JP2012150899A - Operating device of switching device - Google Patents

Operating device of switching device Download PDF

Info

Publication number
JP2012150899A
JP2012150899A JP2011006725A JP2011006725A JP2012150899A JP 2012150899 A JP2012150899 A JP 2012150899A JP 2011006725 A JP2011006725 A JP 2011006725A JP 2011006725 A JP2011006725 A JP 2011006725A JP 2012150899 A JP2012150899 A JP 2012150899A
Authority
JP
Japan
Prior art keywords
iron core
permanent magnet
movable
fixed
core
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2011006725A
Other languages
Japanese (ja)
Inventor
Michiharu Okuno
満晴 奥野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP2011006725A priority Critical patent/JP2012150899A/en
Publication of JP2012150899A publication Critical patent/JP2012150899A/en
Pending legal-status Critical Current

Links

Images

Abstract

PROBLEM TO BE SOLVED: To provide an inexpensive operating device having stability of quality by one drive coil with weak magnetomotive force, by obtaining suction force of a permanent magnet required during contact of a movable and stationary contacts, minimizing its mass, and stabilizing the magnetomotive force without giving inverse magnetic flux to the permanent magnet as far as possible.SOLUTION: A first movable core with a protrusion is provided on one pole face of a movable permanent magnet, and a similar second movable core is provided on the other pole face. The first and second movable cores and the permanent magnet are integrally reciprocated. A first stationary core part is made to face the first movable core, a second stationary core part is made to face the protrusion of the second movable core in the same direction as the facing direction of the first stationary core part, and a third stationary iron core part is made to face the protrusion of the first movable iron core in a direction opposite to the above direction. At a contact position in a switching device, the sum total of the ratios of gaps between the stationary cores and the movable cores to the cross sections of magnetic paths passing through the gaps are made almost equal to the ratio of the thickness of the permanent magnet to a pole area. A narrow part where saturated magnetic flux density is exceeded is provided in a magnetic circuit of the permanent magnet during closing.

Description

本発明は、開閉装置の磁気による操作装置に関する。 The present invention relates to a magnetic operating device for an opening / closing device.

開閉装置の磁気による操作装置は、一つの可動鉄心がヨーク内で往復駆動され、この可動鉄心に連結された開閉装置の可動接触子を開閉している。可動接触子の開路位置又は閉路位置を維持するために、磁性体の可動鉄心を永久磁石の磁束によって開路側又は閉路側の固定鉄心に吸引保持する。真空遮断器のような開閉装置では、閉路位置にて可動・固定接触子間の安定した通電能力が必要なため、可動・固定接触子の接触中に接触荷重が作用するように、可動接触子に連結された接圧ばね装置が設けられ、永久磁石によりこの接圧ばね装置のばね荷重に抗して吸引されて閉路位置が保持される。 In the operation device using magnetism of the switchgear, one movable iron core is reciprocated within the yoke, and the movable contact of the switchgear connected to the moveable iron core is opened and closed. In order to maintain the open position or the closed position of the movable contact, the movable iron core of the magnetic material is attracted and held by the magnetic flux of the permanent magnet to the open core or the closed core. A switchgear such as a vacuum circuit breaker requires a stable current-carrying capacity between the movable and fixed contacts in the closed position, so that the movable contact is applied so that a contact load acts during the contact between the movable and fixed contacts. The contact pressure spring device coupled to the contact pressure spring device is provided, and the permanent magnet is attracted against the spring load of the contact pressure spring device to maintain the closed position.

開路操作時は、開路方向の上記ばね荷重に加えて、操作装置の開路用駆動コイルによって開路方向に吸引力を作用させるとともに、永久磁石による磁束に逆の磁束を与えて永久磁石の閉路方向の吸引力を減じる。 During the opening operation, in addition to the spring load in the opening direction, an attractive force is applied in the opening direction by the opening drive coil of the operating device, and a reverse magnetic flux is applied to the magnetic flux generated by the permanent magnet, thereby closing the permanent magnet in the closing direction. Reduce suction.

開路位置で開路状態を保持する保持力は上記ばね荷重などが作用しないため、永久磁石の吸引力は可動・固定接触子の接触時の吸引力に比べて小さくてよい。そのため、従来は開路状態における永久磁石による磁気回路内に空隙や非磁性材料介在による磁気的空隙を設けて吸引力を調整している。 Since the spring load or the like does not act on the holding force for holding the open state at the open position, the attractive force of the permanent magnet may be smaller than the attractive force at the time of contact with the movable / fixed contact. Therefore, conventionally, an attractive force is adjusted by providing an air gap or a magnetic air gap intervening with a non-magnetic material in a magnetic circuit of a permanent magnet in an open circuit state.

閉路操作時は、操作装置の閉路用駆動コイルによって閉路方向に吸引力を作用させるとともに、永久磁石による磁束に逆の磁束を与えて永久磁石の開路方向の吸引力を減じる。 During the closing operation, an attractive force is applied in the closing direction by the closing drive coil of the operating device, and a reverse magnetic flux is applied to the magnetic flux generated by the permanent magnet to reduce the attractive force in the opening direction of the permanent magnet.

特許4515976号。Patent 4515976.

従来の開閉装置の磁気操作装置は、以上のように構成され、永久磁石による磁気回路内に空隙や非磁性材料介在による磁気的空隙を設けて吸引力を調整するなどの改善はなされる。しかし、閉路位置での衝突による機械的な跳ね返りや、手動操作におけるゆっくり操作などを念頭におくと、可動・固定接触子の接触中において、常に永久磁石の吸引力が上記接圧ばね装置のばね荷重を上回って確実に閉路する必要があるが、従来の開閉装置では、このような開閉装置の機能に沿った永久磁石の極小化は考慮されていない。 A conventional magnetic operating device of a switchgear is configured as described above, and improvements such as adjusting a suction force by providing a magnetic gap by a permanent magnet or a magnetic gap by interposition of a nonmagnetic material are made. However, in consideration of mechanical rebound due to a collision at a closed position or slow operation in manual operation, the permanent magnet's attractive force is always applied to the spring of the contact pressure spring device during the contact of the movable / fixed contact. Although it is necessary to close the circuit reliably exceeding the load, the conventional switchgear does not consider minimization of the permanent magnet in accordance with the function of the switchgear.

開路途中でも閉路途中でも、動作につれて、永久磁石の磁気回路の磁気抵抗が大きくなり、駆動コイルの磁束が内部磁気抵抗の小さい永久磁石自体に逆磁束として流れるようになるため、永久磁石の起磁力の劣化が心配される。特に、永久磁石を薄くして内部磁気抵抗を小さく設計するほど、永久磁石自体に大きな逆磁束が流れてしまう。 The magnetoresistance of the permanent magnet's magnetic circuit increases with operation both during opening and closing, and the magnetic flux of the drive coil flows as a reverse magnetic flux to the permanent magnet itself with a small internal magnetic resistance. I am worried about the deterioration. In particular, the thinner the permanent magnet is designed to reduce the internal magnetic resistance, the larger the reverse magnetic flux flows through the permanent magnet itself.

開路状態では可動鉄心と閉路側の固定鉄心との空隙が大きく、可動鉄心と開路側の固定鉄心にも磁気的空隙などが介在し、可動鉄心を閉路側に吸引する閉路用駆動コイルの磁気回路の磁気抵抗が大きいため、閉路操作時に大きな操作力を得るには、大きな起磁力の閉路用駆動コイルが必要である。 In the open circuit state, there is a large gap between the movable core and the stationary core on the closing side, and there is a magnetic gap between the movable core and the stationary core on the opening side, and the magnetic circuit of the drive coil for closing that attracts the movable core to the closing side Therefore, in order to obtain a large operating force during the closing operation, a closing drive coil having a large magnetomotive force is required.

開路操作時は、開路用駆動コイルの磁気回路の磁気抵抗が同様に大きいため、大きな操作力を得るには、大きな起磁力の開路用駆動コイルが必要である。 At the time of the opening operation, the magnetic resistance of the magnetic circuit of the opening drive coil is similarly large, and thus a large magnetomotive force opening drive coil is required to obtain a large operating force.

従来の操作装置は、駆動コイルの通電、励磁方向を切り替えて、開路用、又は閉路用の一つの駆動コイルで開閉動作させることは、一方の操作には有効な磁気回路を構成できても、他方の操作では、駆動コイルの磁束が、内部磁気抵抗の小さい永久磁石自体へ逆磁束として流れて永久磁石の吸引力は減じるが、磁気抵抗が大きい操作側へはあまり流れず、動作に足りる駆動コイルの吸引力を得ることが困難であった。 The conventional operating device switches the energization and excitation direction of the drive coil and opens and closes with one drive coil for open circuit or close circuit, even though it can constitute an effective magnetic circuit for one operation, In the other operation, the magnetic flux of the drive coil flows as a reverse magnetic flux to the permanent magnet itself with a small internal magnetic resistance and the attractive force of the permanent magnet is reduced, but it does not flow so much to the operating side with a large magnetic resistance, and the drive is sufficient for operation. It was difficult to obtain the attractive force of the coil.

開閉装置の機能を考慮して永久磁石の質量を極小化し、永久磁石自体に与えられる逆磁束を極力少なくして起磁力の安定化を図り、閉路用駆動コイルの起磁力を極力小さくした安価な操作装置が要請される。駆動コイルは一つだけにして、より安価とすることが望まれる。本発明は、このような要請に応えるためになされたもので、永久磁石の質量を極小化し、操作時には永久磁石に逆磁束を極力与えないで永久磁石の起磁力を安定させ、開路用と閉路用とを兼用した起磁力の小さい一つの駆動コイルで構成できる安価で品質安定性のある操作装置を提供することを目的とする。 Considering the function of the switchgear, the mass of the permanent magnet is minimized, the reverse magnetic flux applied to the permanent magnet itself is minimized, the magnetomotive force is stabilized, and the magnetomotive force of the closing drive coil is minimized. An operating device is required. It is desirable to use only one drive coil and to make it cheaper. The present invention has been made to meet such demands, minimizing the mass of the permanent magnet, stabilizing the magnetomotive force of the permanent magnet without applying a reverse magnetic flux to the permanent magnet as much as possible during operation, and opening and closing the circuit. It is an object of the present invention to provide an inexpensive and quality-stable operating device that can be configured by a single drive coil having a small magnetomotive force that is also used for both.

本発明に係る操作装置においては、二つの可動鉄心と永久磁石が往復運動する構造であるので、永久磁石を固定した従来例と異なった構造によって課題を解決している。 In the operating device according to the present invention, since the two movable iron cores and the permanent magnet are reciprocated, the problem is solved by a structure different from the conventional example in which the permanent magnet is fixed.

本発明に係る操作装置の構造は、以下のとおりである。永久磁石の一方の磁極面に突出部を有する第一の可動鉄心を設け、他方の磁極面に突出部を有する第二の可動鉄心を設ける。開閉装置の可動接触子などの駆動対象体と機械的に連結した往復運動する駆動軸と、第一の可動鉄心、第二の可動鉄心、上記永久磁石を一体とする。 The structure of the operating device according to the present invention is as follows. A first movable iron core having a protrusion is provided on one magnetic pole surface of the permanent magnet, and a second movable iron core having a protrusion is provided on the other magnetic pole surface. A reciprocating drive shaft mechanically connected to a drive object such as a movable contact of an opening / closing device, a first movable iron core, a second movable iron core, and the permanent magnet are integrated.

それぞれが磁気的に連結された第一の固定鉄心部と第二の固定鉄心部と第三の固定鉄心部からなる固定鉄心とし、駆動コイルを第一の固定鉄心部、又は第三の固定鉄心部の外周側に配置する。第一の固定鉄心部を第一の可動鉄心に対向させ、第二の固定鉄心部を上記対向方向と同方向に第二の可動鉄心の突出部に対向させ、第三の固定鉄心部を上記対向方向と逆方向に第一の可動鉄心の突出部に対向させる。 The first fixed core part, the second fixed core part, and the third fixed core part, each of which is magnetically coupled, are used as the fixed core, and the drive coil is the first fixed core part or the third fixed core. It arranges on the outer peripheral side of the part. The first fixed core is opposed to the first movable core, the second fixed core is opposed to the protruding portion of the second movable core in the same direction as the facing direction, and the third fixed core is It is made to oppose the protrusion part of a 1st movable iron core in the opposite direction to an opposing direction.

開路用と閉路用とを兼用した一つの駆動コイルとし、閉路操作時には、開路用に使用した駆動コイルに逆に電流を流して逆に励磁する。 One drive coil is used for both open circuit and closed circuit. When the circuit is closed, a current is applied to the drive coil used for the open circuit to reversely excite it.

本発明では、開閉装置の機能として従来考慮されていなかった、可動・固定接触子の接触時において、上記接圧ばね装置のばね荷重を上回る永久磁石の吸引力を与えることに鑑み、この時の永久磁石の吸引力の簡易計算式を数学的に微分することによって、吸引力を極小の永久磁石の質量で得られる条件を導き出した。可動・固定接触子の接触時に、永久磁石の磁気回路に可動鉄心、固定鉄心からなる間隙を直列に二か所設け、それぞれの間隙と間隙を通過する磁気磁路の断面積、永久磁石厚さと磁極面積の関係を最適化する。 In the present invention, in view of providing the attractive force of the permanent magnet exceeding the spring load of the contact pressure spring device at the time of contact of the movable / fixed contact, which has not been conventionally considered as a function of the opening / closing device, By mathematically differentiating a simple calculation formula for the attractive force of the permanent magnet, the condition for obtaining the attractive force by the mass of the minimal permanent magnet was derived. When the movable / fixed contact is in contact, the magnetic circuit of the permanent magnet is provided with two gaps consisting of a movable iron core and a fixed iron core in series, and the cross-sectional area of the magnetic magnetic path passing through each gap and the permanent magnet thickness Optimize the pole area relationship.

すなわち、第一の可動鉄心と第一の固定鉄心部との第一の間隙と、第二の固定鉄心部と第二の可動鉄心突出部の第二の間隙をほぼ等しくし、第一の間隙とその間隙を通過する磁気磁路の断面積との比率と、第二の間隙とその間隙を通過する磁気磁路の断面積との比率の合計を、永久磁石の厚みと磁極面積との比率にほぼ等しくする。 That is, the first gap between the first movable iron core and the first fixed iron core portion and the second gap between the second fixed iron core portion and the second movable iron core protruding portion are substantially equal to each other, And the ratio of the cross-sectional area of the magnetic magnetic path passing through the gap and the ratio of the cross-sectional area of the second magnetic gap and the magnetic magnetic path passing through the gap to the ratio of the thickness of the permanent magnet and the magnetic pole area. Almost equal to

また、閉路位置で永久磁石の過大な吸引力を小さくし、開路操作時に駆動コイルの起磁力が小さくても動作できるようにするため、固定鉄心、又は第一の可動鉄心、又は第二の可動鉄心の一部に狭小部を設ける。可動・固定接触子の接触時では狭小部の磁性体が飽和磁束密度を超えないようにし、閉路位置では狭小部の磁性体が飽和飽磁束密度を超えるようにする。閉路位置では狭小部の磁気抵抗が大きくなって永久磁石の閉路方向に働く吸引力が少なくなり、開路方向に働く接圧ばねの荷重に近づくので、小さい起磁力の駆動コイルで開路動作ができる。永久磁石への駆動コイルの逆励磁磁束も少なくなる。 In addition, in order to reduce the excessive attractive force of the permanent magnet at the closed position and enable operation even when the magnetomotive force of the drive coil is small during the opening operation, the fixed iron core, the first movable iron core, or the second movable iron core A narrow part is provided in a part of the iron core. The magnetic material in the narrow portion does not exceed the saturation magnetic flux density when the movable / fixed contact is in contact, and the magnetic material in the narrow portion exceeds the saturation saturation magnetic flux density at the closed position. At the closed position, the magnetic resistance of the narrow portion is increased, the attractive force acting in the closing direction of the permanent magnet is reduced, and the load of the contact pressure spring acting in the opening direction is approached, so that the opening operation can be performed with a drive coil having a small magnetomotive force. The reverse excitation magnetic flux of the drive coil to the permanent magnet is also reduced.

この発明に係る操作装置においては、閉路操作時には、開路用に使用した駆動コイルに逆に電流を流して逆に励磁することによって、駆動コイルの起磁力により閉路方向に吸引力が得られ、開路用と閉路用とを兼用した一つの駆動コイルで操作装置が構成できる。また、操作時に駆動コイルの磁束が永久磁石自体を極力逆励磁せず、永久磁石の起磁力の安定化が図れる。 In the operating device according to the present invention, at the time of the closing operation, by attracting the drive coil used for opening the circuit by flowing a current in reverse, an attractive force is obtained in the closing direction by the magnetomotive force of the driving coil, and the opening circuit is opened. The operating device can be constituted by a single drive coil that is used both for use and for closing. Further, the magnetic flux of the drive coil does not reversely excite the permanent magnet itself as much as possible during operation, and the magnetomotive force of the permanent magnet can be stabilized.

第一の可動鉄心と第一の固定鉄心部との第一の間隙と、第二の固定鉄心部と第二の可動鉄心の突出部との第二の間隙をほぼ等しくし、第一の間隙と第一の間隙における磁気磁路の断面積との比率と、第二の間隙と第二の間隙における磁気磁路の断面積との比率の合計を、永久磁石の厚みと磁極面積との比率にほぼ等しくすることにより、可動・固定接触子接触時における吸引力を極小の永久磁石の体積・質量で得られる。 The first gap between the first movable iron core and the first fixed iron core and the second gap between the second fixed iron core and the projecting portion of the second movable iron core are substantially equal to each other, and the first gap And the ratio of the cross-sectional area of the magnetic magnetic path in the first gap and the ratio of the cross-sectional area of the magnetic magnetic path in the second gap and the second gap to the ratio of the thickness of the permanent magnet to the magnetic pole area. Therefore, the attraction force at the time of contact with the movable / fixed contact can be obtained by the volume / mass of the minimal permanent magnet.

また、固定鉄心、又は第一の可動鉄心、又は第二の可動鉄心に狭小部を設けることによって、閉路位置では永久磁石による過大な吸引力を低下できるので、開路操作時には、駆動コイルからの少ない磁束で操作でき、駆動コイルの起磁力を小さくできる。 Further, by providing a narrow portion in the fixed iron core, the first movable iron core, or the second movable iron core, the excessive attractive force by the permanent magnet can be reduced at the closed position, so that there is less from the drive coil during the opening operation. It can be operated with magnetic flux, and the magnetomotive force of the drive coil can be reduced.

本発明は、以上のような構造としたことにより、永久磁石の質量を極小化でき、開路用と閉路用とを兼用した一つの駆動コイルで構成でき、駆動コイルの起磁力を小さくでき、操作時には永久磁石に駆動コイルによる逆磁束を極力与えないで永久磁石の起磁力を安定させることができるので、安価で、品質安定性のある操作装置を提供できる。 By adopting the structure as described above, the present invention can minimize the mass of the permanent magnet, can be constituted by one drive coil that is used for both open circuit and closed circuit, can reduce the magnetomotive force of the drive coil, and can be operated. In some cases, the magnetomotive force of the permanent magnet can be stabilized without applying the reverse magnetic flux generated by the drive coil to the permanent magnet as much as possible. Therefore, an inexpensive and stable operation device can be provided.

本発明による操作装置の枠体を切り欠いて内部構造を示した斜視図である。It is the perspective view which notched the frame of the operating device by this invention, and showed the internal structure. 本発明による図1の操作装置の断面図であり、右側は第一の可動鉄心の長手方向を中心に見た縦断面図、左側は第二の可動鉄心の長手方向を中心に見た縦断面図を示す。なお、切断面を示す平行斜線は引いていない。It is sectional drawing of the operating device of FIG. 1 by this invention, The right side is a longitudinal cross-sectional view seen centering on the longitudinal direction of the 1st movable iron core, The left side is a longitudinal cross-section seen centering on the longitudinal direction of the 2nd movable iron core. The figure is shown. In addition, the parallel oblique line which shows a cut surface is not drawn. 本発明による図1の第一の可動鉄心、第二の可動鉄心、永久磁石、駆動軸などからなる操作装置の可動部の上面図を示す。The top view of the movable part of the operating device which consists of the 1st movable iron core of FIG. 1 by this invention, a 2nd movable iron core, a permanent magnet, a drive shaft, etc. is shown. 図2と同様に見た操作装置の閉路位置の縦断面図を示す。The longitudinal cross-sectional view of the closed position of the operating device seen similarly to FIG. 2 is shown. 図2と同様に見た操作装置の開路位置の縦断面図を示す。The longitudinal cross-sectional view of the open circuit position of the operating device seen similarly to FIG. 2 is shown. 図2と同様に見た操作装置の可動・固定接触子の接触位置の縦断面図を示す。The longitudinal cross-sectional view of the contact position of the movable / fixed contact of the operating device viewed in the same manner as in FIG. 2 is shown. 図4aに対応した位置の磁束を示す模式図である。It is a schematic diagram which shows the magnetic flux of the position corresponding to FIG. 図4bに対応した位置の磁束を示す模式図である。It is a schematic diagram which shows the magnetic flux of the position corresponding to FIG. 図4cに対応した位置の磁束を示す模式図である。It is a schematic diagram which shows the magnetic flux of the position corresponding to FIG. 駆動コイルを第三の固定鉄心部の外周側に配設した本発明による操作装置の他の例の図2と同様に見た縦断面図である。It is the longitudinal cross-sectional view seen similarly to FIG. 2 of the other example of the operating device by this invention which has arrange | positioned the drive coil to the outer peripheral side of the 3rd stationary iron core part. 第一の可動鉄心の長手方向と第二の可動鉄心の長手方向を同方向とした本発明による操作装置の他の例の縦断面図である。なお、切断面を示す平行斜線は引いていない。It is a longitudinal cross-sectional view of the other example of the operating device by this invention which made the longitudinal direction of the 1st movable iron core and the longitudinal direction of the 2nd movable iron core the same direction. In addition, the parallel oblique line which shows a cut surface is not drawn. 図2と同様に示した応用例の操作装置の断面図である。It is sectional drawing of the operating device of the application example shown similarly to FIG.

図1、図2、図3において、操作装置の可動部は、永久磁石1、永久磁石1の一方の磁極面に接触し、突出部2aを有する磁性体の第一の可動鉄心2、永久磁石1の他方の磁極面に接触し、突出部3aを有する磁性体の第二の可動鉄心3、ステンレスや銅合金などの非磁性の駆動軸4、第一の可動鉄心2に接触した非磁性体のストッパ8、駆動軸4とストッパ8を固定するロールピンなどの固定部材8a、第二の可動鉄心3に連接した皿ばね、ゴムなどのばね10、ワッシャ9を介して操作装置の可動部を駆動軸4から抜け防止するロールピンなどの固定部材9a、開閉装置の駆動対象体と連結するロッドエンド19などからなる。駆動軸4の図下方先端は、図示していない補助スイッチや開閉表示装置などが連結される。 1, 2, and 3, the movable portion of the operating device is in contact with one of the magnetic pole surfaces of the permanent magnet 1 and the permanent magnet 1, and the first movable iron core 2 of the magnetic body having the protruding portion 2 a and the permanent magnet. A non-magnetic material that is in contact with the other magnetic pole surface of 1 and is in contact with the second movable iron core 3 of a magnetic material having a protrusion 3a, a non-magnetic drive shaft 4 such as stainless steel or copper alloy, and the first movable iron core 2. The movable portion of the operating device is driven through the stopper 8, the fixing member 8a such as a roll pin for fixing the drive shaft 4 and the stopper 8, the disc spring connected to the second movable iron core 3, the spring 10 such as rubber, and the washer 9. It consists of a fixing member 9a such as a roll pin that prevents the shaft 4 from coming off, a rod end 19 that is connected to a driving object of the opening / closing device, and the like. An auxiliary switch, an open / close display device, etc., not shown, are connected to the lower end of the drive shaft 4 in the figure.

なお、永久磁石1は複数個の永久磁石を並列配置しても効果は同じである。また、永久磁石1の形状は円板状、矩形板状など種々考えられる。ばね10は永久磁石1のガタ付きを防止するとともに、開閉動作時の衝撃を緩和するものである。可動鉄心2、3は薄板を重ねて構成してもよい。また、永久磁石1の駆動軸4の貫通部に局所的な応力が加わって損傷しないように、駆動軸4にテープが巻かれている。閉路動作時に永久磁石に直接衝撃を与えないため、ストッパ8と第一の固定鉄心部5との接触位置では、第一の可動鉄心2とその突出部2aが、第一の固定鉄心部5と第二の固定鉄心部6に接触しないように、この間に微小な隙間を設けている。 The effect of the permanent magnet 1 is the same even if a plurality of permanent magnets are arranged in parallel. The shape of the permanent magnet 1 may be various such as a disk shape or a rectangular plate shape. The spring 10 prevents rattling of the permanent magnet 1 and alleviates impact during opening and closing operations. The movable iron cores 2 and 3 may be configured by stacking thin plates. Further, a tape is wound around the drive shaft 4 so that local stress is not applied to the penetrating portion of the drive shaft 4 of the permanent magnet 1 to cause damage. In order to prevent direct impact on the permanent magnet during the closing operation, the first movable iron core 2 and the protruding portion 2a are connected to the first fixed iron core portion 5 at the contact position between the stopper 8 and the first fixed iron core portion 5. A minute gap is provided between them so as not to contact the second fixed iron core portion 6.

駆動コイル7が第一の固定鉄心部5の外周側に配置され、第一の固定鉄心部5は磁性体の端板12にボルト等にて固定されている。駆動コイル7は、第一の固定鉄心部5と端板12の間に挟み込んで固定しているが、過度な応力が与えられないように、図示していないゴムシート、皿ばね、波型ばね、板ばねなどの弾性部材を介している。第二の固定鉄心部6と第三の固定鉄心部11は、継鉄である端板12に固定されている。磁性体の端板12は複数の薄板を重ねてもよく、継鉄として他の磁性体の構造体と兼用してもよい。端板12と端板14は枠体13を挟んで、ねじ棒等で固定され、異物が内部に入らないように操作装置の可動鉄心、固定鉄心、永久磁石、駆動コイルなどの主要部を包囲している。枠体13、端板14は磁性体として外部の磁性体等の影響を防止しているが、非磁性とすることもできる。枠体13や端板14に寸法精度が要求されて高価となるが、磁性体の枠体13、磁性体の端板14に第二の固定鉄心部6と第三の固定鉄心部11を固定することもできる。枠体13を方形として、可動鉄心の突出部2a、3aを方形の枠体13の隅部に向けて配置して、枠体13との距離をとって、その間の漏れ磁束の影響を低減している。軸受15は駆動軸4をガイドするものであり、磁性体の微小異物が永久磁石1などの磁力により吸引されて軸受15内に噛みこまないように非磁性としている。駆動軸4の一部を円形とし、微小異物が軸受15内にさらに噛みこまないようにシール部材15aを設けている。異物が少ない場合等では、端板14を軸受に兼用して軸受15を無くしてもよく、シール部材15aも必要ない。 The drive coil 7 is disposed on the outer peripheral side of the first fixed iron core portion 5, and the first fixed iron core portion 5 is fixed to an end plate 12 of a magnetic material with a bolt or the like. The drive coil 7 is sandwiched and fixed between the first fixed iron core portion 5 and the end plate 12, but a rubber sheet, a disc spring, and a wave spring (not shown) are not provided so that excessive stress is not applied. And an elastic member such as a leaf spring. The second fixed core portion 6 and the third fixed core portion 11 are fixed to an end plate 12 that is a yoke. The magnetic end plate 12 may be formed by stacking a plurality of thin plates, and may also be used as a yoke as another magnetic body structure. The end plate 12 and the end plate 14 are fixed with a screw rod or the like with the frame 13 in between, and surround the main parts such as the movable iron core, fixed iron core, permanent magnet, and drive coil of the operating device so that foreign matter does not enter the inside. is doing. The frame body 13 and the end plate 14 prevent the influence of an external magnetic body or the like as a magnetic body, but may be non-magnetic. Although dimensional accuracy is required for the frame 13 and the end plate 14, it is expensive, but the second fixed core portion 6 and the third fixed core portion 11 are fixed to the magnetic frame 13 and the magnetic end plate 14. You can also The frame 13 is a square, and the projecting portions 2a and 3a of the movable iron core are arranged toward the corners of the square frame 13 to take a distance from the frame 13 and reduce the influence of leakage magnetic flux therebetween. ing. The bearing 15 guides the drive shaft 4 and is made nonmagnetic so that minute foreign matter of the magnetic material is attracted by the magnetic force of the permanent magnet 1 and does not get caught in the bearing 15. A part of the drive shaft 4 is circular, and a seal member 15 a is provided so that minute foreign matter is not further caught in the bearing 15. When there are few foreign matters, the end plate 14 may be used as a bearing, the bearing 15 may be eliminated, and the seal member 15a is not necessary.

第一の固定鉄心部5が第一の可動鉄心2に対向し、第二の固定鉄心部6がこの対向方向と同方向に第二の可動鉄心2の突出部2aに対向し、第三の固定鉄心部11がこの対向方向と逆方向に第一の可動鉄心2の突出部2aに対向して配設されている。 The first fixed core portion 5 faces the first movable core 2, the second fixed core portion 6 faces the protruding portion 2 a of the second movable core 2 in the same direction as this facing direction, and the third The fixed iron core portion 11 is disposed opposite to the protruding portion 2a of the first movable iron core 2 in a direction opposite to the facing direction.

第一の可動鉄心2の突出部2aが第二の固定鉄心部6と、第二の可動鉄心3の突出部3aが第三の固定鉄心部11と、往復運動時に機械的に干渉しないように、第一の可動鉄心2の突出部2aと第二の可動鉄心3の突出部3aの突出の方向をずらせている。本発明の例では、ほぼ直角に交差させている。図2では、可動鉄心2、3の突出部2a、3aは両側の二か所に振り分けており、対向する第二の固定鉄心部6、第三の固定鉄心部11も二か所に振り分けているが、往復運動時に機械的に干渉しなければ、分ける箇所数は何か所でもかまわず、一か所として分けないこともある。 The protruding portion 2a of the first movable iron core 2 is not mechanically interfered with the second fixed iron core portion 6 and the protruding portion 3a of the second movable iron core 3 is mechanically interfered with the third fixed iron core portion 11 during the reciprocating motion. The projecting portions 2 a of the first movable iron core 2 and the projecting portions 3 a of the second movable iron core 3 are shifted in the projecting direction. In the example of the present invention, they intersect at a substantially right angle. In FIG. 2, the projecting portions 2a and 3a of the movable iron cores 2 and 3 are distributed to two locations on both sides, and the opposing second fixed core portion 6 and third fixed core portion 11 are also distributed to two locations. However, as long as there is no mechanical interference during the reciprocating motion, the number of parts to be divided may be any number and may not be divided as one place.

図2に示すように、駆動軸4は図示していないリンク機構を介して接圧ばね装置16、可動接触子17に連結されている。接圧ばね装置16には圧縮コイルばねからなる接圧ばね16aが設けられており、可動接触子17の固定接触子18への接触位置から閉路完了位置まで、接圧ばね16aの初荷重から終荷重まで大きなばね力が作用する。 As shown in FIG. 2, the drive shaft 4 is connected to the contact pressure spring device 16 and the movable contact 17 via a link mechanism (not shown). The contact pressure spring device 16 is provided with a contact pressure spring 16a formed of a compression coil spring. From the contact position of the movable contact 17 to the fixed contact 18 to the closing completion position, the initial load of the contact pressure spring 16a is terminated. A large spring force acts on the load.

図4aの閉路位置では、永久磁石1の起磁力により、第一の可動鉄心2が第一の固定鉄心部5に吸引されるとともに、第二の可動鉄心の突出部3aが第二の固定鉄心部6に吸引され、接圧ばね16aの終荷重に抗して閉路位置に吸引保持されている。図5aに、永久磁石1による磁束の流れを実線太線の矢印の方向に示す。 4a, the first movable iron core 2 is attracted to the first fixed iron core portion 5 by the magnetomotive force of the permanent magnet 1, and the protruding portion 3a of the second movable iron core is the second fixed iron core. It is sucked by the portion 6 and sucked and held at the closed position against the final load of the contact pressure spring 16a. FIG. 5 a shows the flow of magnetic flux by the permanent magnet 1 in the direction of the solid thick arrow.

図5aに、開路操作時の駆動コイル7による磁束の流れを破線太線の矢印の方向に示す。駆動コイル7を励磁して、永久磁石1による磁束を相殺する方向に流して磁束を少なくし、第一の可動鉄心2と第一の固定鉄心部5の吸引力と、第二の可動鉄心の突出部3aと第二の固定鉄心部6の閉路方向の吸引力を低下させる。第一の可動鉄心2の突出部2aから第三の固定鉄心部11への駆動コイル7からの磁束により、第一の可動鉄心の突出部2aに開路方向の吸引力が働き、その吸引力と接圧ばねのばね荷重により開路動作する。 FIG. 5a shows the flow of magnetic flux by the drive coil 7 during the opening operation in the direction of the broken-line thick arrow. The drive coil 7 is excited to flow in a direction that cancels out the magnetic flux from the permanent magnet 1 to reduce the magnetic flux, and the attractive force of the first movable iron core 2 and the first fixed iron core portion 5 and the second movable iron core The suction force in the closing direction of the protrusion 3a and the second fixed iron core 6 is reduced. Due to the magnetic flux from the drive coil 7 from the projecting portion 2a of the first movable core 2 to the third fixed core portion 11, a suction force in the opening direction acts on the projecting portion 2a of the first movable core, and the suction force and The circuit opens by the spring load of the contact pressure spring.

図4bの開路位置では、永久磁石1の起磁力により、第一の可動鉄心の突出部2aが第三の固定鉄心部11へ吸引され、開路位置に吸引保持されている。図5bに、永久磁石1による磁束の流れを実線太線の矢印の方向に示す。第二の可動鉄心の突出部3aが第二の固定鉄心部6に永久磁石1の磁束により閉路方向に吸引されるが、第二の可動鉄心3の突出部3aと第二の固定鉄心部6との距離が大きいので、その吸引力は小さい。端板14から第二の可動鉄心3へも磁束が流れるが、その間の距離が大きいので、その開路方向の吸引力は小さい。 In the open position in FIG. 4b, the projecting portion 2a of the first movable iron core is attracted to the third fixed iron core portion 11 by the magnetomotive force of the permanent magnet 1, and is attracted and held at the open position. FIG. 5b shows the flow of magnetic flux by the permanent magnet 1 in the direction of the solid thick arrow. The projecting portion 3a of the second movable iron core is attracted to the second fixed iron core portion 6 by the magnetic flux of the permanent magnet 1, but the projecting portion 3a of the second movable iron core 3 and the second fixed iron core portion 6 are attracted. The suction force is small because the distance to is large. Magnetic flux also flows from the end plate 14 to the second movable iron core 3, but since the distance between them is large, the attractive force in the opening direction is small.

図5bに、閉路操作時の駆動コイル7による磁束の流れを破線太線の矢印の方向に示す。駆動コイル7を開路操作の逆方向に励磁して、永久磁石1による第一の可動鉄心の突出部2aと第三の固定鉄心部11に流れる磁束を相殺する方向に流して磁束を少なくし、その開路方向の吸引力を低下させるとともに、駆動コイル7の起磁力による磁束を第一の可動鉄心2から第一の固定鉄心部5へと流し、可動鉄心2が閉路方向に吸引されて閉路動作する。駆動コイル7による磁束は、閉路操作の最初から最後まで永久磁石1自体を消磁する方向には流れないため、永久磁石1自体を逆励磁して永久磁石1を劣化させない。 FIG. 5b shows the flow of magnetic flux by the drive coil 7 during the closing operation in the direction of the broken-line thick arrow. The drive coil 7 is excited in the reverse direction of the opening operation, and the magnetic flux flowing in the direction of canceling out the magnetic flux flowing through the first movable iron core protruding portion 2a and the third fixed iron core portion 11 by the permanent magnet 1 is reduced to reduce the magnetic flux, The attractive force in the opening direction is reduced, and the magnetic flux generated by the magnetomotive force of the drive coil 7 is caused to flow from the first movable iron core 2 to the first fixed iron core portion 5 so that the movable iron core 2 is attracted in the closing direction and the closing operation is performed. To do. Since the magnetic flux generated by the drive coil 7 does not flow in the direction of demagnetizing the permanent magnet 1 itself from the beginning to the end of the closing operation, the permanent magnet 1 itself is reversely excited and the permanent magnet 1 is not deteriorated.

閉路操作において、第一の可動鉄心2と第一の固定鉄心部5の間隙の磁路の断面積が大きいほど磁気抵抗が小さくなり、駆動コイル7からの磁束も大きくなるので、駆動コイル7の起磁力を小さくできる。 In the closing operation, the larger the cross-sectional area of the magnetic path in the gap between the first movable iron core 2 and the first fixed iron core portion 5, the smaller the magnetic resistance and the larger the magnetic flux from the drive coil 7. Magnetomotive force can be reduced.

開路位置において、端板14と第二の可動鉄心3との間隙が大きいほど、その間の磁気抵抗が大きくなり、第一の可動鉄心の突出部2aから第三の固定鉄心部11へ流れる永久磁石1からの磁束が少なくなる。閉路操作において、永久磁石1から第一の可動鉄心の突出部2aと第三の固定鉄心部11へ流れる磁束が小さくなれば、それを相殺する方向に流す駆動コイル7からの磁束も小さくてよい。すなわち、駆動コイル7の起磁力を小さくできる。第一の可動鉄心の突出部2aから第三の固定鉄心部11へ流れる磁束が少なくなるが、その間の磁路の断面積を小さくすれば、永久磁石1による充分な開路保持力が得られる。したがって、端板14と第二の可動鉄心3との間隙を大きくすることが望ましい。端板14を非磁性体とすることも一つの方法であるが、端板14の下方近傍に磁性体等を配置しない配慮が必要である。 At the open position, the larger the gap between the end plate 14 and the second movable iron core 3, the greater the magnetic resistance between them, and the permanent magnet flowing from the protruding portion 2 a of the first movable iron core to the third fixed iron core portion 11. The magnetic flux from 1 is reduced. In the closing operation, if the magnetic flux flowing from the permanent magnet 1 to the projecting portion 2a of the first movable core and the third fixed core portion 11 becomes small, the magnetic flux from the drive coil 7 flowing in the direction to cancel it may be small. . That is, the magnetomotive force of the drive coil 7 can be reduced. The magnetic flux flowing from the protruding portion 2a of the first movable iron core to the third fixed core portion 11 is reduced. However, if the cross-sectional area of the magnetic path therebetween is reduced, sufficient open circuit holding force by the permanent magnet 1 can be obtained. Therefore, it is desirable to increase the gap between the end plate 14 and the second movable iron core 3. Although it is one method to make the end plate 14 a non-magnetic material, it is necessary to consider not arranging a magnetic material or the like in the vicinity below the end plate 14.

通常の閉路動作では、開閉装置の可動接触子など駆動対象体の慣性力により、図4cの可動・固定接触子の接触位置に留まることはない。しかし、閉路動作における閉路位置での衝突と機械的反発により開路方向に逆戻りすることも考えられ、手動投入操作にてゆっくり閉路することも考えられるので、この位置で静止していても永久磁石1の磁束のみで完全閉路位置まで確実に動作させる必要がある。補助スイッチが切状態のため、駆動コイル7は通電されていないので、駆動コイル7による第一の可動鉄心2と第二の可動鉄心の突出部3aの閉路方向への吸引力は期待できない。 In a normal closing operation, the movable / fixed contact shown in FIG. 4c does not stay at the contact position due to the inertial force of the driven object such as the movable contact of the switchgear. However, it may be possible to return to the opening direction due to a collision at the closing position and mechanical repulsion in the closing operation, and it may be possible to close the circuit slowly by a manual closing operation. It is necessary to reliably operate to the fully closed position with only the magnetic flux. Since the drive coil 7 is not energized because the auxiliary switch is turned off, it is not possible to expect a suction force in the closing direction of the first movable iron core 2 and the protruding portion 3a of the second movable iron core by the drive coil 7.

図5cに、接触位置での永久磁石1による磁束の流れを実線太線の矢印の方向に示す。永久磁石1の起磁力により、第一の可動鉄心2から第一の固定鉄心部5へと磁束が流れ、その間が吸引されるとともに、第二の固定鉄心部6から第二の可動鉄心の突出部3aへと磁束が流れ、その間が吸引される。接圧ばね16aの開路方向の初荷重以上の吸引力で閉路方向に吸引されなければならない。 In FIG. 5c, the flow of magnetic flux by the permanent magnet 1 at the contact position is shown in the direction of the solid thick arrow. Magnetic flux flows from the first movable iron core 2 to the first fixed iron core portion 5 due to the magnetomotive force of the permanent magnet 1, and the space therebetween is attracted and the second movable iron core 6 projects from the second movable iron core 6. Magnetic flux flows to the part 3a, and the space is attracted. The contact pressure spring 16a must be attracted in the closing direction with a suction force equal to or greater than the initial load in the opening direction.

図5cにおいて、永久磁石1の磁極面積をAmとし、その厚みをLmとする。第一の可動鉄心2と第一の固定鉄心部5との間隙をLwとし、その間隙Lwで対向する磁路の断面積をAする。第二の固定鉄心部6と第二の可動鉄心の突出部3aとの間隙をLwとし、その間隙Lwで対向する磁路の断面積をAとする。第二の固定鉄心部6、第二の可動鉄心の突出部3aの対向箇所が数か所に並列して分割されている場合はその合計の面積とする。本発明例では二か所に並列して分割されているので、二か所の合計の面積である。なお、第一の可動鉄心2と第一の固定鉄心5部との間隙と、第二の固定鉄心部6と第二の可動鉄心の突出部3aとの間隙は、吸引力を最大とするため、ほぼ同一とするのが一般的である。 In FIG. 5c, the magnetic pole area of the permanent magnet 1 is Am, and its thickness is Lm. A first gap between the movable core 2 and the first fixed core portion 5 and Lw, the cross-sectional area of the magnetic path which faces in the gap Lw A to 1. The gap between the second and the fixed iron core portion 6 second protruding portion 3a of the movable iron core and Lw, the cross-sectional area of the magnetic path which faces in the gap Lw and A 2. When the opposing location of the 2nd fixed iron core part 6 and the protrusion part 3a of the 2nd movable iron core is divided | segmented in parallel in several places, it is set as the total area. In the example of the present invention, since it is divided in two places in parallel, it is the total area of the two places. The gap between the first movable iron core 2 and the first fixed iron core 5 and the gap between the second fixed iron core 6 and the projecting portion 3a of the second movable iron core maximize the suction force. Generally, they are almost the same.

鉄心の飽和、漏れ磁束を無視し、鉄心の磁界を零と近似する。永久磁石1の透磁率を空隙の透磁率と等しくμとする。永久磁石1の残留磁束密度をBrとする。永久磁石1の起磁力Vmは、Lm・Br/μとなる。永久磁石1の内部磁気抵抗Rmは、Lm/(μ・Am)となり、第一の可動鉄心2と第一の固定鉄心部5との間隙の磁気抵抗Rは、Lw /(μ・A)、第二の固定鉄心部6と第二の可動鉄心の突出部3aとの間隙の磁気抵抗Rは、Lw /(μ・A)となる。この時の磁束φは次のようになる。

Figure 2012150899
Ignores the saturation and leakage flux of the iron core and approximates the magnetic field of the iron core to zero. The magnetic permeability of the permanent magnet 1 is set to μ 0 equal to the magnetic permeability of the air gap. Let the residual magnetic flux density of the permanent magnet 1 be Br. The magnetomotive force Vm of the permanent magnet 1 is Lm · Br / μ 0 . The internal magnetic resistance Rm of the permanent magnet 1 is Lm / (μ 0 · Am), and the magnetic resistance R 1 in the gap between the first movable iron core 2 and the first fixed iron core portion 5 is Lw / (μ 0 · A 1 ), the magnetic resistance R 2 of the gap between the second fixed iron core portion 6 and the protrusion 3 a of the second movable iron core is Lw / (μ 0 · A 2 ). The magnetic flux φ at this time is as follows.
Figure 2012150899

永久磁石1の吸引力Fは、次式の数2のようになり、Fを(Lw /A+Lw /A)で微分して零とおくと、Fが極大となる数3の条件式が求まる。

Figure 2012150899
Figure 2012150899
The attractive force F of the permanent magnet 1 is expressed by the following equation ( 2 ). If F is differentiated by (Lw / A 1 + Lw / A 2 ) and set to zero, the conditional equation of equation (3) that maximizes F is obtained. Is obtained.
Figure 2012150899
Figure 2012150899

この条件に設定すると、吸引力Fは次のようになる。

Figure 2012150899
When this condition is set, the suction force F is as follows.
Figure 2012150899

すなわち、Lw /A+Lw /A=Lm/Amとなるように設計すると、吸引力Fが最大となり、Lwの間隙の時の吸引力Fは、永久磁石1の残留磁束密度Brと体積Lm・Am、すなわち質量で決まることになる。 That is, when the design is such that Lw / A 1 + Lw / A 2 = Lm / Am, the attractive force F is maximized, and the attractive force F at the gap of Lw is the residual magnetic flux density Br and volume Lm of the permanent magnet 1. -Am, that is, determined by mass.

前述のように、第一の可動鉄心2と第一の固定鉄心部5の間隙の磁路の断面積Aが大きいほど、閉路操作時に駆動コイル6の起磁力を小さくできる。図5cの位置で、磁路の断面積Aを極力小さくし、Aを大きくすることが望ましい。 As described above, the larger the first movable iron core 2 is a cross-sectional area A 1 of the magnetic path of the gap of the first fixed core portion 5, it is possible to reduce the magnetomotive force of the drive coil 6 during closing operation. In the position of Figure 5c, the cross-sectional area A 2 of the magnetic path is as small as possible, it is desirable to increase the A 1.

完全閉路位置まで閉路すると、永久磁石1による磁束が可動・固定接触子の接触位置の二倍になり、吸引力が四倍になる。その磁気磁路の固定鉄心、又は第一の可動鉄心2、又は第二の可動鉄心3に、閉路位置でその材料の飽和磁束密度を超える狭小部を設け、狭小部の長さを調整すると、閉路位置の永久磁石1による磁束を少なくできる。閉路位置で過大な永久磁石1の吸引力にならないよう、閉路位置の接圧ばね16aの終荷重に抗する必要最小限の永久磁石1の吸引力にして、閉路保持力を確保できる。開路操作時には、駆動コイルからの少ない磁束で操作でき、駆動コイルの起磁力を小さくできるだけでなく、永久磁石への逆励磁磁束が少なくなり、永久磁石1自体の劣化に対し影響も与え難い。 When the circuit is closed to the fully closed position, the magnetic flux generated by the permanent magnet 1 is double that of the movable / fixed contact, and the attractive force is quadrupled. In the fixed core of the magnetic magnetic path, or the first movable core 2 or the second movable core 3 is provided with a narrow portion exceeding the saturation magnetic flux density of the material at the closed position, and the length of the narrow portion is adjusted. The magnetic flux by the permanent magnet 1 in the closed position can be reduced. In order to avoid an excessive attractive force of the permanent magnet 1 at the closed position, the closed force can be secured by using the minimum required attractive force of the permanent magnet 1 against the final load of the contact pressure spring 16a at the closed position. At the time of the opening operation, it can be operated with a small magnetic flux from the drive coil, and not only the magnetomotive force of the drive coil can be reduced, but also the reverse excitation magnetic flux to the permanent magnet is reduced and it is difficult to affect the deterioration of the permanent magnet 1 itself.

図1に示すように、第二の固定鉄心部6に狭小部6aを設け、接触位置では飽和磁束密度を超えないが、閉路位置では狭小部6aで飽和磁束密度を超えるようにし、この部分の磁気抵抗を大きくして永久磁石1の吸引力を低下させ、開路操作での駆動コイル7から永久磁石1への逆励磁磁束を少なくしている。 As shown in FIG. 1, a narrow portion 6a is provided in the second fixed core portion 6 so that the saturation magnetic flux density is not exceeded at the contact position, but at the closed position, the saturation magnetic flux density is exceeded at the narrow portion 6a. The magnetic resistance is increased to reduce the attractive force of the permanent magnet 1, and the reverse excitation magnetic flux from the drive coil 7 to the permanent magnet 1 during the opening operation is reduced.

図6に本発明による他の例を示す。駆動コイル7が、図1のように第一の固定鉄心部の外周側ではなく、第三の固定鉄心部の外周側に配設されている。永久磁石1の磁束による吸引、駆動コイル7の磁束による吸引と永久磁石1の吸引力の低減の原理は同様で、目的、手段、効果は同じである。開路操作時には、駆動コイル7により、突出部3aの閉路方向の永久磁石1による吸引力は低下できないが、第一の可動鉄心部2の永久磁石1による閉路方向の吸引力が小さくなり、突出部2aの開路方向の吸引力と接圧ばね16aの荷重により開路動作する。閉路位置では駆動コイル7による磁束が永久磁石1自体には流れない。閉路操作時には、駆動コイル7により、永久磁石1による突出部2aの開路方向の吸引力が小さくなり、第一の可動鉄心部2に閉路方向の吸引力が作用して閉路動作する。なお、閉路操作時には、駆動コイル7による磁束は、第一の可動鉄心2、永久磁石1、第二の可動鉄心3、第二の固定鉄心部6を介した磁気回路にも流れ、永久磁石1を少し逆励磁する。 FIG. 6 shows another example according to the present invention. The drive coil 7 is disposed not on the outer peripheral side of the first fixed core portion as shown in FIG. 1 but on the outer peripheral side of the third fixed core portion. The principle of attraction by the magnetic flux of the permanent magnet 1, the attraction by the magnetic flux of the drive coil 7 and the reduction of the attraction force of the permanent magnet 1 are the same, and the purpose, means and effect are the same. At the time of the opening operation, the attracting force by the permanent magnet 1 in the closing direction of the projecting portion 3a cannot be reduced by the drive coil 7, but the attracting force in the closing direction by the permanent magnet 1 of the first movable core portion 2 becomes small, and the projecting portion The opening operation is performed by the suction force in the opening direction 2a and the load of the contact pressure spring 16a. In the closed position, the magnetic flux generated by the drive coil 7 does not flow to the permanent magnet 1 itself. During the closing operation, the drive coil 7 reduces the attractive force in the opening direction of the protrusion 2a by the permanent magnet 1, and the closing force is applied to the first movable iron core 2 to perform the closing operation. During the closing operation, the magnetic flux generated by the drive coil 7 also flows through the magnetic circuit via the first movable iron core 2, the permanent magnet 1, the second movable iron core 3, and the second fixed iron core portion 6. A little reverse excitation.

また、図7のように、第一の可動鉄心2の突出部2aと第二の可動鉄心3の突出部3aとの距離を大きくし、その間に第二の固定鉄心部6と第三の固定鉄心部11を設けて、第一の可動鉄心2の突出部2aが第二の固定鉄心部6と、第二の可動鉄心3の突出部3aが第三の固定鉄心部11と、往復運動時に機械的に干渉しないようにしている。また、第二の固定鉄心部6と第三の固定鉄心部11を表裏に一体化している。構造は少し異なるが、動作原理、目的、手段、効果は図1と同じである。 Further, as shown in FIG. 7, the distance between the protruding portion 2a of the first movable iron core 2 and the protruding portion 3a of the second movable iron core 3 is increased, while the second fixed iron core portion 6 and the third fixed iron core 3 are fixed. An iron core portion 11 is provided, and the protruding portion 2a of the first movable iron core 2 is the second fixed iron core portion 6 and the protruding portion 3a of the second movable iron core 3 is the third fixed iron core portion 11 during reciprocating motion. It is designed not to interfere mechanically. Moreover, the 2nd fixed iron core part 6 and the 3rd fixed iron core part 11 are integrated in the front and back. Although the structure is slightly different, the principle of operation, purpose, means and effect are the same as in FIG.

以上のように、この発明に係る操作装置においては、永久磁石の一方の磁極面に突出部を有する第一の可動鉄心を設け、他方の磁極面に突出部を有する第二の可動鉄心を設けた。開閉装置の可動接触子などの駆動対象体と機械的に連結した駆動軸と、第一の可動鉄心、第二の可動鉄心、上記永久磁石を一体とした。第一の固定鉄心部を第一の可動鉄心に対向させ、第二の固定鉄心部をその対向方向と同方向に第二の可動鉄心の突出部に対向させ、第三の固定鉄心部をその対向方向と逆方向に第一の可動鉄心の突出部に対向させた構造にすることによって、開路用に使用した駆動コイルを逆に励磁することにより閉路操作ができ、駆動コイルを一つとできる。 As described above, in the operating device according to the present invention, the first movable iron core having the protrusion is provided on one magnetic pole surface of the permanent magnet, and the second movable iron core having the protrusion is provided on the other magnetic pole surface. It was. A drive shaft mechanically coupled to a drive object such as a movable contact of the switchgear, a first movable iron core, a second movable iron core, and the permanent magnet are integrated. The first fixed core is opposed to the first movable core, the second fixed core is opposed to the protruding portion of the second movable core in the same direction as the opposite direction, and the third fixed core is By making the structure opposed to the projecting portion of the first movable iron core in the opposite direction to the facing direction, the closing operation can be performed by exciting the driving coil used for opening the circuit in reverse, so that one driving coil can be obtained.

第一の可動鉄心と第一の固定鉄心部との第一の間隙と、第二の固定鉄心部と第二の可動鉄心の突出部の第二の間隙をほぼ等しくし、第一の間隙と第一の間隙における磁気磁路の断面積との比率と、第二の間隙と第二の間隙における磁気磁路の断面積との比率の合計を、永久磁石の厚みと磁極面積との比率にほぼ等しくすることによって、可動・固定接触子の接触時に必要な永久磁石の吸引力を、極小の永久磁石の体積・質量で得られる。 The first gap between the first movable iron core and the first fixed iron core and the second gap between the second fixed iron core and the projecting portion of the second movable iron core are substantially equal, and the first gap The sum of the ratio of the cross-sectional area of the magnetic magnetic path in the first gap and the cross-sectional area of the magnetic magnetic path in the second gap and the second gap is the ratio of the thickness of the permanent magnet to the magnetic pole area. By making them substantially equal, the attractive force of the permanent magnet required when the movable / fixed contact is brought into contact can be obtained with the volume and mass of the extremely small permanent magnet.

また、固定鉄心、又は第一の可動鉄心、又は第二の可動鉄心に狭小部を設けることによって、閉路位置の永久磁石による過大な吸引力を低下できるので、開路操作時の駆動コイルの起磁力を小さくでき、永久磁石への逆励磁磁束も少なくできる。 In addition, by providing a narrow portion in the fixed iron core, the first movable iron core, or the second movable iron core, the excessive attractive force by the permanent magnet at the closed position can be reduced, so the magnetomotive force of the drive coil during the open circuit operation The reverse excitation magnetic flux to the permanent magnet can be reduced.

また、操作装置の主要部を方形で磁性体の枠体内に収容することによって、スペースを有効に活用するとともに、異物や外部磁性体の影響を排除して品質安定性を高める方策も示した。 In addition, by accommodating the main part of the operating device in a rectangular frame in the magnetic body, the space is effectively utilized, and a measure for improving the quality stability by eliminating the influence of foreign substances and external magnetic bodies is also shown.

なお、本発明の応用例を図8に示す。図4a、図4c、図5a、図5cに示した閉路位置、接触位置の原理をそのままに、開路位置にて第三の固定鉄心部11を第二の固定鉄心部6に相当するものとし、周囲に閉路用駆動コイル20を有する第四の固定鉄心部21を設け、第二の可動鉄心と対向するようにすれば、そのまま開路位置でも閉路位置と同様の機能が得られる。開路、閉路の距離が大きい場合、すなわち可動鉄心の往復距離が大きい場合には、開路操作では第一の可動鉄心の突起部2aと第三の固定鉄心部11との吸引力が小さいので、開路のための操作力は十分得られないが、第一の可動鉄心2と第一の固定鉄心部5と、第二の固定鉄心部6と第二の可動鉄心の突出部3aとの永久磁石1による吸引力を駆動コイル7により低下させれば、接圧ばねの荷重によるエネルギが主として与えられて開路できる。同様に、閉路位置でも、接圧ばね16aに相当するばね22を設けて、閉路用駆動コイル20により永久磁石1の開路方向の吸引力を低下させれば、接圧ばねに相当するばね22の荷重にて、閉路操作でき、駆動体の慣性力にて閉路近くまで動作し、永久磁石1の閉路方向の吸引力にて閉路動作する。開路用駆動コイル7と閉路用駆動コイル20の2つのコイルが必要で、開路位置にて接圧ばねに相当するばね22が必要となるが、開路、閉路の距離が大きい場合でも、接圧ばね16a又は接圧ばねに相当するばね22が主として作用することにより、動作途中は駆動体の慣性力で開閉動作し、開路位置と閉路位置近くになると永久磁石1の吸引力により完全な開路位置、閉路位置まで吸引され、開路位置と閉路位置の保持力を得ることができる。   An application example of the present invention is shown in FIG. 4a, 4c, 5a, 5c, and the principle of the closed position and the contact position, the third fixed core portion 11 corresponds to the second fixed core portion 6 at the open position, If the fourth fixed iron core portion 21 having the drive coil 20 for closing is provided in the periphery so as to face the second movable iron core, the same function as the closing position can be obtained even at the open position. When the distance between the open circuit and the closed circuit is large, that is, when the reciprocating distance of the movable iron core is large, the suction force between the projection 2a of the first movable iron core and the third fixed iron core 11 is small in the open circuit operation. However, the permanent magnet 1 is composed of the first movable iron core 2, the first fixed iron core portion 5, the second fixed iron core portion 6, and the projecting portion 3 a of the second movable iron core. If the attraction force due to is reduced by the drive coil 7, the energy due to the load of the contact pressure spring is mainly applied to open the circuit. Similarly, if the spring 22 corresponding to the contact pressure spring 16a is provided even in the closed position and the attractive force in the opening direction of the permanent magnet 1 is reduced by the closing drive coil 20, the spring 22 corresponding to the contact pressure spring is reduced. The closing operation can be performed by the load, the operation is performed close to the closing by the inertial force of the driving body, and the closing operation is performed by the attractive force of the permanent magnet 1 in the closing direction. Two coils of the opening drive coil 7 and the closing drive coil 20 are required, and the spring 22 corresponding to the contact pressure spring is required at the open position, but even if the distance between the open circuit and the close circuit is large, the contact pressure spring 16a or a spring 22 corresponding to a contact pressure spring mainly acts to open and close by the inertial force of the driving body during the operation, and when it is close to the open position and the closed position, the complete open position by the attractive force of the permanent magnet 1; It is sucked up to the closed position, and the holding force of the open position and the closed position can be obtained.

例えば、断路器などのように閉路位置で開路方向に作用する接圧ばねを有しないものでも、接圧ばねに相当するばねを付設し、開路位置でも接圧ばねに相当するばねを付設すれば、動作途中は可動接触子の通電のための接触摩擦などの負荷は小さくできるので、接圧ばねに相当するばねにより動作した駆動体の慣性力で動作でき、開路位置と閉路位置では永久磁石の吸引力により保持力を得られる。本発明を応用すれば、開路、閉路の操作に、開路用駆動コイルと閉路用駆動コイルの二つの駆動コイルが必要となるものの、二つの小さな起磁力の駆動コイルと、一つの質量の小さな起磁力の永久磁石で操作でき、安価な断路器の操作装置を提供できる。   For example, even if there is no contact pressure spring that acts in the opening direction at the closed position, such as a disconnector, if a spring corresponding to the contact pressure spring is attached and a spring corresponding to the contact pressure spring is attached even at the open position During the operation, the load such as contact friction for energizing the movable contact can be reduced, so that it can be operated by the inertial force of the driving body operated by the spring corresponding to the contact pressure spring. Holding force can be obtained by suction force. If the present invention is applied, two drive coils, that is, an open-circuit drive coil and a close-circuit drive coil are required for opening and closing operations, but two small magnetomotive force drive coils and one small mass start-up coil are required. It is possible to provide an inexpensive operation device for a disconnector that can be operated with a permanent magnet.

本発明の開閉装置の操作装置は、電力用の開閉装置の開閉に用いる例を示したが、開閉装置の接圧ばねに相当するばねがあれば、又は付設すれば、他の機器の操作に広く適用できる。 Although the operation device of the switchgear according to the present invention has been shown as an example used for opening and closing a power switchgear, if there is a spring corresponding to the contact pressure spring of the switchgear or if it is attached, it can be used for the operation of other devices. Widely applicable.

1 永久磁石
2 第一の可動鉄心
2a 第一の可動鉄心の突出部
3 第二の可動鉄心
3a 第二の可動鉄心の突出部
4 駆動軸
5 第一の固定鉄心部
6 第二の固定鉄心部
6a 狭小部
7 駆動コイル
11 第三の固定鉄心部
16 接圧ばね装置
17 可動接触子
18 固定接触子
1 Permanent magnet
2 First movable iron core
2a Projection part 3 of the first movable iron core Second movable iron core
3a Projection part of second movable iron core
4 Drive shaft
5 First fixed iron core
6 Second fixed core
6a Narrow part 7 Drive coil
11 Third fixed iron core part 16 Contact pressure spring device
17 Movable contact
18 Fixed contact

Claims (3)

駆動コイルと永久磁石とを有する操作装置であって、上記操作装置は、第一の固定鉄心部と第二の固定鉄心部と第三の固定鉄心部からなる固定鉄心を有し、それぞれの固定鉄心部が磁気的に連結されたものであり、上記永久磁石の一方の磁極面に、上記永久磁石の磁極面より突出した突出部を有する第一の可動鉄心と、上記永久磁石の他方の磁極面に、上記永久磁石の磁極面より突出した突出部を有する第二の可動鉄心を有しており、上記第一の固定鉄心部が上記第一の可動鉄心に対向して、上記第二の固定鉄心部が上記対向方向と同方向に上記第二の可動鉄心の突出部に対向して、上記第三の固定鉄心部が上記対向方向と逆方向に第一の可動鉄心の突出部に対向して配置され、開閉装置の上記駆動対象体と連結した駆動軸と上記第一の可動鉄心と上記第二の可動鉄心と上記永久磁石を機械的に一体としたことを特徴とする開閉装置の操作装置。 An operating device having a drive coil and a permanent magnet, wherein the operating device has a fixed core composed of a first fixed core, a second fixed core, and a third fixed core, and each fixed An iron core is magnetically coupled, and a first movable iron core having a protruding portion protruding from the magnetic pole surface of the permanent magnet on one magnetic pole surface of the permanent magnet, and the other magnetic pole of the permanent magnet A second movable iron core having a protrusion protruding from the magnetic pole surface of the permanent magnet on the surface, the first fixed iron core portion facing the first movable iron core, The fixed core portion faces the protruding portion of the second movable core in the same direction as the facing direction, and the third fixed core portion faces the protruding portion of the first movable core in the opposite direction to the facing direction. The drive shaft connected to the drive object of the switchgear and the first movable Mechanically operated device of the switchgear, characterized in that an integral mind and the second movable iron core and the permanent magnet. 上記永久磁石から、上記第一の可動鉄心、上記第一の可動鉄心と上記第一の固定鉄心部との第一の間隙、上記第一の固定鉄心部、上記第二の固定鉄心部、上記第二の固定鉄心部と上記第二の可動鉄心の突出部の第二の間隙、上記第二の可動鉄心、上記永久磁石までの磁気回路における上記永久磁石による磁束により、上記第一の間隙における吸引力と、上記第二の間隙における吸引力で、開閉装置の上記駆動対象体の動作に必要な上記永久磁石の吸引力を得る請求項1の操作装置において、上記開閉装置の可動接触子と固定接触子の接触位置で、上記第一の間隙と上記第一の間隙における磁気磁路の断面積との比率と、上記第二の間隙と上記第二の間隙における磁気磁路の断面積との比率の合計を、上記永久磁石の磁極間の厚みと上記永久磁石の磁極面積との比率にほぼ等しくしたことを特徴とする開閉装置の操作装置。 From the permanent magnet, the first movable iron core, the first gap between the first movable iron core and the first fixed iron core, the first fixed iron core, the second fixed iron core, the above The second gap between the second fixed iron core and the projecting portion of the second movable iron core, the second movable iron core, the magnetic flux generated by the permanent magnet in the magnetic circuit up to the permanent magnet, and the first gap. 2. The operating device according to claim 1, wherein the attraction force and the attraction force in the second gap obtain the attraction force of the permanent magnet necessary for the operation of the drive object of the opening / closing device. At the contact position of the fixed contact, the ratio between the first gap and the cross-sectional area of the magnetic magnetic path in the first gap, and the cross-sectional area of the magnetic magnetic path in the second gap and the second gap Of the ratio between the thickness of the permanent magnet and the permanent magnet. Operating system of the switchgear, characterized in that it has substantially equal to the ratio of the area of magnetic pole of. 上記永久磁石から、上記第一の可動鉄心、上記第一の可動鉄心と上記第一の固定鉄心部との第一の間隙、上記第一の固定鉄心部、上記第二の固定鉄心部、上記第二の固定鉄心部と上記第二の可動鉄心の突出部の第二の間隙、上記第二の可動鉄心、上記永久磁石までの磁気回路における上記永久磁石による磁束により、上記第一の間隙における吸引力と、上記第二の間隙における吸引力で、開閉装置の上記駆動対象体の動作に必要な上記永久磁石の吸引力を得る請求項1の操作装置において、上記磁気回路の上記固定鉄心、又は上記第一の可動鉄心、又は上記第二の可動鉄心の一部に、上記開閉装置の閉路位置にて飽和磁束密度を超える狭小部を設けたことを特徴とする開閉装置の操作装置。







From the permanent magnet, the first movable iron core, the first gap between the first movable iron core and the first fixed iron core, the first fixed iron core, the second fixed iron core, the above The second gap between the second fixed iron core and the projecting portion of the second movable iron core, the second movable iron core, the magnetic flux generated by the permanent magnet in the magnetic circuit up to the permanent magnet, and the first gap. 2. The operating device according to claim 1, wherein the attraction force and the attraction force in the second gap obtain the attraction force of the permanent magnet necessary for the operation of the drive target body of the opening / closing device. Alternatively, an operating device for a switchgear characterized in that a narrow portion exceeding a saturation magnetic flux density is provided in a part of the first movable iron core or the second movable iron core at a closed position of the switchgear.







JP2011006725A 2011-01-17 2011-01-17 Operating device of switching device Pending JP2012150899A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011006725A JP2012150899A (en) 2011-01-17 2011-01-17 Operating device of switching device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011006725A JP2012150899A (en) 2011-01-17 2011-01-17 Operating device of switching device

Publications (1)

Publication Number Publication Date
JP2012150899A true JP2012150899A (en) 2012-08-09

Family

ID=46793006

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011006725A Pending JP2012150899A (en) 2011-01-17 2011-01-17 Operating device of switching device

Country Status (1)

Country Link
JP (1) JP2012150899A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112185721A (en) * 2020-09-28 2021-01-05 武汉同力同为科技有限公司 Drive assembly of switch device
CN112185720A (en) * 2020-09-28 2021-01-05 武汉同力同为科技有限公司 Drive assembly of switch device

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112185721A (en) * 2020-09-28 2021-01-05 武汉同力同为科技有限公司 Drive assembly of switch device
CN112185720A (en) * 2020-09-28 2021-01-05 武汉同力同为科技有限公司 Drive assembly of switch device
CN112185721B (en) * 2020-09-28 2023-02-10 武汉同力同为科技有限公司 Drive assembly of switch device
CN112185720B (en) * 2020-09-28 2023-04-28 武汉同力同为科技有限公司 Driving assembly of switch device

Similar Documents

Publication Publication Date Title
JP3723174B2 (en) Operating device, manufacturing method of operating device, and switchgear provided with the operating device
JP5230819B2 (en) Electromagnet device and switchgear using electromagnet device
JP5314197B2 (en) Electromagnetic operation device
US8773226B2 (en) Driving device and relay
JP6238620B2 (en) Electromagnet device
US9705390B2 (en) Oscillating type actuator having sufficient holding force without electric current
JP2009038874A (en) Rotary actuator
WO2011125142A1 (en) Polar electromagnet and electromagnetic contact
JP2012150899A (en) Operating device of switching device
JP6301013B2 (en) Switch
JP2003308761A (en) Electromagnetic actuator
JP2008204864A (en) Switch
JP6422457B2 (en) Electromagnetic actuator and electromagnetic relay using the same
JP6198449B2 (en) Electromagnet device
JP2004227966A (en) Operation device and switching device using operation device
JP5505211B2 (en) Polarized electromagnet and electromagnetic contactor
JP5697552B2 (en) Electromagnetic actuator and electromagnetic relay using the same
JP5627475B2 (en) Switch operating mechanism
WO2010055827A1 (en) Electromagnetic device
JP2014232618A (en) Electromagnetic operation device
JPS60123005A (en) Polarized bistable solenoid
JP5543766B2 (en) Electromagnetic actuator
JP2007129120A (en) Magnetic circuit
JP3367180B2 (en) Electromagnetic actuator
JP2003031088A (en) Magnetic drive mechanism for switch device