JP2012146362A - Perpendicular magnetic recording medium, manufacturing method therefor, and magnetic recording/reproducing method - Google Patents

Perpendicular magnetic recording medium, manufacturing method therefor, and magnetic recording/reproducing method Download PDF

Info

Publication number
JP2012146362A
JP2012146362A JP2011003974A JP2011003974A JP2012146362A JP 2012146362 A JP2012146362 A JP 2012146362A JP 2011003974 A JP2011003974 A JP 2011003974A JP 2011003974 A JP2011003974 A JP 2011003974A JP 2012146362 A JP2012146362 A JP 2012146362A
Authority
JP
Japan
Prior art keywords
recording
magnetic
layer
bit
bits
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2011003974A
Other languages
Japanese (ja)
Inventor
Masayoshi Shimizu
正義 清水
Hiroshi Iwase
拓 岩瀬
Yoshiyuki Hirayama
義幸 平山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP2011003974A priority Critical patent/JP2012146362A/en
Publication of JP2012146362A publication Critical patent/JP2012146362A/en
Pending legal-status Critical Current

Links

Images

Abstract

PROBLEM TO BE SOLVED: To use a magnetic head having a recording element and a reproducing element which are excellent in thermal stability and a recording property and are wider than a track period of a bit pattern, even when the bit pattern is densely integrated.SOLUTION: A truncated cone-shaped recording bit includes a thermally stable layer having large perpendicular magnetic anisotropy at a lower layer, and a high output layer having large saturation magnetic flux density at an upper layer. An outer peripheral part is a thermally stable area 22 of which the high output layer is removed and thermal stability is improved, and a center part is a reproduction area 21. Also, an inversion control area 23 of which perpendicular magnetic anisotropy and saturation magnetic flux density are made small is provided between the outer peripheral part and the center part.

Description

本発明は,垂直磁気記録媒体及びその製造方法に係り,特に記録部にビットパターン構造を有する垂直磁気記録媒体とその製造方法,及びその垂直磁気記録媒体を用いた磁気記録方法及び磁気再生方法に関する。   The present invention relates to a perpendicular magnetic recording medium and a manufacturing method thereof, and more particularly to a perpendicular magnetic recording medium having a bit pattern structure in a recording portion, a manufacturing method thereof, and a magnetic recording method and a magnetic reproducing method using the perpendicular magnetic recording medium. .

近年,磁気ディスク装置(HDD)を中心とした磁気記録装置は情報化社会の発展に伴い記録密度の向上が強く求められている。記録密度を高める技術として,従来の面内磁気記録方式に代わり,垂直磁気記録方式が広く用いられるようになった。垂直磁気記録方式は,膜面垂直に磁化が互いに反平行になるように記録ビットを形成する方式であり,磁化遷移領域での反磁界が小さいため面内磁気記録方式に比べて急峻な磁化遷移領域が形成され,高記録密度で磁化が安定する特徴がある。従来の垂直磁気記録媒体に関しては,例えば特許文献1〜2に開示されている。   In recent years, magnetic recording devices such as magnetic disk drives (HDD) have been strongly demanded to improve recording density with the development of the information society. As a technique for increasing the recording density, the perpendicular magnetic recording method has been widely used instead of the conventional in-plane magnetic recording method. The perpendicular magnetic recording method forms recording bits so that the magnetizations are antiparallel to each other perpendicular to the film surface. The demagnetizing field in the magnetization transition region is small, so the magnetization transition is steeper than in the in-plane magnetic recording method. The region is formed and the magnetization is stable at a high recording density. For example, Patent Documents 1 and 2 disclose conventional perpendicular magnetic recording media.

そして,更なる高密度化のためには,記録ビット1つ1つとその間の磁化遷移領域をさらに小さくする必要がある。しかし,一般的に記録ビットの安定性は,Ku・V/kT(Kuは磁気異方性定数,Vは磁化反転最小単位(磁気クラスタ)の体積,kはボルツマン定数,Tは絶対温度)が小さいほど不安定で,Ku・V/kTが100程度ないと熱揺らぎにより磁化が反転し記録情報が失われてしまう。従来の垂直磁気記録媒体は,磁性材料の周りに非磁性材料を析出させた所謂グラニュラー構造を持った薄膜を用いて微小な磁気クラスタを作成している。そして,この磁気クラスタ数個から数百個が1つの記録ビットとなっている。熱安定性を向上するには,磁気クラスタ数を減らして,体積Vを大きくすればよいが,1つの記録ビットを担うクラスタ数が減ると,記録ビットの界面(磁化遷移領域)のラフネスが1つ1つの磁気クラスタの形状の影響により大きくなり,再生信号のS/N劣化を招いてしまう。   In order to further increase the density, it is necessary to further reduce each of the recording bits and the magnetization transition region therebetween. However, in general, the stability of the recording bit is Ku · V / kT (Ku is the magnetic anisotropy constant, V is the volume of the minimum magnetization reversal unit (magnetic cluster), k is the Boltzmann constant, and T is the absolute temperature). The smaller the value is, the more unstable it is. If Ku · V / kT is not about 100, the magnetization is reversed due to thermal fluctuation and the recorded information is lost. In the conventional perpendicular magnetic recording medium, a minute magnetic cluster is formed by using a thin film having a so-called granular structure in which a nonmagnetic material is deposited around a magnetic material. From several to several hundred magnetic clusters constitute one recording bit. In order to improve the thermal stability, the number of magnetic clusters can be reduced and the volume V can be increased. However, when the number of clusters carrying one recording bit is reduced, the roughness of the interface (magnetization transition region) of the recording bit is 1. It becomes larger due to the influence of the shape of each magnetic cluster, and the S / N deterioration of the reproduction signal is caused.

そこで,更なる高密度化には,遷移領域そのものを無くし,記録ビット1つ1つを物理的に孤立させ,記録ビット1つが磁気クラスタ1つで構成されるようにすることで熱安定性を向上するビットパターン媒体が考えられている。ビットパターン媒体は,微細加工などにより記録層を記録ビット単位に孤立化し,記録ビット間を磁化の存在しないガードバンド領域とした媒体である。磁気クラスタと記録ビットを1対1とし,磁化遷移領域をなくし,高密度化により小さくて間隔を狭めた記録ビットでも,熱安定性に優れ,記録ビットの界面形状やラフネス,位置の分散を小さくすることで,良好なS/Nが期待できる。ビットパターン媒体に関しては,例えば特許文献3,4に開示されている。   Therefore, for further higher density, the transition region itself is eliminated, each recording bit is physically isolated, and each recording bit is composed of one magnetic cluster to improve thermal stability. Improved bit pattern media are being considered. A bit pattern medium is a medium in which a recording layer is isolated in units of recording bits by microfabrication or the like, and a guard band region in which no magnetization exists between recording bits. One-to-one magnetic cluster and recording bits, eliminating the magnetization transition region, and even recording bits that are smaller and closer in space due to higher density have excellent thermal stability, and the interface shape, roughness, and position dispersion of the recording bits are reduced. By doing so, good S / N can be expected. The bit pattern medium is disclosed in, for example, Patent Documents 3 and 4.

特開2008−135138号公報JP 2008-135138 A 特開2010−67335号公報JP 2010-67335 A 特開2009−129501号公報JP 2009-129501 A 特開2004−164692号公報JP 2004-164692 A

前述の通り熱安定性の向上が期待できるビットパターン媒体でも,1つのビットの体積Vは大きいほど安定で出力も大きく性能が向上する。つまり,記録ビット間のガードバンド領域を小さくし,記録ビットを詰め込むことが重要である。   As described above, even in the bit pattern medium that can be expected to improve the thermal stability, the larger the volume V of one bit, the more stable and the output is improved. That is, it is important to reduce the guard band area between the recording bits and pack the recording bits.

まず,集積度の高いビットパターン媒体を作製する場合のビットの形状と配列を考える。媒体表面から見たビットの形状を円形にして六方最密構造にすることが望ましい。よく知られているビットパターン媒体の作製では,リソグラフィー技術やインプリント技術などにより作られたレジストパターンを用いて,エッチングやイオン注入などにより磁性膜の物理的加工を行う。このため,半導体の微細加工と同様に加工の微細化限界は,加工される溝の幅によるところが大きい。可能な限り小さいビットを高密度に間隔をあけて,できるだけ集積するには,ビットの平面上から見た縦横比を1にすることが適当である。また,微細化するほどパターンのエッジの丸まりが顕在化する。このためビットの平面上から見た形状は,正方形や長方形といった角のある形状より,真円形や楕円形などの角のない形状にするのが適している。その結果,最も高密度に記録ビットを配列する容易な方法は,円形のパターンを六方最密構造に配列することになる。   First, consider the shape and arrangement of bits in the production of highly integrated bit pattern media. It is desirable that the shape of the bit viewed from the surface of the medium is circular to form a hexagonal close-packed structure. In the production of a well-known bit pattern medium, a magnetic film is physically processed by etching, ion implantation, or the like, using a resist pattern made by a lithography technique or an imprint technique. For this reason, as with semiconductor microfabrication, the miniaturization limit of processing is largely due to the width of the groove to be processed. In order to integrate as small bits as possible with high spacing and as much integration as possible, it is appropriate to set the aspect ratio viewed from the plane of the bits to 1. In addition, the rounded edges of the pattern become more apparent as the pattern becomes finer. For this reason, the shape of the bit viewed from the plane is more suitable to have a cornerless shape such as a perfect circle or an ellipse than a cornered shape such as a square or a rectangle. As a result, the easiest way to arrange the recording bits with the highest density is to arrange the circular pattern in a hexagonal close-packed structure.

しかし,一般的に円板形状をしたHDDの記録媒体のデータの並び方は記録ビットが1つの円弧の中に複数並んでトラックを形成し,複数のトラックが同心円状に配列している。HDD装置は,記録媒体を高速回転し,その上を記録素子と再生素子を備える磁気ヘッドが浮上して1つのトラックを円周方向(トラック方向)に順次記録又は再生することと,磁気ヘッドを円板の径方向(クロストラック方向)に移動して別のトラックに移動することにより,記録媒体片面を1つの磁気ヘッドで記録再生することを可能にしている。ダウントラック方向の記録ビット幅の低減は,記録媒体の磁気クラスタサイズの微小化や記録再生素子の高周波ノイズの低減などにより達成されるのに対し,クロストラック方向のビット幅の限界は記録素子,再生素子の物理的幅の微細化によるため,小さくすることが困難となっている。また,媒体の記録ビットと磁気ヘッドの位置合わせは,トラック方向が媒体の回転に同期した信号を用いた信号処理を利用するのに対して,クロストラック方向は,媒体内の位置情報信号(サーボ信号)を用いて磁気ヘッドが取りつけられたアームを機械的に移動して行っているため,位置合わせ精度がトラック方向より低い。このため,一般的なHDDの媒体の記録ビットの形状は,クロストラック方向の長さがトラック方向より長くなっている。つまり,ビットパターン媒体では,円形の記録ビットを六方最密構造のように高密度に配列すると,磁気ヘッドを用いて記録再生するのが困難になる。   However, in general, a disk-shaped HDD recording medium is arranged in such a manner that a plurality of recording bits are arranged in one arc to form a track, and the plurality of tracks are arranged concentrically. The HDD device rotates a recording medium at a high speed, and a magnetic head including a recording element and a reproducing element floats on the recording medium, and sequentially records or reproduces one track in the circumferential direction (track direction). By moving in the radial direction (cross-track direction) of the disc and moving to another track, one side of the recording medium can be recorded / reproduced by one magnetic head. The reduction of the recording bit width in the down-track direction is achieved by reducing the magnetic cluster size of the recording medium and reducing the high-frequency noise of the recording / reproducing element, while the limit of the bit width in the cross-track direction is the recording element, Due to the miniaturization of the physical width of the reproducing element, it is difficult to reduce it. The positioning of the recording bit of the medium and the magnetic head uses signal processing using a signal whose track direction is synchronized with the rotation of the medium, whereas the cross-track direction is a position information signal (servo in the medium). Signal) is used to mechanically move the arm to which the magnetic head is attached, so the alignment accuracy is lower than the track direction. For this reason, the recording bit shape of a general HDD medium is longer in the cross-track direction than in the track direction. In other words, in a bit pattern medium, if circular recording bits are arranged with high density like a hexagonal close-packed structure, it becomes difficult to perform recording and reproduction using a magnetic head.

そこで,特許文献4などに記録ビットを円弧に並べてトラックを形成し,隣のトラックのビットはダウントラック方向に半ビット分ずれて並んだ構造が提案されている。この形は,図1に示すように記録ビットが媒体に比べて十分に小さく,トラックが直線で平行に並んでいると考えると,六方最密構造に近い形になる。ところで,磁気ヘッドの素子幅はヘッドが位置ずれを起こさない理想的な記録再生を考えた場合でも,両隣のトラックのビット間の幅W2より小さくなければ,記録素子は隣のトラックのビットを反転させてしまうことになる。また,再生素子の幅も,W2より広いと隣接トラックの信号を検出し,S/Nが劣化することになる。実際には,ヘッドの位置ずれによる影響を考えなければならず,幅W2よりさらに狭い素子が必要となる。記録ビットの熱安定性と信号出力を強くするために記録ビットの直径W1を大きくしガードバンド領域を小さくすると,素子幅W2が小さくなり,記録ヘッドの記録磁束密度も,再生素子の検出感度も低下するジレンマとなる。   For this reason, Japanese Patent Application Laid-Open No. H10-228561 proposes a structure in which recording bits are arranged in an arc to form a track, and bits of adjacent tracks are arranged shifted by half a bit in the down-track direction. As shown in FIG. 1, this shape is close to a hexagonal close-packed structure, assuming that the recording bits are sufficiently smaller than the medium and the tracks are arranged in a straight line in parallel. By the way, the element width of the magnetic head inverts the bit of the adjacent track if the element width is not smaller than the width W2 between the bits of the adjacent tracks, even in the case of ideal recording / reproduction where the head does not cause a positional shift. I will let you. Also, if the width of the reproducing element is wider than W2, the signal of the adjacent track is detected, and the S / N deteriorates. Actually, the influence of the positional deviation of the head must be considered, and an element narrower than the width W2 is required. If the recording bit diameter W1 is increased and the guard band region is reduced in order to increase the thermal stability and signal output of the recording bit, the element width W2 is reduced, and the recording magnetic flux density of the recording head and the detection sensitivity of the reproducing element are reduced. A dilemma that declines.

一方,熱安定性に優れる媒体の提供方法として,体積Vではなく磁気異方性Kuの大きな媒体を作製する方法も考えられる。しかし,Kuの大きな媒体では反転に必要な記録素子からの磁束密度が大きくなってしまう。特許文献2及び3には,記録ビットの外周部にKuの小さい軟磁性材料を形成する方法が提案されている。しかし,隣接ビットに最も近い外周部は,隣接ビットからの漏洩磁束(反磁界)の影響を強く受ける。この部分に,Kuの小さい領域を作ると,周囲のビットが同じ方向に磁化している場合,反磁界により磁化が反対を向く力が大きくなり,安定性が低下する。また,特許文献1には,逆に隣接トラックと接近する外周部の強磁性材料の組成比を中心部より大きくし,磁化反転しにくくすることで,隣のトラックを記録する際に記録素子から漏れる磁束による磁化反転(サイドイレーズ)を防ぐ方法が提案されている。しかし,外周部の磁束密度を大きくすると外周部の磁気モーメントが中心部より大きくなり,再生素子から見た場合,外周部から強い磁束が検出されるため,再生時に隣のトラックの外周部からの信号(クロストーク)が大きくなってしまう。これらの問題は,記録ビットの直径W1を大きくするほど顕在化する。   On the other hand, as a method of providing a medium having excellent thermal stability, a method of producing a medium having a large magnetic anisotropy Ku instead of a volume V is conceivable. However, in a medium with a large Ku, the magnetic flux density from the recording element necessary for reversal becomes large. Patent Documents 2 and 3 propose a method of forming a soft magnetic material with a small Ku on the outer periphery of a recording bit. However, the outer periphery closest to the adjacent bit is strongly influenced by the leakage magnetic flux (demagnetizing field) from the adjacent bit. If a region with a small Ku is formed in this portion, if the surrounding bits are magnetized in the same direction, the force that the magnetization is directed to the opposite direction increases due to the demagnetizing field, and the stability is lowered. On the other hand, in Patent Document 1, the composition ratio of the ferromagnetic material in the outer peripheral portion that is close to the adjacent track is made larger than that in the central portion so that the magnetization reversal is difficult. A method for preventing magnetization reversal (side erase) due to leaking magnetic flux has been proposed. However, if the magnetic flux density at the outer peripheral part is increased, the magnetic moment at the outer peripheral part becomes larger than that at the central part, and when viewed from the reproducing element, a strong magnetic flux is detected from the outer peripheral part. The signal (crosstalk) becomes large. These problems become more apparent as the diameter W1 of the recording bit is increased.

本発明は,両隣のトラックのビット間の幅W2より広い素子幅のヘッドを用いて記録再生できるビットパターン媒体及びその関連技術を提供するものである。   The present invention provides a bit pattern medium that can be recorded / reproduced using a head having an element width wider than the width W2 between bits of adjacent tracks, and a related technique.

本発明による垂直磁気記録媒体は,平坦な非磁性基板上に垂直磁気記録層が形成されている磁気記録媒体であり,垂直磁気記録層は記録ビット単位に分離され,記録ビットの列が隣の列とは1/2ビット分の間隔だけずらして同心円状に配列されており,記録ビットは,第1の磁性層の上に第2の磁性層が積層された積層構造を有し,底面の面積より上面の面積が小さい先細り形状を有し,記録ビットの最外周部は第1の磁性層からなり,中心部は第1の磁性層と第2の磁性層を有し,最外周部と中心部の間に反転制御領域が設けられ,第2の磁性層の飽和磁束密度をMsa,垂直磁気異方性をKuaとし,第1の磁性層の飽和磁束密度をMsb,垂直磁気異方性をKubとし,反転制御領域の飽和磁束密度をMsc,垂直磁気異方性をKucとするとき,次の関係を満たすものである。
Msa>Msb,Kua<Kub,Msc<Msa,Kuc<Kua
A perpendicular magnetic recording medium according to the present invention is a magnetic recording medium in which a perpendicular magnetic recording layer is formed on a flat nonmagnetic substrate. The perpendicular magnetic recording layer is separated in units of recording bits, and a sequence of recording bits is adjacent to each other. The recording bits are arranged concentrically so as to be shifted by an interval of 1/2 bit, and the recording bits have a laminated structure in which the second magnetic layer is laminated on the first magnetic layer, A taper shape having an upper surface area smaller than the area, the outermost peripheral portion of the recording bit is formed of the first magnetic layer, the central portion includes the first magnetic layer and the second magnetic layer, and the outermost peripheral portion; An inversion control region is provided between the central portions, the saturation magnetic flux density of the second magnetic layer is Msa, the perpendicular magnetic anisotropy is Kua, the saturation magnetic flux density of the first magnetic layer is Msb, and the perpendicular magnetic anisotropy. Is Kub, the saturation magnetic flux density of the inversion control region is Msc, and the perpendicular magnetic anisotropy is Ku. When a, it satisfies the following relationship.
Msa> Msb, Kua <Kub, Msc <Msa, Kuc <Kua

また,本発明は,記録ビット単位に分離された磁気記録層を有し,記録ビットの列が隣の列とは1/2ビット分の間隔だけずらして同心円状に配列されている上記垂直磁気記録媒体の製造方法を提供する。すなわち,本発明の製造方法は,平坦な非磁性基板上に第1の飽和磁束密度及び第1の垂直磁気異方性を有する第1の磁性層を形成する工程と,第1の磁性層の上に第1の飽和磁束密度より大きな第2の飽和磁束密度及び第1の垂直磁気異方性より小さな第2の垂直磁気異方性を有する第2の磁性層を形成する工程と,第2の磁性層の上に,ダウントラック方向のビット間の溝幅を他の部分の溝幅より狭くしたビットパターンマスクを形成する工程と,マスクを用いて第2の磁性層にイオン注入し,マスクの下方に一部入り込んだイオン注入部を形成する工程と,サイドエッチング効果の大きいエッチングにより第2の磁性層をエッチングし,ダウントラック方向のビット間以外の部分に形成されたイオン注入部を除去する工程と,直進性のよいエッチングにより,ダウントラック方向のビット間に形成されたイオン注入部のうちマスクの下方に位置する部分を残留させて第2の磁性層をエッチングする工程とを有するものである。   The present invention also provides a magnetic recording layer separated in units of recording bits, wherein the recording bit sequence is arranged concentrically with an interval of 1/2 bit from the adjacent sequence. A method for manufacturing a recording medium is provided. That is, the manufacturing method of the present invention includes a step of forming a first magnetic layer having a first saturation magnetic flux density and a first perpendicular magnetic anisotropy on a flat nonmagnetic substrate, Forming a second magnetic layer having a second saturation magnetic flux density larger than the first saturation magnetic flux density and a second perpendicular magnetic anisotropy smaller than the first perpendicular magnetic anisotropy; Forming a bit pattern mask having a groove width between bits in the down-track direction narrower than the groove width of the other portion on the magnetic layer, and implanting ions into the second magnetic layer using the mask, The second magnetic layer is etched by the step of forming an ion implantation part partially entering below and the etching with a large side etching effect, and the ion implantation part formed in the part other than between the bits in the down track direction is removed. Process and straightness By gastric etching, and a step of etching the second magnetic layer leaving a portion located below the mask of ion implantation portion formed between the down-track direction of the bit.

更に,本発明は,記録ビット単位に分離された磁気記録層を有し,記録ビットの列が隣の列とは1/2ビット分の間隔だけずらして同心円状に配列されており,記録ビットは,第1の磁性層の上に第2の磁性層が積層された積層構造を有し,底面の面積より上面の面積が小さい先細り形状を有し,記録ビットの最外周部は第1の磁性層からなり,中心部は第1の磁性層と第2の磁性層を有し,最外周部と中心部の間に反転制御領域が磁気ヘッドの流入側と流出側の2か所あるいは磁気ヘッドの流出側の1か所に設けられ,第2の磁性層の飽和磁束密度をMsa,垂直磁気異方性をKuaとし,第1の磁性層の飽和磁束密度をMsb,垂直磁気異方性をKubとし,反転制御領域の飽和磁束密度をMsc,垂直磁気異方性をKucとするとき,次の関係
Msa>Msb,Kua<Kub,Msc<Msa,Kuc<Kua
を満たす垂直磁気記録媒体に対して,同心円状に配列された2列の記録ビット列を跨ぐ素子幅を有する磁気ヘッドを用いて情報を記録・再生する方法を提供する。
Furthermore, the present invention has a magnetic recording layer separated in units of recording bits, and a sequence of recording bits is arranged concentrically with an interval of 1/2 bit from an adjacent column. Has a laminated structure in which the second magnetic layer is laminated on the first magnetic layer, has a tapered shape in which the area of the upper surface is smaller than the area of the bottom surface, and the outermost peripheral part of the recording bit is the first outermost part. The magnetic layer is composed of a first magnetic layer and a second magnetic layer at the center, and two inversion control regions are provided between the outermost peripheral portion and the central portion on the inflow side and the outflow side of the magnetic head or magnetically. Provided at one location on the outflow side of the head, the saturation magnetic flux density of the second magnetic layer is Msa, the perpendicular magnetic anisotropy is Kua, the saturation magnetic flux density of the first magnetic layer is Msb, and the perpendicular magnetic anisotropy Is Kub, the saturation magnetic flux density of the inversion control region is Msc, and the perpendicular magnetic anisotropy is Kuc. Relationship Msa> Msb, Kua <Kub, Msc <Msa, Kuc <Kua
A method for recording / reproducing information using a magnetic head having an element width straddling two recording bit strings arranged concentrically with respect to a perpendicular magnetic recording medium satisfying the above condition is provided.

記録に際しては,磁気ヘッドを2列の記録ビット列の中心に位置制御し,磁気ヘッドが記録ビットの流出側の反転制御領域を通過するときに当該記録ビットに記録するようにして,2列の記録ビット列に対して交互に記録を行う。   When recording, the magnetic head is positioned at the center of the two recording bit strings, and when the magnetic head passes through the inversion control area on the recording bit outflow side, recording is performed on the recording bits. Recording is alternately performed on the bit string.

また,再生に際しては,磁気ヘッドを2列の記録ビット列の中心に位置制御し,磁気ヘッドが記録ビットの中心部を通過するときに当該記録ビットの情報を読み取るようにして,2列の記録ビット列に対して交互に読み取りを行う。   Further, during reproduction, the magnetic head is positioned at the center of the two recording bit strings, and when the magnetic head passes the central portion of the recording bit, the information of the recording bit is read so that two recording bit strings are recorded. Are alternately read.

本発明のビットパターン媒体は,熱安定性に優れ,かつ隣のビットからの漏洩磁束による影響が小さい。記録時には,反転に必要な磁束密度が小さく,かつ隣のトラックを記録する漏洩磁束による反転が抑制される。再生時には,ビット中心部からの出力が高く,隣接ビットからのノイズが小さい。   The bit pattern medium of the present invention has excellent thermal stability and is less affected by leakage magnetic flux from the adjacent bit. At the time of recording, the magnetic flux density required for reversal is small, and reversal due to leakage magnetic flux that records the adjacent track is suppressed. During playback, the output from the bit center is high and the noise from adjacent bits is small.

上記した以外の,課題,構成及び効果は,以下の実施形態の説明により明らかにされる。   Problems, configurations, and effects other than those described above will be clarified by the following description of embodiments.

記録ビットの配置及び用いることができる記録再生ヘッド幅を示した図である。FIG. 4 is a diagram showing the arrangement of recording bits and the recording / reproducing head width that can be used. 本発明による垂直磁気記録媒体に設けられた記録ビット内の再生領域,熱安定領域,反転制御領域の一例を示した図である。FIG. 3 is a diagram showing an example of a reproduction area, a heat stable area, and an inversion control area in a recording bit provided in a perpendicular magnetic recording medium according to the present invention. 記録ビットの表面構造と断面構造の例を示した図である。It is the figure which showed the example of the surface structure and cross-sectional structure of a recording bit. 本発明による垂直磁気記録媒体の製造方法の例を示す工程図である。It is process drawing which shows the example of the manufacturing method of the perpendicular magnetic recording medium by this invention. 製造途中の垂直磁気記録媒体の平面模式図である。It is a plane schematic diagram of the perpendicular magnetic recording medium in the middle of manufacture. サンプル媒体に形成された記録ビットの平面模式図と断面模式図である。It is the plane schematic diagram and cross-sectional schematic diagram of the recording bit formed in the sample medium. イオン注入を行う工程の一例を示した概略図である。It is the schematic which showed an example of the process of performing ion implantation. 4種類のサンプル媒体について,記録再生ヘッド幅とエラー率の関係を示した図である。It is the figure which showed the relationship between recording / reproducing head width and an error rate about four types of sample media. 2列の記録ビットを交互に記録再生する場合の再生信号と記録ヘッドへの入力信号を示した図である。It is the figure which showed the reproducing signal and the input signal to a recording head in the case of recording / reproducing two rows of recording bits alternately.

以下,本発明の実施形態を説明する。
本発明では,記録ビットを媒体表面から見て円形又は楕円形の形状とし,同心円状に配列する。クロストラック方向の隣の列の記録ビットの中心位置は,ダウントラック方向の記録ビット間隔の1/2分の長さだけダウントラック方向にずらして配置されている。
Hereinafter, embodiments of the present invention will be described.
In the present invention, the recording bits are circular or elliptical when viewed from the medium surface, and are arranged concentrically. The center positions of the recording bits in the adjacent column in the cross track direction are shifted in the down track direction by a length corresponding to ½ of the recording bit interval in the down track direction.

記録ビット群の表面から見た模式図を図2に,記録ビット1つの三面図を図3に示す。記録ビットは媒体表面から見て3種類の領域を持ち,記録ビットの磁気特性は,その3種類の領域でそれぞれ異なる。記録ビットの中心部は再生時に最も出力が出る再生領域21で,記録層の膜厚方向の平均としての飽和磁束密度Ms1,垂直磁気異方性Ku1と膜厚t1を有する。これに対して,外周部は熱安定領域22で,熱安定性向上に効果があり,隣接ビットからの磁気的な影響が小さく再生出力も小さい領域である。熱安定領域22は,記録層の膜厚方向の平均としての飽和磁束密度Ms2,垂直磁気異方性Ku2と膜厚t2を有する。反転制御領域23は,記録素子からの漏洩磁界に反応して磁化反転のきっかけを作る領域である。反転制御領域23は,中心部の再生領域21と外周部の熱安定領域22の境界の全部又は一部に設けられ,表層近傍に飽和磁束密度Ms3,垂直磁気異方性Ku3の領域を有し,記録ビット底面からの膜厚はt3である。再生領域21,熱安定領域22,反転制御領域23の磁気特性は,Ms1>Ms2かつMs1>Ms3,Ku2>Ku1>Ku3の関係を有する。また,熱安定領域22は,膜厚t2が,t1>t2となるようにビット側壁の斜面をなしている領域である。反転制御領域23は,膜厚t3が,t1≧t3となる斜面と平坦な中心部の境界近傍に位置する。   FIG. 2 is a schematic diagram viewed from the surface of the recording bit group, and FIG. 3 is a three-side view of one recording bit. The recording bit has three types of areas when viewed from the surface of the medium, and the magnetic characteristics of the recording bits are different in the three types of areas. The central portion of the recording bit is a reproduction area 21 where the output is most output during reproduction, and has a saturation magnetic flux density Ms1, a perpendicular magnetic anisotropy Ku1 and a film thickness t1 as an average in the film thickness direction of the recording layer. On the other hand, the outer peripheral portion is a heat stable region 22, which is effective in improving the heat stability, and is a region where the magnetic influence from adjacent bits is small and the reproduction output is also small. The heat stable region 22 has a saturation magnetic flux density Ms2, a perpendicular magnetic anisotropy Ku2 and a film thickness t2 as an average in the film thickness direction of the recording layer. The reversal control region 23 is a region that creates a trigger for magnetization reversal in response to a leakage magnetic field from the recording element. The inversion control region 23 is provided at all or part of the boundary between the reproduction region 21 at the center and the heat stable region 22 at the outer periphery, and has a region of saturation magnetic flux density Ms3 and perpendicular magnetic anisotropy Ku3 in the vicinity of the surface layer. , The film thickness from the bottom surface of the recording bit is t3. The magnetic characteristics of the reproduction region 21, the heat stable region 22, and the inversion control region 23 have a relationship of Ms1> Ms2 and Ms1> Ms3, Ku2> Ku1> Ku3. Further, the heat stable region 22 is a region that forms an inclined surface of the bit side wall so that the film thickness t2 satisfies t1> t2. The inversion control region 23 is located in the vicinity of the boundary between the slope where the film thickness t3 is t1 ≧ t3 and the flat central portion.

再生領域21,熱安定領域22,反転制御領域23の保磁力をそれぞれHc1,Hc2,Hc3とするとき,記録ビットから各領域を切り出して磁気特性を評価すると,Hc2>Hc1>Hc3の関係を有する。このように記録ビットの磁気特性を制御することにより,漏洩磁束密度は中心部が一番大きくなり,信号強度も大きくなる。一方,外周部は記録ビットの熱安定性に寄与するが,漏洩磁束が少ない。このため隣接ビット間の相関を,特にガードバンドが狭い場合に小さくすることができるので,充填率の高い記録ビットを形成することができる。反転制御領域23は,記録ヘッドからの磁界強度が大きい表層部分の磁気異方性を中心部より小さくし,この部分を他の領域より外部磁界によって反転しやすくする。また,反転制御領域23の垂直磁気異方性Kuのみを記録素子の漏洩磁束で磁化反転できるように小さくすることにより,記録ビット全体のKuを大きく保つことができ,記録ビットの熱安定性が向上できる。   When the coercive forces of the reproduction area 21, the heat stable area 22, and the inversion control area 23 are Hc1, Hc2, and Hc3, respectively, when the areas are cut out from the recording bits and the magnetic characteristics are evaluated, the relationship is Hc2> Hc1> Hc3. . By controlling the magnetic characteristics of the recording bit in this way, the leakage magnetic flux density is maximized at the center and the signal intensity is also increased. On the other hand, the outer peripheral part contributes to the thermal stability of the recording bit, but the leakage magnetic flux is small. For this reason, since the correlation between adjacent bits can be reduced particularly when the guard band is narrow, a recording bit having a high filling rate can be formed. The reversal control region 23 makes the magnetic anisotropy of the surface layer portion where the magnetic field intensity from the recording head is large smaller than the central portion, and makes this portion easier to reverse by the external magnetic field than other regions. Further, by reducing only the perpendicular magnetic anisotropy Ku of the reversal control region 23 so that magnetization can be reversed by the leakage flux of the recording element, the Ku of the entire recording bit can be kept large, and the thermal stability of the recording bit can be improved. It can be improved.

さらに,図2に示すように反転制御領域23をビットの外周部に設けないことにより,隣のビットを記録するときの漏洩磁束による影響を,より小さくすることができる。より詳しく述べると,反転制御領域23は,再生領域21の中心部と熱安定領域22の外周部の間のうち,トラック方向の境界に設け,クロストラック方向には設けないのが好ましい。つまり,反転制御領域23はクロストラック方向に垂直なビット中心線近傍にまたがるように形成し,トラック方向に垂直なビット中心線上には設けない。こうすることで,隣接トラックから離れた位置に反転制御領域23を制限することができ,トラックを記録するときに記録素子から隣のトラックの反転制御領域23を遠ざけることができる。従って,図2に示すように,隣接トラックのビットの反転制御領域23に跨らない幅W5程度の幅の広い記録素子を用いることができる。この様にクロストラック方向のビット中心近傍に反転制御領域23を制限する場合,磁気ヘッドが流入する側と流出する側の2か所に反転制御領域23が形成される。しかし,ビットは記録ヘッドが流出する際の漏洩磁束により記録され,それ以前のヘッドからの漏洩磁束の向きには依存しない。すなわち,記録にはヘッド流出側の反転制御領域のみが利用されるため,反転制御領域は,流入,流出両側にあっても,流出側一方のみにあってもよい。   Furthermore, as shown in FIG. 2, by not providing the inversion control area 23 on the outer periphery of the bit, the influence of the leakage magnetic flux when recording the adjacent bit can be further reduced. More specifically, the inversion control region 23 is preferably provided at the boundary in the track direction between the central portion of the reproduction region 21 and the outer peripheral portion of the heat stable region 22 and not provided in the cross track direction. That is, the inversion control region 23 is formed so as to straddle the vicinity of the bit center line perpendicular to the cross track direction, and is not provided on the bit center line perpendicular to the track direction. Thus, the inversion control area 23 can be limited to a position away from the adjacent track, and the inversion control area 23 of the adjacent track can be moved away from the recording element when recording the track. Therefore, as shown in FIG. 2, it is possible to use a recording element having a wide width of about W5 that does not straddle the bit inversion control region 23 of the adjacent track. In this way, when the reversal control region 23 is limited to the vicinity of the bit center in the cross track direction, the reversal control regions 23 are formed at two locations, the side where the magnetic head flows and the side where the magnetic head flows. However, the bit is recorded by the leakage magnetic flux when the recording head flows out, and does not depend on the direction of the leakage magnetic flux from the previous head. That is, since only the reversal control area on the head outflow side is used for recording, the reversal control area may be on both the inflow and outflow sides or only on the outflow side.

本発明の磁気記録媒体は,各記録ビットが,膜厚方向に切り取ったとき,3種類の磁気特性を示す領域を有する。中心部の再生領域である再生領域21は,大きい飽和磁束密度と厚い膜厚により,再生信号出力を大きくすることができる。ビットの中心部の出力を大きくすることにより,ビットの外周部からの漏洩磁束が原因のノイズを低減することができる。ビット中心部の出力が大きくなり,隣接トラックのビットからのノイズが小さくなるので,幅の広い再生ヘッドを用いることができる。外周部の熱安定領域22は,高い垂直磁気異方性によりビットの熱安定性に寄与する。また,外周部は隣のビットとの相互作用が大きいので,高い垂直磁気異方性と中心部より小さい飽和磁束密度と薄い膜厚により,隣のビット間の漏洩磁場による影響を小さくすることができる。また,熱安定領域22を形成することにより隣の記録ビットとの隙間を狭くすることができ,同じ集積密度でビットの体積をより大きくできるため,熱安定性の向上が達成される。また,反転制御領域23は,表層部の垂直磁気異方性を小さくすることにより,反転制御領域23に印加された記録ヘッドからの漏洩磁場によって記録ビットが反転されるようにすることができる。反転制御領域23を設けることにより,再生領域21と熱安定領域22を記録ヘッドの漏洩磁場では反転できないほど垂直磁気異方性を大きくすることができ,熱安定性が向上する。さらに,隣接トラックを記録する際に記録ヘッドが熱安定領域22上にあっても,反転制御領域23上になければサイドイレーズされることがないので,より幅広い記録ヘッドを用いることができる。   In the magnetic recording medium of the present invention, each recording bit has a region showing three kinds of magnetic characteristics when cut in the film thickness direction. The reproduction area 21, which is the reproduction area at the center, can increase the reproduction signal output due to the large saturation magnetic flux density and the thick film thickness. By increasing the output at the center of the bit, noise caused by magnetic flux leakage from the outer periphery of the bit can be reduced. Since the output at the center of the bit is increased and the noise from the bit of the adjacent track is reduced, a wide reproducing head can be used. The thermal stability region 22 in the outer peripheral portion contributes to the thermal stability of the bit due to high perpendicular magnetic anisotropy. In addition, since the outer peripheral part has a large interaction with the adjacent bit, the influence of the leakage magnetic field between the adjacent bits can be reduced by high perpendicular magnetic anisotropy, saturation magnetic flux density smaller than the central part and thin film thickness. it can. In addition, since the gap between the adjacent recording bits can be narrowed by forming the heat stable region 22, and the bit volume can be increased with the same integration density, an improvement in heat stability is achieved. Further, the reversal control area 23 can reduce the perpendicular magnetic anisotropy of the surface layer portion so that the recording bit is reversed by the leakage magnetic field from the recording head applied to the reversal control area 23. By providing the reversal control region 23, the perpendicular magnetic anisotropy can be increased so that the reproduction region 21 and the heat stable region 22 cannot be reversed by the leakage magnetic field of the recording head, and the thermal stability is improved. Further, even when the recording head is on the heat stable area 22 when recording adjacent tracks, side erasing is not required unless the recording head is on the inversion control area 23, so that a wider recording head can be used.

記録時に記録ヘッドが在るべき位置の条件は,記録ヘッドの一部が記録するビットのヘッド流出側の反転制御領域23上にあり,かつ隣接ビットの反転制御領域23上に位置しないことである。また,再生時に再生ヘッドが在るべき位置の条件は,記録ビット中央の再生領域21上にあり,隣接ビットの再生領域21上に位置しないことである。つまり,記録ヘッド及び再生ヘッドが隣接ビットの熱安定領域22上に干渉しても記録再生を行えることとなる。また,記録位置,再生位置がビットの一部分になるため,ヘッドからはビットがあたかも小さくなったかのように見える。これらのことから,ヘッドの位置合わせ精度が低くてもよいことになる。媒体の実際に作成した記録ビットの位置が,設計値とずれても隣のビットの記録・再生の影響を受けにくくなるとともに,ヘッドの位置がずれても隣のビットを記録再生する危険が低減し,信頼性が向上する。   The condition of the position where the recording head should be at the time of recording is that a part of the recording head is on the inversion control area 23 on the head outflow side of the bit to be recorded and not on the inversion control area 23 of the adjacent bit. . The condition of the position where the reproducing head should be at the time of reproduction is that it is on the reproducing area 21 in the center of the recording bit and not on the reproducing area 21 of the adjacent bit. That is, recording / reproduction can be performed even if the recording head and the reproducing head interfere with the heat stable region 22 of the adjacent bit. Also, since the recording position and playback position are part of the bit, it looks as if the bit has become smaller from the head. Therefore, the head alignment accuracy may be low. Even if the position of the recording bit actually created on the medium deviates from the design value, it is less affected by recording / reproducing of the adjacent bit, and the risk of recording / reproducing the adjacent bit is reduced even if the head position is deviated. Reliability is improved.

さらに,記録ビットの記録可能位置又は再生感度分布を記録ビットのそれぞれ反転制御領域23又は再生領域21に制限できるため,1/2ビット幅分位相のずれた2列のビットを交互に記録又は再生することができる。この2列のビットの中心をトラック中心とする。ビット2列分の幅を持った記録ヘッドをトラック中心に位置制御を行って記録を行うと,2列のビットを交互に記録できる。また,ビット2列分の幅を持った再生ヘッドをトラック中心に位置制御を行って再生すると,2列のビットを交互に再生できる。これにより,同じヘッド幅でも2倍のビットをクロストラック方向に集積することができる。   Furthermore, since the recordable position of the recording bit or the reproduction sensitivity distribution can be limited to the recording bit inversion control area 23 or the reproduction area 21, respectively, two columns of bits shifted in phase by 1/2 bit width are alternately recorded or reproduced. can do. The center of these two rows of bits is the track center. When recording is performed by controlling the position of a recording head having a width corresponding to two columns of bits with the center of the track as a center, two columns of bits can be recorded alternately. Further, when the reproducing head having a width corresponding to two columns of bits is subjected to position control around the track and reproduced, the bits of the two columns can be alternately reproduced. This makes it possible to accumulate twice as many bits in the cross track direction even with the same head width.

このように,本発明のビットパターン媒体は,再生出力がビット中心部に収束しており,記録素子からの磁束によって磁化反転可能な領域も一部に制限されるため,ヘッドの位置決め精度の要求が緩い。このため,ダウントラック方向に互い違いに並んだ2列の記録ビットを1つのトラックとして交互に記録再生することが可能で,より幅の広い記録素子幅,再生素子幅のヘッドが利用可能であり,より高集積化が可能なビットパターン媒体を提供できる。   As described above, in the bit pattern medium of the present invention, the reproduction output is converged at the center of the bit, and the region where magnetization can be reversed by the magnetic flux from the recording element is limited to a part. Is loose. For this reason, it is possible to alternately record and reproduce two rows of recording bits arranged in the down track direction as one track, and a head having a wider recording element width and reproducing element width can be used. A bit pattern medium capable of higher integration can be provided.

上記磁気特性を有するビットの形成に当たっては,平坦な非磁性基板上に少なくとも上部と下部で異なる磁気特性を有する磁性膜を記録層として形成する。ここで,上部を高出力層,下部を熱安定層と定義する。高出力層の飽和磁束密度Msa及び垂直磁気異方性Kuaと,熱安定層の飽和磁束密度Msb及び垂直磁気異方性Kubの間には,Msa>MsbとKua<Kubが成り立つように材料を選択する。本発明の一態様による磁気記録媒体の製造方法は,平坦な非磁性基板上に少なくとも2層の磁性膜を用いて記録層を形成する工程と,記録層上にビットパターンのマスクを形成する工程と,ビットパターンのマスクを用いて記録層にイオン注入する工程と,少なくとも2種類の加速電圧又はビーム角度でのイオンビームエッチングにより記録層をエッチングする工程を有する。   In forming the bit having the magnetic characteristics, a magnetic film having different magnetic characteristics at least in the upper part and the lower part is formed as a recording layer on a flat nonmagnetic substrate. Here, the upper part is defined as the high power layer and the lower part is defined as the heat stable layer. The material is set so that Msa> Msb and Kua <Kub are established between the saturation magnetic flux density Msa and perpendicular magnetic anisotropy Kua of the high output layer and the saturation magnetic flux density Msb and perpendicular magnetic anisotropy Kub of the heat stable layer. select. A method of manufacturing a magnetic recording medium according to an aspect of the present invention includes a step of forming a recording layer using at least two magnetic films on a flat nonmagnetic substrate, and a step of forming a bit pattern mask on the recording layer. And a step of implanting ions into the recording layer using a bit pattern mask, and a step of etching the recording layer by ion beam etching with at least two kinds of acceleration voltages or beam angles.

熱安定領域22であるビット外周部は高出力層を物理的にエッチングすることにより,Ms1>Ms2,t1>t2及びKu2>Ku1を満たすようにすることができる。また,反転制御領域23はビット外周部と中心部の境界付近にあり,高出力層に非磁性原子を注入することにより飽和磁束密度と垂直磁気異方性を低減させ,Ms3<Ms1及びKu3<Ku1を満たすようにして形成することができる。   The bit outer periphery which is the heat stable region 22 can satisfy Ms1> Ms2, t1> t2 and Ku2> Ku1 by physically etching the high output layer. Further, the inversion control region 23 is near the boundary between the bit outer periphery and the center, and the saturation magnetic flux density and the perpendicular magnetic anisotropy are reduced by injecting nonmagnetic atoms into the high output layer, so that Ms3 <Ms1 and Ku3 < It can be formed so as to satisfy Ku1.

[垂直磁気記録媒体]
垂直磁気記録媒体は,平坦な非磁性基板上に少なくとも記録層を有する。記録層は,異なる磁気特性を示す2層以上の磁性層で構成されており,上部に高出力層となる飽和磁束密度Msa,垂直磁気異方性Kuaを有する層を備え,下部に熱安定層となる飽和磁束密度Msb,垂直磁気異方性Kubを有する層を備える。ここで,Msa>Msb,Kua<Kubである。この様にすることにより,上部の高出力層からの単位体積当たりの漏洩磁束は下部の熱安定層からの漏洩磁束より大きく,信号強度を上げる効果が高い。一方,下部の熱安定層は上部の高出力層より垂直磁気異方性が強く,飽和磁束密度が小さいため,磁化反転しにくく熱安定性に優れる性質を示す。
[Perpendicular magnetic recording medium]
A perpendicular magnetic recording medium has at least a recording layer on a flat nonmagnetic substrate. The recording layer is composed of two or more magnetic layers exhibiting different magnetic characteristics, and includes a layer having a saturation magnetic flux density Msa and a perpendicular magnetic anisotropy Kua as a high output layer in the upper part, and a heat stable layer in the lower part. A layer having a saturation magnetic flux density Msb and perpendicular magnetic anisotropy Kub. Here, Msa> Msb, Kua <Kub. By doing so, the leakage flux per unit volume from the upper high-power layer is larger than the leakage flux from the lower thermal stabilization layer, and the effect of increasing the signal strength is high. On the other hand, the lower heat-stable layer has higher perpendicular magnetic anisotropy and lower saturation magnetic flux density than the upper high-power layer.

上記性質を示す磁気記録層であれば,CoCrPt合金,CoPt合金,CoPd人工格子膜,CoPt人工格子膜,FePt合金などの垂直磁化膜を用いることができる。上述した通り高出力層と熱安定層の磁気特性を制御するには,例えば高出力層の飽和磁束密度を大きくするためには高出力層の強磁性元素であるCo及び/又はFeの組成比を熱安定層より大きくし,また人工格子膜であればCo又はFeの膜厚比を熱安定層のそれより大きくするとよい。一方,熱安定層の垂直磁気異方性を大きくするにはPt及び/又はPdの組成比を高出力層より大きくし,また人工格子膜であればPt又はPdの膜厚比を高出力層より大きくするとよい。また,アニールなどにより結晶配向性を向上させる方法もある。その他にもC,Al,Cr,B,N,Ta,Si,Ruなどの非磁性元素を添加したりすることなどにより磁気特性を変化させることができる。高出力層及び熱安定層は,それぞれが単層膜でも多層膜でもよい。また,高出力層及び熱安定層それぞれが,複数の磁気特性を持った多層構造であっても,高出力層及び熱安定層それぞれの平均的磁気特性が上述の性質を示せばよい。   As long as the magnetic recording layer exhibits the above properties, a perpendicular magnetization film such as a CoCrPt alloy, a CoPt alloy, a CoPd artificial lattice film, a CoPt artificial lattice film, or an FePt alloy can be used. As described above, in order to control the magnetic properties of the high-power layer and the heat-stable layer, for example, to increase the saturation magnetic flux density of the high-power layer, the composition ratio of the ferromagnetic elements Co and / or Fe of the high-power layer Is larger than that of the heat-stable layer, and in the case of an artificial lattice film, the film thickness ratio of Co or Fe is preferably larger than that of the heat-stable layer. On the other hand, in order to increase the perpendicular magnetic anisotropy of the thermally stable layer, the composition ratio of Pt and / or Pd is made larger than that of the high output layer, and in the case of an artificial lattice film, the film thickness ratio of Pt or Pd is increased. It should be larger. There is also a method for improving crystal orientation by annealing or the like. In addition, the magnetic characteristics can be changed by adding nonmagnetic elements such as C, Al, Cr, B, N, Ta, Si, and Ru. Each of the high output layer and the heat stable layer may be a single layer film or a multilayer film. Even if each of the high-power layer and the heat-stable layer has a multilayer structure having a plurality of magnetic characteristics, the average magnetic characteristics of the high-power layer and the heat-stable layer need only exhibit the above-described properties.

記録ビットは,媒体表面から見て円形又は楕円形で,図1に示す通り同心円状にトラック方向に配列するとよい。クロストラック方向に隣の列のビットは,ダウントラック方向にビット間隔の1/2ずらして配置するとよい。この様にすることにより,同心円状にビットを配列し,かつ最密構造に近い構造となり,ビット密度を高くすることができる。記録ビットは,ダウントラック方向,クロストラック方向共に,サーボ領域などによって区切られて複数の記録ビットによりブロックを形成していても構わない。   The recording bits may be circular or elliptical when viewed from the medium surface, and may be arranged concentrically in the track direction as shown in FIG. The bits in the adjacent column in the cross track direction may be arranged so as to be shifted by 1/2 the bit interval in the down track direction. By doing so, the bits are arranged concentrically and the structure is close to the closest structure, and the bit density can be increased. The recording bits may be divided by a servo area or the like in both the down track direction and the cross track direction to form a block by a plurality of recording bits.

1つ1つの記録ビットの形状は,図3に示すような底面の面積より上面の面積が小さくなった先細り形状,典型的には円錐台のような形状とすることができる。1つの記録ビットの断面形状は,側壁が斜めになった台形のような形状をしている。円錐台の上面が平坦になったビットの中心部は最も膜厚が厚く,飽和磁束密度が大きい再生領域21となる。円錐台の斜面に対応する記録ビットの外周部は,高出力層が削られて熱安定層の割合が増加又は熱安定層のみとなった構造を有し,熱安定領域22を構成する。円錐台形状の記録ビットの上面の端部近傍には,高出力層に非磁性金属をイオン注入するなどして強磁性元素の組成比を小さくすることで,記録ビットの中心部より垂直磁気異方性と飽和磁束密度が小さい領域を形成する。こうして,図6(a)のように,熱安定領域22の内側に反転制御領域23を形成する。さらに,図3に示すように,再生領域21と熱安定領域22の境界のうちトラック方向の2か所にのみ反転制御領域23を形成すると,記録ヘッドの位置ずれの許容量が大きくなり好ましい。また,図6(b)に示すように,トラック方向のうちヘッドが流出していく側の1か所にのみ反転制御領域23を形成してもよい。   The shape of each recording bit can be a tapered shape with a top surface area smaller than the bottom surface area as shown in FIG. 3, typically a truncated cone shape. The cross-sectional shape of one recording bit has a trapezoidal shape with side walls inclined. The central portion of the bit with the flat top surface of the truncated cone becomes the reproducing region 21 having the largest film thickness and the large saturation magnetic flux density. The outer peripheral portion of the recording bit corresponding to the inclined surface of the truncated cone has a structure in which the high-power layer is cut and the proportion of the heat-stable layer is increased or only the heat-stable layer is formed, and the heat-stable region 22 is formed. Near the edge of the top surface of the frustoconical recording bit, a nonmagnetic metal is ion-implanted into the high-power layer, for example, to reduce the composition ratio of the ferromagnetic element, so that the perpendicular magnetic field is different from the center of the recording bit. A region where the directionality and the saturation magnetic flux density are small is formed. In this way, the inversion control region 23 is formed inside the heat stable region 22 as shown in FIG. Further, as shown in FIG. 3, it is preferable to form the reversal control region 23 only at two locations in the track direction between the reproduction region 21 and the heat stable region 22 because the allowable amount of positional deviation of the recording head is increased. Further, as shown in FIG. 6B, the reversal control region 23 may be formed only at one position on the side where the head flows out in the track direction.

[垂直磁気記録媒体の製造方法]
本発明の垂直磁気記録媒体は,以下の方法で製造することができる。図4(a)から図4(g)は,記録媒体の製造工程の断面形状を示し,図2のA−B−C断面に相当する模式図である。
[Method of manufacturing perpendicular magnetic recording medium]
The perpendicular magnetic recording medium of the present invention can be manufactured by the following method. 4 (a) to 4 (g) show a cross-sectional shape of the manufacturing process of the recording medium, and are schematic views corresponding to the cross section A-B-C in FIG.

最初に,図4(a)に示すように,非磁性基板10上に少なくとも記録層を構成する熱安定層131と高出力層132を形成する。この時,非磁性基板10と熱安定層131の間に密着層,軟磁性下地層11,配向制御層を形成してもよく,高出力層132上に保護層,ハードマスク層141,142を形成してもよい。次に,図4(b)に示すように,インプリント装置などを用いて多層膜を成膜した表面にレジストパターンを形成する。次に,図4(c)のように,ハードマスク層がある場合にはインプリントレジストパターンを,リアクティブイオンエッチング装置などを用いてハードマスク層に転写する。   First, as shown in FIG. 4A, a heat stable layer 131 and a high output layer 132 constituting at least a recording layer are formed on the nonmagnetic substrate 10. At this time, an adhesion layer, a soft magnetic underlayer 11, and an orientation control layer may be formed between the nonmagnetic substrate 10 and the heat stable layer 131, and protective layers and hard mask layers 141, 142 are formed on the high output layer 132. It may be formed. Next, as shown in FIG. 4B, a resist pattern is formed on the surface on which the multilayer film is formed using an imprint apparatus or the like. Next, as shown in FIG. 4C, when there is a hard mask layer, the imprint resist pattern is transferred to the hard mask layer using a reactive ion etching apparatus or the like.

次に,図4(d)に示すように,インプリントレジストパターン又はハードマスクパタンをマスクとして,C,Al,Cr,B,N,Ta,Si,Ruなどの非磁性元素をイオン注入装置を用いてマスクの開口部下の高出力層に注入する。イオン注入には数keVに加速したイオンを用いるため,マスクのない領域の高出力層だけでなく,イオンの一部はマスクされた部分の高出力層にも広がる。その結果,図5(a)の平面図のように,破線で示したビット形状のマスクの境界の内側に,実線で示したイオン注入されていない高出力層の境界が位置するようになる。   Next, as shown in FIG. 4D, a nonmagnetic element such as C, Al, Cr, B, N, Ta, Si, and Ru is ion-implanted using an imprint resist pattern or a hard mask pattern as a mask. Used to inject into the high power layer under the opening of the mask. Since ions accelerated to several keV are used for ion implantation, not only the high-power layer in a region without a mask but also a part of ions spread to a high-power layer in a masked portion. As a result, as shown in the plan view of FIG. 5A, the boundary of the high-power layer not shown in FIG.

次に,イオンミリング装置を用いて,マスク開口部のイオン注入した高出力層をエッチングにより除去する。トラック方向にのみ反転制御層23を設ける図3に示した記録ビットを形成する場合には,図2に示すようにトラック方向の隣接ビット間距離W3をクロストラック方向の隣接ビット間距離W4より小さく(W4>W3)することにより,トラック方向のマスクの開口幅をその他の部分の開口幅と比較して狭くしておく。図4(e)に示すように,ミリングイオンの直進性を制御し磁気記録媒体表面に対して斜めに入射するイオンの成分を増やすと,サイドエッチング効果が大きくなり,開口幅が広い部分ではマスクの側壁がエッチングされてマスクが後退し,もともとのマスクの下に拡散により形成されたイオン注入領域もエッチングにより取り除かれる。ただし,トラック方向の隣接ビット間のイオン注入領域部は,マスクの開口溝が狭いため直進性の低いイオンは入りにくくエッチングされない。表面から見ると図5(b)のようになり,記録ビットのトラック方向に残ったイオン注入された層を持つ部分が反転制御領域23となる。   Next, the ion-implanted high-power layer is removed by etching using an ion milling device. When forming the recording bit shown in FIG. 3 in which the inversion control layer 23 is provided only in the track direction, as shown in FIG. 2, the distance W3 between adjacent bits in the track direction is smaller than the distance W4 between adjacent bits in the cross track direction. By doing (W4> W3), the opening width of the mask in the track direction is made narrower than the opening width of other portions. As shown in FIG. 4 (e), when the straightness of milling ions is controlled to increase the components of ions incident obliquely on the surface of the magnetic recording medium, the side etching effect increases, and a mask is formed in a portion with a wide opening width. The side walls of the mask are etched to retract the mask, and the ion-implanted region formed by diffusion under the original mask is also removed by etching. However, the ion-implanted region between adjacent bits in the track direction is not etched because it is difficult for ions with low rectilinearity to enter because the mask opening groove is narrow. When viewed from the surface, it becomes as shown in FIG. 5B, and the portion having the ion-implanted layer remaining in the track direction of the recording bit becomes the inversion control region 23.

また,図7に示すように,イオンビーム71を基板上からオフセットし,斜めからスリット72を介して円板73の一部の扇型部分にのみ入射するようにし,円板73を回転すると,円板全面においてイオンビーム71がトラック方向に斜め入射した状態でエッチングすることができる。本方法によりトラック方向の側壁のうち一方のサイドエッチングを抑制でき,磁気ヘッドの流出側のダウントラック方向のイオン注入部のみ残すことができる。この方法を用いると,図6(b)に示す記録ビット構造を作ることができる。図6(a)に示す反転制御領域23を再生領域21と熱安定領域22の間に同心円状に形成する場合,本工程を省略することができる。   Further, as shown in FIG. 7, when the ion beam 71 is offset from the substrate and incident only to a part of the fan-shaped portion of the disk 73 through the slit 72 from an oblique direction, and the disk 73 is rotated, Etching can be performed with the ion beam 71 obliquely incident in the track direction on the entire surface of the disk. By this method, side etching of one of the side walls in the track direction can be suppressed, and only the ion implantation portion in the down track direction on the outflow side of the magnetic head can be left. Using this method, the recording bit structure shown in FIG. 6B can be produced. When the inversion control region 23 shown in FIG. 6A is formed concentrically between the reproduction region 21 and the heat stable region 22, this step can be omitted.

次に,図4(f)に示すように,イオンミリング装置を用いて前記イオン注入部をエッチングする時よりも直進性に優れるイオンを照射し,マスクの開口部の下の高出力層と熱安定層をエッチングし溝を形成する。この時,溝の深いところほど溝の幅が狭くなるテーパー形状の溝が形成され,記録ビットは円錐台の形状になる。   Next, as shown in FIG. 4 (f), the ion milling device is used to irradiate ions that are more straight ahead than when the ion-implanted portion is etched, and the high-power layer and the heat under the opening of the mask. The stable layer is etched to form a groove. At this time, a taper-shaped groove whose width becomes narrower as the groove is deeper is formed, and the recording bit has a truncated cone shape.

以上により,再生領域21,熱安定領域22,反転制御領域23の3種類の磁気特性が図5(c)に示すように分布した記録ビットを形成することができる。最後に図4(g)に示すように,記録ビット間にできた溝に炭素やSi,Crなどの非磁性材料の埋戻し充填層161を形成し,表面平坦性を向上してもよい。垂直磁気記録媒体としてヘッドを浮上させるためには,エッチングなどにより記録ビットのうち再生領域21の記録層の表面が露出するまでマスクや埋戻し充填層を除去して表面を平坦にし,保護層162と潤滑層163を形成するとよい。   As described above, it is possible to form a recording bit in which the three types of magnetic characteristics of the reproduction area 21, the heat stable area 22, and the inversion control area 23 are distributed as shown in FIG. Finally, as shown in FIG. 4G, a backfill layer 161 made of a nonmagnetic material such as carbon, Si, or Cr may be formed in the groove formed between the recording bits to improve the surface flatness. In order to fly the head as a perpendicular magnetic recording medium, the mask or backfill layer is removed by etching or the like until the surface of the recording layer in the reproducing area 21 is exposed, and the surface is flattened by etching. And the lubricating layer 163 may be formed.

[垂直磁気記録媒体の記録再生方法]
本発明の垂直磁気記録媒体は,記録ビットの記録及び再生位置をクロストラック方向には,それぞれビットの中央部の反転制御領域23と再生領域21に制限しているため,記録素子及び再生素子が隣のトラックのビット上にあっても外周部の熱安定領域22上であれば,記録再生に支障がない。そのため,記録ビットの隣接トラックのビットが被らない幅よりもクロストラック方向に広い記録素子及び再生素子を持った磁気ヘッドを用いることができる。1つの記録ビットの幅よりも幅の広い記録素子,再生素子を用いることができるため,より大きな磁界を発生する記録素子や感度の高い再生素子を用いることができ,反転磁界が大きな垂直磁気異方性の大きい熱安定性に優れた記録ビットを形成した磁気記録媒体を用いることができる。これにより,より高い記録密度でビットが形成できる。また,十分な再生出力と高いSNRを得ることができる。
[Recording / reproducing method of perpendicular magnetic recording medium]
In the perpendicular magnetic recording medium of the present invention, the recording and reproducing positions of the recording bits are limited to the inversion control area 23 and the reproducing area 21 in the center of the bits in the cross track direction, respectively. Even if it is on the bit of the adjacent track, if it is on the heat stable region 22 on the outer peripheral portion, there is no problem in recording and reproduction. Therefore, it is possible to use a magnetic head having a recording element and a reproducing element that are wider in the cross track direction than the width that the bit of the adjacent track of the recording bit does not cover. Since a recording element and reproducing element wider than the width of one recording bit can be used, a recording element that generates a larger magnetic field and a highly sensitive reproducing element can be used. It is possible to use a magnetic recording medium on which a recording bit having a large directivity and excellent thermal stability is formed. Thereby, bits can be formed with a higher recording density. In addition, sufficient reproduction output and high SNR can be obtained.

さらに,本発明の垂直磁気記録媒体は記録ビットの記録及び再生位置をビットの一部に制限することができるので,クロストラック方向に並んだ2列のビットを1つのトラックとして,隣り合う列のダウントラック方向に1/2ビット間隔幅分ずれて並んだビットを交互に記録・再生する方法で特に安定して記録再生を行うことができる。この場合,記録素子及び再生素子の幅は2列のビット両方を跨ぐ幅で,素子の中心を2列のビット群の中心に位置合わせして記録再生を行う。常に,2列のビット両方の上を素子が飛んでいることになるが,ヘッドからは,再生位置の再生領域21が交互に現れるようになり,再生素子は感受部の平均信号を得るのであたかも2列で構成されたトラックの中心に1/2ビット間隔で並んでいるように見えるので,1列のビットを1トラックとして記録再生するシステムと同じものを用いることができる。一方,記録位置に関しては,図2に示した構造の場合,1つのビットに反転制御領域23が2か所あり,磁気ヘッドの流出側の反転制御領域23は,隣のトラックの最隣接ビットの磁気ヘッド流入側の反転制御領域23とダウントラック方向の位置が非常に近い。このため,記録素子からの漏洩磁界により同時に2つのビットが反転してしまうが,最終的にヘッドが流出する側の反転制御領域23を記録素子が通過した時の記録素子からの漏洩磁界によって記録ビットの磁化方向が決まる。このため一般的な磁気記録装置同様に,特定の1つの記録ビットを反転するのではなく,1つのトラック上の記録ビットの集団(所謂セクタ)を連続的に記録する方法を用いるとよい。   Furthermore, since the perpendicular magnetic recording medium of the present invention can limit the recording and reproducing position of the recording bit to a part of the bit, the two columns arranged in the cross track direction are regarded as one track, and adjacent columns are recorded. Recording and reproduction can be performed particularly stably by a method of alternately recording and reproducing bits arranged with a ½ bit interval width in the down-track direction. In this case, the width of the recording element and the reproducing element is a width across both bits of the two columns, and recording / reproducing is performed by aligning the center of the element with the center of the bit group of two columns. The element always flies over both bits of the two rows, but from the head, the reproduction region 21 at the reproduction position appears alternately, and the reproduction element obtains the average signal of the sensing part. Since it appears to be arranged at ½ bit intervals at the center of a track composed of two rows, the same system as that for recording / reproducing one row of bits as one track can be used. On the other hand, with respect to the recording position, in the case of the structure shown in FIG. 2, there are two inversion control areas 23 in one bit, and the inversion control area 23 on the outflow side of the magnetic head is the most adjacent bit of the adjacent track. The position in the down track direction is very close to the inversion control region 23 on the magnetic head inflow side. For this reason, two bits are simultaneously reversed by the leakage magnetic field from the recording element, but recording is performed by the leakage magnetic field from the recording element when the recording element passes through the reversal control region 23 on the side where the head finally flows out. The magnetization direction of the bit is determined. For this reason, it is preferable to use a method of continuously recording a group of recording bits (a so-called sector) on one track, instead of inverting one specific recording bit as in a general magnetic recording apparatus.

[実施例]
以下,実施例により具体的に説明する。
図4(a)から図4(g)に示した製造方法により,ビットパターン型の垂直磁気記録媒体を作製した。図4(a)から図4(g)は,図2のA−B−C断面に相当する断面図である。なお,上記の発明を実施するための形態に記載され,本実施例に未記載の事項は本実施例にも適用することができる。
[Example]
Hereinafter, the embodiment will be specifically described.
A bit pattern type perpendicular magnetic recording medium was manufactured by the manufacturing method shown in FIGS. 4 (a) to 4 (g). 4 (a) to 4 (g) are cross-sectional views corresponding to the cross section A-B-C in FIG. It should be noted that matters described in the mode for carrying out the invention and not described in the present embodiment can be applied to the present embodiment.

図4(a)のように,非磁性基板10として直径65mmのガラス基板を用い,スパッタ装置を用いて,軟磁性下地層11,中間層12,熱安定層131,高出力層132,第一ハードマスク141,第二ハードマスク142を順に形成した。中間層には膜厚9nmのRu,熱安定層131には膜厚5nmのCoCr15Pt15合金,高出力層132には膜厚3nmのCoCr18Pt10合金,第一ハードマスク141には膜厚10nmのCNx,第二ハードマスク142には膜厚2nmのSiNxを用いた。次に,図4(b)のように,インプリント装置を用いてインプリントレジストパターン15を形成した。レジストの総厚は30nmでビットパターンの高さが25nm,レジストの残渣が5nmとなるようにした。 As shown in FIG. 4A, a glass substrate having a diameter of 65 mm is used as the nonmagnetic substrate 10, and a soft magnetic underlayer 11, an intermediate layer 12, a heat stable layer 131, a high output layer 132, a first output layer are formed using a sputtering apparatus. A hard mask 141 and a second hard mask 142 were formed in order. The intermediate layer is 9 nm thick Ru, the heat stable layer 131 is 5 nm thick CoCr 15 Pt 15 alloy, the high power layer 132 is 3 nm thick CoCr 18 Pt 10 alloy, and the first hard mask 141 is a film. thickness 10nm of CN x, the second hard mask 142 using SiN x having a thickness of 2 nm. Next, as shown in FIG. 4B, an imprint resist pattern 15 was formed using an imprint apparatus. The total resist thickness was 30 nm, the bit pattern height was 25 nm, and the resist residue was 5 nm.

次に,図4(c)のように,リアクティブイオンエッチング装置により,酸素ガスを用いたリアクティブイオンエッチングで,ビットパターン間の溝部のレジスト残渣を除去し,CF4ガスを用いたリアクティブイオンエッチングで溝部の第二ハードマスク142を除去し,CO2ガスを用いたリアクティブイオンエッチングで溝部の第一ハードマスク141を除去した。この時,同時に残ったインプリントレジストも除去され,ビットパターンは第一及び第二ハードマスクに転写された。 Next, as shown in FIG. 4C, the resist residue in the groove between the bit patterns is removed by reactive ion etching using oxygen gas by a reactive ion etching apparatus, and reactive using CF 4 gas. The second hard mask 142 in the groove was removed by ion etching, and the first hard mask 141 in the groove was removed by reactive ion etching using CO 2 gas. At this time, the remaining imprint resist was also removed, and the bit pattern was transferred to the first and second hard masks.

次に,図4(d)のように,イオン注入装置を用いて3keVの加速電圧で窒素イオンを5×1014イオン/cm2溝部の高出力層132に注入した。こうして,高出力層132の一部にイオン注入部133を形成した。イオン注入部133はハードマスクの下側の領域にも一部が入り込む形で形成されている。次に,図4(e)のように,イオンビームエッチング装置を用いて500Vの加速電圧でArイオンを照射し,溝部の高出力層132をエッチングした。この時,磁気記録媒体表面に対して斜めに入射するイオンビームの成分が増えて,サイドエッチング効果の大きなエッチングが行われる。その結果,A−B断面の狭い溝にはイオンビームが入りにくく高出力層に溝が形成されない。一方,B−C断面の広い溝にはイオンビームが入り,ハードマスクの側壁がサイドエッチングにより後退しながら高出力層に溝が形成された。ハードマスクと高出力層の溝の側壁は約50度に傾斜した。次に,図4(f)のように,加速電圧200VでArイオンを照射し,溝部の高出力層132と熱安定層131を除去した。このとき,図4(e)の加工時よりもイオンビームの直進性が増している。本工程では,A−B断面の狭い溝もB−C断面の広い溝にも同様にイオンビームが入り両方の溝がエッチングされ本工程で形成された溝部の側壁は約75度の傾斜を示した。また,上記2つのイオンビームエッチングを行っている間にハードマスクもエッチングされて,第一ハードマスク141の一部のみ高出力層132の上に残った。このとき,A−B断面の狭い溝に隣接し,第一ハードマスク141の下に位置するイオン注入領域は除去されずに残留して,反転制御領域となる。 Next, as shown in FIG. 4D, nitrogen ions were implanted into the high-power layer 132 in the 5 × 10 14 ions / cm 2 groove using an ion implantation apparatus at an acceleration voltage of 3 keV. Thus, the ion implantation part 133 was formed in a part of the high output layer 132. The ion implantation part 133 is formed so that a part thereof also enters the lower region of the hard mask. Next, as shown in FIG. 4E, Ar ions were irradiated with an acceleration voltage of 500 V using an ion beam etching apparatus, and the high-power layer 132 in the groove was etched. At this time, the component of the ion beam incident obliquely with respect to the surface of the magnetic recording medium is increased, and etching with a large side etching effect is performed. As a result, it is difficult for an ion beam to enter the narrow groove of the A-B cross section, and the groove is not formed in the high output layer. On the other hand, an ion beam entered a groove having a wide B-C cross section, and a groove was formed in the high output layer while the side wall of the hard mask was retracted by side etching. The side walls of the grooves of the hard mask and the high power layer were inclined at about 50 degrees. Next, as shown in FIG. 4F, Ar ions were irradiated at an acceleration voltage of 200 V to remove the high-power layer 132 and the heat stable layer 131 in the groove. At this time, the rectilinearity of the ion beam is increased compared to the processing shown in FIG. In this process, both the narrow groove of the A-B cross section and the wide groove of the B-C cross section enter the ion beam, and both grooves are etched, and the side wall of the groove formed in this process shows an inclination of about 75 degrees. It was. Further, the hard mask was also etched during the two ion beam etchings, and only a part of the first hard mask 141 remained on the high power layer 132. At this time, the ion implantation region adjacent to the narrow groove of the A-B cross section and located under the first hard mask 141 remains without being removed and becomes an inversion control region.

次に,図4(g)のように埋戻し充填層161としてカーボンを表面に形成し,凹凸を平坦にした後にドライエッチングにより高出力層表面が露出するまで埋戻し充填層161を除去し,保護層162としてカーボンを形成し,潤滑層163をディップ処理により形成した。こうして作製された垂直磁気記録媒体をサンプル1とする。   Next, as shown in FIG. 4G, carbon is formed on the surface as the backfilling layer 161, and after the unevenness is flattened, the backfilling layer 161 is removed by dry etching until the high power layer surface is exposed, Carbon was formed as the protective layer 162, and the lubricating layer 163 was formed by dipping. The perpendicular magnetic recording medium thus manufactured is designated as Sample 1.

出来上がった記録ビットの大きさは,図1及び図2に示した記録ビットの幅W1:12nm,隣接トラックのビットが被らないクロストラック方向の幅W2:14nm,トラック方向の近接する最隣接ビット間距離W3:13mm,ダウントラック方向に近接する最隣接ビット間距離W4:14nm,隣接トラックの再生領域の隣接側端間距離W5:21nmとなった。   The size of the recorded bit is as follows. The width W1 of the recording bit shown in FIGS. 1 and 2 is 12 nm, the width W2 in the cross-track direction not covered by the bit of the adjacent track is 14 nm, and the nearest adjacent bit in the track direction. The distance W3 was 13 mm, the distance W4 between the adjacent bits adjacent in the down track direction was 14 nm, and the distance W5 between adjacent sides of the reproduction area of the adjacent track was 21 nm.

次に,サンプル1と同様の製造方法で,イオン注入までを行った後,500Vの加速電圧でのイオンビームエッチングを行わず,200Vの加速電圧のみでイオンビームエッチングを行った。その他の製造工程はサンプル1と同様に行い,クロストラック側の反転制御領域23も残して同心円状に,中心部から再生領域21,反転制御領域23,熱安定領域22が形成された垂直磁気記録媒体を作製した。これをサンプル2とする。サンプル2の記録ビットの模式図を図6(a)に示す。   Next, after the ion implantation was performed by the same manufacturing method as that of Sample 1, ion beam etching was performed only at an acceleration voltage of 200 V without performing ion beam etching at an acceleration voltage of 500 V. Other manufacturing processes are performed in the same manner as in Sample 1, and perpendicular magnetic recording in which a reproduction region 21, a reversal control region 23, and a heat stable region 22 are formed concentrically from the central portion while leaving the reversal control region 23 on the cross track side. A medium was made. This is designated as sample 2. A schematic diagram of the recording bits of sample 2 is shown in FIG.

次に,サンプル1と同様の製造方法で,イオン注入までを行った後,イオンビームを基板表面に対して傾斜してエッチングを行い,反転制御領域23をダウントラック方向の磁気ヘッド流出側のみに残したサンプル3を作製した。サンプル3の記録ビットの模式図を図6(b)に示す。   Next, after the ion implantation is performed by the same manufacturing method as that of the sample 1, the etching is performed by tilting the ion beam with respect to the substrate surface, and the inversion control region 23 is set only on the magnetic head outflow side in the down track direction. The remaining sample 3 was produced. A schematic diagram of the recording bits of sample 3 is shown in FIG.

次に,サンプル1と同様の製造方法で,イオン注入を行わず反転制御領域23の存在しない垂直磁気記録媒体を作製した。これをサンプル4とする。サンプル4の記録ビットの模式図を図6(c)に示す。   Next, a perpendicular magnetic recording medium in which no ion implantation was performed and the reversal control region 23 did not exist was manufactured by the same manufacturing method as Sample 1. This is designated as sample 4. A schematic diagram of the recording bits of sample 4 is shown in FIG.

次に,サンプル1と同様の製造方法で,イオン注入を行わず,且つ溝部のエッチングを加速電圧150VのArイオン照射で行うことにより溝部の高出力層と熱安定層の側壁を垂直にした垂直磁気記録媒体を作製した。これをサンプル5とする。サンプル5の記録ビットの模式図を図6(d)に示す。サンプル5の記録ビットは全てが再生領域21でできており,熱安定領域22及び反転制御領域23がない。   Next, in a manufacturing method similar to that of sample 1, ion implantation is not performed, and etching of the groove portion is performed by Ar ion irradiation with an acceleration voltage of 150 V, so that the side walls of the high output layer and the heat stable layer in the groove portion are vertical. A magnetic recording medium was produced. This is designated as Sample 5. A schematic diagram of the recording bits of sample 5 is shown in FIG. All the recording bits of the sample 5 are made of the reproduction area 21, and there is no heat stable area 22 and inversion control area 23.

次に,サンプル1と同様の製造方法で,イオン注入を行った後,溝部のエッチングを加速電圧150VのArイオン照射で行うことにより,高出力層と熱安定層の側壁を垂直にした垂直磁気記録媒体を作製した。これをサンプル6とする。サンプル6の記録ビットは,ビットの最外周部に反転制御領域23が形成されており,中心部が再生領域21となっていて熱安定のための熱安定領域22を持っていない。サンプル6の記録ビットの模式図を図6(e)に示す。   Next, after performing ion implantation by the same manufacturing method as that of Sample 1, etching of the groove portion is performed by Ar ion irradiation with an acceleration voltage of 150 V, so that the side walls of the high output layer and the heat stable layer are perpendicular to each other. A recording medium was produced. This is designated as sample 6. The recording bit of sample 6 has an inversion control region 23 formed at the outermost peripheral portion of the bit, the central portion is a reproduction region 21, and does not have a heat stable region 22 for heat stabilization. A schematic diagram of the recording bits of sample 6 is shown in FIG.

次に,サンプル1と同様の方法で,熱安定層131には膜厚5nmのCoCr18Pt10合金を用い,高出力層132には膜厚3nmのCoCr15Pt15合金を用いて,上側の高出力層132の方が熱安定層131よりKuが大きくMsが小さい記録層の構成としたパターン媒体を作製した。これをサンプル7とする。 Next, in the same manner as in sample 1, a 5 nm thick CoCr 18 Pt 10 alloy is used for the heat stable layer 131, and a 3 nm thick CoCr 15 Pt 15 alloy is used for the high output layer 132. A patterned medium having a recording layer configuration in which the high output layer 132 has a larger Ku and a smaller Ms than the heat stable layer 131 was produced. This is designated as Sample 7.

次に,サンプル1と同様の製造方法で,熱安定層131にCo(膜厚0.3nm)とPd(膜厚0.7nm)を交互に積層し総膜厚5nmとしたものを用い,高出力層には,Co(膜厚0.4nm)Pd(膜厚0.6nm)を交互に積層し総膜厚3nmとしたものを用いてパターン媒体を作製した。これをサンプル8とする。   Next, a manufacturing method similar to that of Sample 1 was used, in which Co (film thickness: 0.3 nm) and Pd (film thickness: 0.7 nm) were alternately stacked on the heat stable layer 131 to obtain a total film thickness of 5 nm. As the output layer, Co (film thickness: 0.4 nm) and Pd (film thickness: 0.6 nm) were alternately stacked to form a patterned medium using a total film thickness of 3 nm. This is designated as Sample 8.

次に,サンプル1と同様の方法で,熱安定層131に5nmのCo70Pt30合金を用い,高出力層に3nmのCo80Pt20合金を用いてパターン媒体を作製した。これをサンプル9とする。 Next, in the same manner as in Sample 1, a patterned medium was manufactured using a Co 70 Pt 30 alloy of 5 nm for the heat stable layer 131 and a Co 80 Pt 20 alloy of 3 nm for the high output layer. This is designated as Sample 9.

次に,サンプル1と同様の製造方法で,熱安定層131に膜厚5nmのFe50Pt50合金を成膜し,摂氏500度でアニールを行った後,高出力層として膜厚3nmのCo80Pt20合金を形成したパターン媒体を作製した。これをサンプル10とする。 Next, an Fe 50 Pt 50 alloy film having a thickness of 5 nm is formed on the heat stable layer 131 by the same manufacturing method as Sample 1, annealed at 500 degrees Celsius, and then a Co film having a film thickness of 3 nm as a high output layer. A patterned medium on which an 80 Pt 20 alloy was formed was produced. This is designated as Sample 10.

上記サンプル1〜10の磁気特性を調べるため,試料振動型磁力計を用いて基板に垂直方向の磁化測定を行った。反転開始磁界Hn,保磁力Hc,飽和磁場Hsを表1に示す。温度の記載のないものは,室温で測定した。   In order to examine the magnetic characteristics of Samples 1 to 10, magnetization measurement in the direction perpendicular to the substrate was performed using a sample vibration magnetometer. Table 1 shows the reversal start magnetic field Hn, the coercive force Hc, and the saturation magnetic field Hs. The ones without temperature are measured at room temperature.

Figure 2012146362
Figure 2012146362

サンプル1の媒体は,サンプル4の媒体と比較して,保磁力と飽和磁場が低く,記録ヘッドの磁界が小さくても記録できることがわかる。また,サンプル5,6の媒体の保磁力は小さいが飽和磁場が大きく記録が安定してできないことを示している。一方,反転開始磁界は,サンプル1〜4の媒体はマイナスになっておりビットを安定に保つことができることを示しているが,サンプル5,6の媒体は印加磁場をゼロに戻すと反転してしまうビットがあることを示している。サンプル7は,サンプル1と形状が同じであるが熱安定層が十分に機能しないため,特に反転開始磁界が小さく記録ビットの安定性が低いことがわかる。サンプル8,9,10は室温での飽和磁束密度は10kOeを大きく超えている。しかし,150度〜200度に温度を上げると,表に示すように保磁力:約5kOe,飽和磁束密度:約8kOeで反転開始磁界−2kOe以下となっており,サンプル1と同様の磁気特性を示した。   It can be seen that the sample 1 medium has lower coercive force and saturation magnetic field than the sample 4 medium, and can record even if the magnetic field of the recording head is small. In addition, the coercive force of the media of Samples 5 and 6 is small, but the saturation magnetic field is large and recording cannot be stably performed. On the other hand, the reversal start magnetic field shows that the media of samples 1 to 4 are negative and the bit can be kept stable, but the media of samples 5 and 6 are reversed when the applied magnetic field is returned to zero. This indicates that there is a bit to end. Sample 7 has the same shape as sample 1, but the heat-stable layer does not function sufficiently, so that it can be seen that the inversion start magnetic field is particularly small and the stability of the recording bit is low. In samples 8, 9, and 10, the saturation magnetic flux density at room temperature greatly exceeds 10 kOe. However, when the temperature is raised to 150 to 200 degrees, as shown in the table, the coercive force is about 5 kOe, the saturation magnetic flux density is about 8 kOe, and the inversion start magnetic field is 2 kOe or less. Indicated.

各サンプルの媒体の実際の記録特性を調べるため,記録素子を用いて記録ビットの周期に合わせて交流記録(0101・・・)と直流記録(111111・・・)を行った。評価に用いたヘッドは,シールドギャップ長20nm,トラック幅7〜22nmの巨大磁気抵抗効果を利用した再生素子(再生ヘッド)と,トラック幅7〜22nmの書き込み素子(単磁極記録ヘッド)を有する複合磁気ヘッドである。周速10m/s,スキュー角0度,磁気スペーシング約1nmの条件で,記録素子の印加電流を変えて記録を行い,再生素子で信号を読み取りエラー率を計算した。エラー率が10-4以下となった時を,正常に記録できたものとして,正常に記録できる記録素子に印加する最低電流を調べた。結果を表2に示す。尚,サンプル8,9,10の媒体は室温での保磁力が大きくヘッドからの磁界で記録ができないため,サンプルを摂氏150度〜200度に加熱して記録を行った。 In order to examine the actual recording characteristics of each sample medium, AC recording (0101...) And DC recording (111111...) Were performed in accordance with the recording bit period using a recording element. The head used for the evaluation is a composite having a reproducing element (reproducing head) using a giant magnetoresistance effect with a shield gap length of 20 nm and a track width of 7 to 22 nm and a writing element (single pole recording head) with a track width of 7 to 22 nm. It is a magnetic head. Recording was performed by changing the applied current of the recording element under conditions of a peripheral speed of 10 m / s, a skew angle of 0 degree, and a magnetic spacing of about 1 nm, and a signal was read by the reproducing element to calculate an error rate. When the error rate was 10 −4 or less, the minimum current applied to the recording element capable of normal recording was examined by assuming that the recording was normally performed. The results are shown in Table 2. Since the media of samples 8, 9, and 10 have a large coercive force at room temperature and cannot be recorded by a magnetic field from the head, recording was performed by heating the sample to 150 to 200 degrees Celsius.

Figure 2012146362
Figure 2012146362

サンプル1〜3の媒体が約20mAの電流で交流記録も直流記録もできたのに対して,サンプル4,5の媒体は約50mAの電流を印加しないと交流記録できなかった。また,サンプル4の媒体は,55mAの電流を印加すると直流記録できたが,サンプル5,6,7は直流磁場では記録電流の大きさ,即ち印加磁場に依らず記録できなかった。サンプル8,9,10は記録温度での保磁力,飽和磁束密度がサンプル1より大きいため,若干大きな記録磁界を必要としたが,交流磁界,直流磁界とも安定して記録することができた。   While the media of Samples 1 to 3 could perform both AC recording and DC recording at a current of about 20 mA, the media of Samples 4 and 5 could not perform AC recording unless a current of about 50 mA was applied. The medium of sample 4 was able to perform DC recording when a current of 55 mA was applied, but samples 5, 6, and 7 could not be recorded with a DC magnetic field regardless of the magnitude of the recording current, that is, the applied magnetic field. Samples 8, 9, and 10 required a slightly larger recording magnetic field because the coercive force and saturation magnetic flux density at the recording temperature were larger than those of sample 1, but both AC and DC magnetic fields could be recorded stably.

以上の結果より,ビットの中心部に再生領域21,外周部に熱安定領域22,これらの間に反転制御領域23があると低い電流で直流記録,交流記録共に正しく行えることがわかる。サンプル4,5が交流記録で高い電流を必要としたことは,記録電流を下げるのに反転制御領域23が効果的であることを示している。一方,サンプル5,6が直流記録できなかったことは,最外周部に熱安定領域22の形成することが同じ方向にビットを並べるのに有効であることを示している。また,サンプル6の結果は,反転制御領域23を外周部に形成することが良くないことも示している。サンプル7の結果は,熱安定領域22の効果には,熱安定層の垂直磁気異方性が高出力層の異方性より大きく,熱安定層の飽和磁束密度を高出力層の飽和磁束密度より小さくすることが重要であることを示している。サンプル8,9,10は加熱して記録を行う(熱アシスト記録)ことを想定した高い異方性を示す材料のサンプルでも,熱安定領域22と反転制御領域23を形成することで安定した記録ができることを示している。   From the above results, it can be seen that DC recording and AC recording can be performed correctly with a low current if there is a reproduction area 21 at the center of the bit, a heat stable area 22 at the outer periphery, and an inversion control area 23 between them. The fact that Samples 4 and 5 require a high current for AC recording indicates that the inversion control region 23 is effective in reducing the recording current. On the other hand, the fact that Samples 5 and 6 could not perform direct current recording indicates that the formation of the heat stable region 22 in the outermost peripheral portion is effective for arranging the bits in the same direction. Moreover, the result of the sample 6 also shows that it is not good to form the inversion control region 23 on the outer peripheral portion. The result of sample 7 shows that the effect of the heat stable region 22 is that the perpendicular magnetic anisotropy of the heat stable layer is larger than the anisotropy of the high power layer, and the saturation magnetic flux density of the heat stable layer is the saturation magnetic flux density of the high power layer. It shows that it is important to make it smaller. Samples 8, 9, and 10 are samples of a material exhibiting high anisotropy assuming that recording is performed by heating (thermally assisted recording), and stable recording is achieved by forming the heat stable region 22 and the inversion control region 23. It shows that you can.

次に,記録素子と再生素子のクロストラック方向の幅を変えて複数トラックにわたって交流記録を行い再生信号のエラー率を調べた。結果を図8に示す。サンプル1〜3は,15nm程度の幅の記録再生素子を用いてもほとんど誤りなく記録再生できる。特にトラック方向にのみ反転制御領域23を作製したサンプル1とサンプル3では,17nmの幅の素子を用いても誤りなく記録再生できた。一方,記録ビットの外周部に反転制御領域23があるサンプル6では,幅が広い記録素子では隣接トラックのビットまで反転してしまってエラー率が高く,幅の広い素子が使えないことを示している。また,サンプル8〜10についてもサンプル1と同様の結果が得られた。サンプル4,5については幅の狭いヘッドでは記録磁場が不足することによってエラーレートが急激に低下し評価できなかった。またサンプル7はサンプル6と同様,隣接トラックへの記録に影響されエラー率が低下した。   Next, AC recording was performed over multiple tracks by changing the width of the recording element and the reproducing element in the cross-track direction, and the error rate of the reproduced signal was examined. The results are shown in FIG. Samples 1 to 3 can be recorded and reproduced with almost no error even if a recording and reproducing element having a width of about 15 nm is used. In particular, Sample 1 and Sample 3 in which the inversion control region 23 was produced only in the track direction could be recorded and reproduced without error even when an element having a width of 17 nm was used. On the other hand, Sample 6 with the inversion control region 23 on the outer periphery of the recording bit shows that a wide recording element is inverted up to the bit of the adjacent track and has a high error rate, and a wide element cannot be used. Yes. In addition, the same results as Sample 1 were obtained for Samples 8 to 10. Samples 4 and 5 could not be evaluated because the error rate was drastically decreased due to a short recording magnetic field with a narrow head. In addition, sample 7 was affected by recording on the adjacent track as in sample 6, and the error rate decreased.

本結果は,サンプル1,8,9,10及びサンプル3の構造,つまり反転制御領域23がクロストラック方向になく,ダウントラック方向のみにあると,隣接トラックの記録によるビットが反転してしまう影響を小さくすることができ,より大きな幅の記録素子を用いることができることを示している。   This result shows that when the structure of Samples 1, 8, 9, 10 and Sample 3, that is, the inversion control area 23 is not in the cross track direction but only in the down track direction, the bit caused by the recording of the adjacent track is inverted. This indicates that the recording element with a larger width can be used.

次に,記録素子と再生素子の幅が25nmの磁気ヘッドを用いて,図9に示すように,クロストラック方向の2つのビット列を1つのトラックとして記録再生を試みた。サンプル8,9,10については前記記録再生実験と同様に温度を上げて行った。2つのビット列の中心をトラック中心として,磁気ヘッドをそのトラック中心に位置制御する。このトラッキング制御は,既存の技術を用いて実現することが可能である。記録時には,記録素子の磁界を図9に示すように,磁気ヘッドが流出側の反転制御領域23に来た時に記録用の磁界が印加されるように上列用と下列用ビットを交互に記録するように記録信号を発生させた。再生時には,図9に示すように合計の再生信号が検出されるが,上列及び下列の記録ビットの中心に再生素子が来たときに信号が交互に再生素子に入力されることから,それぞれの列のビットからの再生信号は図中のように分離される。実際に記録再生を行う上では,ビットがどちらの列であるかを考慮する必要はなく,2列のビットを1つのトラックとして考えて記録再生を行うことができる。そこで,2列のビットが1つのトラックとして正しく記録できるかを検証するために,交流記録を行い,エラー誤り率を計算した。その結果を表3に示す。   Next, using a magnetic head having a width of 25 nm between the recording element and the reproducing element, recording / reproduction was attempted using two bit strings in the cross-track direction as one track as shown in FIG. Samples 8, 9, and 10 were heated at the same temperature as in the recording / reproducing experiment. The center of the two bit strings is set as the track center, and the position of the magnetic head is controlled at the track center. This tracking control can be realized using existing technology. At the time of recording, as shown in FIG. 9, the upper row and lower row bits are alternately recorded so that the magnetic field for recording is applied when the magnetic head comes to the inversion control region 23 on the outflow side. A recording signal was generated as follows. At the time of reproduction, the total reproduction signal is detected as shown in FIG. 9, but when the reproduction element comes to the center of the upper and lower row recording bits, the signal is alternately input to the reproduction element. The reproduced signals from the bits in the column are separated as shown in the figure. In actual recording / reproduction, it is not necessary to consider which column the bit is in, and recording / reproduction can be performed by considering two columns of bits as one track. Therefore, in order to verify whether the two rows of bits can be correctly recorded as one track, AC recording was performed and the error error rate was calculated. The results are shown in Table 3.

Figure 2012146362
Figure 2012146362

サンプル1及び3では,反転制御領域23の位置と記録素子からの磁場が良く同期しているので適切な記録電流で記録再生を行うとほとんどエラーが発生しない。一方,サンプル2は反転制御領域23が再生領域21の周囲全体にあるため,隣の列を記録するために印加した磁場によっても磁化反転が起こりうる。このため,わずかにヘッドが位置ずれしただけで記録エラーが発生するためエラー率が増加したと考えられる。同様に,サンプル1,2,3いずれも記録電流を60mAに上げて再生領域21への磁界印加で磁化反転するようになると,わずかに記録ヘッドが位置ずれしただけで記録エラーが発生するためエラー率が大きくなった。また,サンプル4,5,7は反転制御領域23がなく,サンプル6は適切な外周部全体に反転制御領域23があるため,記録できる位置を適切に制御できず2列を同時に記録再生することは困難であった。サンプル1,3のように反転制御領域をクロストラック方向に設けず,ダウントラック方向の再生領域と熱安定領域の間に設けることにより1つ1つのビットの記録できる位置を小さくすることができる。これにより記録ヘッドの位置制御のマージンを増やすことができるため,2列のビットを交互に記録再生が可能であることが示された。サンプル8,9,10は記録電流が30mAでは反転制御領域23を反転できないため,表に記載の電流に上げて測定したところ,サンプル1と同様のエラー率が得られた。一方,記録電流60mAでも再生領域が反転しにくいため,サンプル1に比較してエラー率が小さかった。本方法が,熱アシスト記録方式にも有効であることを示している。以上の検討の結果,サンプル1,8,9,10あるいはサンプル3に示したビット構造の媒体は,クロストラック方向の2つのビット列を1つのトラックとして記録再生に適することが分かった。   In samples 1 and 3, since the position of the inversion control region 23 and the magnetic field from the recording element are well synchronized, almost no error occurs when recording / reproduction is performed with an appropriate recording current. On the other hand, since the reversal control area 23 is entirely around the reproduction area 21 in the sample 2, the magnetization reversal can be caused by the magnetic field applied to record the adjacent column. For this reason, it is considered that the error rate increased because a recording error occurred when the head was slightly displaced. Similarly, when the recording current is increased to 60 mA and the magnetization is reversed by applying a magnetic field to the reproducing area 21, the recording error occurs because the recording head is slightly displaced. The rate has increased. Samples 4, 5, and 7 do not have the reversal control area 23, and sample 6 has the reversal control area 23 over the entire outer periphery, so that the recording position cannot be properly controlled, and two rows can be recorded and reproduced simultaneously. Was difficult. Unlike the samples 1 and 3, the inversion control area is not provided in the cross track direction, but is provided between the reproduction area and the heat stable area in the down track direction, so that the position where each bit can be recorded can be reduced. As a result, the margin for controlling the position of the recording head can be increased, which indicates that two rows of bits can be recorded and reproduced alternately. Samples 8, 9, and 10 cannot reverse the reversal control region 23 when the recording current is 30 mA. Therefore, when the measurement was performed with the currents listed in the table, the same error rate as that of Sample 1 was obtained. On the other hand, since the playback area is not easily reversed even at a recording current of 60 mA, the error rate is smaller than that of Sample 1. This shows that this method is also effective for the heat-assisted recording method. As a result of the above examination, it was found that the medium having the bit structure shown in Samples 1, 8, 9, 10 or 3 is suitable for recording and reproduction with two bit strings in the cross track direction as one track.

10 非磁性基板
11 軟磁性下地層
12 中間層
13 記録層
131 熱安定層
132 高出力層
133 イオン注入部
14 ハードマスク層
141 第一ハードマスク層
142 第二ハードマスク層
15 インプリントレジスト
161 埋戻し充填層
162 保護層
163 潤滑層
21 再生領域
22 熱安定領域
23 反転制御領域
10 Nonmagnetic Substrate 11 Soft Magnetic Underlayer 12 Intermediate Layer 13 Recording Layer 131 Thermal Stabilization Layer 132 High Output Layer 133 Ion Implantation Section 14 Hard Mask Layer 141 First Hard Mask Layer 142 Second Hard Mask Layer 15 Imprint Resist 161 Backfill Packing layer 162 Protective layer 163 Lubrication layer 21 Reproduction region 22 Thermal stability region 23 Inversion control region

Claims (8)

平坦な非磁性基板上に垂直磁気記録層が形成されている磁気記録媒体において,
前記垂直磁気記録層は記録ビット単位に分離され,前記記録ビットの列が隣の列とは1/2ビット分の間隔だけずらして同心円状に配列されており,
前記記録ビットは,第1の磁性層の上に第2の磁性層が積層された積層構造を有し,底面の面積より上面の面積が小さい先細り形状を有し,前記記録ビットの最外周部は前記第1の磁性層からなり,中心部は前記第1の磁性層と前記第2の磁性層を有し,前記最外周部と前記中心部の間に反転制御領域が設けられ,
前記第2の磁性層の飽和磁束密度をMsa,垂直磁気異方性をKuaとし,前記第1の磁性層の飽和磁束密度をMsb,垂直磁気異方性をKubとし,前記反転制御領域の飽和磁束密度をMsc,垂直磁気異方性をKucとするとき,次の関係を満たすことを特徴とする垂直磁気記録媒体。
Msa>Msb,Kua<Kub,Msc<Msa,Kuc<Kua
In a magnetic recording medium in which a perpendicular magnetic recording layer is formed on a flat nonmagnetic substrate,
The perpendicular magnetic recording layer is separated in units of recording bits, and the recording bit columns are arranged concentrically with an interval of ½ bit from the adjacent column,
The recording bit has a laminated structure in which a second magnetic layer is laminated on a first magnetic layer, has a tapered shape in which the area of the upper surface is smaller than the area of the bottom surface, and the outermost peripheral portion of the recording bit Is composed of the first magnetic layer, the central portion includes the first magnetic layer and the second magnetic layer, and an inversion control region is provided between the outermost peripheral portion and the central portion,
The saturation magnetic flux density of the second magnetic layer is Msa, the perpendicular magnetic anisotropy is Kua, the saturation magnetic flux density of the first magnetic layer is Msb, the perpendicular magnetic anisotropy is Kub, and the inversion control region is saturated. A perpendicular magnetic recording medium characterized by satisfying the following relationship when the magnetic flux density is Msc and the perpendicular magnetic anisotropy is Kuc.
Msa> Msb, Kua <Kub, Msc <Msa, Kuc <Kua
請求項1記載の垂直磁気記録媒体において,前記反転制御領域が磁気ヘッドの流入側と流出側の2か所にあることを特徴とする垂直磁気記録媒体。   2. The perpendicular magnetic recording medium according to claim 1, wherein the inversion control regions are provided at two locations on the inflow side and the outflow side of the magnetic head. 請求項1記載の垂直磁気記録媒体において,前記反転制御領域が磁気ヘッドの流出側の1か所にあることを特徴とする垂直磁気記録媒体。   2. The perpendicular magnetic recording medium according to claim 1, wherein the inversion control region is at one place on the outflow side of the magnetic head. 請求項1〜3のいずれか1項記載の垂直磁気記録媒体において,前記第2の磁性層は前記第1の磁性層よりCoとFeの合計の組成比が大きいことを特徴とする垂直磁気記録媒体。   4. The perpendicular magnetic recording medium according to claim 1, wherein the second magnetic layer has a larger total composition ratio of Co and Fe than the first magnetic layer. Medium. 請求項1〜3のいずれか1項記載の垂直磁気記録媒体において,前記第2の磁性層中の前記反転制御領域は前記第2の磁性層の中心部よりCoとFeの合計の組成比が少ないことを特徴とする垂直磁気記録媒体。   4. The perpendicular magnetic recording medium according to claim 1, wherein the inversion control region in the second magnetic layer has a total composition ratio of Co and Fe from a central portion of the second magnetic layer. A perpendicular magnetic recording medium characterized by a small amount. 記録ビット単位に分離された磁気記録層を有し,前記記録ビットの列が隣の列とは1/2ビット分の間隔だけずらして同心円状に配列されている垂直磁気記録媒体の製造方法において,
平坦な非磁性基板上に第1の飽和磁束密度及び第1の垂直磁気異方性を有する第1の磁性層を形成する工程と,
前記第1の磁性層の上に前記第1の飽和磁束密度より大きな第2の飽和磁束密度及び前記第1の垂直磁気異方性より小さな第2の垂直磁気異方性を有する第2の磁性層を形成する工程と,
前記第2の磁性層の上に,トラック方向のビット間の溝幅を他の部分の溝幅より狭くしたビットパターンマスクを形成する工程と,
前記マスクを用いて前記第2の磁性層にイオン注入し,前記マスクの下方に一部入り込んだイオン注入部を形成する工程と,
サイドエッチング効果の大きいエッチングにより前記第2の磁性層をエッチングし,前記トラック方向のビット間以外の部分に形成されたイオン注入部を除去する工程と,
直進性のよいエッチングにより,前記トラック方向のビット間に形成されたイオン注入部のうち前記マスクの下方に位置する部分を残留させて前記第2の磁性層をエッチングする工程と
を有することを特徴とする垂直磁気記録媒体の製造方法。
In a method of manufacturing a perpendicular magnetic recording medium having a magnetic recording layer separated in units of recording bits, wherein the recording bit columns are arranged concentrically at a distance of 1/2 bit from the adjacent column ,
Forming a first magnetic layer having a first saturation magnetic flux density and a first perpendicular magnetic anisotropy on a flat nonmagnetic substrate;
A second magnetism having a second saturation magnetic flux density larger than the first saturation magnetic flux density and a second perpendicular magnetic anisotropy smaller than the first perpendicular magnetic anisotropy on the first magnetic layer. Forming a layer;
Forming a bit pattern mask on the second magnetic layer in which the groove width between bits in the track direction is narrower than the groove width of other portions;
Ion-implanting into the second magnetic layer using the mask, and forming an ion-implanted portion that partially enters under the mask;
Etching the second magnetic layer by etching having a large side etching effect, and removing an ion implantation portion formed in a portion other than between the bits in the track direction;
Etching the second magnetic layer by leaving a portion located below the mask among the ion implanted portions formed between the bits in the track direction by etching with good straightness. A method for manufacturing a perpendicular magnetic recording medium.
記録ビット単位に分離された磁気記録層を有し,前記記録ビットの列が隣の列とは1/2ビット分の間隔だけずらして同心円状に配列されている垂直磁気記録媒体に磁気ヘッドで記録する磁気記録方法において,
前記記録ビットは,第1の磁性層の上に第2の磁性層が積層された積層構造を有し,底面の面積より上面の面積が小さい先細り形状を有し,前記記録ビットの最外周部は前記第1の磁性層からなり,中心部は前記第1の磁性層と前記第2の磁性層を有し,前記最外周部と前記中心部の間に反転制御領域が磁気ヘッドの流入側と流出側の2か所あるいは磁気ヘッドの流出側の1か所に設けられ,前記第2の磁性層の飽和磁束密度をMsa,垂直磁気異方性をKuaとし,前記第1の磁性層の飽和磁束密度をMsb,垂直磁気異方性をKubとし,前記反転制御領域の飽和磁束密度をMsc,垂直磁気異方性をKucとするとき,次の関係
Msa>Msb,Kua<Kub,Msc<Msa,Kuc<Kua
を満たし,
前記同心円状に配列された2列の記録ビット列を跨ぐ素子幅を有する磁気ヘッドを前記2列の記録ビット列の中心に位置制御する工程と,
前記磁気ヘッドが前記記録ビットの前記流出側の反転制御領域を通過するときに当該記録ビットに記録する工程とを有し,
前記2列の記録ビット列に対して交互に記録することを特徴とする磁気記録方法。
A magnetic head is provided on a perpendicular magnetic recording medium having a magnetic recording layer separated in units of recording bits and in which the recording bit columns are arranged concentrically with an interval of 1/2 bit from the adjacent column. In the magnetic recording method for recording,
The recording bit has a laminated structure in which a second magnetic layer is laminated on a first magnetic layer, has a tapered shape in which the area of the upper surface is smaller than the area of the bottom surface, and the outermost peripheral portion of the recording bit Is composed of the first magnetic layer, the central portion has the first magnetic layer and the second magnetic layer, and the inversion control region is located between the outermost peripheral portion and the central portion on the inflow side of the magnetic head. The second magnetic layer has a saturation magnetic flux density Msa and perpendicular magnetic anisotropy Kua, and is provided at two locations on the outflow side or one on the outflow side of the magnetic head. When the saturation magnetic flux density is Msb, the perpendicular magnetic anisotropy is Kub, the saturation magnetic flux density of the inversion control region is Msc, and the perpendicular magnetic anisotropy is Kuc, the following relations Msa> Msb, Kua <Kub, Msc < Msa, Kuc <Kua
The filling,
Controlling the position of a magnetic head having an element width straddling the two recording bit strings arranged concentrically at the center of the two recording bit strings;
Recording the recording bit when the magnetic head passes through the inversion control area on the outflow side of the recording bit,
2. A magnetic recording method, wherein recording is performed alternately on the two recording bit strings.
記録ビット単位に分離された磁気記録層を有し,前記記録ビットの列が隣の列とは1/2ビット分の間隔だけずらして同心円状に配列されている垂直磁気記録媒体に記録されている情報を磁気ヘッドによって再生する磁気再生方法において,
前記記録ビットは,第1の磁性層の上に第2の磁性層が積層された積層構造を有し,底面の面積より上面の面積が小さい先細り形状を有し,前記記録ビットの最外周部は前記第1の磁性層からなり,中心部は前記第1の磁性層と前記第2の磁性層を有し,前記最外周部と前記中心部の間に反転制御領域が磁気ヘッドの流入側と流出側の2か所あるいは磁気ヘッドの流出側の1か所に設けられ,前記第2の磁性層の飽和磁束密度をMsa,垂直磁気異方性をKuaとし,前記第1の磁性層の飽和磁束密度をMsb,垂直磁気異方性をKubとし,前記反転制御領域の飽和磁束密度をMsc,垂直磁気異方性をKucとするとき,次の関係
Msa>Msb,Kua<Kub,Msc<Msa,Kuc<Kua
を満たし,
前記同心円状に配列された2列の記録ビット列を跨ぐ素子幅を有する磁気ヘッドを前記2列の記録ビット列の中心に位置制御する工程と,
前記磁気ヘッドが前記記録ビットの前記中心部を通過するときに当該記録ビットの情報を読み取る工程とを有し,
前記2列の記録ビット列に対して交互に読み取りを行うことを特徴とする磁気再生方法。
A magnetic recording layer separated in units of recording bits, wherein the recording bit sequence is recorded on a perpendicular magnetic recording medium arranged concentrically at a distance of 1/2 bit from the adjacent sequence; In a magnetic reproducing method for reproducing information stored by a magnetic head,
The recording bit has a laminated structure in which a second magnetic layer is laminated on a first magnetic layer, has a tapered shape in which the area of the upper surface is smaller than the area of the bottom surface, and the outermost peripheral portion of the recording bit Is composed of the first magnetic layer, the central portion has the first magnetic layer and the second magnetic layer, and the inversion control region is located between the outermost peripheral portion and the central portion on the inflow side of the magnetic head. The second magnetic layer has a saturation magnetic flux density Msa and perpendicular magnetic anisotropy Kua, and is provided at two locations on the outflow side or one on the outflow side of the magnetic head. When the saturation magnetic flux density is Msb, the perpendicular magnetic anisotropy is Kub, the saturation magnetic flux density of the inversion control region is Msc, and the perpendicular magnetic anisotropy is Kuc, the following relations Msa> Msb, Kua <Kub, Msc < Msa, Kuc <Kua
The filling,
Controlling the position of a magnetic head having an element width straddling the two recording bit strings arranged concentrically at the center of the two recording bit strings;
Reading the information of the recording bit when the magnetic head passes through the central portion of the recording bit,
A magnetic reproducing method, wherein the two recorded bit strings are alternately read.
JP2011003974A 2011-01-12 2011-01-12 Perpendicular magnetic recording medium, manufacturing method therefor, and magnetic recording/reproducing method Pending JP2012146362A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011003974A JP2012146362A (en) 2011-01-12 2011-01-12 Perpendicular magnetic recording medium, manufacturing method therefor, and magnetic recording/reproducing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011003974A JP2012146362A (en) 2011-01-12 2011-01-12 Perpendicular magnetic recording medium, manufacturing method therefor, and magnetic recording/reproducing method

Publications (1)

Publication Number Publication Date
JP2012146362A true JP2012146362A (en) 2012-08-02

Family

ID=46789797

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011003974A Pending JP2012146362A (en) 2011-01-12 2011-01-12 Perpendicular magnetic recording medium, manufacturing method therefor, and magnetic recording/reproducing method

Country Status (1)

Country Link
JP (1) JP2012146362A (en)

Similar Documents

Publication Publication Date Title
US7158340B2 (en) Magnetic recording and reproducing apparatus and magnetic recording medium
US20060040140A1 (en) Magnetic recording medium and magnetic recording/reproducing apparatus
US7057834B2 (en) Master information carrier and method for manufacturing magnetic disc using the same
JP2006127681A (en) Magnetic recording medium and its manufacturing method, and magnetic recording and reproducing device
JP2005243186A (en) Magnetic recording and reproducing device, and magnetic recording medium
JP2008077772A (en) Perpendicular magnetic recording medium, its manufacturing method, and magnetic recording device
JP3796255B2 (en) Magnetic recording / reproducing device
JP5415745B2 (en) Magnetic storage medium manufacturing method, magnetic storage medium, and information storage device
JP2008016102A (en) Magnetic recording medium and magnetic recording and reproducing device
US11430469B2 (en) Dual writer for advanced magnetic recording
JP2006172634A (en) Magnetic recording/reproducing device, magnetic recording medium, and magnetic head
US11264052B1 (en) Area density capacity improvement with negative anisotropic magnetic material trailing shield notch
US11295768B1 (en) Writer with laterally graded spin layer MsT
JP2012059329A (en) Magnetic recorder
JP2012146362A (en) Perpendicular magnetic recording medium, manufacturing method therefor, and magnetic recording/reproducing method
JP3796256B2 (en) Magnetic recording / reproducing device
US8169728B2 (en) Magnetic medium having an artificial pattern structure using a gradient of a magnetization reversal field and a method of use thereof
JP4099180B2 (en) Magnetic recording / reproducing device
US20090311558A1 (en) Magnetic recording medium and manufacturing method
JP4099182B2 (en) Magnetic recording / reproducing device
JP4082403B2 (en) Master information carrier, manufacturing method thereof, and manufacturing method of magnetic recording medium
US20110205663A1 (en) Method of producing magnetic storage medium, magnetic storage medium and information storage device
Aoyama et al. Reproduced dot image of nitrogen ion implanted Co/Pd bit patterned media with flying head
JP3679765B2 (en) Method for manufacturing magnetic recording medium
JP2009015945A (en) Magnetic disk and magnetic disk unit