JP2012147243A - Antenna device and array antenna device - Google Patents

Antenna device and array antenna device Download PDF

Info

Publication number
JP2012147243A
JP2012147243A JP2011004013A JP2011004013A JP2012147243A JP 2012147243 A JP2012147243 A JP 2012147243A JP 2011004013 A JP2011004013 A JP 2011004013A JP 2011004013 A JP2011004013 A JP 2011004013A JP 2012147243 A JP2012147243 A JP 2012147243A
Authority
JP
Japan
Prior art keywords
conductor
feeding point
conductor portion
antenna device
dielectric layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2011004013A
Other languages
Japanese (ja)
Other versions
JP5606338B2 (en
Inventor
Jun Goto
準 後藤
Toru Takahashi
徹 高橋
Tamotsu Nishino
有 西野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2011004013A priority Critical patent/JP5606338B2/en
Publication of JP2012147243A publication Critical patent/JP2012147243A/en
Application granted granted Critical
Publication of JP5606338B2 publication Critical patent/JP5606338B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Variable-Direction Aerials And Aerial Arrays (AREA)
  • Waveguide Aerials (AREA)

Abstract

PROBLEM TO BE SOLVED: To obtain an antenna device capable of improving antenna characteristics during operation in two frequency bands closer to each other than conventional ones.SOLUTION: The antenna device includes a first dielectric layer with a first conductor part having a first feeding point and a ground conductor formed on upper and lower surfaces thereof, respectively; a second dielectric layer with a second conductor part formed on an upper surface thereof; and a third dielectric layer with a third conductor part having a second feeding point formed on an upper surface thereof. The first to third conductor parts have regions overlapping with each other when viewed in a stacking direction. The first conductor part has a first opening at a position overlapping with the second feeding point when viewed in the stacking direction. Electrical connections between the ground conductor and the first conductor part and between the ground conductor and the second conductor part are respectively established by a first coupling conductor group composed of a plurality of coupling conductors which extend through the first dielectric layer in the stacking direction and are not in contact with each other, and a second coupling conductor group composed of a plurality of coupling conductors which extend through the second dielectric layer in the stacking direction and are not in contact with each other.

Description

この発明はアンテナ装置、特に2つの周波数帯で動作する2周波共用アンテナ装置に関する。   The present invention relates to an antenna device, and more particularly to a dual-frequency antenna device that operates in two frequency bands.

GPS(Global Positioning System)衛星、Galileo衛星などの航法衛星や衛星通信及び移動体通信用のアンテナには、省スペース、低コスト性が求められる。このため、これらの分野で用いられるアンテナは、構成が簡単かつ形状が小さいマイクロストリップアンテナ(MSA:Micro Strip Antenna)が好ましい。しかしながら、一般にMSAは狭帯域であり、所望の帯域全てを1つの平面アンテナでカバーすることは困難である。従って、異なる周波数帯で動作(共振)する平面アンテナを同一平面上に配置する手法が取られている。   Space-saving and low cost are required for navigation satellites such as GPS (Global Positioning System) satellites and Galileo satellites and antennas for satellite communications and mobile communications. Therefore, the antenna used in these fields is preferably a microstrip antenna (MSA) having a simple configuration and a small shape. However, in general, the MSA has a narrow band, and it is difficult to cover all desired bands with a single planar antenna. Therefore, a technique is adopted in which planar antennas that operate (resonate) in different frequency bands are arranged on the same plane.

2つの周波数帯で動作するアンテナ装置として、従来、円環放射導体の内周部全体を接地導体に短絡した円環マイクロストリップアンテナと、円環放射導体の内側にこの円環放射導体の内径より小さい円形の放射導体を備えた円形マイクロストリップアンテナとを同心に配設した複合マイクロストリップアンテナがある(例えば、特許文献1参照)。   Conventionally, as an antenna device that operates in two frequency bands, an annular microstrip antenna in which the entire inner circumference of an annular radiating conductor is short-circuited to a ground conductor, and an inner diameter of the annular radiating conductor inside the annular radiating conductor. There is a composite microstrip antenna in which a circular microstrip antenna having a small circular radiation conductor is concentrically disposed (see, for example, Patent Document 1).

特開平5−160633号公報Japanese Patent Laid-Open No. 5-160633

しかしながら、このような複合マイクロストリップアンテナにおいては、より近接した周波数帯で動作させるべく円環マイクロストリップアンテナと円形マイクロストリップアンテナの径を近付けると、円環マイクロストリップアンテナの共振周波数が高くなり、所望のモードと他のモードが混在してアンテナの特性を劣化させるという問題があった。すなわち、従来の複合マイクロストリップアンテナでは、より近接した周波数帯で動作させることができなかった。   However, in such a composite microstrip antenna, when the diameters of the annular microstrip antenna and the circular microstrip antenna are made closer to operate in a closer frequency band, the resonance frequency of the annular microstrip antenna becomes higher, which is desired. There is a problem that the mode of the antenna and other modes are mixed to deteriorate the characteristics of the antenna. That is, the conventional composite microstrip antenna cannot be operated in a closer frequency band.

この発明は、上述のような問題を解決し、従来よりもより近接した2つの周波数帯での動作時におけるアンテナの特性を向上させたアンテナ装置、およびこのアンテナ装置を複数アレー状に配列したアレーアンテナ装置を得ることを目的とする。   The present invention solves the above-described problems and improves the antenna characteristics when operating in two closer frequency bands than in the prior art, and an array in which the antenna apparatuses are arranged in a plurality of arrays. An object is to obtain an antenna device.

上述の課題を解決すべく、この発明によるアンテナ装置は、第1の高周波信号が供給される第1の給電点を有する第1の導体部が上面に設けられ、かつ接地導体が下面に設けられた第1の誘電体層と、前記第1の誘電体層の上に積層され、第2の導体部が上面に設けられた第2の誘電体層と、前記第2の誘電体層の上に積層され、前記第1の高周波信号とは異なる第2の高周波信号が供給される第2の給電点を有する第3の導体部が上面に設けられた第3の誘電体層と、を備え、前記第1の導体部、第2の導体部及び第3の導体部は、積層方向から見て互いに重なり合う領域を有し、前記第1の導体部は、積層方向から見て前記第2の給電点に重なる位置に第1の開口部を有し、前記第2の導体部は、積層方向から見て前記第2の給電点に重なる位置に第2の開口部を有し、前記接地導体と前記第1の導体部とは、前記第1の誘電体層を積層方向に貫通する互いに非接触な複数の連結導体から成る第1の連結導体群によって電気的に接続され、前記接地導体と前記第2の導体部とは、前記第2の誘電体層を積層方向に貫通する互いに非接触な複数の連結導体から成る第2の連結導体群によって電気的に接続されることを特徴とする。   In order to solve the above-described problems, an antenna device according to the present invention has a first conductor portion having a first feeding point to which a first high-frequency signal is supplied provided on an upper surface and a ground conductor provided on a lower surface. A first dielectric layer, a second dielectric layer laminated on the first dielectric layer and having a second conductor portion provided on the upper surface, and the second dielectric layer And a third dielectric layer provided on the upper surface with a third conductor portion having a second feeding point to which a second high-frequency signal different from the first high-frequency signal is supplied. The first conductor portion, the second conductor portion, and the third conductor portion have regions overlapping each other when viewed from the stacking direction, and the first conductor portion is the second conductor when viewed from the stacking direction. A first opening is provided at a position overlapping the feeding point, and the second conductor portion overlaps the second feeding point when viewed from the stacking direction. A first opening made of a plurality of non-contact connecting conductors penetrating through the first dielectric layer in the stacking direction. And the ground conductor and the second conductor portion are formed of a plurality of non-contact coupling conductors penetrating the second dielectric layer in the stacking direction. It is electrically connected by a connecting conductor group.

この発明によれば、従来よりもより近接した2つの周波数帯での動作時におけるアンテナ特性を向上させたアンテナ装置、アレーアンテナ装置を提供できる。   According to the present invention, it is possible to provide an antenna device and an array antenna device that have improved antenna characteristics during operation in two frequency bands closer to each other than before.

この発明の実施の形態1によるアンテナ装置の分解斜視図である。1 is an exploded perspective view of an antenna device according to Embodiment 1 of the present invention. 図1のアンテナ装置の上面図及び断面図である。It is the top view and sectional drawing of the antenna apparatus of FIG. この発明の実施の形態2によるアンテナ装置の分解斜視図である。It is a disassembled perspective view of the antenna device by Embodiment 2 of this invention. この発明の実施の形態3によるアンテナ装置の分解斜視図である。It is a disassembled perspective view of the antenna device by Embodiment 3 of this invention. この発明の実施の形態4によるアンテナ装置の分解斜視図である。It is a disassembled perspective view of the antenna apparatus by Embodiment 4 of this invention. この発明の実施の形態5によるアンテナ装置の概略図である。It is the schematic of the antenna apparatus by Embodiment 5 of this invention. 図6のアンテナ装置の上面図及び断面図である。It is the upper side figure and sectional drawing of the antenna apparatus of FIG. PSA単体の概略図である。It is the schematic of a single PSA. 図8のPSAの内径外径比βと共振周波数との関係をシミュレーションした結果のグラフを示す図である。It is a figure which shows the graph of the result of having simulated the relationship between the internal diameter outer diameter ratio (beta) and resonance frequency of PSA of FIG. PSAの内径外径比βとスプリアス離調率との関係のグラフを示す図である。It is a figure which shows the graph of the relationship between the internal diameter outer diameter ratio (beta) of PSA, and a spurious detuning rate. 円環MSA単体の概略図である。It is the schematic of the annular | circular shaped MSA single-piece | unit. 図11の円環MSAの内径外径比βと円環MSAの共振周波数との関係をシミュレーションした結果のグラフを示す図である。It is a figure which shows the graph of the result of having simulated the relationship between the internal diameter outer diameter ratio (beta) of annular | circular shaped MSA of FIG. 11, and the resonant frequency of annular | circular shaped MSA. 円環MSAの内径外径比βとスプリアス離調率との関係のグラフを示す図である。It is a figure which shows the graph of the relationship between the internal diameter outer diameter ratio (beta) of an annular | circular shaped MSA, and a spurious detuning rate.

以下、この発明によるアンテナ装置、アレーアンテナ装置を各実施の形態に従って図面を用いて説明する。なお、各実施の形態において、同一もしくは相当部分は関連する符号で示し、重複する説明は省略する。   Hereinafter, an antenna device and an array antenna device according to the present invention will be described with reference to the drawings according to each embodiment. Note that, in each embodiment, the same or corresponding parts are denoted by related reference numerals, and redundant description is omitted.

実施の形態1.
図1はこの発明の実施の形態1によるアンテナ装置の分解斜視図である。図1のアンテナ装置では内部構造を説明するために一部が切欠いて示されている。図2は図1のアンテナ装置の上面図及び断面図であり、(a)は上面図、(b)は図2の(a)の一点鎖線で示すA−A’に沿った断面図、(c)は一点鎖線で示すB−B’に沿った断面図である。
Embodiment 1 FIG.
1 is an exploded perspective view of an antenna apparatus according to Embodiment 1 of the present invention. The antenna device of FIG. 1 is shown with a part cut away in order to explain the internal structure. 2A and 2B are a top view and a cross-sectional view of the antenna device of FIG. 1, in which FIG. 2A is a top view, FIG. 2B is a cross-sectional view along AA ′ indicated by a one-dot chain line in FIG. c) is a cross-sectional view along the line BB ′ indicated by a one-dot chain line.

図1及び図2において、アンテナ装置100は、誘電体基板(第1の誘電体層)110、誘電体基板(第2の誘電体層)120及び誘電体基板(第3の誘電体層)130がこの順に下から積層された構造を備える。誘電体基板110の下面には接地導体GNDが設けられ、上面には環状の導体パターン(第1の導体部)111が設けられている。環状の導体パターン111は、給電点(第1の給電点)141を有する。給電点141には、給電回路160から(同軸)給電線路151を介して高周波信号(第1の高周波信号)が供給される。すなわち、環状の導体パターン111は、放射導体(マイクロストリップアンテナ:MSA)として機能する。   1 and 2, the antenna device 100 includes a dielectric substrate (first dielectric layer) 110, a dielectric substrate (second dielectric layer) 120, and a dielectric substrate (third dielectric layer) 130. Has a structure in which layers are stacked in this order from the bottom. A ground conductor GND is provided on the lower surface of the dielectric substrate 110, and an annular conductor pattern (first conductor portion) 111 is provided on the upper surface. The annular conductor pattern 111 has a feeding point (first feeding point) 141. A high-frequency signal (first high-frequency signal) is supplied to the feeding point 141 from the feeding circuit 160 via the (coaxial) feeding line 151. That is, the annular conductor pattern 111 functions as a radiation conductor (microstrip antenna: MSA).

誘電体基板120は、誘電体基板110上に積層され、上面に円形の導体パターン(第2の導体部)121が設けられている。誘電体基板130は、誘電体基板120上に積層され、上面に円形の導体パターン(第3の導体部)131が設けられている。円形の導体パターン131は、給電点(第2の給電点)143を有する。給電点143には、給電回路160から(同軸)給電線路153を介して高周波信号(第2の高周波信号)が供給される。   The dielectric substrate 120 is laminated on the dielectric substrate 110, and a circular conductor pattern (second conductor portion) 121 is provided on the upper surface. The dielectric substrate 130 is laminated on the dielectric substrate 120, and a circular conductor pattern (third conductor portion) 131 is provided on the upper surface. The circular conductor pattern 131 has a feeding point (second feeding point) 143. A high-frequency signal (second high-frequency signal) is supplied to the feed point 143 from the feed circuit 160 via the (coaxial) feed line 153.

アンテナ装置100内で給電線路153を円形の導体パターン131まで導くために、誘電体基板110、誘電体基板120及び円形の導体パターン121には、それぞれ積層方向から見て給電点143に重なる位置に、貫通孔113、貫通孔123及び開口部(第2の開口部)125が設けられている。   In order to guide the feed line 153 to the circular conductor pattern 131 in the antenna device 100, the dielectric substrate 110, the dielectric substrate 120, and the circular conductor pattern 121 are respectively positioned so as to overlap the feed point 143 when viewed from the stacking direction. A through hole 113, a through hole 123, and an opening (second opening) 125 are provided.

なお、図示のアンテナ装置100では誘電体層として誘電体基板を用いているが、この発明はこれに限られるものではなく、誘電体層として空気層を用いることもでき、さらに、誘電体基板と空気層を組み合わせて用いてもよい。また、導体パターンの形状として円形及び円環状の導体パターンを用いているが、導体パターンの形状はこれに限るものではなく、例えば矩形のMSA及びこれを取り囲むような中央に開口を有する矩形形状の導体パターンであってもよい。   In the antenna device 100 shown in the figure, a dielectric substrate is used as the dielectric layer. However, the present invention is not limited to this, and an air layer can be used as the dielectric layer. A combination of air layers may be used. In addition, although circular and annular conductor patterns are used as the conductor pattern shape, the shape of the conductor pattern is not limited to this, for example, a rectangular MSA and a rectangular shape having an opening at the center surrounding the rectangular MSA. It may be a conductor pattern.

誘電体基板110〜130それぞれに設けられた導体パターンの動作について以下に説明する。環状の導体パターン111は、積層方向から見て給電点143に重なる位置に開口部(第1の開口部)115を有する。また、環状の導体パターン111は、誘電体基板110を積層方向に貫通する互いに非接触な複数の連結導体112a〜112dから成る第1の連結導体群によって接地導体GNDと電気的に接続されている。連結導体112a〜112dとしては、例えば、スルーホールや、板状の導体で実現することができる。   The operation of the conductor pattern provided on each of the dielectric substrates 110 to 130 will be described below. The annular conductor pattern 111 has an opening (first opening) 115 at a position overlapping the feeding point 143 when viewed from the stacking direction. Further, the annular conductor pattern 111 is electrically connected to the ground conductor GND by a first connecting conductor group including a plurality of non-contact connecting conductors 112a to 112d penetrating the dielectric substrate 110 in the stacking direction. . The connecting conductors 112a to 112d can be realized by, for example, through holes or plate-like conductors.

図1及び図2において、連結導体112a〜112dは、開口部115の周縁に、開口部115を囲むように配置されている。すなわち、接地導体GNDと環状の導体パターン111の内周側周縁部の一部は、連結導体112a〜112dによって連結されて部分的に短絡されている。このような、環状の導体パターン111と連結導体112a〜112dとから成るアンテナを、部分的に短絡した円環パッチアンテナとして「PSA(Partially Shorted Antenna)」111aと称する。   1 and 2, the connecting conductors 112 a to 112 d are arranged on the periphery of the opening 115 so as to surround the opening 115. That is, a part of the peripheral edge on the inner peripheral side of the ground conductor GND and the annular conductor pattern 111 is connected by the connecting conductors 112a to 112d and partially short-circuited. Such an antenna including the annular conductor pattern 111 and the connecting conductors 112a to 112d is referred to as a “PSA (Partially Shorted Antenna)” 111a as a partially patched annular patch antenna.

図1及び図2に示すように、環状の導体パターン111、円形の導体パターン121及び円形の導体パターン131は、積層方向から見て互いに重なり合う領域を有する。円形の導体パターン121の大きさは、PSA111aの非励振素子となるように、環状の導体パターン111との間で共振を生じるような大きさにされている。また、円形の導体パターン121と環状の導体パターン111とは、誘電体基板120を積層方向に貫通する互いに非接触な複数の連結導体122a〜122dから成る第2の連結導体群によって電気的に接続されている。   As shown in FIGS. 1 and 2, the annular conductor pattern 111, the circular conductor pattern 121, and the circular conductor pattern 131 have regions that overlap each other when viewed from the stacking direction. The size of the circular conductor pattern 121 is set so as to cause resonance with the annular conductor pattern 111 so as to be a non-excited element of the PSA 111a. In addition, the circular conductor pattern 121 and the annular conductor pattern 111 are electrically connected by a second connecting conductor group including a plurality of connecting conductors 122a to 122d that pass through the dielectric substrate 120 in the stacking direction and are not in contact with each other. Has been.

ここで、環状の導体パターン111と接地導体GNDとは連結導体112a〜112dによって電気的に接続されているため、円形の導体パターン121と接地導体GNDも電気的に接続されていることになる。すなわち、円形の導体パターン121は、円形の導体パターン131が放射導体(マイクロストリップアンテナ)として機能する際の接地導体としても機能する。   Here, since the annular conductor pattern 111 and the ground conductor GND are electrically connected by the connecting conductors 112a to 112d, the circular conductor pattern 121 and the ground conductor GND are also electrically connected. That is, the circular conductor pattern 121 also functions as a ground conductor when the circular conductor pattern 131 functions as a radiation conductor (microstrip antenna).

前述したように、円形の導体パターン131は給電点143を有する。給電点143には、給電回路160から同軸給電線路153を介して高周波信号が供給され、円形の導体パターン131は、円形の導体パターン121を接地導体とする円形MSAとして動作する。これ以降、円形の導体パターン131と円形の導体パターン121とから成るアンテナを、円形MSA131aと称する。円形MSA131aとPSA111aの動作周波数帯は異なり、円形MSA131aはPSA111aよりも高い周波数帯で動作する。すなわち、アンテナ装置100は2つの周波数帯で動作する。   As described above, the circular conductor pattern 131 has the feeding point 143. A high-frequency signal is supplied to the feed point 143 from the feed circuit 160 via the coaxial feed line 153, and the circular conductor pattern 131 operates as a circular MSA having the circular conductor pattern 121 as a ground conductor. Hereinafter, an antenna including the circular conductor pattern 131 and the circular conductor pattern 121 is referred to as a circular MSA 131a. The circular MSA 131a and the PSA 111a have different operating frequency bands, and the circular MSA 131a operates in a higher frequency band than the PSA 111a. That is, the antenna device 100 operates in two frequency bands.

ここで、PSA111aの動作特性と利点について、一般的な複合マイクロストリップアンテナにおける円環マイクロストリップアンテナ(円環MSA)と比較して説明する。図8はPSA単体(本発明)の斜視図、図11は円環MSA単体(一般)の斜視図である。図8に示すように、PSA10は、下面に接地導体GND及び上面に環状の導体パターン12が設けられた誘電体基板11、誘電体基板11を貫通して接地導体GNDと環状の導体パターン12とを電気的に接続する複数の連結導体13a〜13dを備える。さらに、PSA10は、給電回路16から給電線路15を介して高周波信号が入力される給電点14を備える。   Here, the operation characteristics and advantages of the PSA 111a will be described in comparison with an annular microstrip antenna (annular MSA) in a general composite microstrip antenna. 8 is a perspective view of a single PSA (invention), and FIG. 11 is a perspective view of a single ring MSA (general). As shown in FIG. 8, the PSA 10 includes a dielectric substrate 11 having a ground conductor GND on the lower surface and an annular conductor pattern 12 on the upper surface, and a ground conductor GND and an annular conductor pattern 12 penetrating the dielectric substrate 11. Are provided with a plurality of connecting conductors 13a to 13d. Further, the PSA 10 includes a feeding point 14 to which a high frequency signal is input from the feeding circuit 16 via the feeding line 15.

また、図11に示すように、円環MSA20は、下面に接地導体GND及び上面に円環MSAを構成する放射導体22が設けられた誘電体基板21を備える。放射導体22の内周部は、PSA10と異なり、その全体をスルーホールなどからなる短絡壁23により接地導体GNDに接続されて、内壁短絡型に構成されている。また、放射導体22の外周縁には、180゜の角間隔で、1対の切欠き27a,27bが刻設されている。また、円環MSA20は、給電回路26から給電線25を介して高周波信号が入力される給電点24を備える。   As shown in FIG. 11, the annular MSA 20 includes a dielectric substrate 21 provided with a ground conductor GND on the lower surface and a radiation conductor 22 constituting the annular MSA on the upper surface. Unlike the PSA 10, the inner peripheral portion of the radiation conductor 22 is connected to the ground conductor GND by a short-circuit wall 23 made of a through hole or the like, and is configured as an inner wall short-circuit type. A pair of notches 27a and 27b are formed on the outer peripheral edge of the radiation conductor 22 at an angular interval of 180 °. The annular MSA 20 includes a feeding point 24 to which a high frequency signal is input from the feeding circuit 26 via the feeding line 25.

図9は、図8のPSA10の外径をa、内径をbとし、外径aを74mmに固定した場合の、内径と外径の比β(=b/a)とPSA10の共振周波数との関係をシミュレーションした結果を示すグラフである。また、図12は、図11の円環MSA20の外径をa、内径をbとし、外径aを74mmに固定した場合の、内径と外径の比βと円環MSA20の共振周波数との関係をシミュレーションした結果を示すグラフである。共振周波数に応じてTM01、TM11、TM21等の所定のモードが励起されるが、図内では所望のモードとしてTM11モードを実線で示し、それ以外のモードとなるTM01モード及びTM21モードを破線で示している。   FIG. 9 shows the ratio between the inner diameter / outer diameter ratio β (= b / a) and the resonance frequency of the PSA 10 when the outer diameter of the PSA 10 in FIG. 8 is a, the inner diameter is b, and the outer diameter a is fixed to 74 mm. It is a graph which shows the result of having simulated the relationship. FIG. 12 shows the ratio β between the inner diameter and the outer diameter and the resonance frequency of the annular MSA 20 when the outer diameter of the annular MSA 20 in FIG. 11 is a, the inner diameter is b, and the outer diameter a is fixed to 74 mm. It is a graph which shows the result of having simulated the relationship. Although predetermined modes such as TM01, TM11, and TM21 are excited according to the resonance frequency, the TM11 mode is indicated by a solid line as a desired mode in the figure, and the TM01 mode and the TM21 mode that are other modes are indicated by a broken line. ing.

一般的な円環MSA20は、図12に示すように、導体パターン22の内径と外径の比βが大きくなるほど(すなわち、内径と外径の長さが近くなるほど)、TM01、TM11、TM21の各モードで共振周波数が高くなる。これに対し、PSA10は、図9に示すように、導体パターン12の内径と外径の比βが大きくなっても、TM01、TM11、TM21の各モードにおいて共振周波数が急激に上昇することは無い。   As shown in FIG. 12, the general annular MSA 20 has a larger ratio β between the inner diameter and the outer diameter of the conductor pattern 22 (that is, the closer the length between the inner diameter and the outer diameter), the TM01, TM11, and TM21. The resonance frequency increases in each mode. On the other hand, as shown in FIG. 9, the resonance frequency of the PSA 10 does not rapidly increase in the TM01, TM11, and TM21 modes even when the ratio β between the inner diameter and the outer diameter of the conductor pattern 12 increases. .

例えばTM11モードで共振周波数1.2GHzのアンテナを設計する場合、一般的な円環MSA20ではβ=0.2(図12参照)となるのに対し、PSA10はβ=0.6(図9参照)となることが分かる。すなわち、一般的な円環MSAの内径はb一般=0.2×74=14.8mmとなり、PSA10の内径はbPSA=0.6×74=44.4mmとなる。このように、PSAの内径bPSAは一般的な円環MSAの内径b一般よりも大きくとることができる。 For example, when designing an antenna having a resonance frequency of 1.2 GHz in the TM11 mode, β = 0.2 (see FIG. 12) in a general annular MSA20, whereas β = 0.6 (see FIG. 9) in PSA10. ). That is, the inner diameter of a general annular MSA is b general = 0.2 × 74 = 14.8 mm, and the inner diameter of the PSA 10 is b PSA = 0.6 × 74 = 44.4 mm. Thus, the inner diameter b PSA of the PSA can be larger than the inner diameter b of the general annular MSA.

ところで、所望のモードであるTM11モードが励起される周波数と他のモードが励起される周波数とが近接してこれらのモードが混在すると、アンテナ特性のひとつである反射特性が劣化するため、各モードが励起される周波数は離れていることが好ましい。この実施の形態に記載のアンテナ装置100は直線偏波を励振するものであるが、円偏波を励振するアンテナ装置であれば、複数のモードが混在すると軸比特性も劣化する。   By the way, if the frequency at which the TM11 mode which is a desired mode is excited and the frequency at which another mode is excited are close to each other and these modes are mixed, the reflection characteristic which is one of the antenna characteristics deteriorates. Preferably, the frequencies at which are excited are separated. The antenna device 100 described in this embodiment excites linearly polarized waves. However, if the antenna device excites circularly polarized waves, the axial ratio characteristics deteriorate when a plurality of modes coexist.

ここで、所望のモードであるTM11モードが励起される周波数と他のモードが励起される周波数とが離れている程度を示す値を「スプリアス離調率」として、βとスプリアス離調率との関係を図9及び図12から求めたグラフを、それぞれ図10及び図13に示す。例えばβ=0.6のとき、図13ではTM11モードとTM21モード間のスプリアス離調率が10%以下である。これに対し、図10ではTM11モードとTM01モード間、TM11モードとTM21モード間の双方でスプリアス離調率10%以上を確保している。すなわち、外径を小さく(βを大きく)しても、PSAは円環MSAと比べてアンテナの特性の劣化の度合いが小さいことがわかる。   Here, a value indicating the degree to which the frequency at which the TM11 mode, which is a desired mode, is excited and the frequency at which another mode is excited is separated is referred to as a “spurious detuning rate”, and β and the spurious detuning rate are The graphs obtained from the relationships shown in FIGS. 9 and 12 are shown in FIGS. 10 and 13, respectively. For example, when β = 0.6, the spurious detuning rate between the TM11 mode and the TM21 mode is 10% or less in FIG. On the other hand, in FIG. 10, a spurious detuning rate of 10% or more is secured between the TM11 mode and the TM01 mode and between the TM11 mode and the TM21 mode. That is, it can be seen that even when the outer diameter is reduced (β is increased), the degree of deterioration of the characteristics of the PSA is smaller than that of the annular MSA.

このように、PSAは一般的な円環MSAよりも内径を外径に近付けることができるため、この発明によるアンテナ装置100にPSAを用いる際に次のような利点がある。図1に示すように、アンテナ装置100には円形の導体パターン131に給電するために給電点143が設けられている。この給電点143は、給電線路153と円形MSA131aとのインピーダンス整合をとるため、中心から径方向に移動した適切な位置にすることが好ましい。この際、給電線路153の位置がPSA111aの導体パターン111に近いと、アンテナ特性に影響を及ぼす恐れがある。   As described above, since the PSA can bring the inner diameter closer to the outer diameter than a general annular MSA, there are the following advantages when using the PSA in the antenna device 100 according to the present invention. As shown in FIG. 1, the antenna device 100 is provided with a feeding point 143 for feeding power to a circular conductor pattern 131. The feeding point 143 is preferably set to an appropriate position moved in the radial direction from the center in order to achieve impedance matching between the feeding line 153 and the circular MSA 131a. At this time, if the position of the feed line 153 is close to the conductor pattern 111 of the PSA 111a, the antenna characteristics may be affected.

しかしながらアンテナ装置100では、PSA111aの開口部115の径を大きくとる(内径を外径に近付ける)ことができるため、給電線路153を導体パターン111から離すことができる。すなわち、MSA131aの給電点143の位置の設定に自由度が増し、円形MSA131aのインピーダンス整合を簡易にとることができる。これに対し、一般的な円環MSAを第1の誘電体層(110)に用いる場合は、上述のように内径と外径との距離を近付けることができないため、円形MSA131aの給電点143の位置で整合をとる際の給電線路153の配置に手間がかかるという欠点がある。   However, in the antenna device 100, since the diameter of the opening 115 of the PSA 111a can be increased (the inner diameter is made closer to the outer diameter), the feed line 153 can be separated from the conductor pattern 111. That is, the degree of freedom in setting the position of the feeding point 143 of the MSA 131a is increased, and impedance matching of the circular MSA 131a can be easily achieved. On the other hand, when a general annular MSA is used for the first dielectric layer (110), the distance between the inner diameter and the outer diameter cannot be reduced as described above, and therefore the feeding point 143 of the circular MSA 131a is There is a drawback that it takes time to arrange the feeder line 153 when matching is performed at the position.

上述のように、アンテナ装置100では円形MSA131aとPSA111aとが異なる面上に設けられているため、同一平面状に2つのアンテナを設ける複合MSAと比べてそれぞれの大きさの設定に自由度があり、より近接した周波数帯でそれぞれを動作させることができる。また、導体パターン121がPSA111aの非励振素子として設けられているため、低周波帯域を広帯域化することができる。さらに、PSA111aを用いることによって、円形MSA131aの給電点143の位置の設定に自由度があり、従来の円環MSAを用いる場合と比べて簡易に設計することができる。   As described above, in the antenna device 100, the circular MSA 131a and the PSA 111a are provided on different surfaces, so that there is a degree of freedom in setting each size compared to a composite MSA in which two antennas are provided on the same plane. , Each can be operated in a closer frequency band. Moreover, since the conductor pattern 121 is provided as a non-excitation element of the PSA 111a, the low frequency band can be widened. Furthermore, by using the PSA 111a, there is a degree of freedom in setting the position of the feeding point 143 of the circular MSA 131a, and the design can be simplified compared to the case of using the conventional annular MSA.

なお、上記説明の各図では連結導体112a〜112d,122a〜122dがそれぞれ4つの場合であって、それぞれPSA111a、円形の導体パターン121の中心を基準として対称となるように配置された状態を示しているが、この発明はこれに限られるものではなく、連結導体の個数、大きさ及び位置は所望のアンテナ特性に応じてそれぞれ変更することができる。また、各図では連結導体112a〜112dと122a〜122dとが接続された場合を示しているが(例えば一体形成が可能)、各誘電体基板において独立して設けることもできる。さらに、連結導体112a〜112dは、PSA111aの一部と接地導体GNDを局所的に連結するのであればPSA111aの内周側周縁部ではなく、環状の導体パターン111のパターン中央部と接地導体GNDを連結するものであってもよい。   In each of the drawings described above, there are four connection conductors 112a to 112d and 122a to 122d, respectively, showing a state where the PSA 111a and the circular conductor pattern 121 are arranged symmetrically with respect to the center. However, the present invention is not limited to this, and the number, size and position of the connecting conductors can be changed according to desired antenna characteristics. In each figure, the connection conductors 112a to 112d and 122a to 122d are connected to each other (for example, they can be integrally formed). However, they can be provided independently on each dielectric substrate. Furthermore, if the connection conductors 112a to 112d locally connect a part of the PSA 111a and the ground conductor GND, the connection conductors 112a to 112d do not connect the pattern central portion of the annular conductor pattern 111 and the ground conductor GND instead of the inner peripheral side peripheral portion of the PSA 111a. You may connect.

実施の形態2.
図3はこの発明の実施の形態2によるアンテナ装置の分解斜視図である。実施の形態2によるアンテナ装置200は、実施の形態1によるアンテナ装置100とほぼ同じ構成であり、図3において、上述した図1に対応する部分には100の位が”1”から”2”に変更された符号が付されており、重複する説明は省略する。図3に示すように、アンテナ装置200は、PSA211aにおける環状の導体パターン211の外周側の導体パターン211の中心に対して対称な位置に、一対の切り欠き部281,282を備える。さらに、円形MSA231aにおける円形の導体パターン231の外周側の導体パターン231の中心に対して対称な位置に、一対の切り欠き部271,272を備える。
Embodiment 2. FIG.
3 is an exploded perspective view of an antenna apparatus according to Embodiment 2 of the present invention. The antenna device 200 according to the second embodiment has substantially the same configuration as the antenna device 100 according to the first embodiment. In FIG. 3, the position corresponding to FIG. 1 described above is changed from “1” to “2”. The code | symbol changed into is attached | subjected and the overlapping description is abbreviate | omitted. As shown in FIG. 3, the antenna device 200 includes a pair of cutout portions 281 and 282 at positions symmetrical to the center of the conductor pattern 211 on the outer peripheral side of the annular conductor pattern 211 in the PSA 211a. Furthermore, a pair of notch parts 271 and 272 are provided at positions symmetrical to the center of the conductor pattern 231 on the outer peripheral side of the circular conductor pattern 231 in the circular MSA 231a.

PSA211aの切り欠き部281,282とそれ以外の部分とでは直径が異なるため、PSA211aに高周波信号が供給されると、切り欠き部のある方向の径とそれに直交する径との間で電流の位相差が90度となり、円偏波が励振される。同様に、円形MSA231aも切り欠き部271,272とそれ以外の部分とでは直径が異なるため、円形MSA231aに高周波信号が供給されると、切り欠き部のある方向の径とそれに直交する径との間で電流の位相差が90度となり、円偏波が励振される。   Since the cutout portions 281 and 282 of the PSA 211a have different diameters from the other portions, when a high frequency signal is supplied to the PSA 211a, the current level varies between the diameter in the direction in which the cutout portion is present and the diameter perpendicular thereto. The phase difference becomes 90 degrees, and circularly polarized waves are excited. Similarly, since the circular MSA 231a also has different diameters at the cutout portions 271 and 272 and the other portions, when a high frequency signal is supplied to the circular MSA231a, the diameter in the direction in which the cutout portion is present and the diameter orthogonal thereto are obtained. Between them, the phase difference of the current becomes 90 degrees, and the circularly polarized wave is excited.

なお、連結導体212a〜212dの個数、大きさ、及び位置は所望のアンテナ特性に応じて任意に設定できるが、PSA211aの中心を基準として対称な位置に配置すると軸比特性を向上することができる。また、図3では円形MSA231aの切り欠き部271,272の対とPSA211aの切り欠き部281,282の対は直交する位置に配置されているが、アンテナ装置200の形状によっては、反射特性を向上させるために直交する位置から若干ずらして配置してもよい。   The number, size, and position of the connecting conductors 212a to 212d can be arbitrarily set according to the desired antenna characteristics, but if they are arranged at symmetrical positions with respect to the center of the PSA 211a, the axial ratio characteristics can be improved. . In FIG. 3, the pair of cutout portions 271 and 272 of the circular MSA 231a and the pair of cutout portions 281 and 282 of the PSA 211a are arranged at orthogonal positions. However, depending on the shape of the antenna device 200, the reflection characteristics may be improved. In order to achieve this, it may be arranged slightly shifted from the orthogonal position.

上述のように、実施の形態2によれば、実施の形態1に記載の効果に加え、円偏波を励振させることができる。   As described above, according to the second embodiment, circularly polarized waves can be excited in addition to the effects described in the first embodiment.

実施の形態3.
図4はこの発明の実施の形態3によるアンテナ装置の分解斜視図である。実施の形態3によるアンテナ装置300は、実施の形態1によるアンテナ装置100とほぼ同じ構成であり、図4において、上述した図1に対応する部分には100の位が”1”から”3”に変更された符号が付されており、重複する説明は省略する。図4に示すように、アンテナ装置300において、PSA311aは、給電点342すなわち第3の給電点をさらに有し、給電点341,342はPSA311aの中心を基準として90度の位置に配置されている。同様に、円形MSA331aは、給電点344すなわち第4の給電点をさらに有し、給電点343,344は円形MSA331aの中心を基準として90度の位置に配置されている。
Embodiment 3 FIG.
4 is an exploded perspective view of an antenna apparatus according to Embodiment 3 of the present invention. The antenna device 300 according to the third embodiment has substantially the same configuration as that of the antenna device 100 according to the first embodiment. In FIG. 4, in the portion corresponding to FIG. The code | symbol changed into is attached | subjected and the overlapping description is abbreviate | omitted. As shown in FIG. 4, in the antenna device 300, the PSA 311a further includes a feeding point 342, that is, a third feeding point, and the feeding points 341 and 342 are arranged at 90 degrees with respect to the center of the PSA 311a. . Similarly, the circular MSA 331a further includes a feeding point 344, that is, a fourth feeding point, and the feeding points 343 and 344 are arranged at 90 degrees with respect to the center of the circular MSA 331a.

PSA311aの給電点341,342には、ハイブリッド回路(HYB)361によって分岐された位相差90度の2つの高周波信号が、それぞれ同軸給電線路351,352を介して供給される。図4では、給電点341と給電点342の位置はPSA311aの中心を基準として90度の角度差を有し、それぞれの給電点に供給される高周波信号の位相差も90度であることから、PSA311aに高周波信号が供給されると、円偏波が励振される。   Two high-frequency signals with a phase difference of 90 degrees branched by a hybrid circuit (HYB) 361 are supplied to the feeding points 341 and 342 of the PSA 311a via coaxial feeding lines 351 and 352, respectively. In FIG. 4, the positions of the feeding point 341 and the feeding point 342 have an angle difference of 90 degrees with respect to the center of the PSA 311a, and the phase difference of the high-frequency signal supplied to each feeding point is also 90 degrees. When a high frequency signal is supplied to the PSA 311a, circular polarization is excited.

例えば、図4に示すように給電点341の右回り(図の下側(接地導体GND側)から見て時計回り)90度の位置に給電点342が配置され、かつ給電点341に供給される高周波信号の位相が給電点342に供給される高周波信号の位相よりも90度進んでいる場合は、右旋回の円偏波が励振される。これに対し、給電点341の右回り90度の位置に給電点342が配置され、かつ給電点341に供給される高周波信号の位相が給電点342に供給される高周波信号の位相よりも90度遅れている場合は、左旋回の円偏波が励振される。このように、円偏波の旋回方向はアンテナ装置300に所望の特性に応じて任意に設定できる。   For example, as shown in FIG. 4, the feed point 342 is arranged at a position 90 degrees clockwise (clockwise when viewed from the lower side of the figure (ground conductor GND side)) and supplied to the feed point 341. When the phase of the high-frequency signal is 90 degrees ahead of the phase of the high-frequency signal supplied to the feeding point 342, clockwise circular polarization is excited. On the other hand, the feeding point 342 is disposed 90 degrees clockwise of the feeding point 341, and the phase of the high-frequency signal supplied to the feeding point 341 is 90 degrees from the phase of the high-frequency signal supplied to the feeding point 342. If it is delayed, a left-handed circularly polarized wave is excited. Thus, the turning direction of the circularly polarized wave can be arbitrarily set in the antenna device 300 according to desired characteristics.

同様に、円形MSA331aの給電点343,344には、ハイブリッド(HYB)回路362によって分岐された位相差90度の2つの高周波信号が、それぞれ同軸給電線路353,354を介して供給される。このため誘電体基板310は2つの貫通孔313,314、誘電体基板320は2つの貫通孔323,324をそれぞれ有する。給電点343と給電点344は円形MSA331aの中心を基準として90度の角度差を有して配置され、給電点343に供給される高周波信号の位相と給電点344に供給される高周波信号の位相の差も90度であることから、円形MSA331aに高周波信号が供給されると円偏波が励振される。   Similarly, two high-frequency signals having a phase difference of 90 degrees branched by the hybrid (HYB) circuit 362 are supplied to the feed points 343 and 344 of the circular MSA 331a through the coaxial feed lines 353 and 354, respectively. Therefore, the dielectric substrate 310 has two through holes 313 and 314, and the dielectric substrate 320 has two through holes 323 and 324, respectively. The feeding point 343 and the feeding point 344 are arranged with an angle difference of 90 degrees with respect to the center of the circular MSA 331a, and the phase of the high-frequency signal supplied to the feeding point 343 and the phase of the high-frequency signal supplied to the feeding point 344 Since the difference between them is 90 degrees, when a high frequency signal is supplied to the circular MSA 331a, circularly polarized waves are excited.

図4では、給電点343の左回り(図の下側(接地導体GND側)から見て反時計回り)90度の位置に給電点344が配置されているため、例えば給電点343に供給される高周波信号の位相が給電点344に供給される高周波信号の位相よりも90度進んでいる場合は左旋回の円偏波が励振され、給電点343に供給される高周波信号の位相が給電点344に供給される高周波信号の位相よりも90度遅れている場合は右旋回の円偏波が励振される。   In FIG. 4, since the feeding point 344 is arranged at a position 90 degrees counterclockwise (counterclockwise when viewed from the lower side of the figure (the ground conductor GND side)), the feeding point 343 is supplied to, for example, the feeding point 343. If the phase of the high-frequency signal is 90 degrees ahead of the phase of the high-frequency signal supplied to the feed point 344, the left-handed circularly polarized wave is excited, and the phase of the high-frequency signal supplied to the feed point 343 is When the phase of the high-frequency signal supplied to 344 is 90 degrees behind, right-handed circularly polarized wave is excited.

ここでは、PSA311aの給電点341と給電点342との間の角度差(PSA311aの中心での相対角度)及び円形MSA331aの給電点343と給電点344との間の角度差(円形MSA331aの中心での相対角度)がそれぞれ90度の場合について説明したが、アンテナ装置300の形状によっては、軸比特性を向上させるため90度から若干ずらして設けてもよい。   Here, the angle difference between the feed point 341 and the feed point 342 of the PSA 311a (relative angle at the center of the PSA 311a) and the angle difference between the feed point 343 and the feed point 344 of the circular MSA 331a (at the center of the circular MSA 331a). However, depending on the shape of the antenna device 300, the relative angle may be slightly shifted from 90 degrees in order to improve the axial ratio characteristics.

なお、円偏波を励振する位置とは、具体的には円形MSA331aの中心を基準として角度差(相対角度)が略90度の位置、及びPSA311aの中心を基準として角度差(相対角度)が略90度の位置をいう。このとき、連結導体312a〜312dをPSA311aの導体パターン311の中心を基準として対称な位置に配置することにより、PSA311aの軸比特性を向上させることができる。   Note that the position where the circularly polarized wave is excited is specifically the position where the angle difference (relative angle) is approximately 90 degrees with respect to the center of the circular MSA 331a, and the angle difference (relative angle) with respect to the center of the PSA 311a. It refers to a position of approximately 90 degrees. At this time, the axial ratio characteristics of the PSA 311a can be improved by arranging the connecting conductors 312a to 312d at symmetrical positions with respect to the center of the conductor pattern 311 of the PSA 311a.

上述のように、実施の形態3によれば、アンテナ装置300は、実施の形態1に記載の効果に加えて、円形MSA331a及びPSA311aのそれぞれで任意の方向に旋回する円偏波を励振できる。   As described above, according to the third embodiment, in addition to the effects described in the first embodiment, the antenna device 300 can excite circularly polarized waves that rotate in arbitrary directions in each of the circular MSA 331a and the PSA 311a.

なお、円形MSA及びPSAのいずれか一方を実施の形態2に記載の切り欠き部を有するものとしても、同様の効果が得られる。その場合を、実施の形態4として以下に説明する。   The same effect can be obtained even if either one of the circular MSA and the PSA has the notch portion described in the second embodiment. Such a case will be described below as a fourth embodiment.

実施の形態4.
図5はこの発明の実施の形態4によるアンテナ装置の分解斜視図である。図5において、上述した図1〜4に対応する部分には100の位が”4”に変更された符号が付されており、重複する説明は省略する。図5に示すように、アンテナ装置400において、PSA411aは、2つの給電点441,442を有し、それら給電点441,442はPSA411aの中心を基準として90度の位置に配置されている。PSA411aの給電点441,442には、ハイブリッド回路(HYB)461によって分岐された位相差90度の2つの高周波信号が、それぞれ同軸給電線路451,452を介して供給され、円偏波が励振される。
Embodiment 4 FIG.
FIG. 5 is an exploded perspective view of an antenna apparatus according to Embodiment 4 of the present invention. In FIG. 5, parts corresponding to those in FIGS. 1 to 4 described above are denoted by reference numerals in which the 100's place is changed to “4”, and redundant description is omitted. As shown in FIG. 5, in the antenna device 400, the PSA 411a has two feeding points 441 and 442, and these feeding points 441 and 442 are arranged at 90 degrees with respect to the center of the PSA 411a. Two high-frequency signals with a phase difference of 90 degrees branched by a hybrid circuit (HYB) 461 are supplied to the feeding points 441 and 442 of the PSA 411a through coaxial feeding lines 451 and 452, respectively, and circularly polarized waves are excited. The

2つの給電点を備える実施の形態3と異なり、円形MSA431aは、実施の形態2と同様の切り欠き部によって円偏波が励振される。図5のように、円形MSA431aは、円形の導体パターン431の外周側の対称な位置に、一対の切り欠き部471,472を備える。従って、円形MSA431aの給電点443に給電回路460から高周波信号が供給されると、円偏波が励振される。   Unlike Embodiment 3, which includes two feeding points, circular MSA 431a is excited by circularly polarized waves by the same notch as in Embodiment 2. As shown in FIG. 5, the circular MSA 431 a includes a pair of notches 471 and 472 at symmetrical positions on the outer peripheral side of the circular conductor pattern 431. Therefore, when a high frequency signal is supplied from the power supply circuit 460 to the power supply point 443 of the circular MSA 431a, circularly polarized waves are excited.

このように、実施の形態4によれば、実施の形態1に記載の効果に加え、円偏波を励振することが可能となる。なお、一般に、円偏波を励振させる場合、一点給電では二点給電と比べアンテナ構成が簡易になるという利点がある。また、二点給電では一点給電と比べ軸比特性が良いという利点がある。従って、2つの周波数帯域に所望の特性を考慮して、それぞれ一点給電にするか二点給電にするかを適切に決定すればよい。   Thus, according to Embodiment 4, in addition to the effects described in Embodiment 1, it is possible to excite circularly polarized waves. In general, when circularly polarized waves are excited, one-point feeding has an advantage that the antenna configuration becomes simpler than two-point feeding. Further, the two-point power supply has an advantage that the axial ratio characteristic is better than that of the one-point power supply. Therefore, it is only necessary to appropriately determine whether to use one-point power supply or two-point power supply in consideration of desired characteristics in the two frequency bands.

実施の形態5.
図6はこの発明の実施の形態5によるアンテナ装置の分解斜視図である。図7は図6のアンテナ装置の上面図及び断面図であり、(a)は上面図、(b)は図7の(a)の一点鎖線で示すA−A’に沿った断面図、(c)は一点鎖線で示すB−B’に沿った断面図である。実施の形態5によるアンテナ装置500は、実施の形態4によるアンテナ装置400とほぼ同じ構成であり、図6及び図7において、上述した図5に対応する部分には100の位が”4”から”5”に変更された符号が付されており、重複する説明は省略する。
Embodiment 5 FIG.
6 is an exploded perspective view of an antenna apparatus according to Embodiment 5 of the present invention. 7A and 7B are a top view and a cross-sectional view of the antenna device of FIG. 6, where FIG. 7A is a top view, FIG. 7B is a cross-sectional view along AA ′ indicated by a one-dot chain line in FIG. c) is a cross-sectional view along the line BB ′ indicated by a one-dot chain line. The antenna device 500 according to the fifth embodiment has substantially the same configuration as the antenna device 400 according to the fourth embodiment. In FIGS. 6 and 7, the part corresponding to FIG. The code | symbol changed to "5" is attached | subjected and the overlapping description is abbreviate | omitted.

図5に示すアンテナ装置400と異なり、アンテナ装置500は、アンテナ装置400における貫通孔413,423ではなく、中空の金属円筒580を備える。導体パターン521には開口部525が設けられている。金属円筒580は、積層方向から見て給電点543に重なる位置で、接地導体GND、誘電体層110,120を積層方向に貫通している。このような構造にすることで、誘電体層110,120を貫通している給電線路553がPSA511aに及ぼし得る影響を低減することができる。   Unlike the antenna device 400 illustrated in FIG. 5, the antenna device 500 includes a hollow metal cylinder 580 instead of the through holes 413 and 423 in the antenna device 400. An opening 525 is provided in the conductor pattern 521. The metal cylinder 580 penetrates the ground conductor GND and the dielectric layers 110 and 120 in the stacking direction at a position overlapping the feeding point 543 when viewed from the stacking direction. By adopting such a structure, it is possible to reduce the influence that the feed line 553 penetrating the dielectric layers 110 and 120 may have on the PSA 511a.

さらに、実施の形態1〜5に記載のアンテナ装置を2次元または3次元のアレー状に適切な間隔で配置したアレーアンテナ装置とすることにより、高利得化が見込めると共に放射されるビームの制御が可能となる。   Furthermore, by using the antenna device described in the first to fifth embodiments as an array antenna device in which a two-dimensional or three-dimensional array is arranged at an appropriate interval, a high gain can be expected and a control of a radiated beam can be achieved. It becomes possible.

以上のようにこの発明によれば、円形MSAとPSAとが異なる面上に設けられているため、同一平面状に2つのアンテナを設ける複合MSAと比べてそれぞれの大きさの設定に自由度があり、より近接した周波数帯でそれぞれを動作させることができる。
また、導体パターンがPSAの非励振素子として設けられているため、低周波帯域を広帯域化することができる。
さらに、PSA111aを用いることによって、円形MSA131aの給電点143の位置の設定に自由度があり、従来の円環MSAを用いる場合と比べて簡易に設計することができる。
また、切り欠き部を適切に設けたり、二点給電にすることによって、円偏波を所望の特性に応じて任意に設定することができる。
さらに、アンテナ装置を2次元又は3次元にアレー化することにより、高利得化が見込める。
As described above, according to the present invention, since the circular MSA and the PSA are provided on different surfaces, the degree of freedom in setting each size is higher than that of the composite MSA in which two antennas are provided on the same plane. Yes, each can be operated in a closer frequency band.
Further, since the conductor pattern is provided as a PSA non-excitation element, the low frequency band can be widened.
Furthermore, by using the PSA 111a, there is a degree of freedom in setting the position of the feeding point 143 of the circular MSA 131a, and the design can be simplified compared to the case of using the conventional annular MSA.
Moreover, circularly polarized waves can be arbitrarily set according to desired characteristics by appropriately providing a notch or by using two-point power feeding.
Furthermore, high gain can be expected by arraying the antenna device in two dimensions or three dimensions.

この発明を諸図面や実施の形態に基づき説明してきたが、当業者であれば本開示に基づき種々の変形や修正を行なうことが容易であることに注意されたい。従って、これらの変形や修正はこの発明の範囲に含まれることに留意されたい。
例えば、上記説明では、アンテナ装置の誘電体層として誘電体基板を用いているが、この発明はこれに限られるものではなく、誘電体層として空気層を用いることもでき、さらに、誘電体基板と空気層を組み合わせて用いてもよい。
また、導体パターンの形状として円形及び円環状の導体パターンを用いているが、導体パターンの形状はこれに限るものではなく、例えば矩形のMSA及びこれを取り囲むような中央に開口を有する矩形形状の導体パターンであってもよい。
また、この発明は衛星や移動体通信機器にその用途を限られるものではない。
Although the present invention has been described based on the drawings and embodiments, it should be noted that those skilled in the art can easily make various changes and modifications based on the present disclosure. Therefore, it should be noted that these variations and modifications are included in the scope of the present invention.
For example, in the above description, a dielectric substrate is used as the dielectric layer of the antenna device, but the present invention is not limited to this, and an air layer can be used as the dielectric layer. And an air layer may be used in combination.
In addition, although circular and annular conductor patterns are used as the conductor pattern shape, the shape of the conductor pattern is not limited to this, for example, a rectangular MSA and a rectangular shape having an opening at the center surrounding the rectangular MSA. It may be a conductor pattern.
The application of the present invention is not limited to satellites and mobile communication devices.

さらに、この発明は上記各実施の形態に限定されるものではなく、各実施の形態の特徴の可能な組み合わせを全て含むことは云うまでもない。   Further, the present invention is not limited to the above-described embodiments, and it is needless to say that all possible combinations of the features of the respective embodiments are included.

10,111a,211a,311a,411a,511a PSA、
11,21,110,120,130,210,220,230,310,320,330,410,420,430,510,520,530 誘電体基板(誘電体層)、
12,22,111,121,131,211,221,231,311,321,331,411,421,431,511,521,531 導体パターン、
13a〜13d,112a〜112d,122a〜122d,212a〜212d,222a〜222d,312a〜312d,322a〜322d,412a〜412d,422a〜422d,512a〜512d,522a〜522d 連結導体、
14,24,141,143,241,243,251,253,341〜344,441〜443,541〜543 給電点、
15,25,151,153,251,253,351〜354,451〜453,551〜553 給電線路、
16,26,160,260,460,560 給電回路、
20,131a,231a,331a,431a,531a 円形MSA、
23 短絡壁、
27a,27b 切欠き、
100,200,300,400,500 アンテナ装置、
113,123,213,223,313,314,323,324,413,423,513,523 貫通孔、
115,125,215,225,315,325,326,415,425,515,525 開口部、
271,272,281,282,471,472,571,572 切り欠き部、
361,362,461,561 ハイブリッド(HYB)回路、
580 金属円筒、
GND 接地導体。
10, 111a, 211a, 311a, 411a, 511a PSA,
11, 21, 110, 120, 130, 210, 220, 230, 310, 320, 330, 410, 420, 430, 510, 520, 530 dielectric substrate (dielectric layer),
12, 22, 111, 121, 131, 211, 221, 231, 311, 321, 331, 411, 421, 431, 511, 521, 531 conductor pattern,
13a to 13d, 112a to 112d, 122a to 122d, 212a to 212d, 222a to 222d, 312a to 312d, 322a to 322d, 412a to 412d, 422a to 422d, 512a to 512d, 522a to 522d
14, 24, 141, 143, 241, 243, 251, 253, 341-344, 441-443, 541-543 feeding point,
15, 25, 151, 153, 251, 253, 351-354, 451-453, 551-553 feed line,
16, 26, 160, 260, 460, 560 feeding circuit,
20, 131a, 231a, 331a, 431a, 531a Circular MSA,
23 Short-circuit wall,
27a, 27b Notch,
100, 200, 300, 400, 500 antenna device,
113,123,213,223,313,314,323,324,413,423,513,523 through-hole,
115,125,215,225,315,325,326,415,425,515,525 opening,
271, 272, 281, 282, 471, 472, 571, 572 notch,
361, 362, 461, 561 hybrid (HYB) circuit,
580 metal cylinder,
GND Ground conductor.

Claims (8)

第1の高周波信号が供給される第1の給電点を有する第1の導体部が上面に設けられ、かつ接地導体が下面に設けられた第1の誘電体層と、
前記第1の誘電体層の上に積層され、第2の導体部が上面に設けられた第2の誘電体層と、
前記第2の誘電体層の上に積層され、前記第1の高周波信号とは異なる第2の高周波信号が供給される第2の給電点を有する第3の導体部が上面に設けられた第3の誘電体層と、
を備え、
前記第1の導体部、第2の導体部及び第3の導体部は、積層方向から見て互いに重なり合う領域を有し、
前記第1の導体部は、積層方向から見て前記第2の給電点に重なる位置に第1の開口部を有し、
前記第2の導体部は、積層方向から見て前記第2の給電点に重なる位置に第2の開口部を有し、
前記接地導体と前記第1の導体部とは、前記第1の誘電体層を積層方向に貫通する互いに非接触な複数の連結導体から成る第1の連結導体群によって電気的に接続され、
前記接地導体と前記第2の導体部とは、前記第2の誘電体層を積層方向に貫通する互いに非接触な複数の連結導体から成る第2の連結導体群によって電気的に接続されることを特徴とするアンテナ装置。
A first dielectric layer having a first conductor portion having a first feeding point to which a first high-frequency signal is supplied provided on the upper surface and a ground conductor provided on the lower surface;
A second dielectric layer laminated on the first dielectric layer and having a second conductor portion provided on the upper surface;
A third conductor portion having a second feeding point that is laminated on the second dielectric layer and is supplied with a second high-frequency signal different from the first high-frequency signal is provided on the upper surface. 3 dielectric layers;
With
The first conductor portion, the second conductor portion, and the third conductor portion have regions that overlap each other when viewed from the stacking direction;
The first conductor portion has a first opening at a position overlapping the second feeding point when viewed from the stacking direction,
The second conductor portion has a second opening at a position overlapping the second feeding point when viewed from the stacking direction,
The ground conductor and the first conductor portion are electrically connected by a first connection conductor group including a plurality of contact conductors that are in non-contact with each other and penetrate the first dielectric layer in the stacking direction;
The ground conductor and the second conductor portion are electrically connected by a second connecting conductor group including a plurality of non-contact connecting conductors that penetrate the second dielectric layer in the stacking direction. An antenna device characterized by the above.
前記第1の連結導体群は、前記第1の導体部の前記第1の開口部の周縁に当該開口部を囲むように配置されることを特徴とする請求項1に記載のアンテナ装置。   2. The antenna device according to claim 1, wherein the first connecting conductor group is disposed on a periphery of the first opening of the first conductor so as to surround the opening. 前記第1の連結導体群と前記第2の連結導体群とが一体形成されていることを特徴とする請求項1または2に記載のアンテナ装置。   The antenna device according to claim 1 or 2, wherein the first connecting conductor group and the second connecting conductor group are integrally formed. 前記第1の導体部は、当該第1の導体部の中心を基準として対称な位置に一対の切り欠き部を有し、
前記第3の導体部は、当該第3の導体部の中心を基準として対称な位置に一対の切り欠き部を有する、
ことを特徴とする請求項1から3までのいずれか1項に記載のアンテナ装置。
The first conductor portion has a pair of notches at symmetrical positions with respect to the center of the first conductor portion,
The third conductor portion has a pair of cutout portions at symmetrical positions with respect to the center of the third conductor portion.
The antenna device according to any one of claims 1 to 3, wherein
前記第1の導体部は、前記第1の高周波信号と同一周波数で位相差90度の高周波信号が供給される第3の給電点を有し、
前記第3の導体部は、前記第2の高周波信号と同一周波数で位相差90度の高周波信号が供給される第4の給電点を有し、
前記第1の導体部の前記第1の開口部は、積層方向から見て前記第4の給電点にも重なる位置に配置され、
前記第1の給電点と前記第3の給電点が、前記第1の導体部において円偏波が励振される位置に配置され、
前記第2の給電点と前記第4の給電点が、前記第3の導体部において円偏波が励振される位置に配置されている、
ことを特徴とする請求項1から3までのいずれか1項に記載のアンテナ装置。
The first conductor portion has a third feeding point to which a high-frequency signal having the same frequency as the first high-frequency signal and a phase difference of 90 degrees is supplied.
The third conductor portion has a fourth feeding point to which a high-frequency signal having the same frequency as the second high-frequency signal and a phase difference of 90 degrees is supplied.
The first opening of the first conductor portion is disposed at a position overlapping the fourth feeding point as seen from the stacking direction,
The first feeding point and the third feeding point are arranged at positions where circularly polarized waves are excited in the first conductor portion,
The second feeding point and the fourth feeding point are arranged at positions where circularly polarized waves are excited in the third conductor portion.
The antenna device according to any one of claims 1 to 3, wherein
前記第3の導体部は当該第3の導体部の中心を基準として対称な位置に一対の切り欠き部をさらに有し、
前記第1の導体部は、前記第1の高周波信号と同一周波数で位相差90度の高周波信号が供給される第3の給電点を有し、
前記第1の給電点と前記第3の給電点が、前記第1の導体部において円偏波が励振される位置に配置されている、
ことを特徴とする請求項1から3までのいずれか1項に記載のアンテナ装置。
The third conductor portion further includes a pair of cutout portions at symmetrical positions with respect to the center of the third conductor portion.
The first conductor portion has a third feeding point to which a high-frequency signal having the same frequency as the first high-frequency signal and a phase difference of 90 degrees is supplied.
The first feeding point and the third feeding point are arranged at positions where circularly polarized waves are excited in the first conductor portion.
The antenna device according to any one of claims 1 to 3, wherein
積層方向から見て前記第2の給電点又は前記第2の給電点と第4の給電点と重なる位置に、前記接地導体、前記第1の誘電体層及び前記第2の誘電体層を積層方向に貫通する中空の金属円筒を備えたことを特徴とする請求項1から6までのいずれか1項に記載のアンテナ装置。   The ground conductor, the first dielectric layer, and the second dielectric layer are laminated at a position overlapping the second feeding point or the second feeding point and the fourth feeding point when viewed from the stacking direction. The antenna device according to any one of claims 1 to 6, further comprising a hollow metal cylinder penetrating in a direction. 請求項1から7までのいずれか1項に記載のアンテナ装置を複数、アレー状に配置したことを特徴とするアレーアンテナ装置。   An array antenna apparatus comprising a plurality of antenna apparatuses according to claim 1 arranged in an array.
JP2011004013A 2011-01-12 2011-01-12 Antenna device, array antenna device Active JP5606338B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011004013A JP5606338B2 (en) 2011-01-12 2011-01-12 Antenna device, array antenna device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011004013A JP5606338B2 (en) 2011-01-12 2011-01-12 Antenna device, array antenna device

Publications (2)

Publication Number Publication Date
JP2012147243A true JP2012147243A (en) 2012-08-02
JP5606338B2 JP5606338B2 (en) 2014-10-15

Family

ID=46790357

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011004013A Active JP5606338B2 (en) 2011-01-12 2011-01-12 Antenna device, array antenna device

Country Status (1)

Country Link
JP (1) JP5606338B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016155391A1 (en) * 2015-03-30 2016-10-06 Huawei Technologies Co., Ltd. Apparatus and method for a high aperture efficiency broadband antenna element with stable gain
WO2019188413A1 (en) * 2018-03-30 2019-10-03 株式会社村田製作所 Antenna module and communication device equipped with same
US10629991B2 (en) 2017-09-25 2020-04-21 Samsung Electronics Co., Ltd. Antenna device including mutually coupled antenna elements
JPWO2019064470A1 (en) * 2017-09-29 2020-06-18 三菱電機株式会社 Antenna device
CN112272616A (en) * 2018-06-08 2021-01-26 东伸工业株式会社 Screen printing apparatus and screen printing method

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018143627A1 (en) 2017-01-31 2018-08-09 Samsung Electronics Co., Ltd. High-frequency signal transmission/reception device

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0485904U (en) * 1990-11-30 1992-07-27
JPH05160632A (en) * 1991-12-06 1993-06-25 Sony Corp Composite micro strip antenna
JPH05167338A (en) * 1991-12-17 1993-07-02 Sony Corp Composite micro strip antenna
JPH088638A (en) * 1994-06-20 1996-01-12 Toshiba Corp Circularly polarized wave ring patch antenna
JPH09130136A (en) * 1995-11-01 1997-05-16 Toyo Commun Equip Co Ltd Double frequency shared microstrip antenna
JPH11312918A (en) * 1998-04-27 1999-11-09 Kyocera Corp Laminated planar antenna
JP2006279451A (en) * 2005-03-29 2006-10-12 Mitsubishi Electric Corp Annular patch antenna and system using the same

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0485904U (en) * 1990-11-30 1992-07-27
JPH05160632A (en) * 1991-12-06 1993-06-25 Sony Corp Composite micro strip antenna
JPH05167338A (en) * 1991-12-17 1993-07-02 Sony Corp Composite micro strip antenna
JPH088638A (en) * 1994-06-20 1996-01-12 Toshiba Corp Circularly polarized wave ring patch antenna
JPH09130136A (en) * 1995-11-01 1997-05-16 Toyo Commun Equip Co Ltd Double frequency shared microstrip antenna
JPH11312918A (en) * 1998-04-27 1999-11-09 Kyocera Corp Laminated planar antenna
JP2006279451A (en) * 2005-03-29 2006-10-12 Mitsubishi Electric Corp Annular patch antenna and system using the same

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016155391A1 (en) * 2015-03-30 2016-10-06 Huawei Technologies Co., Ltd. Apparatus and method for a high aperture efficiency broadband antenna element with stable gain
US9548541B2 (en) 2015-03-30 2017-01-17 Huawei Technologies Canada Co., Ltd. Apparatus and method for a high aperture efficiency broadband antenna element with stable gain
US10629991B2 (en) 2017-09-25 2020-04-21 Samsung Electronics Co., Ltd. Antenna device including mutually coupled antenna elements
JPWO2019064470A1 (en) * 2017-09-29 2020-06-18 三菱電機株式会社 Antenna device
WO2019188413A1 (en) * 2018-03-30 2019-10-03 株式会社村田製作所 Antenna module and communication device equipped with same
JPWO2019188413A1 (en) * 2018-03-30 2020-09-03 株式会社村田製作所 Antenna module and communication device equipped with it
US11108145B2 (en) 2018-03-30 2021-08-31 Murata Manufacturing Co., Ltd. Antenna module and communication device provided with the same
CN112272616A (en) * 2018-06-08 2021-01-26 东伸工业株式会社 Screen printing apparatus and screen printing method
CN112272616B (en) * 2018-06-08 2022-04-12 东伸工业株式会社 Screen printing apparatus and screen printing method

Also Published As

Publication number Publication date
JP5606338B2 (en) 2014-10-15

Similar Documents

Publication Publication Date Title
US9024831B2 (en) Miniaturized ultra-wideband multifunction antenna via multi-mode traveling-waves (TW)
Massa A dual frequency microstrip patch antenna for high-precision GPS applications
JP5936719B2 (en) Antenna device and array antenna device
JP5518985B2 (en) Circularly polarized antenna
JP5606338B2 (en) Antenna device, array antenna device
JP4296282B2 (en) Multi-frequency microstrip antenna
CN113097746A (en) Wireless communication module
US10148009B2 (en) Sparse phase-mode planar feed for circular arrays
US10978812B2 (en) Single layer shared aperture dual band antenna
US9246222B2 (en) Compact wideband patch antenna
JP7168752B2 (en) slotted patch antenna
US11196175B2 (en) Antenna device
US10811772B2 (en) Concentric, co-located and interleaved dual band antenna array
US20160315386A1 (en) Sparse Phase-Mode Planar Feed for Circular Arrays
EP3646408B1 (en) Single-layer patch antenna
US11581649B2 (en) Substrate-type antenna for global navigation satellite system
JPH04122107A (en) Microstrip antenna
JP2018121202A (en) Antenna device
Boccia et al. A high performance dual frequency microstrip antenna for Global Positioning System
JP2016140046A (en) Dual-polarized antenna
JP5615242B2 (en) Antenna device
CN112886226B (en) Broadband low-profile back-reflection circularly polarized antenna and back-reflection method thereof
JPH088640A (en) Radial line patch antenna
JP2004080574A (en) Radial line slot antenna
JP2014096742A (en) Array antenna device and process of manufacturing the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130924

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140312

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140408

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140523

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140729

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140826

R150 Certificate of patent or registration of utility model

Ref document number: 5606338

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250