JP2012149238A - Method for producing semi-aromatic polyamide raw material, and method for producing semi-aromatic polyamide - Google Patents

Method for producing semi-aromatic polyamide raw material, and method for producing semi-aromatic polyamide Download PDF

Info

Publication number
JP2012149238A
JP2012149238A JP2011281412A JP2011281412A JP2012149238A JP 2012149238 A JP2012149238 A JP 2012149238A JP 2011281412 A JP2011281412 A JP 2011281412A JP 2011281412 A JP2011281412 A JP 2011281412A JP 2012149238 A JP2012149238 A JP 2012149238A
Authority
JP
Japan
Prior art keywords
semi
aromatic polyamide
raw material
polymerization
acid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2011281412A
Other languages
Japanese (ja)
Inventor
Taisuke Kikuno
太輔 菊野
Tomoyuki Aoki
智之 青木
Katsumi Akaike
克美 赤池
Minoru Noda
稔 野田
Taku Ishimaru
拓 石丸
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toray Industries Inc
Original Assignee
Toray Industries Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toray Industries Inc filed Critical Toray Industries Inc
Priority to JP2011281412A priority Critical patent/JP2012149238A/en
Publication of JP2012149238A publication Critical patent/JP2012149238A/en
Pending legal-status Critical Current

Links

Landscapes

  • Polyamides (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method which continuously and stably feeds a semi-aromatic polyamide raw material including an aromatic dicarboxylic acid component, and can continuously and stably produce semi-aromatic polyamide in reduced energy consumption.SOLUTION: In the method for producing the semi-aromatic polyamide raw material, at least aromatic dicarboxylic acid, aliphatic dicarboxylic acid and aliphatic diamine are subjected to heating/melting in the presence of water of ≤30 mass%. The heating/melting is performed at ≤200°C under sealing.

Description

本発明は、半芳香族ポリアミド原料の製造方法およびそれを用いた半芳香族ポリアミドの製造方法に関する。さらに詳しくは、半芳香族ポリアミドの連続重合プロセスの重合前段階における原料製造方法、およびかかる原料を連続重合する半芳香族ポリアミドの製造方法に関する。   The present invention relates to a method for producing a semi-aromatic polyamide raw material and a method for producing a semi-aromatic polyamide using the same. More specifically, the present invention relates to a raw material production method in a pre-polymerization stage of a semi-aromatic polyamide continuous polymerization process, and a semi-aromatic polyamide production method for continuously polymerizing the raw material.

ナイロン6、ナイロン66、ナイロン610などに代表される脂肪族ポリアミドは、その優れた特性を活かして衣料用、産業用繊維をはじめ、自動車分野、電気・電子分野、フィルムやモノフィラメントといった押出成形品などに広く使われている。しかし、高温環境下で用いられることが多いエンジニアリングプラスチックとしては必ずしも充分なものではない。一方で、ジカルボン酸成分が主として芳香族ジカルボン酸からなる半芳香族ポリアミドは、脂肪族ポリアミドに比べて、低吸水性、長期耐熱性、耐薬品性に優れるため、近年自動車用途やコネクター用途を中心とした需要が徐々に増加している。   Aliphatic polyamides typified by nylon 6, nylon 66, nylon 610, etc. make use of their superior properties, such as clothing and industrial fibers, automobiles, electrical / electronics, extruded products such as films and monofilaments, etc. Widely used in However, it is not always sufficient as an engineering plastic often used in a high temperature environment. On the other hand, semi-aromatic polyamides whose dicarboxylic acid component is mainly composed of aromatic dicarboxylic acids are superior in low water absorption, long-term heat resistance, and chemical resistance compared to aliphatic polyamides. Demand has increased gradually.

一般的に、ジカルボン酸とジアミンとからなるポリアミドは、次のようなプロセスを経て製造される。まず、ジカルボン酸とジアミンを水中で反応させて、ポリアミドの原料である塩水溶液を作る。次いでその塩水溶液を加熱して水分を蒸発させ、規定の濃度に濃縮する。濃縮された塩水溶液は、通常バッチ式の反応器に移送後、さらに加熱され、濃縮後に残存する水および重合により生じる縮合水を蒸発させてポリアミドを得る。芳香族ジカルボン酸成分を含む半芳香族ポリアミドの製造方法においては、その重合温度が高いため、分解・ゲル化が起こりやすい。そこで、塩水溶液を溶融状態で混練してプレポリマーとし、次いで固相状態で重合させる製造方法が開示されている(例えば、特許文献1参照)。このような溶融重合と固相重合を組み合わせたバッチプロセスでは、設備が煩雑になりメンテナンス面での不便さが課題となる。   Generally, a polyamide composed of a dicarboxylic acid and a diamine is produced through the following process. First, a dicarboxylic acid and a diamine are reacted in water to form an aqueous salt solution that is a raw material for polyamide. The aqueous salt solution is then heated to evaporate the water and concentrated to the specified concentration. The concentrated salt aqueous solution is usually heated after being transferred to a batch-type reactor, and water remaining after concentration and condensed water generated by polymerization are evaporated to obtain polyamide. In the method for producing a semi-aromatic polyamide containing an aromatic dicarboxylic acid component, decomposition and gelation are likely to occur because of its high polymerization temperature. Thus, a production method is disclosed in which an aqueous salt solution is kneaded in a molten state to form a prepolymer and then polymerized in a solid state (see, for example, Patent Document 1). In such a batch process in which melt polymerization and solid phase polymerization are combined, the facilities become complicated and inconvenience in terms of maintenance becomes a problem.

そこで、テレフタル酸および/またはイソフタル酸を含む塩水溶液を用いて半芳香族ポリアミドを連続的に重合する製造方法が開示されている(例えば、特許文献2参照)。   Therefore, a production method in which a semi-aromatic polyamide is continuously polymerized using an aqueous salt solution containing terephthalic acid and / or isophthalic acid is disclosed (for example, see Patent Document 2).

特開昭61−228022号公報Japanese Patent Laid-Open No. 61-228022 特開平03−17156号公報Japanese Patent Laid-Open No. 03-17156

しかしながら、上記先行技術に開示された製造方法では、水を多く含む半芳香族ポリアミド原料を使用しており、重合前の工程で半芳香族ポリアミド原料に含まれる水を蒸発濃縮により低減させている。蒸発濃縮はエネルギー効率の観点から好ましくない。エネルギー使用量の削減は、近年のCO削減の観点からも早急に改善が求められている。さらに、半芳香族ポリアミドの製造方法においては、連続プロセスで最も重要である供給安定性を低下させる要因となる。蒸発濃縮は、通常半芳香族ポリアミドの重合温度よりも低い温度領域で行われる。しかしながら、半芳香族ポリアミドは他の重合系ポリマーと比べて平衡定数が大きく、水の蒸発と同時に一部の重合反応が進行する。その結果、蒸発濃縮により、半芳香族ポリアミド原料の連続供給中に、オリゴマーが析出しやすくなる課題があった。 However, in the production method disclosed in the above prior art, a semi-aromatic polyamide raw material containing a large amount of water is used, and water contained in the semi-aromatic polyamide raw material is reduced by evaporation and concentration in the step before polymerization. . Evaporative concentration is not preferred from the viewpoint of energy efficiency. The reduction in energy consumption is urgently required from the viewpoint of CO 2 reduction in recent years. Furthermore, in the method for producing a semi-aromatic polyamide, it becomes a factor for reducing the supply stability, which is most important in a continuous process. Evaporation concentration is usually performed in a temperature range lower than the polymerization temperature of the semi-aromatic polyamide. However, semi-aromatic polyamide has a larger equilibrium constant than other polymerized polymers, and a part of the polymerization reaction proceeds simultaneously with the evaporation of water. As a result, there has been a problem that the oligomer tends to precipitate during continuous supply of the semi-aromatic polyamide raw material by evaporation concentration.

本発明は、上記先行技術の問題点を解決し、芳香族ジカルボン酸成分を含む半芳香族ポリアミド原料を連続して安定供給し、少ないエネルギー使用量で半芳香族ポリアミドを連続して安定に製造することができる方法を提供することにある。   The present invention solves the above-mentioned problems of the prior art, continuously supplies a semi-aromatic polyamide raw material containing an aromatic dicarboxylic acid component, and continuously produces a semi-aromatic polyamide stably with a small amount of energy consumption. It is to provide a way that can be done.

本発明は、少なくとも芳香族ジカルボン酸、脂肪族ジカルボン酸および脂肪族ジアミンを、30質量%以下の水の存在下で加熱溶解する半芳香族ポリアミド原料の製造方法であって、加熱溶解を密閉下200℃以下の温度で行うことを特徴とする半芳香族ポリアミド原料の製造方法である。また、かかる方法により得られる半芳香族ポリアミド原料を連続重合することを特徴とする半芳香族ポリアミドの製造方法である。   The present invention relates to a method for producing a semi-aromatic polyamide raw material in which at least an aromatic dicarboxylic acid, an aliphatic dicarboxylic acid and an aliphatic diamine are heated and dissolved in the presence of 30% by mass or less of water, and the heating and dissolution are sealed. A method for producing a semi-aromatic polyamide raw material, which is performed at a temperature of 200 ° C. or lower. Moreover, it is a manufacturing method of the semi-aromatic polyamide characterized by continuously polymerizing the semi-aromatic polyamide raw material obtained by this method.

本発明の方法によれば、半芳香族ポリアミド原料を連続して安定供給し、少ないエネルギー使用量で半芳香族ポリアミドを連続して安定に製造することができる。このため、従来の半芳香族ポリアミド原料および半芳香族ポリアミドの製造方法と比べエネルギー使用量の大幅な低減を実現できる。   According to the method of the present invention, a semi-aromatic polyamide raw material can be continuously and stably supplied, and a semi-aromatic polyamide can be continuously and stably produced with a small amount of energy used. For this reason, a significant reduction in energy consumption can be realized as compared with conventional semi-aromatic polyamide raw materials and semi-aromatic polyamide production methods.

以下に、本発明の半芳香族ポリアミド原料の製造方法および半芳香族ポリアミドの製造方法の詳細を説明する。半芳香族ポリアミド原料とは、芳香族ジカルボン酸または脂肪族ジカルボン酸と脂肪族ジアミンとの塩と水とを少なくとも含有する。必要に応じて、後述する重合度調節剤や重合触媒などの添加剤をさらに含有してもよいし、前記ジカルボン酸と前記ジアミンとの低重合度の重合体を含有してもよい。なお、加熱溶解に処する前のジカルボン酸、ジアミン、水および必要に応じて添加剤を含む混合物を、以下「原料」と言う。   Below, the detail of the manufacturing method of the semi-aromatic polyamide raw material of this invention and the manufacturing method of semi-aromatic polyamide is demonstrated. The semi-aromatic polyamide raw material contains at least an aromatic dicarboxylic acid or a salt of an aliphatic dicarboxylic acid and an aliphatic diamine and water. If necessary, an additive such as a polymerization degree adjusting agent and a polymerization catalyst described later may be further contained, or a polymer having a low polymerization degree between the dicarboxylic acid and the diamine may be contained. In addition, the mixture containing dicarboxylic acid, diamine, water and, if necessary, additives before being subjected to heat dissolution is hereinafter referred to as “raw material”.

本発明において、芳香族ジカルボン酸、脂肪族ジカルボン酸および脂肪族ジアミンは、半芳香族ポリアミドを構成する芳香族アミド単位、脂肪族アミド単位を形成するものであればよい。芳香族ジカルボン酸としては、例えば、テレフタル酸、イソフタル酸、ナフタレンジカルボン酸などが挙げられる。これらを2種以上用いてもよい。テレフタル酸およびイソフタル酸が好ましく、テレフタル酸がより好ましい。脂肪族ジカルボン酸としては、炭素数2〜18のものが好ましく、例えば、アジピン酸、セバシン酸、マロン酸、コハク酸、グルタル酸、ピメリン酸、スベリン酸、アゼライン酸、ウンデカン二酸、ドデカン二酸、テトラデカン二酸、ペンタデカン二酸、オクタデカン二酸などが挙げられる。これらを2種以上用いてもよい。アジピン酸およびセバシン酸が好ましく、アジピン酸がより好ましい。また、脂肪族ジアミンとしては、炭素数4〜14のものが好ましく、ヘキサメチレンジアミン(1,6−ジアミノヘキサン)、1,4−ジアミノブタン、1,5−ジアミノペンタン、1,7−ジアミノヘプタン、1,8−ジアミノオクタン、1,9−ジアミノノナン、1,10−ジアミノデカン、1,11−ジアミノウンデカン、1,12−ジアミノドデカン、1,13−ジアミノトリデカン、1,14−ジアミノテトラデカンなどが挙げられる。これらを2種以上用いてもよい。ヘキサメチレンジアミンおよびペンタメチレンジアミンが好ましく、ヘキサメチレンジアミンがより好ましい。好ましい組合せとして、テレフタル酸とアジピン酸とヘキサメチレンジアミン、イソフタル酸とアジピン酸とヘキサメチレンジアミンなどが挙げられる。   In the present invention, the aromatic dicarboxylic acid, the aliphatic dicarboxylic acid, and the aliphatic diamine may be any one that forms an aromatic amide unit or an aliphatic amide unit constituting the semi-aromatic polyamide. Examples of the aromatic dicarboxylic acid include terephthalic acid, isophthalic acid, and naphthalenedicarboxylic acid. Two or more of these may be used. Terephthalic acid and isophthalic acid are preferred, and terephthalic acid is more preferred. As the aliphatic dicarboxylic acid, those having 2 to 18 carbon atoms are preferable. For example, adipic acid, sebacic acid, malonic acid, succinic acid, glutaric acid, pimelic acid, suberic acid, azelaic acid, undecanedioic acid, dodecanedioic acid , Tetradecanedioic acid, pentadecanedioic acid, octadecanedioic acid and the like. Two or more of these may be used. Adipic acid and sebacic acid are preferred, and adipic acid is more preferred. The aliphatic diamine is preferably one having 4 to 14 carbon atoms, such as hexamethylene diamine (1,6-diaminohexane), 1,4-diaminobutane, 1,5-diaminopentane, 1,7-diaminoheptane. 1,8-diaminooctane, 1,9-diaminononane, 1,10-diaminodecane, 1,11-diaminoundecane, 1,12-diaminododecane, 1,13-diaminotridecane, 1,14-diaminotetradecane, etc. Is mentioned. Two or more of these may be used. Hexamethylenediamine and pentamethylenediamine are preferred, and hexamethylenediamine is more preferred. Preferred combinations include terephthalic acid, adipic acid and hexamethylene diamine, isophthalic acid, adipic acid and hexamethylene diamine.

本発明の半芳香族ポリアミド原料の製造方法においては、原料の加熱溶解を密閉下200℃以下の温度で行うことが重要である。ここで、密閉下とは水蒸気などのガスの系外との出入りがないことをいい、例えば、連続式製造方法の場合、水蒸気などのガスの系外への留出や流入が防止されていればよく、原料の系内への供給や得られた半芳香族ポリアミド原料の系外への取出があってもよい。加熱溶解を密閉下で行うことにより、水の系外への留出を抑制し、加熱溶解中の重合反応を抑制することができ、それによって半芳香族ポリアミド原料の供給安定性を得ることができる。また、加熱温度が200℃を超えると、得られる半芳香族ポリアミド原料の平均重合度が高くなり、半芳香族ポリアミド原料の供給安定性を低下させる場合がある。加熱温度は190℃以下が好ましい。例えば、密閉条件下で加熱溶解時の加熱温度を180℃とした場合、得られる半芳香族ポリアミド原料の平均重合度は通常1未満となる。ここで、平均重合度とは1分子中の芳香族ジカルボン酸または脂肪族ジカルボン酸と脂肪族ジアミンの結合の数の平均値をいう。平均重合度が1未満の範囲では、半芳香族ポリアミド原料を長時間安定して連続供給することができる。   In the method for producing a semi-aromatic polyamide raw material of the present invention, it is important that the raw material is heated and melted at a temperature of 200 ° C. or lower in a sealed state. Here, under sealing means that gas such as water vapor does not enter or leave the system. For example, in the case of a continuous production method, distillation or inflow of gas such as water vapor outside the system should be prevented. What is necessary is just to supply the raw material into the system and take out the obtained semi-aromatic polyamide raw material out of the system. By carrying out heat dissolution under sealing, it is possible to suppress the distillation of water out of the system and suppress the polymerization reaction during heat dissolution, thereby obtaining the supply stability of the semi-aromatic polyamide raw material. it can. Moreover, when heating temperature exceeds 200 degreeC, the average degree of polymerization of the semi-aromatic polyamide raw material obtained will become high, and the supply stability of a semi-aromatic polyamide raw material may be reduced. The heating temperature is preferably 190 ° C. or lower. For example, when the heating temperature at the time of heating and melting under a sealed condition is 180 ° C., the average degree of polymerization of the obtained semiaromatic polyamide raw material is usually less than 1. Here, the average degree of polymerization means an average value of the number of bonds between an aromatic dicarboxylic acid or aliphatic dicarboxylic acid and an aliphatic diamine in one molecule. When the average degree of polymerization is less than 1, the semi-aromatic polyamide raw material can be continuously supplied stably for a long time.

本発明の半芳香族ポリアミド原料の製造方法において、原料中の水の量は、30質量%以下であることが重要である。ここで、原料中の水の量とは、芳香族ジカルボン酸、脂肪族ジカルボン酸、水および必要に応じて添加剤を含む原料全体における水の質量%を言う。原料中の水の量が30質量%を超えると、半芳香族ポリアミド原料を用いて半芳香族ポリアミドを製造する際、エネルギー効率が低下することに加え、重合の進行を阻害する要因となる。エネルギー効率の観点からは、水の量はできる限り少ない方が好ましい。一方、原料をより低い温度で加熱溶解し、望ましくない重合反応をより抑制する観点からは、水の量は10質量%以上が好ましく、15質量%以上がより好ましく、20質量%以上がより好ましい。   In the method for producing a semi-aromatic polyamide raw material of the present invention, it is important that the amount of water in the raw material is 30% by mass or less. Here, the amount of water in the raw material refers to mass% of water in the whole raw material including aromatic dicarboxylic acid, aliphatic dicarboxylic acid, water and, if necessary, additives. When the amount of water in the raw material exceeds 30% by mass, when the semi-aromatic polyamide is produced using the semi-aromatic polyamide raw material, energy efficiency is lowered and the progress of polymerization is inhibited. From the viewpoint of energy efficiency, the amount of water is preferably as small as possible. On the other hand, the amount of water is preferably 10% by mass or more, more preferably 15% by mass or more, and more preferably 20% by mass or more from the viewpoint of further heating and dissolving the raw material at a lower temperature and further suppressing undesirable polymerization reaction. .

また、原料の加熱溶解時の圧力は、原料の抑制を防止するため、常圧以上とすることが好ましい。加熱溶解時の圧力は、その時の溶解槽内の圧力を指し、一般的には、水を含む半芳香族ポリアミド原料が示す溶解平衡時の水蒸気圧で定まる。したがって、この圧力は、例えば、原料に含まれる水の量および加熱温度によって適宜調整することができる。また、必要に応じて、さらに窒素などの不活性ガスによる加圧を行ってもよい。   Moreover, it is preferable that the pressure at the time of melt | dissolving a raw material by heating shall be more than a normal pressure in order to prevent suppression of a raw material. The pressure at the time of dissolution by heating refers to the pressure in the dissolution tank at that time, and is generally determined by the water vapor pressure at the time of dissolution equilibrium indicated by the semi-aromatic polyamide raw material containing water. Therefore, this pressure can be appropriately adjusted depending on, for example, the amount of water contained in the raw material and the heating temperature. Moreover, you may further pressurize by inert gas, such as nitrogen, as needed.

本発明の半芳香族ポリアミド原料の製造方法において、原料を加熱溶解する装置は、密閉下で加熱することができる装置であれば特に制限がなく、従来公知の加熱装置を備えたバッチ式または連続式の反応釜を使用することができる。加熱溶解中に原料を撹拌することができるように、撹拌機を有することが好ましい。   In the method for producing a semi-aromatic polyamide raw material of the present invention, the apparatus for heating and dissolving the raw material is not particularly limited as long as it can be heated in a sealed state, and is batch-type or continuous equipped with a conventionally known heating apparatus. A reaction kettle of the formula can be used. It is preferable to have a stirrer so that the raw materials can be stirred during heating and melting.

本発明の半芳香族ポリアミド原料の製造方法において、原料を加熱溶解する際には、酸素による着色および劣化を防止する目的で、加熱開始前に原料タンクまたは加熱装置などから酸素を除去することが好ましい。酸素を除去する方法は、特に制限はなく、バッチ式で真空にして窒素などの不活性ガスで置換する方法や、窒素などの不活性ガスをブローする方法など、公知の方法で酸素を除去すればよい。   In the method for producing a semi-aromatic polyamide raw material of the present invention, when the raw material is heated and dissolved, oxygen may be removed from the raw material tank or the heating device before the start of heating for the purpose of preventing coloring and deterioration due to oxygen. preferable. The method for removing oxygen is not particularly limited. Oxygen can be removed by a known method such as a batch-type vacuum and replacement with an inert gas such as nitrogen, or a method of blowing an inert gas such as nitrogen. That's fine.

次に、上記方法により得られた半芳香族ポリアミド原料を連続重合する半芳香族ポリアミドの製造方法について説明する。半芳香族ポリアミド原料を連続重合して半芳香族ポリアミドプレポリマー(以下、「プレポリマー」と言う)を得て、プレポリマーをさらに連続重合して半芳香族ポリアミドを得る方法が好ましい。プレポリマーを連続的に得るために、半芳香族ポリアミド原料を連続的に重合装置に供給することが好ましく、バッチ式加熱装置を用いて原料を加熱溶解する場合には、バッファー槽を設けることが好ましい。かかる半芳香族ポリアミドの製造方法の例を、以下説明する。   Next, a method for producing a semi-aromatic polyamide in which the semi-aromatic polyamide raw material obtained by the above method is continuously polymerized will be described. A method in which a semi-aromatic polyamide raw material is continuously polymerized to obtain a semi-aromatic polyamide prepolymer (hereinafter referred to as “prepolymer”), and the prepolymer is further continuously polymerized to obtain a semi-aromatic polyamide is preferable. In order to obtain the prepolymer continuously, it is preferable to continuously supply the semi-aromatic polyamide raw material to the polymerization apparatus. When the raw material is heated and dissolved using a batch heating apparatus, a buffer tank may be provided. preferable. An example of a method for producing such a semi-aromatic polyamide will be described below.

加熱溶解して得られた半芳香族ポリアミド原料は、加熱溶解装置の下流側に位置するバッファー槽に送られる。半芳香族ポリアミド原料を加熱溶解装置からバッファー槽へ送る方法は、特に制限はなく、従来公知のポンプによる送液方法や、加熱溶解装置とバッファー槽を均圧に保持することにより、自重によって送る方法などが挙げられる。バッファー槽に送られた半芳香族ポリアミド原料は、バッファー槽のさらに下流側に位置する重合装置に供給されるまで滞留することになる。そこで、バッファー槽の温度を200℃以下にすることが好ましい。バッファー槽の温度が200℃以下であれば、滞留中の重合反応の進行を抑制し、半芳香族ポリアミド原料の供給安定性を高く維持することができる。一方、半芳香族ポリアミド原料の析出を抑制するためには、バッファー槽の温度は140℃以上が好ましく、150℃以上がより好ましい。   The semi-aromatic polyamide raw material obtained by heating and dissolving is sent to a buffer tank located on the downstream side of the heating and dissolving apparatus. The method for sending the semi-aromatic polyamide raw material from the heat-dissolving device to the buffer tank is not particularly limited, and it is sent by its own weight by keeping the pressure of the heat-dissolving device and the buffer tank at a constant pressure by using a conventionally known pump. The method etc. are mentioned. The semi-aromatic polyamide raw material sent to the buffer tank will stay until it is supplied to the polymerization apparatus located further downstream of the buffer tank. Therefore, the temperature of the buffer tank is preferably set to 200 ° C. or lower. When the temperature of the buffer tank is 200 ° C. or lower, the progress of the polymerization reaction during residence can be suppressed, and the supply stability of the semi-aromatic polyamide raw material can be maintained high. On the other hand, in order to suppress precipitation of the semi-aromatic polyamide raw material, the temperature of the buffer tank is preferably 140 ° C. or higher, and more preferably 150 ° C. or higher.

バッファー槽の圧力は、半芳香族ポリアミド原料を滞留する時のバッファー槽内の圧力であって、主として、半芳香族ポリアミド原料中の水の量およびバッファー槽の温度によって決まる。したがって、この圧力は、例えば、半芳香族ポリアミド原料中の水の量およびバッファー槽の温度によって適宜調整することができる。   The pressure in the buffer tank is the pressure in the buffer tank when the semi-aromatic polyamide raw material is retained, and is mainly determined by the amount of water in the semi-aromatic polyamide raw material and the temperature of the buffer tank. Therefore, this pressure can be appropriately adjusted depending on, for example, the amount of water in the semi-aromatic polyamide raw material and the temperature of the buffer tank.

バッファー槽に滞留している半芳香族ポリアミド原料は、定量供給可能なポンプを用いて、バッファー槽の下流に位置する重合装置に連続的に供給され、重合装置内で連続重合してプレポリマーとすることが好ましい。ここで言うプレポリマーとは、半芳香族ポリアミド原料の重合反応により得られるものであり、オリゴマー、未反応モノマー、水および重合反応によって生成する縮合水を含む混合物を言う。   The semi-aromatic polyamide raw material staying in the buffer tank is continuously supplied to a polymerization apparatus located downstream of the buffer tank using a pump capable of supplying a fixed amount, and is continuously polymerized in the polymerization apparatus to form a prepolymer and It is preferable to do. The prepolymer referred to here is obtained by a polymerization reaction of a semi-aromatic polyamide raw material, and refers to a mixture containing an oligomer, an unreacted monomer, water and condensed water generated by the polymerization reaction.

ここで得られるプレポリマーの相対粘度(ηr)は、通常1.1〜2.0である。次工程において高重合度化するために、プレポリマーの相対粘度は1.3以上が好ましく、1.4以上がより好ましい。一方、異常滞留による重合装置内でのゲル化物の生成を抑制するため、プレポリマーの相対粘度は1.9以下が好ましく、1.8以下がより好ましい。ここで、プレポリマーの相対粘度(ηr)は、JIS K6810に従って、試料を98%硫酸に0.01g/ml濃度で溶解し、25℃でオストワルド式粘度計を用いて測定した値である。   The relative viscosity (ηr) of the prepolymer obtained here is usually 1.1 to 2.0. In order to increase the degree of polymerization in the next step, the relative viscosity of the prepolymer is preferably 1.3 or more, and more preferably 1.4 or more. On the other hand, the relative viscosity of the prepolymer is preferably 1.9 or less, and more preferably 1.8 or less, in order to suppress the formation of a gelled product in the polymerization apparatus due to abnormal residence. Here, the relative viscosity (ηr) of the prepolymer is a value obtained by dissolving a sample in 98% sulfuric acid at a concentration of 0.01 g / ml according to JIS K6810 and using an Ostwald viscometer at 25 ° C.

プレポリマーを製造するときの反応温度は、通常260〜320℃である。反応時間を短縮するためには、反応温度は270℃以上が好ましく、280℃以上がより好ましい。一方、熱分解やゲル化物の生成を抑制するためには、反応温度は310℃以下が好ましく、300℃以下がより好ましい。   The reaction temperature when producing the prepolymer is usually 260 to 320 ° C. In order to shorten the reaction time, the reaction temperature is preferably 270 ° C. or higher, more preferably 280 ° C. or higher. On the other hand, the reaction temperature is preferably 310 ° C. or lower, and more preferably 300 ° C. or lower, in order to suppress thermal decomposition and the formation of a gelled product.

プレポリマーを製造するときの圧力は、通常0〜4MPa−G、好ましくは0.5〜3.5MPa−Gに保つように操作される。半芳香族ポリアミド原料の供給精度や設備費用の点から、圧力は低い方が好ましい。   The pressure at the time of producing the prepolymer is usually operated so as to be maintained at 0 to 4 MPa-G, preferably 0.5 to 3.5 MPa-G. A lower pressure is preferable from the viewpoint of supply accuracy of semi-aromatic polyamide raw material and equipment cost.

プレポリマーを製造するときの反応時間は、通常10〜90分間である。次工程において高重合度化や組成調整を容易にするために、反応時間は30分間以上が好ましい。一方、熱分解やゲル化物の生成、異常滞留を抑制するために、反応時間は60分間以下が好ましい。   The reaction time when producing the prepolymer is usually 10 to 90 minutes. In order to facilitate higher polymerization and composition adjustment in the next step, the reaction time is preferably 30 minutes or more. On the other hand, the reaction time is preferably 60 minutes or less in order to suppress thermal decomposition, formation of gelled products, and abnormal residence.

本発明において、プレポリマーを製造する重合装置は特に制限はないが、不必要な対流が起きないよう、縦型円筒状で内部を多孔板などで仕切られた重合装置が好ましく用いられる。プレポリマーを製造する重合装置には、圧力調整時に水とともにジアミンが流出して組成比がずれないよう、重合装置上部に精留塔などを設置し、ジアミンの流出を防止することができる。   In the present invention, the polymerization apparatus for producing the prepolymer is not particularly limited, but a polymerization apparatus in which the inside is partitioned by a perforated plate or the like is preferably used so that unnecessary convection does not occur. In the polymerization apparatus for producing the prepolymer, a rectification tower or the like can be installed on the upper part of the polymerization apparatus so that the diamine flows out together with water during pressure adjustment and the composition ratio does not shift, thereby preventing the diamine from flowing out.

プレポリマーの製造において重合度調節を容易にするためには、重合度調節剤の添加が有効であり、半芳香族ポリアミド原料製造時に加熱溶解装置に添加することができる。重合度調節剤としては、例えば、有機酸および/または有機塩基などが挙げられ、これらを2種以上用いてもよい。有機酸としては、例えば、安息香酸、酢酸、ステアリン酸などが好ましく、安息香酸がより好ましい。また、有機塩基としては、炭素数4〜14の脂肪族ジアミンが好ましく、ヘキサメチレンジアミンがより好ましい。重合度調節剤の添加量は、原料であるジカルボン酸およびジアミンの合計モル数に対して0〜0.1倍モルが好ましく、0.0001〜0.05倍モルがより好ましい。   In order to facilitate the adjustment of the polymerization degree in the production of the prepolymer, it is effective to add a polymerization degree regulator, and it can be added to the heating and dissolving apparatus during the production of the semi-aromatic polyamide raw material. Examples of the polymerization degree modifier include organic acids and / or organic bases, and two or more of these may be used. As the organic acid, for example, benzoic acid, acetic acid, stearic acid and the like are preferable, and benzoic acid is more preferable. Moreover, as an organic base, a C4-C14 aliphatic diamine is preferable and hexamethylene diamine is more preferable. The addition amount of the polymerization degree modifier is preferably from 0 to 0.1 times mol, more preferably from 0.0001 to 0.05 times mol, based on the total number of moles of the dicarboxylic acid and diamine as raw materials.

プレポリマーの製造において、リン酸触媒も用いることができる。半芳香族ポリアミド原料製造時に加熱溶解装置に添加してもよいし、次工程の重合装置に追添加することもできる。リン酸触媒は、重合反応の触媒機能を有するものであり、具体的には、リン酸、リン酸塩、次亜リン酸塩、酸性リン酸エステル、リン酸エステル、亜リン酸エステルなどが挙げられ、これらを2種以上用いてもよい。次亜リン酸塩を例示すると、次亜リン酸ナトリウム、次亜リン酸マグネシウム、次亜リン酸カリウム、次亜リン酸カルシウム、次亜リン酸バナジウム、次亜リン酸マンガン、次亜リン酸ニッケル、次亜リン酸コバルトなどが挙げられる。酸性リン酸エステルを例示すると、モノメチルリン酸エステル、ジメチルリン酸エステル、モノエチルリン酸エステル、ジエチルリン酸エステル、プロピルリン酸エステル、イソプロピルリン酸エステル、ジプロピルリン酸エステル、ジイソプロピルリン酸エステル、ブチルリン酸エステル、イソブチルリン酸エステル、ジブチルリン酸エステル、ジイソブチルリン酸エステル、モノフェニルリン酸エステル、ジフェニルリン酸エステルなどが挙げられる。リン酸エステルを例示すると、トリメチルリン酸、トリエチルリン酸、トリ−n−プロピルリン酸、トリ−i−プロピルリン酸、トリ−n−ブチルリン酸、トリ−i−ブチルリン酸、トリフェニルリン酸、トリ−n−ヘキシルリン酸、トリ−n−オクチルリン酸、トリ(2−エチルヘキシル)リン酸、トリデシルリン酸などが挙げられる。これらの中で好ましいのは次亜リン酸塩であり、特に好ましいのは次亜リン酸ナトリウムである。リン酸触媒を添加する場合、その添加量は、プレポリマー100重量部に対して0.001〜5重量部が好ましく、0.01〜1重量部がより好ましい。   A phosphoric acid catalyst can also be used in the production of the prepolymer. The semi-aromatic polyamide raw material may be added to the heat-dissolving device during the production, or may be additionally added to the polymerization device in the next step. The phosphoric acid catalyst has a catalytic function of polymerization reaction, and specifically, phosphoric acid, phosphate, hypophosphite, acidic phosphate ester, phosphate ester, phosphite ester, etc. Two or more of these may be used. Examples of hypophosphites include sodium hypophosphite, magnesium hypophosphite, potassium hypophosphite, calcium hypophosphite, vanadium hypophosphite, manganese hypophosphite, nickel hypophosphite, Examples include cobalt phosphite. Examples of acidic phosphate esters include monomethyl phosphate ester, dimethyl phosphate ester, monoethyl phosphate ester, diethyl phosphate ester, propyl phosphate ester, isopropyl phosphate ester, dipropyl phosphate ester, diisopropyl phosphate ester, butyl phosphate ester, Examples include isobutyl phosphate ester, dibutyl phosphate ester, diisobutyl phosphate ester, monophenyl phosphate ester, and diphenyl phosphate ester. Examples of phosphate esters include trimethyl phosphate, triethyl phosphate, tri-n-propyl phosphate, tri-i-propyl phosphate, tri-n-butyl phosphate, tri-i-butyl phosphate, triphenyl phosphate, Examples include tri-n-hexyl phosphoric acid, tri-n-octyl phosphoric acid, tri (2-ethylhexyl) phosphoric acid, and tridecyl phosphoric acid. Of these, hypophosphite is preferred, and sodium hypophosphite is particularly preferred. When adding a phosphoric acid catalyst, 0.001-5 weight part is preferable with respect to 100 weight part of prepolymers, and, as for the addition amount, 0.01-1 weight part is more preferable.

発明において、プレポリマーを製造する重合装置から連続して安定的かつ定量的にプレポリマーを吐出するため、ギヤポンプ、ボールバルブなどの排出装置を使用して直結した重合装置に連続供給することが好ましい。プレポリマーをさらに連続重合する重合装置としては、二軸押出機が好ましい。   In the invention, in order to continuously and quantitatively discharge the prepolymer from the polymerization apparatus for producing the prepolymer, it is preferable to continuously supply the polymerization apparatus directly connected using a discharge device such as a gear pump and a ball valve. . A twin-screw extruder is preferable as a polymerization apparatus for continuously polymerizing the prepolymer.

本発明において、二軸押出機などの重合装置に連続供給されたプレポリマーは、通常、最終的に得られる半芳香族ポリアミドの融点+5〜+40℃、好ましくは融点+10〜+40℃の範囲で溶融混練され、重合反応により半芳香族ポリアミドを得る。重合反応速度を高めるため、温度は融点+5℃以上が好ましい。また、熱分解やゲル化物の生成を防止するため、温度は融点+40℃以下が好ましい。ここで、半芳香族ポリアミドの融点とは、DSC法により昇温速度20℃/分で測定して得られた融解曲線の最大値を示す温度を言う。   In the present invention, the prepolymer continuously fed to a polymerization apparatus such as a twin-screw extruder is usually melted in the range of the melting point of the semiaromatic polyamide finally obtained +5 to + 40 ° C., preferably the melting point +10 to + 40 ° C. The semi-aromatic polyamide is obtained by kneading and polymerization reaction. In order to increase the polymerization reaction rate, the temperature is preferably a melting point + 5 ° C. or higher. Moreover, in order to prevent thermal decomposition and the production | generation of a gelled material, temperature is preferable melting | fusing point +40 degrees C or less. Here, the melting point of the semi-aromatic polyamide refers to a temperature indicating the maximum value of the melting curve obtained by measuring at a heating rate of 20 ° C./min by the DSC method.

二軸押出機には水を含んだプレポリマーが連続供給されるため、水は二軸押出機の供給口付近に設置されたリヤベントまたは第1ベントから連続的に除去することが好ましく、より安定した重合反応により高重合度化した半芳香族ポリアミドを容易に得ることができる。また、上記以外にも少なくとも1つ以上のベント口を設置し、プレポリマーの重合反応により発生する水と、ごく少量の未反応モノマーなどを系外に排出することにより、重合反応を進め、高重合度化された半芳香族ポリアミドを容易に製造することができる。なお、ベントでの排気は、通常ナッシュポンプなど公知の減圧・真空装置を用いて、減圧下で行なわれることが好ましいが、特に圧力に制限はなく、常圧下でも行なうことができる。   Since the prepolymer containing water is continuously supplied to the twin screw extruder, it is preferable to continuously remove the water from the rear vent or the first vent installed in the vicinity of the supply port of the twin screw extruder. A semi-aromatic polyamide having a high degree of polymerization can be easily obtained by the polymerization reaction. In addition to the above, at least one vent port is installed, and the polymerization reaction is advanced by discharging water generated by the polymerization reaction of the prepolymer and a very small amount of unreacted monomer out of the system. A semi-aromatic polyamide having a polymerization degree can be easily produced. The venting is preferably carried out under reduced pressure using a known decompression / vacuum device such as a Nash pump, but the pressure is not particularly limited and can be carried out under normal pressure.

本発明において、二軸押出機内の滞留時間は特に定めないが、半芳香族ポリアミドとして充分な粘度まで重合を進め、かつ長時間滞留による熱劣化や熱分解を抑制するため、1〜10分間が好ましく、1〜5分間がより好ましい。   In the present invention, the residence time in the twin-screw extruder is not particularly defined, but in order to advance the polymerization to a sufficient viscosity as a semi-aromatic polyamide and to suppress thermal degradation and thermal decomposition due to residence for a long time, 1 to 10 minutes is required. Preferably, 1 to 5 minutes is more preferable.

プレポリマー製造工程、半芳香族ポリアミド製造工程またはコンパウンド工程などの任意の工程において、必要に応じて触媒、耐熱安定剤、耐候性安定剤、酸化防止剤、可塑剤、離型剤、滑剤、結晶核剤、顔料、染料、他の重合体などを添加することもできる。添加剤をコンパウンドする場合は、生産性の点から、二軸押出機での重合と同時あるいは連続で行なうことがより好ましい。半芳香族ポリアミドの色調改善には、酸化防止剤の添加が有効であり、特に次亜リン酸ナトリウムおよびヒンダードフェノール系酸化防止剤の添加が好ましい。   In any process such as prepolymer manufacturing process, semi-aromatic polyamide manufacturing process or compounding process, catalyst, heat stabilizer, weathering stabilizer, antioxidant, plasticizer, mold release agent, lubricant, crystal as required Nucleating agents, pigments, dyes, other polymers, etc. can also be added. When compounding an additive, it is more preferable to carry out simultaneously or continuously with polymerization in a twin-screw extruder from the viewpoint of productivity. Addition of an antioxidant is effective for improving the color tone of the semi-aromatic polyamide, and the addition of sodium hypophosphite and a hindered phenol antioxidant is particularly preferable.

本発明の製造方法によって得られる半芳香族ポリアミドは、従来のポリアミドと同様に、通常の成形方法によって成形品とすることができる。成形方法は特に制限はなく、射出成形、押出成形、吹き込み成形、プレス成形など公知の成形方法が利用できる。ここでいう成形品とは、射出成形などによる成形品の他、繊維、フィルム、シート、チューブ、モノフィラメント等の賦形物も含む。   The semi-aromatic polyamide obtained by the production method of the present invention can be formed into a molded product by an ordinary molding method, similarly to the conventional polyamide. The molding method is not particularly limited, and known molding methods such as injection molding, extrusion molding, blow molding, and press molding can be used. The molded product referred to here includes shaped products such as fibers, films, sheets, tubes, and monofilaments in addition to molded products by injection molding.

以下に実施例をあげて本発明を具体的に説明する。なお、実施例および比較例に記した特性の評価方法は以下のとおりである。   Hereinafter, the present invention will be specifically described with reference to examples. In addition, the evaluation method of the characteristic described in the Example and the comparative example is as follows.

(1)原料の均一溶解性:ガラス製オートクレーブに表1〜表2記載の原料仕込量の1/1000相当のモノマーおよび水を仕込み(グラム単位)、密閉条件下で加熱した。表1〜表2記載の原料溶解温度に到達した時点でオートクレーブ内部の溶解状態を目視観察した。固形物が全く認められない状態を均一溶液とし、液が白濁または部分的に結晶が析出している状態を不均一溶液とした。   (1) Uniform solubility of raw materials: A monomer and water corresponding to 1/1000 of the raw material charge amounts shown in Tables 1 and 2 were charged into a glass autoclave (in grams) and heated under sealed conditions. When the raw material dissolution temperatures listed in Tables 1 and 2 were reached, the dissolution state inside the autoclave was visually observed. A state in which no solid matter was observed was defined as a uniform solution, and a state in which the solution was cloudy or a crystal was partially deposited was defined as a heterogeneous solution.

(2)相対粘度(ηr):JIS K6810に従って、試料を98%硫酸に0.01g/ml濃度で溶解し、25℃でオストワルド式粘度計を用いて測定した。   (2) Relative viscosity (ηr): According to JIS K6810, a sample was dissolved in 98% sulfuric acid at a concentration of 0.01 g / ml, and measured at 25 ° C. using an Ostwald viscometer.

(3)融点(Tm):DSC(PERKIN−ELMER製)を用い、試料8〜10mgを昇温速度20℃/分で測定して、得られた融解曲線の最大値を示す温度を融点とした。   (3) Melting point (Tm): Using DSC (manufactured by PERKIN-ELMER), 8 to 10 mg of sample was measured at a heating rate of 20 ° C./min, and the temperature showing the maximum value of the obtained melting curve was taken as the melting point. .

(4)平均重合度:加熱溶解して得られた半芳香族ポリアミド原料を密閉下で冷却固化させ、さらに乾燥処理して得られた試料のアミノ末端基濃度を後述の方法により測定した。重合反応が全く進行していない半芳香族ポリアミド原料の理論アミノ末端基濃度を732(10−5mol/g)、重合反応が進行して平均重合度が1である半芳香族ポリアミド原料の理論アミノ末端基濃度を366(10−5mol/g)とした時に、測定した試料のアミノ末端基濃度から下記A、Bに示す通り平均重合度を決定した。
A. 0<アミノ末端基濃度≦366 : 平均重合度1以上
B.366<アミノ末端基濃度≦732 : 平均重合度1未満
(4) Average degree of polymerization: A semi-aromatic polyamide raw material obtained by heating and dissolving was cooled and solidified in a sealed state, and further dried to measure the amino terminal group concentration of the sample obtained by the method described below. Theory of semi-aromatic polyamide raw material in which the polymerization reaction has not progressed at all The theory of semi-aromatic polyamide raw material in which the amino terminal group concentration is 732 (10 −5 mol / g) and the polymerization reaction proceeds and the average degree of polymerization is 1. When the amino terminal group concentration was 366 (10 −5 mol / g), the average degree of polymerization was determined from the measured amino terminal group concentration of the sample as shown in A and B below.
A. 0 <amino end group concentration ≦ 366: average degree of polymerization of 1 or more 366 <amino end group concentration ≦ 732: average degree of polymerization less than 1

(5)アミノ末端基濃度:乾燥させた試料0.1gを精秤し、PEA溶液(フェノール83.5:エタノール16.5、体積比)50mLを加えて振とう溶解後、0.02N塩酸を用いて滴定した。
アミノ末端基(10−5mol/g)=(A−B)×f×0.02×10−3/乾燥試料重量
A:滴定に要した0.02N塩酸量(mL)
B:空試験に要した0.02N塩酸量(mL)
f:0.02N塩酸の力価
(5) Amino end group concentration: 0.1 g of dried sample was precisely weighed, 50 mL of PEA solution (phenol 83.5: ethanol 16.5, volume ratio) was added and dissolved by shaking, and 0.02N hydrochloric acid was added. And titrated.
Amino end group (10 −5 mol / g) = (A−B) × f × 0.02 × 10 −3 / dry sample weight
A: 0.02N hydrochloric acid amount (mL) required for titration
B: 0.02N hydrochloric acid amount (mL) required for the blank test
f: 0.02N hydrochloric acid titer

実施例1
撹拌機およびジャケット加熱機能を有する容積350Lの溶解槽に、実質的に水分を含まないヘキサメチレンジアミン69.0kgと水40.6kgを仕込んだ。続いて、実質的に水分を含まないアジピン酸40.7kgと、実質的に水分を含まないテレフタル酸52.5kgを仕込み、窒素置換を行った。さらに、重合触媒として、次亜リン酸ナトリウムを、最終的に得られる半芳香族ポリアミド100重量部に対して0.05重量部になるように添加した。また、重合度調節剤として、安息香酸を、ジカルボン酸とジアミンの合計モル数に対して0.0133倍モルとなるように添加した。この時、全部の仕込量に対する水含有率は20質量%であった。溶解槽を密閉系とし、内温が180℃に到達するまで加熱して、半芳香族ポリアミド原料を得た。この時、溶解槽の圧力は0.50MPa−Gまで上昇していた。続いて、半芳香族ポリアミド原料を、均圧配管によって溶解槽と圧力保持されているバッファー槽に自重によって送り、バッファー槽での滞留温度を160℃に保持した。上記の方法で得た半芳香族ポリアミド原料を、プランジャーポンプを用いて6.30kg/hrの供給速度で、4Lの縦型円筒状の重合装置に連続供給し、表1記載の条件でプレポリマーを連続重合した。次いで、二軸押出機で表1記載の条件で高重合度化を行い、半芳香族ポリアミドを得た。半芳香族ポリアミド原料の連続供給に問題は見られず、安定した連続供給ができた。得られた半芳香族ポリアミドの粘度(ηr)は2.45、融点301.0℃であり、24時間以上問題なく製造することができた。
Example 1
A dissolving tank having a capacity of 350 L having a stirrer and a jacket heating function was charged with 69.0 kg of hexamethylenediamine substantially free of water and 40.6 kg of water. Subsequently, 40.7 kg of adipic acid substantially free of water and 52.5 kg of terephthalic acid substantially free of water were charged, and nitrogen substitution was performed. Further, sodium hypophosphite was added as a polymerization catalyst so as to be 0.05 parts by weight with respect to 100 parts by weight of the finally obtained semi-aromatic polyamide. Moreover, benzoic acid was added as a polymerization degree regulator so that it might become 0.0133 times mole with respect to the total mole number of dicarboxylic acid and diamine. At this time, the water content with respect to the whole charged amount was 20% by mass. The dissolution tank was closed and heated until the internal temperature reached 180 ° C. to obtain a semi-aromatic polyamide raw material. At this time, the pressure in the dissolution tank increased to 0.50 MPa-G. Subsequently, the semi-aromatic polyamide raw material was sent by its own weight to the dissolution tank and the pressure-retained buffer tank through a pressure equalizing pipe, and the residence temperature in the buffer tank was maintained at 160 ° C. The semi-aromatic polyamide raw material obtained by the above method is continuously supplied to a 4 L vertical cylindrical polymerization apparatus at a supply rate of 6.30 kg / hr using a plunger pump, and pre-treated under the conditions described in Table 1. The polymer was continuously polymerized. Subsequently, the degree of polymerization was increased with a twin-screw extruder under the conditions described in Table 1, to obtain a semi-aromatic polyamide. There was no problem in the continuous supply of the semi-aromatic polyamide raw material, and a stable continuous supply was achieved. The obtained semi-aromatic polyamide had a viscosity (ηr) of 2.45 and a melting point of 301.0 ° C., and could be produced without problems for 24 hours or more.

実施例2
水の仕込量を69.5kgに変更した以外は実施例1と同様にして、半芳香族ポリアミド原料を得た。全部の仕込量に対する水含有率は30質量%であり、溶解槽の圧力は0.58MPa−Gまで上昇していた。得られた半芳香族ポリアミド原料を用いて、実施例1と同様にしてプレポリマーを得て、半芳香族ポリアミドを得た。半芳香族ポリアミド原料の連続供給に問題は見られず、安定した連続供給ができた。得られた半芳香族ポリアミドの粘度(ηr)は2.24、融点は300.2℃であり、24時間以上問題なく製造することができた。
Example 2
A semi-aromatic polyamide raw material was obtained in the same manner as in Example 1 except that the amount of water charged was changed to 69.5 kg. The water content relative to the total amount charged was 30% by mass, and the pressure in the dissolution tank was increased to 0.58 MPa-G. Using the obtained semi-aromatic polyamide raw material, a prepolymer was obtained in the same manner as in Example 1 to obtain a semi-aromatic polyamide. There was no problem in the continuous supply of the semi-aromatic polyamide raw material, and a stable continuous supply was achieved. The obtained semi-aromatic polyamide had a viscosity (ηr) of 2.24 and a melting point of 300.2 ° C., and could be produced without problems for 24 hours or more.

実施例3
原料溶解時に内温が165℃になるまで加熱した以外は実施例2と同様にして、半芳香族ポリアミド原料を得た。全部の仕込量に対する水含有率は30質量%であり、溶解槽の圧力は0.40MPa−Gまで上昇していた。得られた半芳香族ポリアミド原料を用いて、バッファー槽での滞留温度を145℃に保持した以外は実施例2と同様にしてプレポリマーを得て、半芳香族ポリアミドを得た。半芳香族ポリアミド原料の連続供給に問題は見られず、安定した連続供給ができた。得られた半芳香族ポリアミドの粘度(ηr)は2.21、融点は299.0℃であり、24時間以上問題なく製造することができた。
Example 3
A semi-aromatic polyamide raw material was obtained in the same manner as in Example 2 except that heating was performed until the internal temperature reached 165 ° C. when the raw material was dissolved. The water content with respect to the total charge was 30% by mass, and the pressure in the dissolution tank was increased to 0.40 MPa-G. Using the obtained semi-aromatic polyamide raw material, a prepolymer was obtained in the same manner as in Example 2 except that the residence temperature in the buffer tank was maintained at 145 ° C. to obtain a semi-aromatic polyamide. There was no problem in the continuous supply of the semi-aromatic polyamide raw material, and a stable continuous supply was achieved. The obtained semi-aromatic polyamide had a viscosity (ηr) of 2.21 and a melting point of 299.0 ° C., and could be produced without problems for 24 hours or more.

実施例4
水の仕込量を28.6kgに変更し、原料溶解時に内温が185℃になるまで加熱した以外は実施例1と同様にして、半芳香族ポリアミド原料を得た。全部の仕込量に対する水含有率は15質量%であり、溶解槽の圧力は0.55MPa−Gまで上昇していた。得られた半芳香族ポリアミド原料を用いて、バッファー槽での滞留温度を170℃に保持した以外は実施例1と同様にしてプレポリマーを得て、半芳香族ポリアミドを得た。半芳香族ポリアミド原料の連続供給に問題は見られず、安定した連続供給ができた。得られた半芳香族ポリアミドポリマーの粘度(ηr)は2.52、融点は300.5℃であり、24時間以上問題なく製造することができた。
Example 4
A semi-aromatic polyamide raw material was obtained in the same manner as in Example 1 except that the amount of water charged was changed to 28.6 kg and heated until the internal temperature reached 185 ° C. when the raw material was dissolved. The water content relative to the total charge was 15% by mass, and the pressure in the dissolution tank was increased to 0.55 MPa-G. Using the obtained semi-aromatic polyamide raw material, a prepolymer was obtained in the same manner as in Example 1 except that the residence temperature in the buffer tank was maintained at 170 ° C. to obtain a semi-aromatic polyamide. There was no problem in the continuous supply of the semi-aromatic polyamide raw material, and a stable continuous supply was achieved. The obtained semi-aromatic polyamide polymer had a viscosity (ηr) of 2.52 and a melting point of 300.5 ° C., and could be produced without problems for 24 hours or more.

実施例5
実施例1と同様にして、半芳香族ポリアミド原料を得た。全部の仕込量に対する水含有率は20質量%であり、溶解槽の圧力は0.50MPa−Gまで上昇していた。得られた半芳香族ポリアミド原料を用いて、バッファー槽での滞留温度を220℃に保持した以外は実施例1と同様にしてプレポリマーを得て、半芳香族ポリアミドを得た。半芳香族ポリアミド原料の連続供給の最初の段階では問題はなかったが、連続供給開始して12時間後には供給不能となるトラブルが発生した。その間、得られた半芳香族ポリアミドポリマーの粘度(ηr)は2.47、融点は300.0℃であった。
Example 5
In the same manner as in Example 1, a semi-aromatic polyamide raw material was obtained. The water content relative to the total charge was 20% by mass, and the pressure in the dissolution tank was increased to 0.50 MPa-G. Using the obtained semi-aromatic polyamide raw material, a prepolymer was obtained in the same manner as in Example 1 except that the residence temperature in the buffer tank was maintained at 220 ° C. to obtain a semi-aromatic polyamide. There was no problem in the first stage of continuous supply of the semi-aromatic polyamide raw material, but there was a problem that the supply became impossible 12 hours after the start of continuous supply. Meanwhile, the viscosity (ηr) of the obtained semi-aromatic polyamide polymer was 2.47, and the melting point was 300.0 ° C.

実施例6
撹拌機およびジャケット加熱機能を有する容積350Lの溶解槽に、実質的に水分を含まないヘキサメチレンジアミン70.4kgと水45.0kgを仕込んだ。続いて、実質的に水分を含まないセバシン酸49.2kgと、実質的に水分を含まないテレフタル酸60.4kgを仕込み、窒素置換を行った。なお、重合触媒として、次亜リン酸ナトリウムを、重合後に得られる半芳香族ポリアミド100重量部に対して0.05重量部になるように添加した。また、重合度調節剤として、安息香酸を、ジカルボン酸とジアミンの合計モル数に対して0.0133倍モルとなるように添加した。全部の仕込量に対する水含有率は20質量%であった。溶解槽を密閉系とし、内温が180℃に到達するまで加熱して、半芳香族ポリアミド原料を得た。この時、溶解槽の圧力は0.50MPa−Gまで上昇していた。得られた半芳香族ポリアミド原料を用いて、実施例1と同様にしてプレポリマーを得て、半芳香族ポリアミドを得た。半芳香族ポリアミド原料の連続供給に問題は見られず、安定した連続供給ができた。得られた半芳香族ポリアミドの粘度(ηr)は2.42、融点は303.0℃であり、24時間以上問題なく製造することができた。
Example 6
70.4 kg of hexamethylenediamine and 45.0 kg of water substantially free of water were charged into a 350 L capacity dissolution tank having a stirrer and jacket heating function. Subsequently, 49.2 kg of sebacic acid substantially free of water and 60.4 kg of terephthalic acid substantially free of water were charged, and nitrogen substitution was performed. In addition, sodium hypophosphite was added as a polymerization catalyst so that it might be 0.05 weight part with respect to 100 weight part of semi-aromatic polyamide obtained after superposition | polymerization. Moreover, benzoic acid was added as a polymerization degree regulator so that it might become 0.0133 times mole with respect to the total mole number of dicarboxylic acid and diamine. The water content relative to the total charge was 20% by mass. The dissolution tank was closed and heated until the internal temperature reached 180 ° C. to obtain a semi-aromatic polyamide raw material. At this time, the pressure in the dissolution tank increased to 0.50 MPa-G. Using the obtained semi-aromatic polyamide raw material, a prepolymer was obtained in the same manner as in Example 1 to obtain a semi-aromatic polyamide. There was no problem in the continuous supply of the semi-aromatic polyamide raw material, and a stable continuous supply was achieved. The obtained semi-aromatic polyamide had a viscosity (ηr) of 2.42 and a melting point of 303.0 ° C., and could be produced without problems for 24 hours or more.

比較例1
水の仕込量を108.1kgに変更し、原料溶解時に内温が160℃になるまで加熱した以外は実施例1と同様にして、半芳香族ポリアミド原料を得た。全部の仕込量に対する水分含有率は40質量%であり、溶解槽の圧力は0.35MPa−Gまで上昇していた。得られた半芳香族ポリアミド原料を用いて、実施例1と同様にしてプレポリマーの連続重合、続けて二軸押出機での高重合度化を行った。半芳香族ポリアミド原料の連続供給に問題は見られず、安定した連続供給ができたが、二軸押出機での高重合度化においてベントアップが発生し、安定した連続運転ができなかった。
Comparative Example 1
A semi-aromatic polyamide raw material was obtained in the same manner as in Example 1 except that the amount of water charged was changed to 108.1 kg and heated until the internal temperature reached 160 ° C. when the raw material was dissolved. The water content with respect to the total charge was 40% by mass, and the pressure in the dissolution tank was increased to 0.35 MPa-G. Using the obtained semi-aromatic polyamide raw material, the prepolymer was continuously polymerized in the same manner as in Example 1, followed by increasing the degree of polymerization with a twin-screw extruder. There was no problem in the continuous supply of the semi-aromatic polyamide raw material, and a stable continuous supply was possible. However, a vent-up occurred when the degree of polymerization in the twin screw extruder was increased, and a stable continuous operation was not possible.

比較例2
水の仕込量を18.0kgに変更し、原料溶解時に内温が220℃になるまで加熱した以外は実施例1と同様にして、半芳香族ポリアミド原料を得た。全部の仕込量に対する水含有率は10質量%であり、溶解槽の圧力は0.80MPa−Gまで上昇していた。また、この時の平均重合度は1以上であった。得られた半芳香族ポリアミド原料を用いて、バッファー槽での滞留温度を180℃に変更した以外は実施例1と同様にして重合装置に供給を試みたが、供給してすぐに配管中で半芳香族ポリアミド原料の析出固化が発生し、連続運転を停止した。
Comparative Example 2
A semi-aromatic polyamide raw material was obtained in the same manner as in Example 1 except that the amount of water charged was changed to 18.0 kg and heated until the internal temperature reached 220 ° C. when the raw material was dissolved. The water content with respect to the total charge was 10% by mass, and the pressure in the dissolution tank was increased to 0.80 MPa-G. Moreover, the average degree of polymerization at this time was 1 or more. Using the obtained semi-aromatic polyamide raw material, an attempt was made to supply to the polymerization apparatus in the same manner as in Example 1 except that the residence temperature in the buffer tank was changed to 180 ° C. The semi-aromatic polyamide raw material was precipitated and solidified, and the continuous operation was stopped.

比較例3
撹拌機およびジャケット加熱機能を有する容積350Lの溶解槽に、実質的に水分を含まないヘキサメチレンジアミン69.0kgと水162.2kgを仕込んだ。続いて、実質的に水分を含まないアジピン酸40.7kgと、実質的に水分を含まないテレフタル酸52.5kgを仕込み、窒素置換を行った。なお、重合触媒として、次亜リン酸ナトリウムを、重合後に得られる半芳香族ポリアミド100重量部に対して0.05重量部になるように添加した。また、重合度調節剤として、安息香酸を、ジカルボン酸とジアミンの合計モル数に対して0.0133倍モルとなるように添加した。全部の仕込量に対する水含有率は50質量%であった。溶解槽を加熱して、圧力を0.30MPa−Gに保持しながら、系内の水分を蒸発除去した。最終的に系内の水含有率が15質量%に到達するまで水分を除去し、半芳香族ポリアミド原料を得た。この時の平均重合度は1以上であった。得られた半芳香族ポリアミド原料を用いて、バッファー槽での滞留温度を180℃に変更した以外は実施例1と同様にして重合装置に供給を試みたが、供給してすぐに配管中で半芳香族ポリアミド原料の析出固化が発生し、運転を停止した。
Comparative Example 3
A dissolving tank having a capacity of 350 L having a stirrer and a jacket heating function was charged with 69.0 kg of hexamethylenediamine substantially free of water and 162.2 kg of water. Subsequently, 40.7 kg of adipic acid substantially free of water and 52.5 kg of terephthalic acid substantially free of water were charged, and nitrogen substitution was performed. In addition, sodium hypophosphite was added as a polymerization catalyst so that it might be 0.05 weight part with respect to 100 weight part of semi-aromatic polyamide obtained after superposition | polymerization. Moreover, benzoic acid was added as a polymerization degree regulator so that it might become 0.0133 times mole with respect to the total mole number of dicarboxylic acid and diamine. The water content relative to the total charge was 50% by mass. The dissolution tank was heated to evaporate and remove water in the system while maintaining the pressure at 0.30 MPa-G. Water was finally removed until the water content in the system reached 15% by mass to obtain a semi-aromatic polyamide raw material. The average degree of polymerization at this time was 1 or more. Using the obtained semi-aromatic polyamide raw material, an attempt was made to supply to the polymerization apparatus in the same manner as in Example 1 except that the residence temperature in the buffer tank was changed to 180 ° C. The semi-aromatic polyamide raw material was precipitated and solidified, and the operation was stopped.

各実施例および比較例の原料仕込量、製造条件および評価結果を表1〜2に示す。   The raw material preparation amount of each Example and a comparative example, manufacturing conditions, and an evaluation result are shown to Tables 1-2.

Figure 2012149238
Figure 2012149238

Figure 2012149238
Figure 2012149238

Claims (4)

少なくとも芳香族ジカルボン酸、脂肪族ジカルボン酸および脂肪族ジアミンを、30質量%以下の水の存在下で加熱溶解する半芳香族ポリアミド原料の製造方法であって、加熱溶解を密閉下200℃以下の温度で行うことを特徴とする半芳香族ポリアミド原料の製造方法。 A method for producing a semi-aromatic polyamide raw material in which at least an aromatic dicarboxylic acid, an aliphatic dicarboxylic acid and an aliphatic diamine are heated and dissolved in the presence of 30% by mass or less of water. A method for producing a semi-aromatic polyamide raw material, which is performed at a temperature. 前記芳香族ジカルボン酸がテレフタル酸および/またはイソフタル酸であり、前記脂肪族ジカルボン酸がアジピン酸および/またはセバシン酸であり、前記脂肪族ジアミンがヘキサメチレンジアミンおよび/またはペンタメチレンジアミンであることを特徴とする請求項1記載の半芳香族ポリアミド原料の製造方法。 The aromatic dicarboxylic acid is terephthalic acid and / or isophthalic acid, the aliphatic dicarboxylic acid is adipic acid and / or sebacic acid, and the aliphatic diamine is hexamethylenediamine and / or pentamethylenediamine. The method for producing a semi-aromatic polyamide raw material according to claim 1, characterized in that: 請求項1または2記載の製造方法により得られる半芳香族ポリアミド原料を連続重合することを特徴とする半芳香族ポリアミドの製造方法。 A method for producing a semi-aromatic polyamide, comprising continuously polymerizing a semi-aromatic polyamide raw material obtained by the production method according to claim 1 or 2. 請求項1または2記載の製造方法により得られる半芳香族ポリアミド原料を、200℃以下の温度で加熱したバッファー槽から重合装置に連続供給することを特徴とする請求項3記載の半芳香族ポリアミドの製造方法。 The semi-aromatic polyamide raw material obtained by the production method according to claim 1 or 2 is continuously fed to a polymerization apparatus from a buffer tank heated at a temperature of 200 ° C or lower. Manufacturing method.
JP2011281412A 2010-12-27 2011-12-22 Method for producing semi-aromatic polyamide raw material, and method for producing semi-aromatic polyamide Pending JP2012149238A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011281412A JP2012149238A (en) 2010-12-27 2011-12-22 Method for producing semi-aromatic polyamide raw material, and method for producing semi-aromatic polyamide

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2010289703 2010-12-27
JP2010289703 2010-12-27
JP2011281412A JP2012149238A (en) 2010-12-27 2011-12-22 Method for producing semi-aromatic polyamide raw material, and method for producing semi-aromatic polyamide

Publications (1)

Publication Number Publication Date
JP2012149238A true JP2012149238A (en) 2012-08-09

Family

ID=46791786

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011281412A Pending JP2012149238A (en) 2010-12-27 2011-12-22 Method for producing semi-aromatic polyamide raw material, and method for producing semi-aromatic polyamide

Country Status (1)

Country Link
JP (1) JP2012149238A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016141698A (en) * 2015-01-30 2016-08-08 東レ株式会社 Method for producing dehydration polycondensation polymer
US11505649B2 (en) 2017-09-28 2022-11-22 Dupont Polymers, Inc. Polymerization process
CN115873236A (en) * 2022-12-29 2023-03-31 浙江新力新材料股份有限公司 Method and system for preparing high-temperature-resistant nylon through continuous polymerization

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016141698A (en) * 2015-01-30 2016-08-08 東レ株式会社 Method for producing dehydration polycondensation polymer
US11505649B2 (en) 2017-09-28 2022-11-22 Dupont Polymers, Inc. Polymerization process
CN115873236A (en) * 2022-12-29 2023-03-31 浙江新力新材料股份有限公司 Method and system for preparing high-temperature-resistant nylon through continuous polymerization

Similar Documents

Publication Publication Date Title
JP5487782B2 (en) Polyamide prepolymer and continuous production method of polyamide
JP5194978B2 (en) Method for producing polyamide
JP6010153B2 (en) Batch process for producing polyamides
KR101845405B1 (en) Copolymerized polyamide resin, method for producing same, resin composition, and molded article formed from the copolymerized polyamide resin or the resin composition
JP5481776B2 (en) Method for producing polyamide
JP2009114429A (en) Continuous production method of polyamide
US5663284A (en) Copolymerized polyamide and a production process/thereof
TWI491641B (en) Process for producing polyamide
US9260563B2 (en) Process for production of polyamide
KR101835451B1 (en) Method for producing polyamide resin
JP2012149238A (en) Method for producing semi-aromatic polyamide raw material, and method for producing semi-aromatic polyamide
JPH09221592A (en) Polamide resin composition
US20010012883A1 (en) Process for producing polyamide
JP2009203422A (en) Continuously production method for polyamide
JP5892065B2 (en) Method for producing polyamide
JP2005194330A (en) Polyamide resin composition
WO2020122170A1 (en) Semi-aromatic polyamide resin and method for manufacturing same
WO2019189145A1 (en) Semi-aromatic polyamide resin and method for manufacturing same
JP2016141698A (en) Method for producing dehydration polycondensation polymer
KR102192621B1 (en) Xylylenediamine composition and method for producing polyamide resin
TWI545146B (en) Polyamide production method
JP2005194329A (en) Polyamide resin composition
KR20160086002A (en) Method for preparing polyamide resin
JP2014218550A (en) Polyamide resin composition