JP2012149755A - Cage for rolling bearing - Google Patents

Cage for rolling bearing Download PDF

Info

Publication number
JP2012149755A
JP2012149755A JP2011010917A JP2011010917A JP2012149755A JP 2012149755 A JP2012149755 A JP 2012149755A JP 2011010917 A JP2011010917 A JP 2011010917A JP 2011010917 A JP2011010917 A JP 2011010917A JP 2012149755 A JP2012149755 A JP 2012149755A
Authority
JP
Japan
Prior art keywords
cage
rolling bearing
retainer according
bearing retainer
annular
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2011010917A
Other languages
Japanese (ja)
Inventor
Shinji Oishi
真司 大石
Masa Nishimura
雅 西村
Tsutomu Nakagawa
勉 中川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NTN Corp
Original Assignee
NTN Corp
NTN Toyo Bearing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NTN Corp, NTN Toyo Bearing Co Ltd filed Critical NTN Corp
Priority to JP2011010917A priority Critical patent/JP2012149755A/en
Publication of JP2012149755A publication Critical patent/JP2012149755A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C33/00Parts of bearings; Special methods for making bearings or parts thereof
    • F16C33/30Parts of ball or roller bearings
    • F16C33/66Special parts or details in view of lubrication
    • F16C33/6637Special parts or details in view of lubrication with liquid lubricant
    • F16C33/6681Details of distribution or circulation inside the bearing, e.g. grooves on the cage or passages in the rolling elements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C33/00Parts of bearings; Special methods for making bearings or parts thereof
    • F16C33/30Parts of ball or roller bearings
    • F16C33/46Cages for rollers or needles
    • F16C33/4617Massive or moulded cages having cage pockets surrounding the rollers, e.g. machined window cages
    • F16C33/4623Massive or moulded cages having cage pockets surrounding the rollers, e.g. machined window cages formed as one-piece cages, i.e. monoblock cages
    • F16C33/4629Massive or moulded cages having cage pockets surrounding the rollers, e.g. machined window cages formed as one-piece cages, i.e. monoblock cages made from metal, e.g. cast or machined window cages
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C19/00Bearings with rolling contact, for exclusively rotary movement
    • F16C19/22Bearings with rolling contact, for exclusively rotary movement with bearing rollers essentially of the same size in one or more circular rows, e.g. needle bearings
    • F16C19/44Needle bearings
    • F16C19/46Needle bearings with one row or needles
    • F16C19/463Needle bearings with one row or needles consisting of needle rollers held in a cage, i.e. subunit without race rings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C2220/00Shaping
    • F16C2220/02Shaping by casting
    • F16C2220/04Shaping by casting by injection-moulding
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C33/00Parts of bearings; Special methods for making bearings or parts thereof
    • F16C33/30Parts of ball or roller bearings
    • F16C33/46Cages for rollers or needles
    • F16C33/467Details of individual pockets, e.g. shape or roller retaining means
    • F16C33/4676Details of individual pockets, e.g. shape or roller retaining means of the stays separating adjacent cage pockets, e.g. guide means for the bearing-surface of the rollers

Abstract

PROBLEM TO BE SOLVED: To provide an inexpensive cage with machined portions provided for improving performances such as lubricity, low torque property, or the like by molding the cage by a MIM method, to improve the performances.SOLUTION: The cage for rolling bearing includes annular sections 13 formed at both axial ends, a plurality of pillar sections 14 each connecting the annular sections 13 at constant intervals, and pocket sections 15 arranged between the pillar sections 14. The machined sections such as oil supply grooves 17 provided for improving cage performances such as lubricity, low torque property, or the like are provided in some or all sections of the annular sections 13, the pillar sections 14, and pocket sections 15. The whole including the machined sections is molded by the MIM method.

Description

この発明は、転がり軸受用保持器に関し、特に、潤滑性、低トルク性等の保持器性能の向上に関するものである。   The present invention relates to a rolling bearing cage, and more particularly to improvement of cage performance such as lubricity and low torque.

エンジンのコンロッド大端部や遊星減速機の遊星部には、低断面でコンパクトな針状ころ軸受(ケージ&ローラー)が多く使用されているが、その潤滑のために所定量の潤滑油が使用される。しかし、例えば、エンジンにおいては、近年の環境問題などから排ガス規制への対応のため潤滑油を減らす傾向にあり、軸受の潤滑条件はますます厳しくなっている。   Low-section and compact needle roller bearings (cages and rollers) are often used at the large end of the connecting rod of the engine and the planetary part of the planetary speed reducer. Is done. However, for example, in an engine, lubricating oil tends to be reduced in order to comply with exhaust gas regulations due to environmental problems in recent years, and the lubrication conditions of bearings are becoming more severe.

コンロッド大端部や遊星部では、偏心運動により保持器に遠心力が負荷されるため、外径案内の保持器が多く使用される。外径案内の保持器は、保持器外径と外輪内径面とが滑り接触しながら案内される。このため、潤滑条件が厳しくなると保持器外径面の滑り接触部において油膜切れが発生する可能性がある。   Since the centrifugal force is applied to the cage by the eccentric motion at the large end of the connecting rod and the planetary portion, a cage with an outer diameter guide is often used. The outer diameter guide cage is guided while the cage outer diameter and the outer ring inner diameter surface are in sliding contact with each other. For this reason, when lubrication conditions become severe, oil film breakage may occur at the sliding contact portion on the outer diameter surface of the cage.

以上の点を考慮し、保持器の潤滑性能を向上させる手段として、従来から以下の構造を採ることが知られている。
・保持器の外径面に軸方向端面に達する給油溝を設ける構造(特許文献1)。
・保持器の外径面に周方向、軸方向の給油溝を設ける構造(特許文献2)。
・保持器の外径面に動圧溝を設ける構造(特許文献3)。
・保持器の柱部に径方向の給油穴を設ける構造(特許文献4)
Taking the above points into consideration, it has been conventionally known to adopt the following structure as means for improving the lubrication performance of the cage.
A structure in which an oil supply groove reaching the axial end surface is provided on the outer diameter surface of the cage (Patent Document 1).
A structure in which oil supply grooves in the circumferential direction and the axial direction are provided on the outer diameter surface of the cage (Patent Document 2).
A structure in which a dynamic pressure groove is provided on the outer diameter surface of the cage (Patent Document 3).
・ Structure in which radial oil supply holes are provided in the cage pillars (Patent Document 4)

一方、ころ軸受を始めとする転がり軸受は、一般に外輪、内輪(または軸)、転動体および保持器により構成されており、転がり軸受においては、回転トルクを小さく抑えることがその性能上、非常に重要である。しかし、ころを案内する保持器は、内外輪やころと滑り接触しながら回転するため、その摺動抵抗が転がり軸受の回転トルクを大きくする要因の一つとなっている。   On the other hand, rolling bearings such as roller bearings are generally composed of an outer ring, an inner ring (or shaft), rolling elements and a cage. In rolling bearings, it is extremely important to keep the rotational torque small. is important. However, since the cage for guiding the rollers rotates while slidingly contacting the inner and outer rings and the rollers, the sliding resistance is one of the factors that increase the rotational torque of the rolling bearing.

そこで、保持器の回転トルクを低減する手段として、従来から以下の構造が知られている。
・保持器を薄肉化して各部との接触面積を減らし摩擦を低減する構造(特許文献5、「従来の技術」の項)。
・保持器に潤滑油を含浸させる構造(特許文献5、「従来の技術」の項)。
・ポケット内面に細溝を密に並べて凹凸形状を形成する構造(特許文献6)。
・保持器の柱部にその長さ方向に進む螺旋溝を設ける構造(特許文献7)。
・保持器の軸方向の両端面に波形加工を施す構造(特許文献8)。
Therefore, the following structures are conventionally known as means for reducing the rotational torque of the cage.
A structure in which the cage is thinned to reduce the contact area with each part and reduce friction (Patent Document 5, “Prior Art” section).
A structure in which the cage is impregnated with lubricating oil (Patent Document 5, “Prior Art”).
A structure in which narrow grooves are closely arranged on the inner surface of the pocket to form an uneven shape (Patent Document 6).
A structure in which a spiral groove that advances in the length direction is provided in the pillar portion of the cage (Patent Document 7).
A structure in which corrugation is applied to both axial end faces of the cage (Patent Document 8).

また、転がり軸受の保持器の加工法として、金属粉末射出成型法(以下、「MIM法」と称する。)が従来から知られている(特許文献9「課題を解決するための手段」の項参照)。MIM法を簡単に説明すると、金属粉末とバインダーを混合したものを金型に射出成型したのち、脱脂・焼結を行ってバインダーを蒸発させ、金属製品(保持器)を作り出す方法である。金属の密度は95%以上と高く、溶製材の鉄製保持器に近い特性が得られる。   Further, a metal powder injection molding method (hereinafter referred to as “MIM method”) has been conventionally known as a processing method for a cage of a rolling bearing (see Patent Document 9 “Means for Solving the Problems”). reference). Briefly explaining the MIM method, a mixture of metal powder and a binder is injection-molded into a mold, and then degreased and sintered to evaporate the binder to produce a metal product (cage). The density of the metal is as high as 95% or more, and a characteristic close to that of an iron cage made of molten metal is obtained.

特開2003−42163号公報JP 2003-42163 A 特開2004−324844号公報JP 2004-324844 A 特開2008−19937号公報JP 2008-19937 A 特開2008−128404号公報JP 2008-128404 A 特開2004−245278号公報JP 2004-245278 A 特開平8−184318号公報JP-A-8-184318 特開2004−316670号公報JP 2004-316670 A 特開平8−200373号公報JP-A-8-200303 特開2000−234623号公報JP 2000-234623 A

保持器の潤滑性能を高める従来の対策において、保持器に給油溝や給油穴を設ける場合、旋削加工で設けるとすると加工コストが高くなる問題がある。プレス加工で設ける方法もあるが、あまり深い溝や複雑な形状には対応できないなどの制約が出てくる。また、柱部に径方向の給油穴を設ける対策は、細い穴のプレス加工は金型耐久性の面などから困難である。   In the conventional measures for improving the lubrication performance of the cage, when the oil groove or the oil hole is provided in the cage, there is a problem that the machining cost is increased if it is provided by turning. Although there is a method of forming by pressing, there are restrictions such as not being able to cope with very deep grooves and complicated shapes. In addition, it is difficult to press a thin hole from the standpoint of mold durability in order to provide a radial oil supply hole in the column.

一方、保持器による回転トルクの低減を図る従来の対策において、保持器を薄肉化することは、保持器の強度の低下をもたらす問題がある。例えば、エンジンのコンロッド部や遊星減速機の遊星部などに使用される場合、偏心運動(クランク運動)による遠心力が保持器に加わると過負荷になる恐れがある。また、保持器に潤滑油を含浸させる方法は高コストになる欠点がある。   On the other hand, in the conventional measures for reducing the rotational torque by the cage, reducing the thickness of the cage has a problem of reducing the strength of the cage. For example, when used in a connecting rod part of an engine, a planetary part of a planetary speed reducer, or the like, if a centrifugal force due to an eccentric motion (crank motion) is applied to the cage, there is a risk of overloading. In addition, the method of impregnating the cage with the lubricating oil has a drawback of high cost.

さらに、ポケット内面に細溝を密に並べ凹凸形状を設ける構造、保持器柱部に螺旋溝を設ける構造、保持器の両端面に波形加工を施す構造は、いずれも樹脂製保持器について開示された構造である。樹脂製保持器は強度や耐熱性で金属製保持器に比べ劣るほか、熱膨張率が大きく、成型直後の収縮や寸法の経時変化が大きいなどの短所がある。したがって、これらの特性が要求される部位、例えば、エンジンのコンロッド部など使用条件の厳しい部位に使用するのは困難である。   Further, a structure in which fine grooves are arranged closely on the inner surface of the pocket to provide a concavo-convex shape, a structure in which a spiral groove is provided in the cage pillar, and a structure in which corrugation is applied to both end faces of the cage are all disclosed for resin cages. Structure. Resin cages are inferior to metal cages in strength and heat resistance, and also have disadvantages such as a large coefficient of thermal expansion, large shrinkage immediately after molding, and large dimensional changes over time. Therefore, it is difficult to use in a part where these characteristics are required, for example, a part having severe use conditions such as a connecting rod part of an engine.

前掲の特許文献9においては、転がり軸受用保持器をMIM法によって製作する発明が開示されている。その発明の要旨は、MIM法によって成型した金属に直径2μm〜30μmの非常に微細な独立した残留空孔があることに着目し、その残留空孔に潤滑油を保持させ、保持器の潤滑性を向上させたというものである。   In the above-mentioned Patent Document 9, an invention for manufacturing a rolling bearing retainer by the MIM method is disclosed. The gist of the invention is that the metal formed by the MIM method has very small independent residual pores with a diameter of 2 μm to 30 μm. It has been improved.

前記の発明は、保持器の潤滑性を向上させるために、保持器自体に潤滑性能向上のための特別な加工部(たとえば、給油溝や給油穴など)を設けることなく、MIM法によって成型した金属に必然的に発生する残留空孔をそのまま利用して潤滑油を保持させるようにしている。当然のことながら、その残留空孔の大きさ、位置、形状、密度等を任意に設定することはできない。   In the above invention, in order to improve the lubricity of the cage, the cage itself is molded by the MIM method without providing a special processing portion (for example, an oiling groove or an oiling hole) for improving the lubricating performance. The residual holes that are inevitably generated in the metal are used as they are to hold the lubricating oil. As a matter of course, the size, position, shape, density, etc. of the residual holes cannot be arbitrarily set.

上記のように、特許文献9に開示された発明は、MIM法がもつ特性の一つとして、成型後の金属に微細な空孔が残存するという特性を利用するものに過ぎず、MIM法がもつ一つの特性、即ち、各種金属材料を用い、合成樹脂の射出成型と同様の要領で複雑な形状の金属製品を製作できるという特性を利用したものとはいえない。   As described above, the invention disclosed in Patent Document 9 merely uses the characteristic that fine pores remain in the metal after molding as one of the characteristics of the MIM method. It cannot be said that it uses one characteristic that it has, that is, the ability to manufacture a metal product having a complicated shape in the same manner as the injection molding of synthetic resin using various metal materials.

そこで、この発明は、潤滑性、低トルク性等の保持器の性能を向上させるための加工部を積極的に設けた保持器をMIM法によって成型することによって、これらの諸性能を向上させた保持器を低コストで提供することを課題とする。   In view of this, the present invention has improved these various performances by molding a retainer that is actively provided with a processing section for improving the performance of the retainer such as lubricity and low torque by the MIM method. It is an object to provide a cage at a low cost.

前記の課題を解決するために、この発明は、軸方向両端部に設けられた環状部と、その環状部相互間を一定間隔で連結する多数の柱部と、柱部相互間に設けられたポケット部とによって構成された転がり軸受用保持器において、前記環状部、柱部、ポケット部の一部または全部に、潤滑性、低トルク性等の保持器性能の向上を図るための加工部が設けられ、前記加工部を含む全体がMIM法により成型された構成としたものである。   In order to solve the above-mentioned problems, the present invention is provided between an annular portion provided at both ends in the axial direction, a large number of pillar portions that connect the annular portions at regular intervals, and between the pillar portions. In a rolling bearing retainer constituted by a pocket portion, a processing portion for improving retainer performance such as lubricity and low torque is provided on a part or all of the annular portion, column portion, and pocket portion. The entire structure including the processed part is formed by the MIM method.

前記の加工部としては、保持器の潤滑性を向上させる機能をもつものと、低トルク性に寄与する機能をもつものに分けられる。   The processed parts are classified into those having a function of improving the lubricity of the cage and those having a function contributing to low torque.

保持器の潤滑性を向上させる機能をもつものとしては、環状部の外径面において軸方向または周方向に設けられた給油溝、環状部の軸方向の両端面において径方向または周方向に設けられた給油溝、ポケット間の柱部に径方向に設けられた給油穴がある。これら給油溝や給油穴により、潤滑油が保持器の摺動部へ誘導される。また、他の加工部として、保持器の摺動部に分散状に設けられた無数の油溜め部がある。無数の油溜め部に保留された潤滑油により、摺動部の油量が増す。   As a function to improve the lubricity of the cage, an oil supply groove provided in the axial direction or circumferential direction on the outer diameter surface of the annular portion, and provided in the radial direction or circumferential direction on both axial end surfaces of the annular portion. There are oil supply holes provided in the radial direction in the pillar portions between the provided oil supply grooves and pockets. By these oil supply grooves and oil supply holes, the lubricating oil is guided to the sliding portion of the cage. Further, as other processing parts, there are innumerable oil sump parts distributed in the sliding part of the cage. The amount of oil in the sliding portion is increased by the lubricating oil retained in the countless oil sump portions.

また、保持器の低トルク性に寄与する機能をもつものとしては、環状部外径面に設けられた動圧溝がある。動圧溝の作用により環状部の外周面に油膜が形成される。その他の加工部として、環状部の外径面に設けられた周方向のリブ、ポケット部の案内面に設けられた波形の凹凸部、ポケット部内端面に設けられた突部などがある。いずれも相手部材との摩擦を軽減させ、低トルク性に寄与する。   Moreover, there exists a dynamic-pressure groove | channel provided in the annular part outer-diameter surface as what has a function which contributes to the low torque property of a holder | retainer. An oil film is formed on the outer peripheral surface of the annular portion by the action of the dynamic pressure groove. Other processed parts include a circumferential rib provided on the outer diameter surface of the annular part, a corrugated uneven part provided on the guide surface of the pocket part, and a protrusion provided on the inner end face of the pocket part. Both reduce friction with the mating member and contribute to low torque.

以上のように、この発明によれば、給油溝、給油穴、動圧溝、波形凹凸部等の保持器の潤滑性、低トルク性等の性能を向上させるための加工部をもった保持器をMIM法により成型したものであるから、潤滑性、低トルク性等において優れた性能をもつ保持器を低コストで提供できる効果がある。   As described above, according to the present invention, a retainer having a processing portion for improving the lubricity and low torque performance of a retainer such as an oil supply groove, an oil supply hole, a dynamic pressure groove, and a corrugated uneven portion. Is molded by the MIM method, so that it is possible to provide a cage having excellent performance in terms of lubricity, low torque and the like at a low cost.

図1(a)は、実施形態1の一部縦断側面図、図1(b)は、同上の平面図、図1(c)は、図1(b)のX1−X1線の断面図である。1A is a partially longitudinal side view of Embodiment 1, FIG. 1B is a plan view of the same, and FIG. 1C is a cross-sectional view taken along line X1-X1 of FIG. 1B. is there. 図2(a)は、実施形態2の平面図、図2(b)は図2(a)のX2−X2線の断面図である。2A is a plan view of the second embodiment, and FIG. 2B is a cross-sectional view taken along line X2-X2 of FIG. 図3(a)は、実施形態3の側面図、図3(b)は、同上の一部平面図である。Fig.3 (a) is a side view of Embodiment 3, FIG.3 (b) is a partial top view same as the above. 図4は、実施形態4の側面図である。FIG. 4 is a side view of the fourth embodiment. 図5(a)は、実施形態5の一部平面図、図5(b)は同上のX3−X3線の断面図である。Fig.5 (a) is a partial top view of Embodiment 5, FIG.5 (b) is sectional drawing of a X3-X3 line same as the above. 図6は、実施形態6の平面図である。FIG. 6 is a plan view of the sixth embodiment. 図7は、実施形態6の変形例の平面図である。FIG. 7 is a plan view of a modification of the sixth embodiment. 図8は、実施形態6の変形例の側面図である。FIG. 8 is a side view of a modification of the sixth embodiment. 図9は、実施形態6の変形例の一部断面図である。FIG. 9 is a partial cross-sectional view of a modification of the sixth embodiment. 図10は、実施形態7の平面図である。FIG. 10 is a plan view of the seventh embodiment. 図11は、実施形態8の平面図である。FIG. 11 is a plan view of the eighth embodiment. 図12は、実施形態8の変形例の平面図である。FIG. 12 is a plan view of a modification of the eighth embodiment. 図13(a)は、実施形態8の変形例の一部断面図、図13(b)は同上の一部平面図である。Fig.13 (a) is a partial cross section figure of the modification of Embodiment 8, FIG.13 (b) is a partial top view same as the above. 図14(a)は、実施形態8の変形例の平面図、図14(b)は図14(a)のX4−X4線の断面図、図14(c)は図14(a)のX5−X5線の断面図である。14A is a plan view of a modification of the eighth embodiment, FIG. 14B is a cross-sectional view taken along line X4-X4 in FIG. 14A, and FIG. 14C is X5 in FIG. 14A. It is sectional drawing of a -X5 line.

以下、この発明の実施形態を添付図面に基づいて説明する。
[実施形態1]
Embodiments of the present invention will be described below with reference to the accompanying drawings.
[Embodiment 1]

図1に示した実施形態1の針状ころ軸受10は、保持器11とこれによって保持された針状ころ12とにより構成される。保持器11は、MIM法によって製作された金属製のものであり、軸方向両端部に設けられた一対の環状部13と、その環状部13の相互間に周方向に一定の間隔をおいて設けられ、環状部13を相互に連結する柱部14、柱部14の相互間に設けられたポケット部15とにより構成される。柱部14の外径面中央部に凹部16が形成される。   A needle roller bearing 10 according to the first embodiment shown in FIG. 1 includes a cage 11 and a needle roller 12 held thereby. The cage 11 is made of a metal manufactured by the MIM method, and has a pair of annular portions 13 provided at both ends in the axial direction and a certain interval in the circumferential direction between the annular portions 13. It is provided with a column portion 14 provided and connecting the annular portions 13 to each other, and a pocket portion 15 provided between the column portions 14. A concave portion 16 is formed in the center portion of the outer diameter surface of the column portion 14.

各環状部13の外径面において、各ポケット部15の端部と、軸方向の外端部との間に軸方向の給油溝17が設けられる。これらの給油溝17を始め、ポケット部15、凹部16等の部分は、保持器11の全体をMIM法によって成型する際に同時に成型される。   On the outer diameter surface of each annular portion 13, an axial oil supply groove 17 is provided between the end portion of each pocket portion 15 and the outer end portion in the axial direction. The portions including the oil supply groove 17, the pocket portion 15, the concave portion 16, and the like are simultaneously formed when the entire retainer 11 is formed by the MIM method.

MIM法によって保持器11を成型する場合の金属材料の選択の自由度は高く、例えば、アルミニウム、チタン、マグネシウム材を使用することができ、これらの材料は保持器11の軽量化を図ることができる。また、高力黄銅を使用することで、保持器11の摺動面の初期なじみ性を向上し、さらに潤滑性能を向上することも可能である。ステンレス材を使用すれば、防錆性能も得られるため、屋外などサビの発生しやすい環境での使用や、食品機械、半導体製造装置などサビの発生を嫌う使用環境下での使用が可能となる。   When the cage 11 is molded by the MIM method, the metal material can be freely selected. For example, aluminum, titanium, or magnesium material can be used, and these materials can reduce the weight of the cage 11. it can. Further, by using high-strength brass, it is possible to improve the initial conformability of the sliding surface of the cage 11 and further improve the lubrication performance. The use of stainless steel provides rust prevention performance, so it can be used in environments where rust is likely to occur, such as outdoors, and in environments where rust is not required, such as food machinery and semiconductor manufacturing equipment. .

また、保持器11に識別マークや刻印(品名、メーカー名、製造情報など)を設けたい場合は、通常のケージ&ローラーでは刻印を打つための工程が増加するが、MIM法の場合は成型時に識別マークや刻印を同時成型することができるため、工程の追加が必要でなく、低コストで設けることができる。   In addition, when an identification mark or stamp (product name, manufacturer name, manufacturing information, etc.) is to be provided on the retainer 11, the number of steps for stamping is increased with a normal cage and roller. Since the identification mark and the stamp can be formed at the same time, it is not necessary to add a process and can be provided at low cost.

前記の針状ころ軸受10が使用に供され潤滑油が供給されると、保持器11の外径面に接触した潤滑油は、給油溝17に捕捉されるので、ポケット部15側へ誘導されやすくなり、保持器11の潤滑性能が向上する。
[実施形態2]
When the needle roller bearing 10 is used and supplied with lubricating oil, the lubricating oil in contact with the outer diameter surface of the cage 11 is captured by the oil supply groove 17 and is therefore guided to the pocket portion 15 side. This facilitates the lubrication performance of the cage 11.
[Embodiment 2]

図2に示した実施形態2に係る針状ころ軸受10を構成する保持器11は、左右の環状部13に周方向の給油溝17が設けられる。その他の構成は、実施形態1の場合(図1参照)と、凹部16が無い点を除き実質的に同じである。   The cage 11 constituting the needle roller bearing 10 according to the second embodiment shown in FIG. 2 is provided with circumferential oil supply grooves 17 in the left and right annular portions 13. Other configurations are substantially the same as in the case of the first embodiment (see FIG. 1) except that there is no recess 16.

給油溝17は、螺旋状に形成され、その一端部は環状部13の外端にあり、他端部は内端にある。螺旋の向きは、図示のように、左側の環状部13のものは反時計方向、右側の環状部13のものは時計方向に定められている。これらの給油溝17は、環状部13上の潤滑油を螺旋の回転方向に誘導する。   The oil supply groove 17 is formed in a spiral shape, and one end thereof is at the outer end of the annular portion 13 and the other end is at the inner end. As shown in the figure, the direction of the spiral is determined to be counterclockwise for the left annular portion 13 and clockwise for the right annular portion 13. These oil supply grooves 17 guide the lubricating oil on the annular portion 13 in the spiral rotation direction.

螺旋の向きを図示のように設定すると、保持器11が図2の矢印Aの方向から見て反時計方向に回転したとき、左右いずれの給油溝17によっても、保持器11の端部から内側(ポケット部15側)へ誘導される潤滑油の流れが生じる。
[実施形態3]
When the direction of the spiral is set as shown in the figure, when the cage 11 rotates counterclockwise as viewed from the direction of arrow A in FIG. A flow of lubricating oil induced to the (pocket 15 side) occurs.
[Embodiment 3]

図3に示した実施形態3に係る針状ころ軸受10を構成する保持器11は、その両端面に径方向の給油溝17を周方向に所定の間隔をおいて複数箇所に設けたものである。この場合は、保持器11の回転に伴う遠心力により潤滑油を流動させ、保持器端面の潤滑油量をアップさせ、径方向の通油性を向上させる。
[実施形態4]
The cage 11 constituting the needle roller bearing 10 according to the third embodiment shown in FIG. 3 is provided with radial oil supply grooves 17 at a plurality of locations at predetermined intervals in the circumferential direction on both end surfaces thereof. is there. In this case, the lubricating oil is caused to flow by the centrifugal force accompanying the rotation of the cage 11, the amount of lubricating oil at the cage end surface is increased, and the oil permeability in the radial direction is improved.
[Embodiment 4]

図4に示した実施形態4に係る針状ころ軸受10を構成する保持器11は、その両端面に周方向の給油溝17を設けたものである。給油溝17は、渦巻き形に形成され、その一端部は環状部13の端面の内径上にあり、他端部は外径上にある。螺旋の向きは、図示のように、一方のものは内径側から外径側に向かって時計方向、図示を省略しているが、他方のものは内径側から外径側に向かって反時計方向に定められる。これらの給油溝17は、環状部13の端面に付着した潤滑油を螺旋の回転方向に誘導する。   The retainer 11 constituting the needle roller bearing 10 according to the fourth embodiment shown in FIG. 4 is provided with circumferential oil supply grooves 17 on both end faces thereof. The oil supply groove 17 is formed in a spiral shape, and one end thereof is on the inner diameter of the end face of the annular portion 13 and the other end is on the outer diameter. The direction of the spiral is clockwise as shown in the figure from the inner diameter side to the outer diameter side, while the illustration of the other is omitted, but the other is counterclockwise from the inner diameter side toward the outer diameter side. Determined. These oil supply grooves 17 guide the lubricating oil adhering to the end face of the annular portion 13 in the spiral rotation direction.

螺旋の向きが前記のように設定されている場合は、保持器11が図4の方向から見て反時計方向に回転したとき、両側の給油溝17によっても、内径側から外径側へ誘導される潤滑油の流れが生じる。   When the direction of the spiral is set as described above, when the cage 11 rotates counterclockwise as viewed from the direction of FIG. 4, it is guided from the inner diameter side to the outer diameter side also by the oil supply grooves 17 on both sides. Resulting in a flow of lubricating oil.

前記実施形態3の場合(図3参照)のように、給油溝17が径方向に設けられている場合は、端面の全周にわたって付着した油の一部を外径方向に誘導できるにとどまるが、この実施形態4の場合(図4参照)は、全周に給油溝17が設けられているので、全周の油を誘導することができる。
[実施形態5]
As in the case of the third embodiment (see FIG. 3), when the oil supply groove 17 is provided in the radial direction, a part of the oil adhering over the entire circumference of the end face can be guided in the outer radial direction. In the case of the fourth embodiment (see FIG. 4), the oil supply groove 17 is provided on the entire periphery, so that the oil on the entire periphery can be guided.
[Embodiment 5]

図5に示した実施形態5に係る針状ころ軸受10を構成する保持器11は、保持器11の潤滑性能を向上させる加工部として、柱部14とその柱部14に連続した環状部13にわたる数か所に径方向の給油穴18を設けたものである。潤滑油がこれらの給油穴18を経て径方向に自由に通過できることにより、保持器11の潤滑性能が向上する。
[実施形態6]
A cage 11 constituting the needle roller bearing 10 according to the fifth embodiment shown in FIG. 5 includes a column portion 14 and an annular portion 13 continuous to the column portion 14 as a processing portion that improves the lubrication performance of the cage 11. The radial oil supply holes 18 are provided at several locations. Since the lubricating oil can freely pass through these oil supply holes 18 in the radial direction, the lubricating performance of the cage 11 is improved.
[Embodiment 6]

図6から図9に示した実施形態6に係る針状ころ軸受10を構成する保持器11は、当該保持器11の外周部や両端部に接近して配置された外輪、ケーシング等の相手部材との摺動部や針状ころ12との摺動部に無数の油溜り19を分散状に設けたものである。油溜り19は、円形、楕円形の窪み(ディンプル)によって形成される。   The cage 11 constituting the needle roller bearing 10 according to the sixth embodiment shown in FIGS. 6 to 9 is a counterpart member such as an outer ring or a casing disposed close to the outer peripheral portion or both ends of the cage 11. Innumerable oil reservoirs 19 are provided in a dispersed manner at the sliding portion with the needle roller 12 and the sliding portion with the needle roller 12. The oil sump 19 is formed by a circular or elliptical depression (dimple).

図6、図7の場合は、環状部13と柱部14の表面、図8の場合は環状部13の端面に設けている。図9の場合はポケット15の案内面に設けている。円形、楕円形に限らず、正方形、長方形であってもよい。楕円形、長方向の場合は、その長軸方向が保持器の軸方向に沿う向きに設定する。   In the case of FIG. 6, FIG. 7, it has provided in the end surface of the annular part 13 in the case of FIG. In the case of FIG. 9, it is provided on the guide surface of the pocket 15. The shape is not limited to a circle and an ellipse, and may be a square or a rectangle. In the case of an ellipse and a long direction, the long axis direction is set to be along the axial direction of the cage.

これらの油溜り19は、潤滑油の流れの抵抗となり、潤滑油が滞留して摺動部の油量が増加し、油膜形成能力が向上する。
[実施形態7]
These oil sumps 19 provide resistance to the flow of the lubricating oil, the lubricating oil stays, the amount of oil in the sliding portion increases, and the oil film forming ability is improved.
[Embodiment 7]

図10に示した実施形態7に係る針状ころ軸受10を構成する保持器11は、左右の環状部13の外周面に動圧溝20を設けたものである。動圧溝20は、図示の場合、へリングボーン形のものを示しているが、他の形状であっても差し支えない。   The cage 11 constituting the needle roller bearing 10 according to the seventh embodiment shown in FIG. 10 is provided with dynamic pressure grooves 20 on the outer peripheral surfaces of the left and right annular portions 13. In the illustrated example, the dynamic pressure groove 20 has a herringbone shape, but may have other shapes.

前記の針状ころ軸受10が高速回転した場合、各環状部13の外周面に接近配置されたケーシング等の他の部材との間に、動圧溝20の作用によって油膜が形成され、回転トルクが低減される。
[実施形態8]
When the needle roller bearing 10 rotates at a high speed, an oil film is formed by the action of the dynamic pressure groove 20 between other members such as a casing disposed close to the outer peripheral surface of each annular portion 13, and rotational torque Is reduced.
[Embodiment 8]

図11から図14に示した実施形態8に係る針状ころ軸受10の保持器11は、当該保持器11の外周部や両端部に接近して配置された外輪、ケーシング等の相手部材との摺動部や針状ころ12との摺動部に突部21を設け、その突部21で接触させることにより摺動抵抗を低減し、保持器11の回転トルクの低減を図るものである。   The retainer 11 of the needle roller bearing 10 according to the eighth embodiment shown in FIGS. 11 to 14 is connected to a counterpart member such as an outer ring and a casing disposed close to the outer peripheral portion and both end portions of the retainer 11. Protruding portions 21 are provided on the sliding portions and the sliding portions with the needle rollers 12, and contact with the protruding portions 21 reduces the sliding resistance and reduces the rotational torque of the cage 11.

図11の場合は、左右の環状部12の外径面の全周にわたり、複数本のリブ状の突部21を設けたものである。各突部21と相手部材との接触は、点接触となり、摩擦が軽減される。   In the case of FIG. 11, a plurality of rib-shaped protrusions 21 are provided over the entire outer circumference of the left and right annular portions 12. The contact between each protrusion 21 and the mating member is a point contact, and friction is reduced.

図12の場合は、左右の環状部12の各端面の全周にわたり、波形凹凸面により多数の突部21を設けたものである。各突部21と相手部材との接触は線接触となる。   In the case of FIG. 12, a large number of protrusions 21 are provided on the entire circumference of each end face of the left and right annular portions 12 by corrugated uneven surfaces. The contact between each protrusion 21 and the mating member is a line contact.

図13の場合は、ポケット部15の案内面に軸方向の波形凹凸面により複数の突部21を設けたものである。各突部21と針状ころ12との接触は点接触となる。   In the case of FIG. 13, a plurality of protrusions 21 are provided on the guide surface of the pocket portion 15 by corrugated surfaces in the axial direction. Contact between each protrusion 21 and the needle roller 12 is point contact.

図14の場合は、ポケット部15の内端面に単独の突部21を設け、針状ころ12の両端面の中央部に接触させるようにしたものである。中央部は周速も遅く、また接触面積も小さいので、摺動抵抗が減り、回転トルクが減少する。   In the case of FIG. 14, a single protrusion 21 is provided on the inner end surface of the pocket portion 15 so as to be in contact with the center portion of both end surfaces of the needle roller 12. Since the central portion has a low peripheral speed and a small contact area, the sliding resistance is reduced and the rotational torque is reduced.

10 針状ころ軸受
11 保持器
12 針状ころ
13 環状部
14 柱部
15 ポケット部
16 凹部
17 給油溝
18 給油穴
19 油溜り
20 動圧溝
21 突部
DESCRIPTION OF SYMBOLS 10 Needle roller bearing 11 Cage 12 Needle roller 13 Annular part 14 Column part 15 Pocket part 16 Recessed part 17 Oil supply groove 18 Oil supply hole 19 Oil reservoir 20 Dynamic pressure groove 21 Protrusion part

Claims (13)

軸方向両端部に設けられた環状部と、その環状部相互間を一定間隔で連結する多数の柱部と、柱部相互間に設けられたポケット部とによって構成された転がり軸受用保持器において、前記環状部、柱部、ポケット部の一部または全部に、潤滑性、低トルク性等の保持器性能の向上を図るための加工部が設けられ、前記加工部を含む全体がMIM法により成型されたことを特徴とする転がり軸受用保持器。   In a rolling bearing cage comprising an annular portion provided at both axial end portions, a plurality of column portions that connect the annular portions at regular intervals, and a pocket portion provided between the column portions. In addition, a part or all of the annular part, column part, and pocket part is provided with a processing part for improving cage performance such as lubricity and low torque, and the whole including the processing part is formed by the MIM method. A cage for a rolling bearing characterized by being molded. 前記加工部が、前記環状部の外径面において軸方向または周方向に設けられた給油溝であることを特徴とする請求項1に記載の転がり軸受用保持器。   The rolling bearing retainer according to claim 1, wherein the processed portion is an oil supply groove provided in an axial direction or a circumferential direction on an outer diameter surface of the annular portion. 前記周方向に設けられた給油溝が、螺旋形であることを特徴とする請求項2に記載の転がり軸受用保持器。   The rolling bearing retainer according to claim 2, wherein the oil supply groove provided in the circumferential direction has a spiral shape. 前記加工部が、前記環状部の軸方向の両端面において径方向または周方向に設けられた給油溝であることを特徴とする請求項1に記載の転がり軸受用保持器。   The rolling bearing retainer according to claim 1, wherein the processed portion is an oil supply groove provided in a radial direction or a circumferential direction on both axial end surfaces of the annular portion. 前記軸方向の両端面において周方向に設けられた給油穴が、渦巻き形であることを特徴とする請求項4に記載の転がり軸受用保持器。   The rolling bearing retainer according to claim 4, wherein oil supply holes provided in a circumferential direction on both end faces in the axial direction have a spiral shape. 前記加工部が、前記ポケット間の柱部又は環状部に径方向に設けられた給油穴であることを特徴とする請求項1に記載の転がり軸受用保持器。   The rolling bearing retainer according to claim 1, wherein the processed portion is an oil supply hole provided in a radial direction in a column portion or an annular portion between the pockets. 前記加工部が、保持器摺動部に分散状に設けられた無数の油溜め部であることを特徴とする請求項1に記載の転がり軸受用保持器。   The rolling bearing retainer according to claim 1, wherein the processed portion is an infinite number of oil sump portions distributed in a cage sliding portion. 前記加工部が、前記環状部外径面に設けられた動圧溝であることを特徴とする請求項1に記載の転がり軸受用保持器。   The rolling bearing cage according to claim 1, wherein the processed portion is a dynamic pressure groove provided on the outer diameter surface of the annular portion. 前記加工部が、前記環状部の外径面に設けられた周方向のリブ状の突部であることを特徴とする請求項1に記載の転がり軸受用保持器。   The rolling bearing retainer according to claim 1, wherein the processed portion is a circumferential rib-shaped protrusion provided on an outer diameter surface of the annular portion. 前記加工部が、前記環状部の端面に設けられた波形凹凸面による突部であることを特徴とする請求項1に記載の転がり軸受用保持器。   The rolling bearing retainer according to claim 1, wherein the processed portion is a protruding portion having a corrugated uneven surface provided on an end surface of the annular portion. 前記加工部が、前記ポケット部の案内面に設けられた軸方向の波形凹凸面による突部であることを特徴とする請求項1に記載の転がり軸受用保持器。   The rolling bearing retainer according to claim 1, wherein the processed portion is a protrusion formed by a corrugated surface in an axial direction provided on a guide surface of the pocket portion. 前記加工部が、前記ポケット部内端面に設けられた単独の突部であることを特徴とする請求項1に記載の転がり軸受用保持器。   The rolling bearing retainer according to claim 1, wherein the processed portion is a single protrusion provided on the inner end face of the pocket portion. 前記MIM加工の材料が、アルミニウム、チタン、マグネシウム、高力黄銅、ステンレス材のいずれかであることを特徴とする請求項1から12のいずれかに記載の転がり軸受用保持器。



The rolling bearing retainer according to any one of claims 1 to 12, wherein the material for the MIM processing is any one of aluminum, titanium, magnesium, high-strength brass, and stainless steel.



JP2011010917A 2011-01-21 2011-01-21 Cage for rolling bearing Pending JP2012149755A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011010917A JP2012149755A (en) 2011-01-21 2011-01-21 Cage for rolling bearing

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011010917A JP2012149755A (en) 2011-01-21 2011-01-21 Cage for rolling bearing

Publications (1)

Publication Number Publication Date
JP2012149755A true JP2012149755A (en) 2012-08-09

Family

ID=46792186

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011010917A Pending JP2012149755A (en) 2011-01-21 2011-01-21 Cage for rolling bearing

Country Status (1)

Country Link
JP (1) JP2012149755A (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014231877A (en) * 2013-05-29 2014-12-11 日本精工株式会社 Cage for radial needle bearing, and radial needle bearing
JP2015092088A (en) * 2013-10-04 2015-05-14 日本精工株式会社 Cage for radial roller bearing, and radial roller bearing
US9145918B2 (en) 2013-04-04 2015-09-29 Schaeffler Technologies AG & Co. KG Split cage for a bearing
WO2018173890A1 (en) * 2017-03-21 2018-09-27 Ntn株式会社 Roller bearing
CN110307250A (en) * 2018-03-27 2019-10-08 株式会社捷太格特 Roller cage formula bearing
JP2020026874A (en) * 2018-08-17 2020-02-20 Ntn株式会社 Roller with retainer and planetary gear support structure
DE102019112815A1 (en) * 2019-05-16 2020-11-19 Schaeffler Technologies AG & Co. KG Rolling bearing cage
FR3112826A1 (en) * 2020-07-27 2022-01-28 Safran Aircraft Engines Drainage Groove Bearing Cage
DE102022111081A1 (en) 2022-05-05 2023-11-09 Schaeffler Technologies AG & Co. KG Cage for a rolling bearing, rolling bearings with a cage and planetary gears with a rolling bearing
DE102022111071A1 (en) 2022-05-05 2023-11-09 Schaeffler Technologies AG & Co. KG Cage for a rolling bearing, rolling bearings with a cage and planetary gears with a rolling bearing

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9145918B2 (en) 2013-04-04 2015-09-29 Schaeffler Technologies AG & Co. KG Split cage for a bearing
JP2014231877A (en) * 2013-05-29 2014-12-11 日本精工株式会社 Cage for radial needle bearing, and radial needle bearing
JP2015092088A (en) * 2013-10-04 2015-05-14 日本精工株式会社 Cage for radial roller bearing, and radial roller bearing
WO2018173890A1 (en) * 2017-03-21 2018-09-27 Ntn株式会社 Roller bearing
CN110307250A (en) * 2018-03-27 2019-10-08 株式会社捷太格特 Roller cage formula bearing
CN110307250B (en) * 2018-03-27 2023-04-04 株式会社捷太格特 Roller cage bearing
JP2020026874A (en) * 2018-08-17 2020-02-20 Ntn株式会社 Roller with retainer and planetary gear support structure
WO2020036071A1 (en) * 2018-08-17 2020-02-20 Ntn株式会社 Retainer-equipped rollers and planetary gear support structure
DE102019112815A1 (en) * 2019-05-16 2020-11-19 Schaeffler Technologies AG & Co. KG Rolling bearing cage
FR3112826A1 (en) * 2020-07-27 2022-01-28 Safran Aircraft Engines Drainage Groove Bearing Cage
DE102022111081A1 (en) 2022-05-05 2023-11-09 Schaeffler Technologies AG & Co. KG Cage for a rolling bearing, rolling bearings with a cage and planetary gears with a rolling bearing
DE102022111071A1 (en) 2022-05-05 2023-11-09 Schaeffler Technologies AG & Co. KG Cage for a rolling bearing, rolling bearings with a cage and planetary gears with a rolling bearing

Similar Documents

Publication Publication Date Title
JP2012149755A (en) Cage for rolling bearing
EP2554865B1 (en) Rolling bearing device
JP6683630B2 (en) Sliding parts
WO2009150935A1 (en) Retainer, deep groove ball bearing, and bearing with seal
JP2007078090A (en) Needle roller bearing
JP6234137B2 (en) Deep groove ball bearing
JP2013145012A (en) Thrust roller bearing and thrust roller bearing apparatus
JP5602345B2 (en) Cage and deep groove ball bearings
JP2015148241A (en) Ball bearing cage and ball bearing
JP2012077761A (en) Thrust ball bearing
CN106594058B (en) Fluid dynamic pressure bearing
JP2009174603A (en) Roller bearing
CN104204565A (en) Rolling bearing assembly comprising an elastically deformable element and method of manufacturing such a bearing.
JP6084365B2 (en) Cage and ball bearing
JP2009275722A (en) Rolling bearing
EP2807386A1 (en) Rolling bearing assembly with internal lubrication
JP6485014B2 (en) Rolling bearing
JP2010249241A (en) Deep groove ball bearing and method for designing the same
JP5790032B2 (en) Tapered roller bearing
JP2012057751A (en) Retainer and needle roller bearing
JP6047865B2 (en) Radial roller bearing cage
JP2011122656A (en) Retainer and ball bearing
JP2005061509A (en) Rolling bearing
JP5790033B2 (en) Tapered roller bearing
JP2009162261A (en) Deep groove ball bearing