and FIG. 2 shows a set of the assembled batteries. A set of assembled batteries constituting the secondary battery U of the present invention has unit batteries E1, E2,... En connected in parallel, and fuses F1, F2,. The diodes D1, D2,... Dn are connected in parallel to the fuses. Each diode has an anode connected to the anode side of the unit cell and a cathode connected to the opposite side.
二次電池Uは複数の上記組電池を直列に接続して構成している。各組電池の出力はLiイオン電池の場合、3.7V程度であるが、数十段〜百数十段直列に積み上げて接続することで、自動車の駆動に必要な数百Vの高電圧を供給できる。二次電池Uには、負荷Rが接続され、該負荷Rに直列にメインヒューズF0が接続されている。 The secondary battery U is configured by connecting a plurality of the above assembled batteries in series. The output of each assembled battery is about 3.7 V in the case of a Li-ion battery, but by connecting several tens of stages to hundreds of tens of stages in series, a high voltage of several hundred V required for driving an automobile can be obtained. Can supply. A load R is connected to the secondary battery U, and a main fuse F0 is connected to the load R in series.
リチウムイオン二次電池は、電池の製造時に電池内部に導電性の異物が混入することによるもの、電池が変形することによるもの等が原因となって内部短絡が生じるという問題がある。また、内部短絡時の発熱により陽極−陰極間のセパレータが熱変形し、イオンが通る穴を塞ぐ為、抵抗値が増加し短絡電流を抑える場合があるが、その後再度短絡する可能性がある。このため、他の単位電池に短絡電流が波及しないように、ヒューズを配置することが有効である。 Lithium ion secondary batteries have a problem that an internal short circuit occurs due to a conductive foreign matter mixed in the battery during manufacture of the battery or a deformation of the battery. In addition, the anode-cathode separator is thermally deformed due to heat generation during an internal short circuit, and the hole through which ions pass is blocked, which may increase the resistance value and suppress the short-circuit current, but may subsequently short-circuit again. For this reason, it is effective to arrange a fuse so that the short-circuit current does not spread to other unit batteries.
各単位電池が正常に動作している場合には、組電池の内部で各単位電池の起電力が同じとすると、各単位電池には均等に負荷電流が流れる。しかしながら、組電池を構成する或る単位電池E1に内部短絡が生じると、その単位電池E1に他の単位電池E2,・・・Enから電流が流入し、ヒューズF1の許容容量を超えるとヒューズF1は溶断する。 When each unit battery is operating normally, a load current flows evenly through each unit battery, assuming that the electromotive force of each unit battery is the same within the assembled battery. However, when an internal short circuit occurs in a certain unit battery E1 constituting the assembled battery, current flows into the unit battery E1 from the other unit batteries E2,... En, and if the allowable capacity of the fuse F1 is exceeded, the fuse F1. Blows out.
図3はこの場合の組電池の動作を示す。すなわち、単位電池E1が内部短絡を起こし、ヒューズF1が溶断してオープンとなった場合には、単位電池E1の起電力は単位電池E2〜Enの起電力よりも高くなることはない。そして、ヒューズF2〜Fnは溶断していないので、ヒューズF1のダイオードカソード側の電位はアノード側の電位より高くなり、逆バイアスとなりダイオードD1は導通しない。 FIG. 3 shows the operation of the assembled battery in this case. That is, when the unit battery E1 causes an internal short circuit and the fuse F1 is melted and opened, the electromotive force of the unit battery E1 does not become higher than the electromotive forces of the unit batteries E2 to En. Since the fuses F2 to Fn are not blown, the potential on the diode cathode side of the fuse F1 becomes higher than the potential on the anode side, and the reverse bias is applied, so that the diode D1 does not conduct.
従って、内部短絡を生じた単位電池E1はダイオードD1を介して組電池に接続されているが、ダイオードD1が逆バイアスとなり、実質的に組電池から切り離される。そして、他の単位電池E2〜Enにおいては、短絡電流の供給が停止するので、過電流による損傷の拡大を防止することができる。この際、負荷電流Ioは実質的に正常動作の単位電池E2〜Enに分担される。 Accordingly, the unit battery E1 that has caused the internal short circuit is connected to the assembled battery via the diode D1, but the diode D1 is reverse-biased and is substantially disconnected from the assembled battery. In the other unit cells E2 to En, the supply of the short-circuit current is stopped, so that the spread of damage due to overcurrent can be prevented. At this time, the load current Io is substantially shared by the unit batteries E2 to En operating normally.
図4はヒューズF1〜Fnが同時もしくは最終的に全て溶断した場合の動作を示す。ダイオードD1〜Dnが存在しない場合には、すなわち、単にヒューズのみを単位電池に直列接続した場合には、最後に溶断するヒューズの両端に二次電池全体の高電圧が印加される。このため、ヒューズの破裂や続流が発生する可能性があり、高電圧定格の面実装型でない大型ヒューズを用いなければならず、二次電池モジュールが大型化し面実装化が困難であるという問題が存在した。 FIG. 4 shows the operation when the fuses F1 to Fn are all blown simultaneously or finally. When the diodes D1 to Dn are not present, that is, when only the fuse is simply connected in series to the unit battery, the high voltage of the entire secondary battery is applied to both ends of the fuse that is blown last. For this reason, there is a possibility that the fuse may burst or follow, and a large fuse that is not a surface mount type with a high voltage rating must be used, and the secondary battery module becomes large and difficult to be surface mounted. Existed.
しかし、ダイオードD1〜DnをそれぞれヒューズF1〜Fnに並列に接続することにより、ヒューズF1〜Fnが同時もしくは最終的に全て溶断する場合にも、ヒューズ端子間の電圧はダイオードD1〜Dnの順方向電圧Vfにクランプされる。従って、ヒューズF1〜Fnが同時もしくは最終的に全て溶断する場合にも、上述のような破損状態にはならず、低電圧定格の小型面実装ヒューズが使用可能となる。なお、ヒューズが全て溶断した後も、組電池部分は単位電池E2〜EnがダイオードD2〜Dnを介して二次電池回路に接続されているので、全体のエネルギー供給能力が完全に停止しないため、負荷を暫定的に稼動させることが可能である。なお、単位電池E1は、内部短絡によって起電力が低下し、ダイオードD1が逆バイアスとなって不導通となるため、負荷に対するエネルギー供給経路から分離される。 However, by connecting the diodes D1 to Dn in parallel to the fuses F1 to Fn, even when all of the fuses F1 to Fn are blown simultaneously or finally, the voltage between the fuse terminals is the forward direction of the diodes D1 to Dn. Clamped to voltage Vf. Therefore, even when all of the fuses F1 to Fn are melted simultaneously or finally, the above-described damage state is not caused, and a small surface mount fuse having a low voltage rating can be used. In addition, even after all the fuses are blown out, the unit battery E2 to En is connected to the secondary battery circuit via the diodes D2 to Dn in the assembled battery part, so the overall energy supply capacity does not stop completely, It is possible to operate the load temporarily. The unit battery E1 is separated from the energy supply path to the load because the electromotive force is reduced due to an internal short circuit and the diode D1 is reverse biased and becomes non-conductive.
ここで、ダイオードD1〜Dnはヒューズ溶断後の短絡電流の流入防止および最後のヒューズ溶断時に順方向電圧Vfにクランプすること等に用いられるので、小容量のもので十分である。また、順方向電圧Vfのなるべく小さいものを用いることが好ましい。 Here, the diodes D1 to Dn are used for prevention of inflow of a short-circuit current after the fuse is blown and clamping to the forward voltage Vf when the last fuse is blown. In addition, it is preferable to use a voltage having a forward voltage Vf as small as possible.
図1に示すように、二次電池UにはメインヒューズF0を備え、負荷Rが短絡した場合、メインヒューズF0が先に溶断するようにしている。これはヒューズF1〜Fnの合成の溶断特性をメインヒューズF0の溶断特性よりも遅くすることにより、実現可能である。これにより、ヒューズ溶断後の二次電池Uの全体電圧がメインヒューズF0に掛かるようになり、組電池に備えたダイオードD1・・・Dnの有無に関わらず、ヒューズF1〜Fnは低電圧定格のヒューズを用いることができる。 As shown in FIG. 1, the secondary battery U includes a main fuse F0, and when the load R is short-circuited, the main fuse F0 is blown first. This can be realized by making the combined fusing characteristics of the fuses F1 to Fn slower than the fusing characteristics of the main fuse F0. As a result, the entire voltage of the secondary battery U after the fuse is blown is applied to the main fuse F0, and the fuses F1 to Fn have a low voltage rating regardless of the presence or absence of the diodes D1. A fuse can be used.
一般に電力ヒューズは、ヒューズエレメント部分の太さ、長さ、材料によってヒューズエレメントが溶断する電流の大きさが規定され、またヒューズエレメントと接触させる芯材や消孤剤などによって放熱性を調整することで、溶断に至るまでの時間を調整することができる。これらによって規定される溶断特性から、F1,F2,・・・FnやF0として適した溶断特性を有するヒューズを選択することができる。 In general, power fuses have a fuse element with a thickness, length, and material that determines the amount of current that the fuse element blows, and adjust the heat dissipation by using a core material or a quenching agent that contacts the fuse element. Thus, the time until fusing can be adjusted. From the fusing characteristics defined by these, a fuse having fusing characteristics suitable as F1, F2,... Fn and F0 can be selected.
なお、負荷電流Ioが存在する時にいずれかの単位電池が内部短絡するなどして故障した場合には、各単位電池に流れる電流のバランスが崩れる。この場合、故障が生じた単位電池に直列接続されたヒューズが必ずしも最初に溶断するとは限らない。 In addition, when any unit battery fails due to an internal short circuit when the load current Io exists, the balance of the current flowing through each unit battery is lost. In this case, the fuse connected in series to the unit battery in which the failure has occurred does not necessarily blow out first.
図5に示す組電池において、単位電池E1に内部短絡が生じ、短絡電流Isが流れるとする。そして、組電池全体としては定格電流Ioが流れているとする。従って、短絡電流Isと定格電流Ioとは逆方向に流れ、内部短絡が生じた単位電池E1に入るヒューズF1においては両電流が打ち消し合い、その他の単位電池に入るヒューズにおいては両電流が重なって流れる。 In the assembled battery shown in FIG. 5, it is assumed that an internal short circuit occurs in the unit battery E1, and a short circuit current Is flows. Then, it is assumed that the rated current Io flows through the assembled battery as a whole. Accordingly, the short-circuit current Is and the rated current Io flow in opposite directions, and both currents cancel each other in the fuse F1 entering the unit battery E1 in which the internal short circuit occurs, and both currents overlap in fuses entering the other unit batteries. Flowing.
図6は組電池が、2並列、3並列、4並列、5並列、10並列回路である場合の短絡電流Isに対応した各単位電池に流れる電流を示し、負の傾きの直線が内部短絡が生じた単位電池E1に入るヒューズF1に流れる電流を示し、正の傾きの直線がその他の単位電池E2〜Enに入るヒューズF1〜Fnに流れる電流を示す。従って、2並列回路の場合には短絡電流が増加し、Is=Ioとなると、IF1が0であるのに対し、IF2がIoとなり、ヒューズの溶断点を定格電流の2倍(この場合、分担定格電流がIo/2となる)に設定すると、ヒューズF2が溶断する。 FIG. 6 shows the current flowing through each unit battery corresponding to the short-circuit current Is when the assembled battery is a 2-parallel, 3-parallel, 4-parallel, 5-parallel, or 10-parallel circuit. The current flowing through the fuse F1 entering the unit battery E1 is shown, and the positive slope straight line shows the current flowing through the fuses F1 through Fn entering the other unit cells E2 through En. Therefore, in the case of two parallel circuits, the short-circuit current increases. When Is = Io, IF1 is 0, whereas IF2 is Io, and the fuse fusing point is twice the rated current (in this case, sharing). When the rated current is set to Io / 2, the fuse F2 is blown.
これに対して、並列回路数が多く、例えば10並列回路である場合、短絡電流Is=0.3Ioとなると、IF1が−0.2Ioとなり(この場合、分担定格電流がIo/10となる)、ヒューズF1が溶断する。このように、並列回路数が多い場合には内部短絡が生じた単位電池のヒューズが溶断する。 On the other hand, when the number of parallel circuits is large, for example, 10 parallel circuits, IF1 becomes −0.2Io when the short-circuit current Is = 0.3Io (in this case, the shared rated current becomes Io / 10). The fuse F1 is blown. As described above, when the number of parallel circuits is large, the fuse of the unit battery in which the internal short circuit occurs is blown.
これまで本発明の一実施形態について説明したが、本発明は上述の実施形態に限定されず、その技術的思想の範囲内において種々異なる形態にて実施されてよいことは言うまでもない。 Although one embodiment of the present invention has been described so far, it is needless to say that the present invention is not limited to the above-described embodiment, and may be implemented in various forms within the scope of the technical idea.
本発明は、リチウムイオン二次電池等の単位電池を多数直並列接続して高電圧・高電流を発生する二次電池に利用可能である。 INDUSTRIAL APPLICABILITY The present invention can be used for a secondary battery that generates a high voltage and a high current by connecting a large number of unit batteries such as lithium ion secondary batteries in series and parallel.
Claims (3)
前記単位電池にそれぞれヒューズを直列に接続し、
該ヒューズに並列にダイオードを、前記単位電池陽極側にアノードを、反対側にカソードを接続したことを特徴とする二次電池の保護回路。 A plurality of unit batteries are connected in parallel to form an assembled battery,
Each unit battery is connected in series with a fuse,
A protection circuit for a secondary battery, wherein a diode is connected in parallel with the fuse, an anode is connected to the unit battery anode side, and a cathode is connected to the opposite side.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2011006793A JP5750739B2 (en) | 2011-01-17 | 2011-01-17 | Secondary battery protection circuit |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2011006793A JP5750739B2 (en) | 2011-01-17 | 2011-01-17 | Secondary battery protection circuit |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2012150902A true JP2012150902A (en) | 2012-08-09 |
JP5750739B2 JP5750739B2 (en) | 2015-07-22 |
Family
ID=46793009
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2011006793A Expired - Fee Related JP5750739B2 (en) | 2011-01-17 | 2011-01-17 | Secondary battery protection circuit |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP5750739B2 (en) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2015022959A (en) * | 2013-07-22 | 2015-02-02 | 株式会社豊田自動織機 | Battery pack |
JP2019022359A (en) * | 2017-07-19 | 2019-02-07 | トヨタ自動車株式会社 | Secondary cell system |
EP3813151A4 (en) * | 2018-06-20 | 2022-03-23 | Vehicle Energy Japan Inc. | Battery module and battery pack |
WO2022224320A1 (en) * | 2021-04-19 | 2022-10-27 | 日本電信電話株式会社 | Information processing device, fuse selection method, and program |
JP2023511029A (en) * | 2020-04-20 | 2023-03-16 | エルジー エナジー ソリューション リミテッド | Battery modules, energy storage devices, and fuse setting methods |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2004103483A (en) * | 2002-09-12 | 2004-04-02 | Solectron Japan Kk | Battery pack |
JP2005285717A (en) * | 2004-03-31 | 2005-10-13 | Matsushita Electric Ind Co Ltd | Circuit protection device |
JP2008245400A (en) * | 2007-03-27 | 2008-10-09 | Matsushita Electric Ind Co Ltd | Battery pack |
JP2010081721A (en) * | 2008-09-25 | 2010-04-08 | Toshiba Corp | Battery pack system |
JP2011243382A (en) * | 2010-05-18 | 2011-12-01 | Koa Corp | Secondary battery circuit |
-
2011
- 2011-01-17 JP JP2011006793A patent/JP5750739B2/en not_active Expired - Fee Related
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2004103483A (en) * | 2002-09-12 | 2004-04-02 | Solectron Japan Kk | Battery pack |
JP2005285717A (en) * | 2004-03-31 | 2005-10-13 | Matsushita Electric Ind Co Ltd | Circuit protection device |
JP2008245400A (en) * | 2007-03-27 | 2008-10-09 | Matsushita Electric Ind Co Ltd | Battery pack |
JP2010081721A (en) * | 2008-09-25 | 2010-04-08 | Toshiba Corp | Battery pack system |
JP2011243382A (en) * | 2010-05-18 | 2011-12-01 | Koa Corp | Secondary battery circuit |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2015022959A (en) * | 2013-07-22 | 2015-02-02 | 株式会社豊田自動織機 | Battery pack |
JP2019022359A (en) * | 2017-07-19 | 2019-02-07 | トヨタ自動車株式会社 | Secondary cell system |
EP3813151A4 (en) * | 2018-06-20 | 2022-03-23 | Vehicle Energy Japan Inc. | Battery module and battery pack |
US11749871B2 (en) | 2018-06-20 | 2023-09-05 | Vehicle Energy Japan Inc. | Battery module and battery pack |
JP2023511029A (en) * | 2020-04-20 | 2023-03-16 | エルジー エナジー ソリューション リミテッド | Battery modules, energy storage devices, and fuse setting methods |
WO2022224320A1 (en) * | 2021-04-19 | 2022-10-27 | 日本電信電話株式会社 | Information processing device, fuse selection method, and program |
Also Published As
Publication number | Publication date |
---|---|
JP5750739B2 (en) | 2015-07-22 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US9130383B2 (en) | Charging/discharging control device, battery pack, electrical equipment, and charging/discharging control method | |
JP6277057B2 (en) | Battery pack, battery system, and discharging method | |
US9768473B2 (en) | Battery pack of improved safety | |
US9761911B2 (en) | Battery pack of improved safety | |
JP2011243382A (en) | Secondary battery circuit | |
US10026948B2 (en) | Safety element for battery cell | |
US8593111B2 (en) | Assembled battery system | |
EP2741391B1 (en) | Battery pack with improved safety | |
US9478996B2 (en) | Battery cell unit comprising a battery cell and a monitoring and actuation unit for monitoring the battery cell and method for monitoring a battery cell | |
US20140285936A1 (en) | Battery management system for electric vehicle | |
JP5750739B2 (en) | Secondary battery protection circuit | |
EP2930771A1 (en) | Rechargeable battery | |
KR20160026469A (en) | battery module having bus bar integrated with low-voltage sensing module | |
US10367187B2 (en) | Storage battery including a disconnector having a fuse and an explosive with a heat bridge providing continuity of service in the event of a malfunction | |
JP6087675B2 (en) | Battery module | |
US12046930B2 (en) | Battery system | |
KR102259215B1 (en) | Protection apparatus for rechargeable battery | |
KR101776325B1 (en) | Current interrupt device for high voltage battery of vehicle | |
KR102042569B1 (en) | Protection circuit and protection circuit control method | |
EP2696398B1 (en) | Battery pack safety device | |
JP2019161702A (en) | Circuit protection device and power supply monitoring device | |
JP6772931B2 (en) | Battery pack discharge control device | |
KR20210007243A (en) | Battery module, battery rack and energy storage system comprising the battery module | |
Brandt et al. | Managing of Risk by Battery Manufacturers | |
US20240079749A1 (en) | Power source device and method for manufacturing same |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20131114 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20140925 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20141028 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20141222 |
|
RD13 | Notification of appointment of power of sub attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7433 Effective date: 20150108 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A821 Effective date: 20150108 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20150210 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20150401 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20150421 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20150427 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 5750739 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
S533 | Written request for registration of change of name |
Free format text: JAPANESE INTERMEDIATE CODE: R313533 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
LAPS | Cancellation because of no payment of annual fees |