JP2012149368A5 - - Google Patents
Download PDFInfo
- Publication number
- JP2012149368A5 JP2012149368A5 JP2011162796A JP2011162796A JP2012149368A5 JP 2012149368 A5 JP2012149368 A5 JP 2012149368A5 JP 2011162796 A JP2011162796 A JP 2011162796A JP 2011162796 A JP2011162796 A JP 2011162796A JP 2012149368 A5 JP2012149368 A5 JP 2012149368A5
- Authority
- JP
- Japan
- Prior art keywords
- acid
- carbon fiber
- mass
- ifss
- parts
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Description
また、上記一般式(I)〜(IV)、(VI)、(VII)の炭素数1〜22の炭化水素とエステル構造を含む基としては、例えば、アセトキシメチル基、アセトキシエチル基、アセトキシプロピル基、アセトキシブチル基、メタクリロイルオキシエチル基およびベンゾイルオキシエチル基等が挙げられる。
Examples of the group containing a hydrocarbon having 1 to 22 carbon atoms and an ester structure in the general formulas (I) to (IV), (VI), and (VII) include an acetoxymethyl group, an acetoxyethyl group, and an acetoxypropyl group. group, acetoxy butyl group, meta Krilo yl oxy ethyl group and a benzoyloxy ethyl group, and the like.
脂肪族ポリカルボン酸の具体例としては、シュウ酸、マロン酸、コハク酸、グルタル酸、アジピン酸、ピメリン酸、スベリン酸、アゼライン酸、セバチン酸、ウンデカン二酸、ドデカン二酸、トリデカン二酸、テトラデカン二酸、ペンタデカン二酸、メチルマロン酸、エチルマロン酸、プロピルマロン酸、ブチルマロン酸、ペンチルマロン酸、ヘキシルマロン酸、ジメチルマロン酸、ジエチルマロン酸、メチルプロピルマロン酸、メチルブチルマロン酸、エチルプロピルマロン酸、ジプロピルマロン酸、メチルコハク酸、エチルコハク酸、2,2−ジメチルコハク酸、2,3−ジメチルコハク酸、2−メチルグルタル酸、3−メチルグルタル酸、3−メチル−3−エチルグルタル酸、3,3−ジエチルグルタル酸、3,3−ジメチルグルタル酸、3−メチルアジピン酸、マレイン酸、フマール酸、イタコン酸およびシトラコン酸等が挙げられる。
Specific examples of the aliphatic polycarboxylic acid, oxalic acid, malonic acid, succinic acid, glutaric acid, adipic acid, pimelic acid, slip phosphate, azelaic acid, sebacic acid, undecalactone down diacid, dodecanoic diacid, tridecane Diacid, tetradecanedioic acid, pentadecanedioic acid, methylmalonic acid, ethylmalonic acid, propylmalonic acid, butylmalonic acid, pentylmalonic acid, hexylmalonic acid, dimethylmalonic acid, diethylmalonic acid, methylpropylmalonic acid, methylbutyl Malonic acid, ethylpropylmalonic acid, dipropylmalonic acid, methylsuccinic acid, ethylsuccinic acid, 2,2-dimethylsuccinic acid, 2,3-dimethylsuccinic acid, 2-methylglutaric acid, 3-methylglutaric acid, 3-methyl -3-Ethylglutaric acid, 3,3-diethylglutaric acid, 3,3-dimethylglutaric acid , 3-methyladipic acid, maleic acid, fumaric acid, itaconic acid and citraconic acid.
脂肪族モノカルボン酸の具体例としては、ギ酸、酢酸、プロピオン酸、酪酸、イソ酪酸、吉草酸、カプロン酸、エナント酸、カプリル酸、オクチル酸、ペラルゴン酸、ラウリン酸、ミリスチン酸、ステアリン酸、ベヘン酸、ウンデカン酸、アクリル酸、メタクリル酸、クロトン酸およびオレイン酸等が挙げられる。
Specific examples of the aliphatic monocarboxylic acids, formic acid, acetic acid, propionic acid, butyric acid, isobutyric acid, valeric acid, caproic acid, enanthic acid, caprylic acid, octyl acid, pelargonic acid, lauric acid, myristic acid, stearic acid , Behenic acid, undecanoic acid, acrylic acid, methacrylic acid, crotonic acid and oleic acid.
本発明において、炭素繊維とマトリックス樹脂の接着性がさらに向上するという観点から、酸化処理の後、炭素繊維をアルカリ性水溶液で洗浄することが好ましい。中でも、酸性電解液で液相電解処理し続いてアルカリ性水溶液で洗浄することが好ましい。
In the present invention, from the viewpoint of adhesion of the carbon fiber and the matrix resin is further improved, after the oxidation treatment, it is preferred to wash the carbon fiber in an alkaline aqueous solution. Among these, it is preferable to perform a liquid phase electrolysis treatment with an acidic electrolyte followed by washing with an alkaline aqueous solution.
得られたプリプレグを積層後、積層物に圧力を付与しながらマトリックス樹脂を加熱硬化させる方法等により、複合材料が作製される。ここで熱および圧力を付与する方法には、プレス成形法、オートクレーブ成形法、パッキング成形法、ラッピングテープ法および内圧成形法等が採用される。複合材料は、プリプレグを介さず、マトリックス樹脂を直接炭素繊維の含浸させた後、加熱硬化せしめる方法、例えば、ハンド・レイアップ法、レジン・インジェクション・モールディング法およびレジン・トランスファー・モールディング法等の成形法によっても作製することができる。これら方法では、マトリックス樹脂の主剤と硬化剤の2液を使用直前に混合して樹脂調製することが好ましい。
After laminating the obtained prepreg, a composite material is produced by a method of heating and curing the matrix resin while applying pressure to the laminate. As a method for applying heat and pressure, a press molding method, an autoclave molding method, a packing molding method, a wrapping tape method, an internal pressure molding method, and the like are employed. The composite material is formed by directly impregnating the matrix resin with carbon fiber without using a prepreg, followed by heat curing, for example, a hand lay-up method, a resin injection molding method, a resin transfer molding method, etc. It can also be produced by the method. In these methods, it preferred you to mix to the resin prepared immediately before use 2 liquid base and curing agent of the matrix resin.
本発明の炭素繊維と熱硬化性樹脂および、または熱可塑性樹脂からなる成形体の用途としては、例えば、パソコン、ディスプレイ、OA機器、携帯電話、携帯情報端末、ファクシミリ、コンパクトディスク、ポータブルMD、携帯用ラジオカセット、PDA(電子手帳などの携帯情報端末)、ビデオカメラ、デジタルスチルカメラ、光学機器、オーディオ、エアコン、照明機器、娯楽用品、玩具用品、その他家電製品などの電気、電子機器の筐体およびトレイやシャーシなどの内部部材やそのケース、機構部品、パネルなどの建材用途、モーター部品、オルタネーターターミナル、オルタネーターコネクター、ICレギュレーター、ライトディヤー用ポテンショメーターベース、サスペンション部品、排気ガスバルブなどの各種バルブ、燃料関係、排気系または吸気系各種パイプ、エアーインテークノズルスノーケル、インテークマニホールド、各種アーム、各種フレーム、各種ヒンジ、各種軸受、燃料ポンプ、ガソリンタンク、CNGタンク、エンジン冷却水ジョイント、キャブレターメインボディー、キャブレタースペーサー、排気ガスセンサー、冷却水センサー、油温センサー、ブレーキパットウェアーセンサー、スロットルポジションセンサー、クランクシャフトポジションセンサー、エアーフローメーター、ブレーキバット磨耗センサー、エアコン用サーモスタットベース、暖房温風フローコントロールバルブ、ラジエーターモーター用ブラッシュホルダー、ウォーターポンプインペラー、タービンべイン、ワイパーモーター関係部品、ディストリビュター、スタータースィッチ、スターターリレー、トランスミッション用ワイヤーハーネス、ウィンドウオッシャーノズル、エアコンパネルスィッチ基板、燃料関係電磁気弁用コイル、ヒューズ用コネクター、バッテリートレイ、ATブラケット、ヘッドランプサポート、ペダルハウジング、ハンドル、ドアビーム、プロテクター、シャーシ、フレーム、アームレスト、ホーンターミナル、ステップモーターローター、ランプソケット、ランプリフレクター、ランプハウジング、ブレーキピストン、ノイズシールド、ラジエターサポート、スペアタイヤカバー、シートシェル、ソレノイドボビン、エンジンオイルフィルター、点火装置ケース、アンダーカバー、スカッフプレート、ピラートリム、プロペラシャフト、ホイール、フェンダー、フェイシャー、バンパー、バンパービーム、ボンネット、エアロパーツ、プラットフォーム、カウルルーバー、ルーフ、インストルメントパネル、スポイラーおよび各種モジュールなどの自動車、二輪車関連部品、部材および外板やランディングギアポッド、ウィングレット、スポイラー、エッジ、ラダー、エレベーター、フェアリング、リブなどの航空機関連部品、部材および外板、風車の羽根などが挙げられる。特に、航空機部材、風車の羽根、自動車外板および電子機器の筐体およびトレイやシャーシなどに好ましく用いられる。
Examples of uses of the molded body comprising the carbon fiber and the thermosetting resin and / or the thermoplastic resin of the present invention include, for example, a personal computer, a display, an OA device, a mobile phone, a portable information terminal, a facsimile, a compact disc, a portable MD, and a mobile phone. Cases for electrical and electronic equipment such as radio cassettes, PDAs (mobile information terminals such as electronic notebooks), video cameras, digital still cameras, optical equipment, audio equipment, air conditioners, lighting equipment, entertainment equipment, toy goods, and other home appliances And internal materials such as trays and chassis, and their cases, mechanical parts, panels and other building materials applications, motor parts, alternator terminals, alternator connectors, IC regulators, light meter potentiometer bases, suspension parts, exhaust valves, etc. fuel Coupling, exhaust system or various intake system pipes, air intake nozzle snorkel, intake manifold, various arms, various frames, various hinges, various bearings, fuel pump, gasoline tank, CNG tank, engine coolant joint, carburetor main body, carburetor spacer , Exhaust gas sensor, cooling water sensor, oil temperature sensor, brake pad wear sensor, throttle position sensor, crankshaft position sensor, air flow meter, brake butt wear sensor, thermostat base for air conditioner, heating hot air flow control valve, radiator motor Brush holders, water pump impellers, turbine vanes, wiper motor parts, distributors, starters Switch, starter relay, transmission wire harness, window washer nozzle, air conditioner panel switch board, coil for fuel-related electromagnetic valve, connector for fuse, battery tray, AT bracket, headlamp support, pedal housing, handle, door beam, protector, chassis , Frame, armrest, horn terminal, step motor rotor, lamp socket, lamp reflector, lamp housing, brake piston, noise shield, radiator support, spare tire cover, seat shell, solenoid bobbin, engine oil filter, ignition device case, under cover , Scuff plate, pillar trim, propeller shaft, wheel, fender, fascia, bumper -, Bumper beams, bonnets, aero parts, platforms, cowl louvers, roofs, instrument panels, spoilers and various module-related parts, parts and skins, landing gear pods, winglets, spoilers, edges, ladders Elevator, off Eari ring, aircraft-related parts, such as ribs, members and outer plate, such as windmill blades and the like. In particular, it is preferably used for aircraft members, windmill blades, automobile outer plates, casings of electronic devices, trays, chassis, and the like.
<界面剪断強度(IFSS)の測定>
界面剪断強度(IFSS)の測定は、次の(イ)〜(ニ)の手順でおこなう。
(イ)樹脂の調製
ビスフェノールA型エポキシ樹脂化合物“jER”(登録商標)828(三菱化学(株)製)100質量部とメタフェニレンジアミン(シグマアルドリッチジャパン(株)製)14.5質量部を、それぞれ容器に入れる。その後、上記のjER828の粘度低下とメタフェニレンジアミンの溶解のため、75℃の温度で15分間加熱をおこなう。その後、両者をよく混合し、80℃の温度で約15分間真空脱泡をおこなう。
(ロ)炭素繊維単糸を専用モールドに固定
炭素繊維束から単繊維を抜き取り、ダンベル型モールドの長手方向に単繊維に一定張力を与えた状態で両端を接着剤で固定する。その後、炭素繊維およびモールドに付着した水分を除去するため、80℃の温度で30分間以上真空乾燥をおこなう。ダンベル型モールドはシリコーンゴム製で、注型部分の形状は、中央部分巾5mm、長さ25mm、両端部分巾10mm、全体長さ150mmである。
(ハ)樹脂注型から硬化まで
上記(ロ)の手順の真空乾燥後のモールド内に、上記(イ)の手順で調製した樹脂を流し込み、オーブンを用いて、昇温速度1.5℃/分で75℃の温度まで上昇し2時間保持後、昇温速度1.5分で125℃の温度まで上昇し2時間保持後、降温速度2.5℃/分で30℃の温度まで降温する。その後、脱型して試験片を得る。
(ニ)界面剪断強度(IFSS)の測定
上記(ハ)の手順で得られた試験片に繊維軸方向(長手方向)に引張力を与え、歪みを12%生じさせた後、偏光顕微鏡により試験片中心部22mmの範囲における繊維破断数N(個)を測定する。次に、平均破断繊維長laを、la(μm)=22×1000(μm)/N(個)の式により計算する。次に、平均破断繊維長laから臨界繊維長lcを、lc(μm)=(4/3)×la(μm)の式により計算する。ストランド引張強度σと炭素繊維単糸の直径dを測定し、炭素繊維と樹脂界面の接着強度の指標である界面剪断強度IFSSを、次式で算出する。実施例では、測定数n=5の平均を試験結果とした。
・界面剪断強度IFSS(MPa)=σ(MPa)×d(μm)/(2×lc)(μm)。
<Measurement of interfacial shear strength (IFSS)>
Interfacial shear strength (IFSS) is measured by the following procedures (a) to (d).
(A) Preparation of resin 100 parts by mass of bisphenol A type epoxy resin compound “jER” (registered trademark) 828 (manufactured by Mitsubishi Chemical Corporation) and 14.5 parts by mass of metaphenylenediamine (manufactured by Sigma-Aldrich Japan) , Put each in a container. Thereafter, heating is performed at a temperature of 75 ° C. for 15 minutes in order to reduce the viscosity of the jER828 and dissolve the metaphenylenediamine. Then, both are mixed well and vacuum defoaming is performed at a temperature of 80 ° C. for about 15 minutes.
(B) Fixing the carbon fiber single yarn to the special mold Pull out the single fiber from the carbon fiber bundle, and fix both ends with an adhesive in a state where a constant tension is applied to the single fiber in the longitudinal direction of the dumbbell mold. Then, in order to remove the water | moisture content adhering to carbon fiber and a mold, it vacuum-drys for 30 minutes or more at the temperature of 80 degreeC. The dumbbell mold is made of silicone rubber, and the shape of the casting part is a central part width of 5 mm, a length of 25 mm, a both end part width of 10 mm, and an overall length of 150 mm.
(C) From resin casting to curing The resin prepared in the above procedure (b) is poured into the mold after the vacuum drying in the above step (b), and the heating rate is 1.5 ° C. using an oven. The temperature rises to 75 ° C./min and is held for 2 hours, then the temperature rises to 125 ° C. at a heating rate of 1.5 minutes and held for 2 hours, then the temperature drops to 30 ° C. at a cooling rate of 2.5 ° C./min To do. Then, it demolds and a test piece is obtained.
(D) Measurement of interfacial shear strength (IFSS) A tensile force was applied to the test piece obtained in the above procedure (c) in the fiber axis direction (longitudinal direction) to cause a strain of 12%, and then the test piece was tested with a polarizing microscope. The number of fiber breaks N (pieces) in the range of 22 mm at the center of each piece is measured. Next, the average broken fiber length la is calculated by the formula of la (μm) = 22 × 1000 (μm) / N (pieces). Next, the critical fiber length lc is calculated from the average broken fiber length la by the following formula: lc (μm) = (4/3) × la (μm). The strand tensile strength σ and the diameter d of the carbon fiber single yarn are measured, and the interface shear strength IFSS, which is an index of the bond strength between the carbon fiber and the resin interface, is calculated by the following equation. In the examples, the average of the number of measurements n = 5 was used as the test result.
Interfacial shear strength IFSS (MPa) = σ (MPa) × d (μm) / (2 × lc) (μm).
・第Iの工程:本発明で用いられる炭素繊維を製造する工程
アクリロニトリル99モル%とイタコン酸1モル%からなる共重合体を紡糸し、焼成し、総フィラメント数24、000本、総繊度800テックス、比重1.8、ストランド引張強度6.2GPa、ストランド引張弾性率300GPaの炭素繊維を得た。次いで、その炭素繊維を、濃度0.1モル/lの炭酸水素アンモニウム水溶液を電解液として、電気量を炭素繊維1g当たり120クーロンで電解表面処理した。この電解表面処理を施された炭素繊維を続いて水洗し、150℃の温度の加熱空気中で乾燥し、原料となる炭素繊維を得た。このときの表面酸素濃度O/Cは、0.22であった。これを本発明で用いられる炭素繊維Aとした。
-Step I: Step of producing the carbon fiber used in the present invention
Spinning acrylonitrile 99 mole% and consisting of 1 mole% of itaconic acid copolymer and baking, the total number of filaments 24,000, the total fineness 800 tex, a specific gravity of 1.8, a strand tensile strength 6.2 GPa, the strand tensile A carbon fiber having an elastic modulus of 300 GPa was obtained. Subsequently, the carbon fiber was subjected to an electrolytic surface treatment using an aqueous solution of ammonium hydrogen carbonate having a concentration of 0.1 mol / l as an electrolytic solution at an electric charge of 120 coulomb per 1 g of carbon fiber. The carbon fiber subjected to the electrolytic surface treatment was subsequently washed with water and dried in heated air at a temperature of 150 ° C. to obtain a carbon fiber as a raw material. At this time, the surface oxygen concentration O / C was 0.22. This was designated as carbon fiber A used in the present invention.
・第IIの工程:(A)成分を第Iの工程で得られた炭素繊維に付着させる工程
前記の(A−1)とアセトンを混合し、均一に溶解した約1質量%のアセトン溶液を得た。このアセトン溶液を用い、浸漬法により(A)成分を表面処理された炭素繊維Aに塗布した後、150℃の温度で90秒間熱処理をして、(A)成分が付着した炭素繊維を得た。(A)成分の付着量は、表面処理された炭素繊維100質量部に対して0.1質量部となるように調製した。続いて、得られた炭素繊維を用いて、界面剪断強度(IFSS)を測定した結果、IFSSが27MPaであり、接着性が十分に高いことが確認された。結果を表1に示す。
Step II: A step of attaching the component (A) to the carbon fiber obtained in the step I The above (A-1) and acetone are mixed, and an approximately 1% by mass acetone solution that is uniformly dissolved is mixed. Obtained. Using this acetone solution, the component (A) was applied to the surface-treated carbon fiber A by an immersion method, and then heat treated at a temperature of 150 ° C. for 90 seconds to obtain a carbon fiber to which the component (A) was adhered. . (A) The adhesion amount of component was prepared so that it might become 0.1 mass part with respect to 100 mass parts of surface-treated carbon fibers. Then, as a result of measuring interfacial shear strength (IFSS) using the obtained carbon fiber, it was confirmed that IFSS was 27 MPa and adhesiveness was sufficiently high. The results are shown in Table 1.
・第IIの工程:(A)成分を本発明で用いられる炭素繊維に付着させる工程
前記の(A−3)とアセトンを混合し、均一に溶解した約1質量%のアセトン溶液を得た。このアセトン溶液を用い、浸漬法により(A)成分を表面処理された炭素繊維Bに塗布した後、150℃の温度で90秒間熱処理をして、(A)成分が付着した炭素繊維を得た。(A)成分の付着量は、表面処理された炭素繊維100質量部に対して0.1質量部となるように調製した。続いて、得られた炭素繊維を用いて、界面剪断強度(IFSS)を測定した結果、IFSSが24MPaであり、接着性が十分に高いことが確認された。結果を表1に示す。
-Step II: Step of attaching component (A) to carbon fiber used in the present invention The above-mentioned (A-3) and acetone were mixed to obtain an about 1% by mass acetone solution that was uniformly dissolved. Using this acetone solution, the component (A) was applied to the surface-treated carbon fiber B by the dipping method, followed by heat treatment at a temperature of 150 ° C. for 90 seconds to obtain a carbon fiber having the component (A) attached thereto. . (A) The adhesion amount of component was prepared so that it might become 0.1 mass part with respect to 100 mass parts of surface-treated carbon fibers. Then, as a result of measuring interfacial shear strength (IFSS) using the obtained carbon fiber, IFSS was 24 MPa, and it was confirmed that the adhesiveness was sufficiently high. The results are shown in Table 1.
・第IIの工程:(A)成分を第Iの工程で得られた炭素繊維に付着させる工程
前記の(A−3)とアセトンを混合し、均一に溶解した約1質量%のアセトン溶液を得た。このアセトン溶液を用い、浸漬法により(A)成分を表面処理された炭素繊維Cに塗布した後、150℃の温度で90秒間熱処理をして、(A)成分が付着した炭素繊維を得た。(A)成分の付着量は、表面処理された炭素繊維100質量部に対して0.1質量部となるように調製した。続いて、得られた炭素繊維を用いて、界面剪断強度(IFSS)を測定した結果、IFSSが26MPaであり、接着性が十分に高いことが確認された。結果を表1に示す。
Step II: A step of attaching the component (A) to the carbon fiber obtained in the step I. The above-mentioned (A-3) and acetone are mixed, and an approximately 1% by mass acetone solution that is uniformly dissolved is mixed. Obtained. Using this acetone solution, the component (A) was applied to the surface-treated carbon fiber C by a dipping method, followed by heat treatment at a temperature of 150 ° C. for 90 seconds to obtain a carbon fiber having the component (A) attached thereto. . (A) The adhesion amount of component was prepared so that it might become 0.1 mass part with respect to 100 mass parts of surface-treated carbon fibers. Then, as a result of measuring interfacial shear strength (IFSS) using the obtained carbon fiber, IFSS was 26 MPa, and it was confirmed that the adhesiveness was sufficiently high. The results are shown in Table 1.
・第IIの工程:(A)、(B)成分を第Iの工程で得られた炭素繊維に付着させる工程
(A−1)と前記の(B−1)を質量比3:97で混合し、さらにアセトンを混合し、(A−1)、(B−1)成分が均一に溶解した約1質量%のアセトン溶液を得た。このアセトン溶液を用い、浸漬法により、(A−1)、(B−1)を表面処理された炭素繊維Aに塗布した後、210℃の温度で150秒間熱処理をして、(A)、(B)成分が付着された炭素繊維を得た。付着量は、表面処理された炭素繊維100質量部に対して1質量部となるように調製した。続いて、得られた炭素繊維を用いて界面剪断強度(IFSS)を測定した結果、IFSSが40MPaであり、接着性が十分に高いことが確認された。結果を表2に示す。
-Step II: (A), (B) The step of attaching the components to the carbon fiber obtained in Step I (A-1) and the above (B-1) are mixed at a mass ratio of 3:97 Further, acetone was further mixed to obtain an acetone solution of about 1% by mass in which the components (A-1) and (B-1) were uniformly dissolved. Using this acetone solution, (A-1) and (B-1) were applied to the surface-treated carbon fiber A by a dipping method, followed by heat treatment at a temperature of 210 ° C. for 150 seconds, (A), (B) The carbon fiber to which the component was attached was obtained. The adhesion amount was adjusted to 1 part by mass with respect to 100 parts by mass of the surface-treated carbon fiber. Subsequently, as a result of measuring the interfacial shear strength (IFSS) using the obtained carbon fiber, it was confirmed that IFSS was 40 MPa and the adhesiveness was sufficiently high. The results are shown in Table 2.
・第IIの工程:(A)、(B)成分を第Iの工程で得られた炭素繊維に付着させる工程
(A−3)と前記の(B−2)を質量比3:97で混合し、さらにアセトンを混合し、(A−3)、(B−2)が均一に溶解した約1質量%のアセトン溶液を得た。このアセトン溶液を用い、浸漬法により、(A−3)、(B−2)を表面処理された炭素繊維Aに塗布した後、210℃の温度で150秒間熱処理をして、(A)、(B)成分が付着された炭素繊維を得た。付着量は、表面処理された炭素繊維100質量部に対して1質量部となるように調製した。続いて、得られた炭素繊維を用いて界面剪断強度(IFSS)を測定した結果、IFSSが42MPaであり、接着性が十分に高いことが確認された。結果を表3に示す。
-Step II: (A), (B) The step of adhering the components to the carbon fiber obtained in Step I (A-3) and the above (B-2) are mixed at a mass ratio of 3:97 Further, acetone was mixed to obtain an acetone solution of about 1% by mass in which (A-3) and (B-2) were uniformly dissolved. Using this acetone solution, after applying (A-3) and (B-2) to the surface-treated carbon fiber A by an immersion method, heat treatment was performed at a temperature of 210 ° C. for 150 seconds, and (A), (B) The carbon fiber to which the component was attached was obtained. The adhesion amount was adjusted to 1 part by mass with respect to 100 parts by mass of the surface-treated carbon fiber. Subsequently, as a result of measuring the interfacial shear strength (IFSS) using the obtained carbon fiber, it was confirmed that the IFSS was 42 MPa and the adhesiveness was sufficiently high. The results are shown in Table 3.
・第IIの工程:(A)、(B)成分を第Iの工程で得られた炭素繊維に付着させる工程
(A−1)と(B−8)を質量比3:97で混合し、さらにアセトンを混合し、(A−1)、(B−8)が均一に溶解した約1質量%のアセトン溶液を得た。このアセトン溶液を用い、浸漬法により、(A−1)、(B−8)を表面処理された炭素繊維Aに塗布した後、210℃の温度で150秒間熱処理をして、(A)、(B)成分が付着された炭素繊維を得た。付着量は、表面処理された炭素繊維100質量部に対して1質量部となるように調製した。続いて、得られた炭素繊維を用いて界面剪断強度(IFSS)を測定した結果、IFSSが35MPaであり、接着性が十分に高いことが確認された。結果を表4に示す。
Step II: Steps (A) and (B) for adhering the components to the carbon fiber obtained in Step I (A-1) and (B-8) are mixed at a mass ratio of 3:97, Further, acetone was mixed to obtain an acetone solution of about 1% by mass in which (A-1) and (B-8) were uniformly dissolved. Using this acetone solution, after applying (A-1) and (B-8) to the surface-treated carbon fiber A by an immersion method, heat treatment was performed at a temperature of 210 ° C. for 150 seconds, and (A), (B) The carbon fiber to which the component was attached was obtained. The adhesion amount was adjusted to 1 part by mass with respect to 100 parts by mass of the surface-treated carbon fiber. Subsequently, as a result of measuring the interfacial shear strength (IFSS) using the obtained carbon fiber, it was confirmed that IFSS was 35 MPa and the adhesiveness was sufficiently high. The results are shown in Table 4.
・第IIの工程:(A)、(B)成分を第Iの工程で得られた炭素繊維に付着させる工程
(A−7)と前記の(B−8)を質量比3:97で混合し、さらにアセトンを混合し、(A−7)、(B−8)が均一に溶解した約1質量%のアセトン溶液を得た。このアセトン溶液を用い、浸漬法により、(A−7)、(B−8)を表面処理された炭素繊維Aに塗布した後、210℃の温度で150秒間熱処理をして、(A)、(B)成分が付着された炭素繊維を得た。付着量は、表面処理された炭素繊維100質量部に対して1質量部となるように調製した。続いて、得られた炭素繊維を用いて界面剪断強度(IFSS)を測定した結果、IFSSが37MPaであり、接着性が十分に高いことが確認された。結果を表4に示す。
Step II: Mixing the components (A) and (B) to the carbon fiber obtained in Step I (A-7) and the above (B-8) at a mass ratio of 3:97 Further, acetone was mixed to obtain an acetone solution of about 1% by mass in which (A-7) and (B-8) were uniformly dissolved. Using this acetone solution, (A-7) and (B-8) were applied to the surface-treated carbon fiber A by a dipping method, followed by heat treatment at a temperature of 210 ° C. for 150 seconds, (A), (B) The carbon fiber to which the component was attached was obtained. The adhesion amount was adjusted to 1 part by mass with respect to 100 parts by mass of the surface-treated carbon fiber. Subsequently, as a result of measuring the interfacial shear strength (IFSS) using the obtained carbon fiber, it was confirmed that IFSS was 37 MPa and the adhesiveness was sufficiently high. The results are shown in Table 4.
・第IIの工程:(A)、(B)成分を第Iの工程で得られた炭素繊維に付着させる工程
(A−8)と前記の(B−8)を質量比3:97で混合し、さらにアセトンを混合し、(A−8)、(B−8)が均一に溶解した約1質量%のアセトン溶液を得た。このアセトン溶液を用い、浸漬法により、(A−8)、(B−8)成分を表面処理された炭素繊維Aに塗布した後、210℃の温度で150秒間熱処理をして、(A)、(B)成分が付着された炭素繊維を得た。付着量は、表面処理された炭素繊維100質量部に対して1質量部となるように調製した。続いて、得られた炭素繊維を用いて界面剪断強度(IFSS)を測定した結果、IFSSが36MPaであり、接着性が十分に高いことが確認された。結果を表4に示す。
Step II: Mixing the components (A-8) and (B-8) with a mass ratio of 3:97 (A) and (B) attached to the carbon fiber obtained in the step I Further, acetone was mixed to obtain an acetone solution of about 1% by mass in which (A-8) and (B-8) were uniformly dissolved. Using this acetone solution, the components (A-8) and (B-8) were applied to the surface-treated carbon fiber A by a dipping method, followed by heat treatment at a temperature of 210 ° C. for 150 seconds, (A) The carbon fiber to which the component (B) was adhered was obtained. The adhesion amount was adjusted to 1 part by mass with respect to 100 parts by mass of the surface-treated carbon fiber. Subsequently, as a result of measuring the interfacial shear strength (IFSS) using the obtained carbon fiber, it was confirmed that the IFSS was 36 MPa and the adhesiveness was sufficiently high. The results are shown in Table 4.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2011162796A JP5899690B2 (en) | 2010-12-27 | 2011-07-26 | Carbon fiber |
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2010289986 | 2010-12-27 | ||
JP2010289986 | 2010-12-27 | ||
JP2011162796A JP5899690B2 (en) | 2010-12-27 | 2011-07-26 | Carbon fiber |
Publications (3)
Publication Number | Publication Date |
---|---|
JP2012149368A JP2012149368A (en) | 2012-08-09 |
JP2012149368A5 true JP2012149368A5 (en) | 2014-08-07 |
JP5899690B2 JP5899690B2 (en) | 2016-04-06 |
Family
ID=46791873
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2011162796A Active JP5899690B2 (en) | 2010-12-27 | 2011-07-26 | Carbon fiber |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP5899690B2 (en) |
Family Cites Families (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS599664B2 (en) * | 1975-11-08 | 1984-03-03 | 旭化成株式会社 | Tansoseniiyouhiyoumenshiagezai |
JP3003513B2 (en) * | 1993-08-25 | 2000-01-31 | 東レ株式会社 | Carbon fiber and method for producing the same |
JPH0835177A (en) * | 1994-07-20 | 1996-02-06 | Mitsubishi Rayon Co Ltd | Sizing agent for carbon fiber |
CA2797407A1 (en) * | 2010-06-30 | 2012-01-05 | Toray Industries, Inc. | Method for producing sizing agent-coated carbon fibers, and sizing agent-coated carbon fibers |
JP4924766B2 (en) * | 2010-06-30 | 2012-04-25 | 東レ株式会社 | Method for producing carbon fiber coated with sizing agent |
-
2011
- 2011-07-26 JP JP2011162796A patent/JP5899690B2/en active Active
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP2013127132A5 (en) | ||
JP2013116999A5 (en) | ||
JP5477312B2 (en) | Sizing agent-coated carbon fiber bundle and method for producing the same | |
KR102362050B1 (en) | Prepreg Laminate, Fiber Reinforced Composite Material, and Method for Manufacturing Fiber Reinforced Composite Material | |
CN106068346B (en) | Manufacturing method, prepreg and the fibre reinforced composites for applying sizing agent reinforcing fiber, applying sizing agent reinforcing fiber | |
CN103898767B (en) | A kind of preparation method of aramid fiber surface coating | |
TWI598380B (en) | Carbon fiber bundle coated with sizing agent, manufacturing method thereof, prepreg and carbon fiber reinforced composite material | |
WO2007037260A1 (en) | Fiber-reinforced thermoplastic resin composition, method for producing same, and carbon fiber for thermoplastic resin | |
CN1819408A (en) | Insulating structure and production for vacuum-pressure immersing process of high-voltage motor | |
JP2017119936A (en) | Sizing agent coated carbon fiber, manufacturing method of sizing agent coated carbon fiber, prepreg and carbon fiber reinforced composite material | |
JP2013129934A5 (en) | ||
JP2015129271A (en) | Carbon fiber-reinforced polyamide resin composition and molded article obtained by molding the same | |
JP2006044259A (en) | Integrated molded product and its manufacturing method | |
TW201835241A (en) | Sizing-coated carbon fiber bundle, thermoplastic resin composition, molded body, method for manufacturing sizing-coated carbon fiber bundle, and method for manufacturing molded body | |
CN1243047C (en) | Preparation process for composite of rare earth modified carbon-fibre / epoxy resin | |
JP2013116998A5 (en) | ||
CN110241616A (en) | A method of enhancing aluminium oxide flexible fiber performance | |
JP2013133559A5 (en) | ||
JP6822208B2 (en) | Thermoplastic resin composition containing a sizing agent-coated carbon fiber bundle | |
CN115353854A (en) | Moisture-heat-resistant bi-component structural adhesive and preparation method thereof | |
JP2012149368A5 (en) | ||
CN101781545B (en) | Organic silicon dehydrogenation condensed type optical cable adhesive and use method thereof | |
CN105645920B (en) | A method of improving aerogel composite bond strength | |
JP2013104145A5 (en) | ||
CN113845752A (en) | Modified epoxy composition for thermal cation curing LED |