JP2012149741A - Eccentric rocking type reduction gear - Google Patents

Eccentric rocking type reduction gear Download PDF

Info

Publication number
JP2012149741A
JP2012149741A JP2011010332A JP2011010332A JP2012149741A JP 2012149741 A JP2012149741 A JP 2012149741A JP 2011010332 A JP2011010332 A JP 2011010332A JP 2011010332 A JP2011010332 A JP 2011010332A JP 2012149741 A JP2012149741 A JP 2012149741A
Authority
JP
Japan
Prior art keywords
output pin
external gear
gear
speed reducer
external
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2011010332A
Other languages
Japanese (ja)
Inventor
Hiromitsu Ota
浩充 太田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JTEKT Corp
Original Assignee
JTEKT Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JTEKT Corp filed Critical JTEKT Corp
Priority to JP2011010332A priority Critical patent/JP2012149741A/en
Publication of JP2012149741A publication Critical patent/JP2012149741A/en
Pending legal-status Critical Current

Links

Images

Abstract

PROBLEM TO BE SOLVED: To provide a thin eccentric rocking type reduction gear that can set a transmission torque of each external gear to a desired value.SOLUTION: In the eccentric rocking type reduction gear 1 with an internal gear 21 and first and second external gears 5 and 6 meshing with the internal gear 21, an output pin includes a first output pin 7 coming into contact only with a through-hole 51 of the first external gear 5 and a second output pin 8 coming into contact only with a through-hole 61 of the second external gear 6. The transmission torque is set so as to satisfy an expression KR=CKRwhere C denotes a desired value of a ratio of the transmission torque of the first external gear 5 to the transmission torque of the second external gear 6, Kdenotes a value of first stiffness that is a stiffness of the first output pin 7, Kdenotes a value of second stiffness that is a stiffness of the second output pin 8, Rdenotes a distance between the center of the internal gear 21 and the center of the first output pin, and Rdenotes a distance between the center of the internal gear 21 and the center of the second output pin.

Description

本発明は、偏心揺動型減速機に関するものであり、詳しくは複数の外歯歯車を備えた偏心揺動型減速機の出力ピンに作用する伝達トルクを所望の値に設定できる偏心揺動型減速機に関するものである。   The present invention relates to an eccentric oscillating speed reducer, and more specifically, an eccentric oscillating type capable of setting a transmission torque acting on an output pin of an eccentric oscillating speed reducer having a plurality of external gears to a desired value. It relates to a reduction gear.

外歯歯車の自転運動を出力軸に取り出す出力ピンの剛性を高くして外歯歯車から伝達される荷重を均一化するために、出力ピンを両持ち支持として剛性を高めた従来技術1(例えば、特許文献1参照)がある。また、出力ピンを出力軸で片持ち支持した偏心揺動型減速機で、一部の出力ピンに荷重が集中することを避けるために、出力ピン支持リングを設けた従来技術2(例えば、特許文献2参照)がある。   In order to increase the rigidity of the output pin that takes out the rotation of the external gear to the output shaft and to equalize the load transmitted from the external gear, the conventional technique 1 (for example, using the output pin as a double-supported support) Patent Document 1). Further, in the eccentric oscillating type reduction gear in which the output pin is cantilevered by the output shaft, in order to avoid the load from being concentrated on a part of the output pins, the prior art 2 (for example, patent) Reference 2).

実開昭59−127951号公報Japanese Utility Model Publication No.59-127951 実開平4−32518号公報Japanese Utility Model Publication No. 4-32518

特許文献1の従来技術1は、支持リングを追加して出力ピンを両持ち支持としているため、軸方向に支持リングを設けるスペース分の寸法増加を伴い、偏心揺動型減速機の回転軸方向に対する薄形化に限界があった。
特許文献2の従来技術2は同一外歯歯車に接触する出力ピン間の荷重アンバランスは解消できる。しかし、出力ピン径が同一でかつ片持ち支持であるため、出力軸に近い外歯歯車の出力ピン接触部と遠い外歯歯車の出力ピン接触部では荷重が異なる。これは、出力ピンの曲げ変形に起因する曲げ剛性が出力ピン支持部から荷重作用点の距離の3乗に反比例するためである。このため、出力軸に近い外歯歯車の接触部は剛性が大きいため大きな荷重が加わり、剛性が小さい出力軸から遠い外歯歯車の接触部には小さな荷重が加わる。結局、出力軸に近い外歯歯車の伝達トルクが大きく遠い外歯歯車では伝達トルクが小さくなり、出力軸に近い外歯歯車の強度限界によって減速機の最大伝達トルクが規制されていた。
本発明は上記事情に鑑みてなされたものであり、夫々の外歯歯車の伝達トルクを所望の値に設定でき、かつ、回転軸方向に対して薄形の偏心揺動型減速機を提供することを目的とする。
In prior art 1 of Patent Document 1, since a support ring is added and the output pin is supported at both ends, the axial direction of the eccentric oscillating speed reducer is accompanied by an increase in the size of the space in which the support ring is provided in the axial direction. There was a limit to thinning.
Prior art 2 of Patent Document 2 can eliminate load imbalance between output pins contacting the same external gear. However, since the output pin diameter is the same and is cantilevered, the load differs between the output pin contact portion of the external gear close to the output shaft and the output pin contact portion of the remote external gear. This is because the bending rigidity resulting from the bending deformation of the output pin is inversely proportional to the cube of the distance from the output pin support portion to the load application point. For this reason, since the contact portion of the external gear close to the output shaft has high rigidity, a large load is applied, and a small load is applied to the contact portion of the external gear far from the output shaft having low rigidity. Eventually, the transmission torque of the external gear close to the output shaft is large and the transmission torque of the external gear distant from the output shaft is small, and the maximum transmission torque of the reduction gear is regulated by the strength limit of the external gear close to the output shaft.
The present invention has been made in view of the above circumstances, and provides an eccentric oscillating speed reducer that can set a transmission torque of each external gear to a desired value and is thin with respect to the rotation axis direction. For the purpose.

上記の課題を解決するため、請求項1に係る発明の特徴は、内歯車と、前記内歯車と噛合する第1、第2外歯歯車と、前記第1、第2外歯歯車をクランク軸の軸線周りで位相の異なる位置に配置された2箇所の偏心した円筒カム部で前記内歯車の中心軸線に対し公転可能に支持する前記クランク軸と、前記第1、第2外歯歯車に備えた前記内歯車の中心軸線に平行な貫通穴と接する複数の出力ピンと、前記出力ピンの一端を保持し前記内歯車の中心軸線に対し回転自在な回転軸を備え、前記クランク軸を入力軸とし、前記内歯車と前記回転軸のいずれかを出力軸として回転作動させる偏心揺動型減速機において、
前記出力ピンを前記第1外歯歯車の前記貫通穴とのみ接する第1出力ピンと、前記第2外歯歯車の前記貫通穴とのみ接する第2出力ピンで構成し、
前記第1外歯歯車の伝達トルクの前記第2外歯歯車の伝達トルクに対する比率の所望値をC、前記第1出力ピンの剛性である第1剛性の値をK、前記第2出力ピンの剛性である第2剛性の値をK、前記第1出力ピン中心の前記内歯車の中心軸線からの距離をR、前記第2出力ピン中心の前記内歯車の中心軸線からの距離をRとするとき、式K・R =C・K・R を満足するように設定し、
前記第1剛性が前記内歯車の中心軸線に直交する方向における前記第1出力ピンの前記第1外歯歯車との接触部と前記回転軸の軸心部の間の剛性であり、前記第2剛性が前記内歯車の中心軸線に直交する方向における前記第2出力ピンの前記第2外歯歯車との接触部と前記回転軸の軸心部の間の剛性であることである。
In order to solve the above problems, the invention according to claim 1 is characterized in that an internal gear, first and second external gears meshed with the internal gear, and the first and second external gears are connected to a crankshaft. The crankshaft that is revolved with respect to the central axis of the internal gear by two eccentric cylindrical cam portions arranged at different positions around the axis of the internal gear, and the first and second external gears. A plurality of output pins in contact with a through hole parallel to the central axis of the internal gear, a rotation shaft that holds one end of the output pin and is rotatable with respect to the central axis of the internal gear, and the crankshaft serves as an input shaft. In the eccentric oscillating speed reducer that rotates with the internal gear and the rotating shaft as an output shaft,
The output pin comprises a first output pin that contacts only the through hole of the first external gear, and a second output pin that contacts only the through hole of the second external gear,
The desired value of the ratio of the transmission torque of the first external gear to the transmission torque of the second external gear is C, the first stiffness value that is the stiffness of the first output pin is K 1 , and the second output pin The value of the second rigidity, which is the rigidity of the first output pin, is K 2 , the distance from the center axis of the internal gear at the center of the first output pin is R 1 , and the distance from the center axis of the internal gear at the center of the second output pin is R 2 is set to satisfy the formula K 1 · R 1 2 = C · K 2 · R 2 2 ,
The first rigidity is a rigidity between a contact portion of the first output pin with the first external gear in a direction orthogonal to a central axis of the internal gear and an axial center portion of the rotation shaft, and the second The rigidity is a rigidity between a contact portion of the second output pin with the second external gear in a direction orthogonal to a central axis of the internal gear and an axial center portion of the rotary shaft.

請求項2に係る発明の特徴は、請求項1に係る発明において、前記第2出力ピンの支持点から前記第2外歯歯車の前記貫通穴との接触点までの距離を前記第1出力ピンの支持点から前記第1外歯歯車の前記貫通穴との接触点までの距離より長くし、前記第2出力ピンの径を前記第1出力ピンの径より大きくすることである。   A feature of the invention according to claim 2 is that, in the invention according to claim 1, the distance from the support point of the second output pin to the contact point of the second external gear with the through hole is the first output pin. The distance from the support point to the contact point of the first external gear with the through hole is made longer, and the diameter of the second output pin is made larger than the diameter of the first output pin.

請求項3に係る発明の特徴は、請求項2に係る発明において、前記第2出力ピンの、前記第2外歯歯車の前記貫通穴との接触部の径を、前記回転軸による保持部の径より小さくすることである。   A feature of the invention according to claim 3 is that in the invention according to claim 2, the diameter of the contact portion of the second output pin with the through hole of the second external gear is set to It is to make it smaller than the diameter.

請求項4に係る発明の特徴は、請求項3に係る発明において、前記第2出力ピンの前記第2外歯歯車の前記貫通穴との接触部の径を、前記第1出力ピンの径と同一にすることである。   According to a fourth aspect of the present invention, in the invention according to the third aspect, the diameter of the contact portion of the second output pin with the through hole of the second external gear is the diameter of the first output pin. It is to be the same.

請求項5に係る発明の特徴は、請求項1に係る発明において、前記第1出力ピンと前記第2出力ピンの径を同一とすることである。   A feature of the invention according to claim 5 is that, in the invention according to claim 1, the diameters of the first output pin and the second output pin are the same.

請求項6に係る発明の特徴は、請求項1ないし請求項5のいずれか1項に係る発明において、前記第2出力ピンの支持点から前記第2外歯歯車の前記貫通穴との接触点までの距離を前記第1出力ピンの支持点から前記第1外歯歯車の前記貫通穴との接触点までの距離より長くし、前記Rを前記Rより大きくすることである。 A feature of the invention according to claim 6 is that, in the invention according to any one of claims 1 to 5, the contact point between the support point of the second output pin and the through hole of the second external gear. Is longer than the distance from the support point of the first output pin to the contact point with the through hole of the first external gear, and R 2 is made larger than R 1 .

請求項7に係る発明の特徴は、請求項1ないし請求項6のいずれか1項に係る発明において、前記第2外歯歯車の幅を前記第1外歯歯車の幅より小さくすることである。   A feature of the invention according to claim 7 is that, in the invention according to any one of claims 1 to 6, the width of the second external gear is made smaller than the width of the first external gear. .

請求項8に係る発明の特徴は、請求項1ないし請求項7のいずれか1項に係る発明において、前記第1出力ピンの材質の縦弾性係数と前記第2出力ピンの材質の縦弾性係数が異なることである。   A feature of the invention according to claim 8 is that, in the invention according to any one of claims 1 to 7, the longitudinal elastic modulus of the material of the first output pin and the longitudinal elastic modulus of the material of the second output pin. Is different.

請求項1に係る発明によれば、第1外歯歯車の伝達トルクの第2外歯歯車の伝達トルクに対する比の値Cを、所望に設定できる。例えば、第1外歯歯車の最大許容伝達トルクが、第2外歯歯車の最大許容伝達トルクの2倍の場合、C=2として式K・R =C・K・R を満足するように第1剛性の値K、第2剛性の値K、第1出力ピン中心の内歯車の中心軸線からの距離R、第2出力ピン中心の内歯車の中心軸線からの距離Rを設定する。こうすれば、第1外歯歯車の伝達トルクの第2外歯歯車の伝達トルクに対する比率は2となり、第1、第2外歯歯車の最大許容伝達トルクの和を偏心揺動型減速機の最大伝達トルクとできる。第1、第2外歯歯車のどちらも無駄なくトルク伝達させることができ、結果として伝達トルクの増大もしくは偏心揺動型減速機の小型化が可能となる。 According to the invention of claim 1, the value C of the ratio of the transmission torque of the first external gear to the transmission torque of the second external gear can be set as desired. For example, when the maximum permissible transmission torque of the first external gear is twice the maximum permissible transmission torque of the second external gear, C = 2 and the equation K 1 · R 1 2 = C · K 2 · R 2 2 The first stiffness value K 1 , the second stiffness value K 2 , the distance R 1 from the central axis of the internal gear at the center of the first output pin, and the central axis of the internal gear at the center of the second output pin so as to satisfy to set the distance R 2. In this way, the ratio of the transmission torque of the first external gear to the transmission torque of the second external gear is 2, and the sum of the maximum allowable transmission torques of the first and second external gears is set to Maximum transmission torque. Both the first and second external gears can transmit torque without waste. As a result, the transmission torque can be increased or the eccentric oscillating speed reducer can be downsized.

請求項2に係る発明によれば、第1剛性の値Kと第2剛性の値Kを同等にするのが容易で、第1外歯歯車の伝達トルクと第2外歯歯車の伝達トルクが同等な偏心揺動型減速機を容易に実現できる According to the second aspect of the invention, it is easy to make the first stiffness value K 1 and the second stiffness value K 2 equal, and the transmission torque of the first external gear and the transmission of the second external gear. Easily realize an eccentric oscillating speed reducer with the same torque.

請求項3に係る発明によれば、第2剛性の値Kを大きく低下することなく、第2外歯歯車の貫通穴径を小さくできるので、第2外歯歯車の貫通穴の外周の肉厚が厚くなり強度が増し、第2外歯歯車による伝達トルクを大きくできる。 According to the invention of claim 3, without reducing significantly the value K 2 of the second rigid, since the through hole diameter of the second external gear can be reduced, the meat of the outer periphery of the through hole of the second external gear The thickness increases, the strength increases, and the transmission torque by the second external gear can be increased.

請求項4に係る発明によれば、第1、第2出力ピンの貫通穴径が同一なので第1、第2外歯歯車に備えた貫通穴を同一工具で加工でき加工時間を短くできる。   According to the invention which concerns on Claim 4, since the through-hole diameter of a 1st, 2nd output pin is the same, the through-hole provided in the 1st, 2nd external gear can be processed with the same tool, and processing time can be shortened.

請求項5に係る発明によれば、第1、第2出力ピンの径が同一なので回転軸の出力ピン取り付け穴や、第1、第2外歯歯車に備えた貫通穴を同一工具で加工でき加工時間を短くできる。   According to the invention of claim 5, since the diameters of the first and second output pins are the same, the output pin mounting hole of the rotary shaft and the through hole provided in the first and second external gears can be processed with the same tool. Processing time can be shortened.

請求項6に係る発明によれば、第1外歯歯車の伝達トルクと第2外歯歯車の伝達トルクが同等な場合には、第2剛性の値を第1剛性の値より小さくできるので、第2出力ピンの径を第1出力ピンの径より大きくする度合いを小さくできる。このため、偏心揺動型減速機の外径を小さくできる。   According to the invention of claim 6, when the transmission torque of the first external gear and the transmission torque of the second external gear are equal, the value of the second rigidity can be made smaller than the value of the first rigidity. The degree of making the diameter of the second output pin larger than the diameter of the first output pin can be reduced. For this reason, the outer diameter of the eccentric oscillation type reduction gear can be made small.

請求項7に係る発明によれば、第1外歯歯車の許容伝達トルクより第2外歯歯車の許容伝達トルクが小さくなるので、第2外歯歯車に関するK・R を小さくでき、偏心揺動型減速機の外径を小さくできる。 According to the invention of claim 7, since the allowable transmission torque than the allowable transmission torque of the first external gear second external gear is reduced, it is possible to reduce the K 2 · R 2 2 relating to the second external gear, The outer diameter of the eccentric oscillating speed reducer can be reduced.

請求項8に係る発明によれば、第1、第2出力ピンの形状差と第1、第2出力ピンの材質の縦弾性係数の差の2つのファクターにより第1、第2剛性の値を設定でき、剛性の値の設定範囲が広くなる。また、第2出力ピンの縦弾性係数を第1出力ピンより大きくすると、第2出力ピンの径の増加を低減できる。結果として、外歯歯車の外径の増加を低減でき、偏心揺動型減速機の外径を小さくできる。   According to the eighth aspect of the present invention, the first and second stiffness values are determined by two factors, the difference in shape between the first and second output pins and the difference in the longitudinal elastic modulus of the material of the first and second output pins. It can be set, and the setting range of the rigidity value becomes wide. Further, if the longitudinal elastic modulus of the second output pin is made larger than that of the first output pin, an increase in the diameter of the second output pin can be reduced. As a result, an increase in the outer diameter of the external gear can be reduced, and the outer diameter of the eccentric oscillating speed reducer can be reduced.

第1実施形態の偏心揺動型減速機の断面図である(図2のC−C断面)。It is sectional drawing of the eccentric rocking | fluctuation type reduction gear of 1st Embodiment (CC cross section of FIG. 2). 図1のA−A断面図である。It is AA sectional drawing of FIG. 図1のB−B断面図である。It is BB sectional drawing of FIG. 出力ピンの位置と伝達トルクの関係を示す図である。It is a figure which shows the relationship between the position of an output pin, and transmission torque. 出力ピン7の変位を示す概念図である(図4のD−D断面)。It is a conceptual diagram which shows the displacement of the output pin 7 (DD cross section of FIG. 4). 出力ピン8の変位を示す概念図である。3 is a conceptual diagram showing displacement of an output pin 8. FIG. 第2実施形態の偏心揺動型減速機の断面図である。It is sectional drawing of the eccentric rocking | swiveling type reduction gear of 2nd Embodiment. 第3実施形態の偏心揺動型減速機の断面図である。It is sectional drawing of the eccentric rocking | swiveling type reduction gear of 3rd Embodiment.

以下、本発明の第1実施形態を内歯車を固定し、回転軸を出力軸とした例で図1〜図5に基づき説明する。
図1に示すように、偏心揺動型減速機1はハウジング2で保持された軸受13により回転自在に支持された回転軸4を備えている。ハウジング2の中心部に、回転軸4で保持された軸受12とハウジング2で保持された軸受9を介して両端部を回転自在に支持されたクランク軸3を備えている。クランク軸3は中央部に円筒状の偏心カム部31、32を備え、偏心カム部31、32はクランク軸3の回転軸心aに対し偏心量eを持ち互いに略180度位相がずれている。偏心カム部31の外周に軸受11を介して回転自在に支持された第1外歯歯車である外歯歯車5を備え、偏心カム部32の外周に軸受10を介して回転自在に支持された第2外歯歯車である外歯歯車6を備えている。複数の第1出力ピンである出力ピン7が回転軸心aの同心円周位置で軸線が回転軸心aと平行になるように回転軸4に圧入保持されている。出力ピン7は外歯歯車5に設けられた貫通穴51に内接している。複数の第2出力ピンである出力ピン8が回転軸心aの同心円周位置で軸線が回転軸心aと平行になるように配置され、出力ピン8の一端が回転軸4に圧入保持されている。出力ピン8は外歯歯車5に設けられた穴52内を非接触で貫通して、出力ピン8の他端に備えた圧入部より小径の接触部81が外歯歯車6に設けられた貫通穴61に内接している。
ここで、回転軸心aはハウジング2の内周面に設けられた内歯車21の中心線と一致しており、内歯車21、外歯歯車5、6の歯形はインボリュート歯形である。
Hereinafter, a first embodiment of the present invention will be described based on FIGS. 1 to 5 with an example in which an internal gear is fixed and a rotary shaft is an output shaft.
As shown in FIG. 1, the eccentric oscillating speed reducer 1 includes a rotating shaft 4 that is rotatably supported by a bearing 13 held by a housing 2. At the center of the housing 2, there is provided a crankshaft 3 rotatably supported at both ends via a bearing 12 held by the rotary shaft 4 and a bearing 9 held by the housing 2. The crankshaft 3 includes cylindrical eccentric cam portions 31 and 32 at the center, and the eccentric cam portions 31 and 32 have an eccentricity amount e with respect to the rotational axis a of the crankshaft 3 and are substantially 180 degrees out of phase with each other. . An external gear 5 that is a first external gear rotatably supported on the outer periphery of the eccentric cam portion 31 via the bearing 11 is provided, and is rotatably supported on the outer periphery of the eccentric cam portion 32 via the bearing 10. An external gear 6 that is a second external gear is provided. A plurality of output pins 7 as first output pins are press-fitted and held on the rotary shaft 4 so that the axis is parallel to the rotary axis a at the concentric circumferential position of the rotary axis a. The output pin 7 is inscribed in a through hole 51 provided in the external gear 5. A plurality of output pins 8 that are second output pins are arranged at a concentric circumferential position of the rotation axis a so that the axis is parallel to the rotation axis a, and one end of the output pin 8 is press-fitted and held on the rotation shaft 4. Yes. The output pin 8 penetrates through the hole 52 provided in the external gear 5 in a non-contact manner, and the contact portion 81 having a smaller diameter than the press-fit portion provided at the other end of the output pin 8 is provided in the external gear 6. Inscribed in the hole 61.
Here, the rotation axis a coincides with the center line of the internal gear 21 provided on the inner peripheral surface of the housing 2, and the tooth shapes of the internal gear 21 and the external gears 5 and 6 are involute tooth shapes.

図2、図3に示すように、外歯歯車5、6は内歯車21と1箇所で噛合するような歯車のピッチ円径を備えている。クランク軸3の回転に伴い外歯歯車5、6は内歯車21と噛合しながらクランク軸3の偏心量eを半径とする公転運動をする。図2に示すように、外歯歯車5の貫通穴51の穴径dは出力ピン7の外径をDとするとd=2・e+Dに設定されており、貫通穴51は出力ピン7の外周に常に内接して回転する。図3に示すように、外歯歯車6の貫通穴61の穴径dは出力ピン8の接触部81の外径をDとするとd=2・e+Dに設定されており、貫通穴61は接触部81の外周に常に内接して回転する。 As shown in FIGS. 2 and 3, the external gears 5 and 6 have a gear pitch circle diameter that meshes with the internal gear 21 at one location. As the crankshaft 3 rotates, the external gears 5 and 6 revolve with the radius of the eccentric amount e of the crankshaft 3 while meshing with the internal gear 21. As shown in FIG. 2, the hole diameter d 1 of the through hole 51 of the external gear 5 is set to d 1 = 2 · e + D 1 when the outer diameter of the output pin 7 is D 1. The pin 7 always rotates in contact with the outer periphery. As shown in FIG. 3, the hole diameter d 2 of the through hole 61 of the external gear 6 is set to the outer diameter of the contact portion 81 of the output pin 8 to d 2 = 2 · e + D 2 When D 2, through The hole 61 always rotates in contact with the outer periphery of the contact portion 81.

以下、この偏心揺動型減速機1の外歯歯車5の作動について図1、図2に基づき説明する。
図2に示すように、クランク軸3が回転軸心aの廻りを回転すると外歯歯車5はハウジング2の内周面に設けられた内歯車21と噛合しながら公転する。このとき、外歯歯車5の歯数をZ、内歯車21の歯数をZとすると、外歯歯車5はクランク軸3の1回転当りZ−Zの歯数だけ相対回転をする。つまり、外歯歯車5はハウジング2に対して偏心eを半径とする1回転の公転運動と、(Z−Z)/Z回転の自転運動をする。この自転運動は4個の貫通穴51と4個の出力ピン7の接触部を介して出力軸である図1に示す回転軸4に伝達される。
同様にして、図3に示すように、外歯歯車6の自転運動も4個の貫通穴61と4個の出力ピン8の接触部81を介して出力軸である図1に示す回転軸4に伝達される。
Hereinafter, the operation of the external gear 5 of the eccentric oscillating speed reducer 1 will be described with reference to FIGS. 1 and 2.
As shown in FIG. 2, when the crankshaft 3 rotates around the rotation axis a, the external gear 5 revolves while meshing with an internal gear 21 provided on the inner peripheral surface of the housing 2. At this time, if the number of teeth of the external gear 5 is Z 1 and the number of teeth of the internal gear 21 is Z 2 , the external gear 5 rotates relative to the number of teeth of Z 2 −Z 1 per one rotation of the crankshaft 3. To do. That is, the external gear 5 performs one revolution revolution with the eccentricity e as a radius with respect to the housing 2 and a rotation (Z 2 −Z 1 ) / Z 2 revolution. This rotation motion is transmitted to the rotating shaft 4 shown in FIG. 1 as an output shaft through the contact portions of the four through holes 51 and the four output pins 7.
Similarly, as shown in FIG. 3, the rotation of the external gear 6 is also an output shaft through the contact portions 81 of the four through holes 61 and the four output pins 8. Is transmitted to.

以下、4本の出力ピン7を円周等分に備えた場合の伝達トルクについて説明をする。
図4において、外歯歯車5は内歯車21と点Pで噛合し、出力ピン7aの中心Qとクランク軸3の回転軸線aと点Pが成す角度∠QaPが90°となる位置にある。ここで、外歯歯車5に伝達トルクTが右回りで作用すると、出力ピン7cの外歯歯車5との接触部における出力ピン7cと外歯歯車5の相対運動は離れる方向となり、出力ピン7b、7dの外歯歯車5との接触部における出力ピン7b、7dと外歯歯車5の相対運動は接線方向になるのでトルクを伝達しない。
外歯歯車5における、出力ピン7aを介し回転軸4へ伝達されるトルクTは、出力ピン7aの中心と回転軸線aの距離をR、出力ピン7aと貫通穴51aの接触部に作用する法線力をFとすると、T=F・Rとなる。
同様にして、外歯歯車6における、出力ピン8を介し回転軸4へ伝達されるトルクTは、出力ピン8の中心と回転軸線aの距離をR、出力ピン8と貫通穴61の接触部に作用する法線力をFとすると、T=F・Rとなる。
Hereinafter, the transmission torque in the case where the four output pins 7 are provided on the circumference equally will be described.
In FIG. 4, the external gear 5 meshes with the internal gear 21 at a point P, and an angle ∠QaP formed by the center Q of the output pin 7 a and the rotational axis a of the crankshaft 3 and the point P is 90 °. Here, when the transmission torque T 1 in the external gear 5 act in clockwise, relative motion of the output pin 7c and the external gear 5 at the contact portion between the external gear 5 of the output pin 7c becomes away, the output pins Since the relative movement between the output pins 7b and 7d and the external gear 5 at the contact portions of the external gear 5 and 7b and 7d is tangential, no torque is transmitted.
The torque T 1 transmitted to the rotating shaft 4 through the output pin 7a in the external gear 5 acts on the contact portion between the center of the output pin 7a and the rotating axis a R 1 , and the output pin 7a and the through hole 51a. When the normal force to be performed is F 1 , T 1 = F 1 · R 1 .
Similarly, in the external gear 6, the torque T 2 transmitted to the rotary shaft 4 via the output pin 8 is R 2 , and the distance between the center of the output pin 8 and the rotary axis a is R 2 . When the normal force acting on the contact portion is F 2 , T 2 = F 2 · R 2 .

次に、出力ピン7の剛性と法線力の関係について、簡略化のため、接触部における分布荷重を1点に加わる集中荷重に置き換えて説明する。
図5において、出力ピン7の圧入部からの距離がLの外歯歯車5の貫通穴51と出力ピン7の接触部の位置に、出力ピン7の軸線に直交する方向に法線力Fが荷重として作用し、荷重作用点の剛性をKとすると、荷重作用点で以下の式δ=F/Kで表される変位δを生じる。つまり、変位δにより法線力F=δ・Kを反力として発生する。
ここで、変位δは出力ピン7のクランク軸3の回転軸心aを中心とする円の円周方向の変位であり、外歯歯車5と回転軸4の回転方向の相対角度変位をφとすると、δ=φ・Rとなる。また、外歯歯車5、6は内歯車21と噛合してクランク軸3により同時に回転しているので回転速度は同一であるため、外歯歯車5、6と回転軸4の回転方向の相対角度変位φは同一となる。
Next, the relationship between the rigidity of the output pin 7 and the normal force will be described by replacing the distributed load at the contact portion with a concentrated load applied to one point for simplification.
In FIG. 5, the normal force F in the direction perpendicular to the axis of the output pin 7 is at the position of the contact portion between the through hole 51 of the external gear 5 and the output pin 7 whose distance from the press-fitting portion of the output pin 7 is L 1 1 acts as a load, the rigidity of the load acting point and K 1, produces a displacement [delta] 1 of the formula [delta] 1 = F 1 / K 1 of the following load application point. That is, the normal force F 1 = δ 1 · K 1 is generated as a reaction force by the displacement δ 1 .
Here, the displacement δ 1 is a circumferential displacement of a circle around the rotational axis a of the crankshaft 3 of the output pin 7, and the relative angular displacement of the external gear 5 and the rotational shaft 4 in the rotational direction is φ Then, δ 1 = φ · R 1 . Further, since the external gears 5 and 6 are meshed with the internal gear 21 and are simultaneously rotated by the crankshaft 3, the rotation speed is the same, so the relative angle of the external gears 5 and 6 and the rotation shaft 4 in the rotation direction. The displacement φ is the same.

同様にして、図6において、出力ピン8の圧入部からの距離がLの外歯歯車6の貫通穴61と出力ピン8の接触部81の位置に、出力ピン8の軸線に直交する方向に法線力Fが荷重として作用し、荷重作用点の剛性をKすると、変位δにより法線力F=δ・Kを反力として発生する。 Similarly, in FIG. 6, the position of the contact portion 81 of the through hole 61 and the output pin 8 of the external gear 6 Distance from the press-fitting portion of the L 2 output pins 8, a direction perpendicular to the axis of the output pin 8 When the normal force F 2 acts as a load and the rigidity of the load application point is K 2 , the normal force F 2 = δ 2 · K 2 is generated as a reaction force due to the displacement δ 2 .

外歯歯車5の伝達トルクTは出力ピン7の剛性Kと相対角度変位φと出力ピン7の中心と回転軸線aの距離Rを用いると、T=δ・K・R=φ・K・R となる。外歯歯車6の伝達トルクTは出力ピン8の剛性Kと相対角度変位φと出力ピン8の中心と回転軸線aの距離Rを用いると、T=δ・K・R=φ・K・R となる。 When the transmission torque T 1 of the external gear 5 is used the distance R 1 of the center and the rotation axis a of the stiffness K 1 and the relative angular displacement φ and the output pin 7 of the output pin 7, T 1 = δ 1 · K 1 · R 1 = φ · K 1 · R 1 2 When the transmission torque T 2 of the external gear 6 uses the distance R 2 of the center and the rotation axis a of the stiffness K 2 and the relative angular displacement φ and the output pin 8 of the output pin 8, T 2 = δ 2 · K 2 · R 2 = φ · K 2 · R 2 2

以上の説明では、出力ピン7aの中心Qとクランク軸3の回転軸線aと外歯歯車5、6と内歯車21の噛合点Pが成す角度∠QaPが90°となる位置にある場合について説明したが、その他の角度の場合は、2本の出力ピンにその角度に応じた法線力が作用する。この法線力に基づく2つの伝達トルクの合計は上記の説明と同様になり、T=φ・K・R とT=φ・K・R は他の角度の場合にも成り立つ。 In the above description, the case where the angle QaP formed by the center Q of the output pin 7a, the rotation axis a of the crankshaft 3, the external gears 5 and 6, and the meshing point P of the internal gear 21 is 90 ° will be described. However, in the case of other angles, a normal force corresponding to the angle acts on the two output pins. The sum of the two transmission torques based on this normal force is the same as described above, and T 1 = φ · K 1 · R 1 2 and T 2 = φ · K 2 · R 2 2 are other angles. It holds true.

出力ピン7、8が片持ち支持であるため、出力ピン7、8と外歯歯車5、6との接触部と回転軸4の軸心部の間の変位の大部分は出力ピン7、8の曲げによるたわみ変位が占める。このため、剛性K、Kは出力ピン7、8の曲げ剛性を変えることで容易に所望の値に設定できる。曲げによるたわみ変位δtはδt=F・L/(3EI)となることが知られている。ここで、Fは荷重、Lは支持点から荷重作用点までの距離、Eは出力ピンの縦弾性係数、Iは出力ピンの断面2次モーメントであり、断面2次モーメントIは出力ピンの直径の4乗に比例し、縦弾性係数Eは材質により決まる。Lが一定でも出力ピン径と出力ピンの材質を変えることでIとEを変えることができ、結果として、剛性K、Kを所望の値に設定できる。 Since the output pins 7 and 8 are cantilevered, most of the displacement between the contact portion between the output pins 7 and 8 and the external gears 5 and 6 and the shaft center portion of the rotary shaft 4 is the output pins 7 and 8. This is accounted for by the deflection displacement due to bending. Therefore, the stiffnesses K 1 and K 2 can be easily set to desired values by changing the bending stiffness of the output pins 7 and 8. It is known that the deflection displacement δt caused by bending is δt = F · L 3 / (3EI). Here, F is the load, L is the distance from the support point to the load application point, E is the longitudinal elastic modulus of the output pin, I is the cross-sectional secondary moment of the output pin, and the cross-sectional secondary moment I is the diameter of the output pin The longitudinal elastic modulus E is determined by the material. Even if L is constant, I and E can be changed by changing the diameter of the output pin and the material of the output pin. As a result, the stiffnesses K 1 and K 2 can be set to desired values.

図1の偏心揺動型減速機1は、外歯歯車5の伝達トルクTと外歯歯車6の伝達トルクTを同一にするため、支持点から荷重作用点までの距離の短い出力ピン7に対して、支持点から荷重作用点までの距離の長い出力ピン8の径を大きくしてK=K、R=Rとし、K・R =K・R とした例である。
偏心揺動型減速機1は、外歯歯車5、6の幅が等しいので、外歯歯車5、6の許容伝達トルクは同じであるため、伝達トルクを同一(C=1)にすると合計の許容伝達トルクが最大となり、寿命も長くなる。そして、外歯歯車6の貫通穴61に外接している出力ピン8の接触部81の径を、回転軸4に圧入保持された出力ピン8の圧入部の径より小さくしたため、貫通穴61の外周の肉厚が厚くでき外歯歯車6の強度を確保できる。
また、出力ピン8の接触部81の径を出力ピン7の径と同一にしてもよい。外歯歯車5と外歯歯車6を同一にできるため、偏心揺動型減速機のコストが安くなる。
Eccentrically oscillating speed reducer 1 in FIG. 1, for the transmission torque T 2 of the transmission torque T 1 and the external gear 6 of the external gear 5 on the same short output pins of the distance from the support point to the load action point 7, the diameter of the output pin 8 having a long distance from the support point to the load application point is increased to K 1 = K 2 and R 1 = R 2, and K 1 · R 1 2 = K 2 · R 2 2 is an example.
In the eccentric oscillating speed reducer 1, since the external gears 5 and 6 have the same width, the allowable transmission torque of the external gears 5 and 6 is the same. Therefore, when the transmission torque is the same (C = 1), Allowable transmission torque is maximized and service life is extended. Since the diameter of the contact portion 81 of the output pin 8 circumscribing the through-hole 61 of the external gear 6 is made smaller than the diameter of the press-fit portion of the output pin 8 press-fitted and held on the rotary shaft 4, The thickness of the outer periphery can be increased, and the strength of the external gear 6 can be ensured.
Further, the diameter of the contact portion 81 of the output pin 8 may be the same as the diameter of the output pin 7. Since the external gear 5 and the external gear 6 can be made the same, the cost of the eccentric oscillating speed reducer is reduced.

第2実施形態の偏心揺動型減速機100を図7に示す。偏心揺動型減速機100は、偏心揺動型減速機1に対して、第2出力ピンである出力ピン108と出力ピン7の径を同一とし、出力ピン7の回転軸線aからの距離Rを小さくし、出力ピン108の回転軸線aからの距離Rを大きくした点を除き第1実施形態(図1)と同じ構成であるので、説明は省略する。
偏心揺動型減速機100は、出力ピン7、108の径が同一であるためK>Kとなり、RとRの関係が式R =K・R /Kを満足するように設定されている。このため、偏心揺動型減速機100は、外歯歯車5の伝達トルクTと外歯歯車6の伝達トルクTが同一となる。
偏心揺動型減速機100は、外歯歯車5、6の幅が等しいので、外歯歯車5、6の許容伝達トルクは同じであるため、伝達トルクを同一にすると合計の許容伝達トルクが最大となり、寿命も長くなる。さらに、出力ピン7、108の径が同一なので、回転軸104の出力ピン7、108の圧入穴が同一寸法となり同一工具による加工が可能となり、出力ピン7、108の外径加工もセンタレス研削等の同一工程で可能となる。
An eccentric oscillating speed reducer 100 of the second embodiment is shown in FIG. The eccentric oscillating speed reducer 100 has the same diameter as that of the output pin 108 and the output pin 7 as the second output pin with respect to the eccentric oscillating speed reducer 1, and the distance R from the rotation axis a of the output pin 7. 1 smaller, since the same configuration as the first embodiment except that a larger distance R 2 from the axis of rotation a of the output pins 108 (FIG. 1), description thereof is omitted.
In the eccentric oscillating speed reducer 100, since the diameters of the output pins 7 and 108 are the same, K 1 > K 2 , and the relationship between R 1 and R 2 is the formula R 1 2 = K 2 · R 2 2 / K 1. Is set to satisfy. Therefore, the eccentric oscillating type speed reducer 100, the transmission torque T 2 of the transmission torque T 1 and the external gear 6 of the external gear 5 are the same.
In the eccentric oscillating speed reducer 100, since the widths of the external gears 5 and 6 are equal, the allowable transmission torques of the external gears 5 and 6 are the same. Therefore, if the transmission torques are the same, the total allowable transmission torque is maximum. And the service life will be longer. Further, since the diameters of the output pins 7 and 108 are the same, the press-fitting holes of the output pins 7 and 108 of the rotary shaft 104 have the same dimensions and can be machined with the same tool. It is possible in the same process.

第3実施形態の偏心揺動型減速機200を図8に示す。偏心揺動型減速機200は、偏心揺動型減速機1に対して、第2外歯歯車である外歯歯車206の幅を外歯歯車5より小さくし、それに対応してハウジング202とクランク軸203の軸方向寸法を小さくし、第2出力ピンである出力ピン208と出力ピン7の径を同一とした点を除き第1実施形態(図1)と同じ構成であるので、説明は省略する。
偏心揺動型減速機200の外歯歯車5の幅を外歯歯車206よりC倍大きくすると、外歯歯車5の許容伝達トルクの外歯歯車206の許容伝達トルクに対する比率もC倍となる。また、出力ピン7、208の径が同一であるためK>Kとなり、RとRの関係が式R =C・K・R /Kを満足するように設定されている。このため、偏心揺動型減速機200は、外歯歯車5の伝達トルクTの外歯歯車206の伝達トルクTに対する比率がC倍となる。
偏心揺動型減速機200は、外歯歯車5の許容伝達トルクの外歯歯車206の許容伝達トルクに対する比率がCであるため、外歯歯車5の伝達トルクの外歯歯車206の伝達トルクに対する比率をCにすると合計の許容伝達トルクが最大となり、寿命も長くなる。また、出力ピン7、208の径が同一なので、回転軸204の出力ピン7、208の圧入穴が同一寸法となり同一工具による加工が可能となり、出力ピン7、208の外径加工もセンタレス研削等の同一工程で可能となる。さらに、幅の異なる2種類の外歯歯車の組合せを用いることで3種類の偏心揺動型減速機を製造できるため、部品種類の増加を抑制しながら、偏心揺動型減速機の許容伝達トルクの種類を増やすことができる。
An eccentric oscillating speed reducer 200 of the third embodiment is shown in FIG. The eccentric oscillating speed reducer 200 has a width of the external gear 206 that is the second external gear smaller than that of the external gear 5 with respect to the eccentric oscillating speed reducer 1, and the housing 202 and the crank correspondingly. Since the configuration of the shaft 203 is the same as that of the first embodiment (FIG. 1) except that the axial dimension of the shaft 203 is reduced and the diameters of the output pin 208 and the output pin 7 as the second output pin are the same, the description is omitted. To do.
When the width of the external gear 5 of the eccentric rocking reduction gear 200 is C times larger than that of the external gear 206, the ratio of the allowable transmission torque of the external gear 5 to the allowable transmission torque of the external gear 206 is also C times. Further, since the diameters of the output pins 7 and 208 are the same, K 1 > K 2 , and the relationship between R 1 and R 2 satisfies the formula R 1 2 = C · K 2 · R 2 2 / K 1. Is set. Therefore, the eccentric oscillating speed reducer 200, the ratio transmitted torque T 2 of the external gear 206 of the transmission torque T 1 of the external gear 5 is C times.
In the eccentric oscillating speed reducer 200, the ratio of the allowable transmission torque of the external gear 5 to the allowable transmission torque of the external gear 206 is C. Therefore, the transmission torque of the external gear 5 to the transmission torque of the external gear 206 is When the ratio is C, the total allowable transmission torque is maximized and the service life is extended. Further, since the diameters of the output pins 7 and 208 are the same, the press-fitting holes of the output pins 7 and 208 of the rotating shaft 204 have the same dimensions and can be machined with the same tool. It is possible in the same process. Furthermore, by using a combination of two types of external gears with different widths, three types of eccentric oscillating speed reducers can be manufactured. Therefore, the allowable transmission torque of the eccentric oscillating speed reducer while suppressing an increase in the number of parts. The number of types can be increased.

偏心揺動型減速機1、100、200のいずれにおいても、出力ピン7の材質を鉄合金とし、出力ピン8、108、208に超硬材などの縦弾性係数の大きな材質を使用することで出力ピン8、108、208の直径の増加を低減できる。結果として、外歯歯車の外径の増加を低減でき、偏心揺動型減速機1、100、200の外径を小さくできる。   In any of the eccentric oscillating speed reducers 1, 100, and 200, the output pin 7 is made of an iron alloy, and the output pins 8, 108, and 208 are made of a material having a large longitudinal elastic coefficient such as a cemented carbide. An increase in the diameter of the output pins 8, 108, 208 can be reduced. As a result, an increase in the outer diameter of the external gear can be reduced, and the outer diameters of the eccentric oscillating speed reducers 1, 100, 200 can be reduced.

上記のように本発明によれば、出力ピンを片持ち支持として薄型とした偏心揺動型減速機の許容伝達トルクが最大となり、寿命も長くなる。また、部品加工の共通化が可能となり偏心揺動型減速機のコストが安くなる。さらに、幅の異なる2種類の外歯歯車の組合せを用いることで3種類の偏心揺動型減速機を製造できるため、部品種類の増加を抑制しながら、偏心揺動型減速機の許容伝達トルクの種類を増やすことができる。   As described above, according to the present invention, the allowable transmission torque of the eccentric oscillating speed reducer that is thin with the output pin as a cantilever support is maximized, and the life is also increased. In addition, parts can be shared, and the cost of the eccentric oscillating speed reducer is reduced. Furthermore, by using a combination of two types of external gears with different widths, three types of eccentric oscillating speed reducers can be manufactured. Therefore, the allowable transmission torque of the eccentric oscillating speed reducer while suppressing an increase in the number of parts. The number of types can be increased.

各実施形態では、外歯歯車5、6、206と内歯車21の歯形をインボリュート歯形としたが、サイクロイド歯型などの他の歯形としてもよい。   In each embodiment, the tooth shapes of the external gears 5, 6, 206 and the internal gear 21 are involute tooth shapes, but other tooth shapes such as a cycloid tooth shape may be used.

1:偏心揺動型減速機 3:クランク軸 5、6:外歯歯車 7、8:出力ピン 21:内歯車 31、32:円筒カム部 51、61:貫通穴 R、R:出力ピン中心の内歯車の中心からの距離 1: eccentrically oscillating speed reducer 3: crankshaft 5,6: external gear 7,8: Output Pin 21: internal gear 31: the cylindrical cam 51 and 61: through hole R 1, R 2: Output pin Distance from the center of the center internal gear

Claims (8)

内歯車と、前記内歯車と噛合する第1、第2外歯歯車と、前記第1、第2外歯歯車をクランク軸の軸線周りで位相の異なる位置に配置された2箇所の偏心した円筒カム部で前記内歯車の中心軸線に対し公転可能に支持する前記クランク軸と、前記第1、第2外歯歯車に備えた前記内歯車の中心軸線に平行な貫通穴と接する複数の出力ピンと、前記出力ピンの一端を保持し前記内歯車の中心軸線に対し回転自在な回転軸を備え、前記クランク軸を入力軸とし、前記内歯車と前記回転軸のいずれかを出力軸として回転作動させる偏心揺動型減速機において、
前記出力ピンを前記第1外歯歯車の前記貫通穴とのみ接する第1出力ピンと、前記第2外歯歯車の前記貫通穴とのみ接する第2出力ピンで構成し、
前記第1外歯歯車の伝達トルクの前記第2外歯歯車の伝達トルクに対する比率の所望値をC、前記第1出力ピンの剛性である第1剛性の値をK、前記第2出力ピンの剛性である第2剛性の値をK、前記第1出力ピン中心の前記内歯車の中心軸線からの距離をR、前記第2出力ピン中心の前記内歯車の中心軸線からの距離をRとするとき、式K・R =C・K・R を満足するように設定し、
前記第1剛性が前記内歯車の中心軸線に直交する方向における前記第1出力ピンの前記第1外歯歯車との接触部と前記回転軸の軸心部の間の剛性であり、前記第2剛性が前記内歯車の中心軸線に直交する方向における前記第2出力ピンの前記第2外歯歯車との接触部と前記回転軸の軸心部の間の剛性である、偏心揺動型減速機。
Two eccentric cylinders in which the internal gear, the first and second external gears meshed with the internal gear, and the first and second external gears are arranged at different positions around the axis of the crankshaft. A crankshaft supported by a cam portion so as to be capable of revolving with respect to the central axis of the internal gear; and a plurality of output pins in contact with through holes parallel to the central axis of the internal gear provided in the first and second external gears; A rotary shaft that holds one end of the output pin and is rotatable with respect to a central axis of the internal gear, and rotates the crankshaft as an input shaft and either the internal gear or the rotary shaft as an output shaft. In the eccentric oscillating speed reducer,
The output pin comprises a first output pin that contacts only the through hole of the first external gear, and a second output pin that contacts only the through hole of the second external gear,
The desired value of the ratio of the transmission torque of the first external gear to the transmission torque of the second external gear is C, the first stiffness value that is the stiffness of the first output pin is K 1 , and the second output pin The value of the second rigidity, which is the rigidity of the first output pin, is K 2 , the distance from the center axis of the internal gear at the center of the first output pin is R 1 , and the distance from the center axis of the internal gear at the center of the second output pin is R 2 is set to satisfy the formula K 1 · R 1 2 = C · K 2 · R 2 2 ,
The first rigidity is a rigidity between a contact portion of the first output pin with the first external gear in a direction orthogonal to a central axis of the internal gear and an axial center portion of the rotation shaft, and the second An eccentric oscillating speed reducer having rigidity between the contact portion of the second output pin with the second external gear and the axial center portion of the rotary shaft in a direction perpendicular to the central axis of the internal gear. .
前記第2出力ピンの支持点から前記第2外歯歯車の前記貫通穴との接触点までの距離を前記第1出力ピンの支持点から前記第1外歯歯車の前記貫通穴との接触点までの距離より長くし、前記第2出力ピンの径を前記第1出力ピンの径より大きくする請求項1に記載の偏心揺動型減速機。   The distance from the support point of the second output pin to the contact point with the through hole of the second external gear is the contact point of the support point of the first output pin with the through hole of the first external gear. The eccentric oscillating speed reducer according to claim 1, wherein the second output pin has a diameter greater than that of the first output pin. 前記第2出力ピンの、前記第2外歯歯車の前記貫通穴との接触部の径を、前記回転軸による保持部の径より小さくする請求項2に記載の偏心揺動型減速機。   The eccentric oscillating speed reducer according to claim 2, wherein a diameter of a contact portion of the second output pin with the through hole of the second external gear is made smaller than a diameter of the holding portion by the rotating shaft. 前記第2出力ピンの前記第2外歯歯車の前記貫通穴との接触部の径を、前記第1出力ピンの径と同一にする請求項3に記載の偏心揺動型減速機。   The eccentric oscillating speed reducer according to claim 3, wherein the diameter of the contact portion of the second output pin with the through hole of the second external gear is the same as the diameter of the first output pin. 前記第1出力ピンと前記第2出力ピンの径を同一とする請求項1に記載の偏心揺動型減速機。   The eccentric oscillating speed reducer according to claim 1, wherein the first output pin and the second output pin have the same diameter. 前記第2出力ピンの支持点から前記第2外歯歯車の前記貫通穴との接触点までの距離を前記第1出力ピンの支持点から前記第1外歯歯車の前記貫通穴との接触点までの距離より長くし、前記Rを前記Rより大きくする請求項1ないし請求項5のいずれか1項に記載の偏心揺動型減速機。 The distance from the support point of the second output pin to the contact point with the through hole of the second external gear is the contact point of the support point of the first output pin with the through hole of the first external gear. 6. The eccentric oscillating speed reducer according to claim 1 , wherein the R 2 is longer than the distance up to R 1 and is larger than the R 1 . 前記第2外歯歯車の幅を前記第1外歯歯車の幅より小さくする請求項1ないし請求項6のいずれか1項に記載の偏心揺動型減速機。   The eccentric oscillating speed reducer according to any one of claims 1 to 6, wherein a width of the second external gear is made smaller than a width of the first external gear. 前記第1出力ピンの材質の縦弾性係数と前記第2出力ピンの材質の縦弾性係数が異なる請求項1ないし請求項7のいずれか1項に記載の偏心揺動型減速機。   The eccentric oscillation speed reducer according to any one of claims 1 to 7, wherein a longitudinal elastic coefficient of a material of the first output pin is different from a longitudinal elastic coefficient of a material of the second output pin.
JP2011010332A 2011-01-21 2011-01-21 Eccentric rocking type reduction gear Pending JP2012149741A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011010332A JP2012149741A (en) 2011-01-21 2011-01-21 Eccentric rocking type reduction gear

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011010332A JP2012149741A (en) 2011-01-21 2011-01-21 Eccentric rocking type reduction gear

Publications (1)

Publication Number Publication Date
JP2012149741A true JP2012149741A (en) 2012-08-09

Family

ID=46792177

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011010332A Pending JP2012149741A (en) 2011-01-21 2011-01-21 Eccentric rocking type reduction gear

Country Status (1)

Country Link
JP (1) JP2012149741A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104006145A (en) * 2013-02-25 2014-08-27 住友重机械工业株式会社 Robot node driving eccentric swinging type decelerator
CN105257786A (en) * 2015-11-26 2016-01-20 李照廷 Hyperbolic-curve speed reducer
WO2016056873A1 (en) * 2014-10-10 2016-04-14 주성오토테크 주식회사 Reducer comprising multiple gear assemblies

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104006145A (en) * 2013-02-25 2014-08-27 住友重机械工业株式会社 Robot node driving eccentric swinging type decelerator
WO2016056873A1 (en) * 2014-10-10 2016-04-14 주성오토테크 주식회사 Reducer comprising multiple gear assemblies
CN105257786A (en) * 2015-11-26 2016-01-20 李照廷 Hyperbolic-curve speed reducer

Similar Documents

Publication Publication Date Title
US8517878B2 (en) Planetary gear mechanism
US7819770B2 (en) Oscillating internally meshing planetary gear system
EP2381130B1 (en) Speed change gear
EP2068038B1 (en) Reduction gear
US8821333B2 (en) Planetary gear mechanism
JP2010156430A (en) Deceleration device
EP2351947B1 (en) Gear transmitting device
JP5283591B2 (en) Series of simple planetary gear reducers
JPH05231482A (en) Speed increase-reducer series adopting internal mesh type planetary gear structure
JP2019148308A (en) Eccentrically swinging speed reduction device
JPWO2012074096A1 (en) Eccentric rocking speed reducer
JP2023184669A (en) gear unit
JP6002569B2 (en) Center pipe structure of reduction gear
JP2012149741A (en) Eccentric rocking type reduction gear
JP6194241B2 (en) Gear transmission
JPWO2018135552A1 (en) Planetary gear set
CN107664176B (en) Gear device
WO2012101777A1 (en) Flexible engagement gear device and method for determining shape of gear tooth of flexible engagement gear device
TWI548823B (en) Deceleration machine
JP2013210052A (en) Eccentric rocking type reduction gear
JP2017025979A (en) Oscillation allowable coupling mechanism and inscribed planet gear device
JP2015036581A (en) Eccentric oscillation type speed reducer
JP7033995B2 (en) Gear device
JP7191353B1 (en) Decelerator
CN211820628U (en) Speed reducer with novel transmission structure