JP2012145430A - Method and apparatus for visualizing density gradient - Google Patents

Method and apparatus for visualizing density gradient Download PDF

Info

Publication number
JP2012145430A
JP2012145430A JP2011003736A JP2011003736A JP2012145430A JP 2012145430 A JP2012145430 A JP 2012145430A JP 2011003736 A JP2011003736 A JP 2011003736A JP 2011003736 A JP2011003736 A JP 2011003736A JP 2012145430 A JP2012145430 A JP 2012145430A
Authority
JP
Japan
Prior art keywords
image
density gradient
visualizing
run
measurement
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2011003736A
Other languages
Japanese (ja)
Other versions
JP5800174B2 (en
Inventor
Junichi Akatsuka
純一 赤塚
Shinji Nagai
伸治 永井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Aerospace Exploration Agency JAXA
Original Assignee
Japan Aerospace Exploration Agency JAXA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Aerospace Exploration Agency JAXA filed Critical Japan Aerospace Exploration Agency JAXA
Priority to JP2011003736A priority Critical patent/JP5800174B2/en
Publication of JP2012145430A publication Critical patent/JP2012145430A/en
Application granted granted Critical
Publication of JP5800174B2 publication Critical patent/JP5800174B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

PROBLEM TO BE SOLVED: To provide a method for visualizing a density gradient of an air current by simple image operation without requiring a concave mirror and a convex lens.SOLUTION: In the method for visualizing the density gradient, a background image is arranged on the back of a measurement area, a digital camera is arranged on the front side, and result image obtained by calculating a difference in each pixel and a density gradient from two images, i.e. a reference image obtained by photographing the measurement area in a state of no density distribution and a measurement image obtained by imaging the measurement area in a state of generating density distribution is used.

Description

本発明は、気流の密度勾配を可視化する方法とそれを実施する装置に関する。   The present invention relates to a method for visualizing a density gradient of an air flow and an apparatus for implementing the method.

気流の計測や風洞試験において、流れの可視化は現象の把握に極めて有効な手法であり、現在では必要不可欠とされる技術である。従来、密度勾配の可視化には、シュリーレン法が用いられてきた。(例えば、非特許文献1の174頁参照。)また関連する手法として、密度勾配そのものではなく、密度の擾乱状態を可視化する方法として、モアレ干渉法が、密度の等位線を可視化する方法として、マッハ・ツェンダー法が知られているところである。近年では、デジタル画像を用いて密度勾配を定量計測する手法として、例えば、非特許文献2に示されるような Background oriented schlieren法(以下BOS法と呼ぶ。)が研究されている。   In airflow measurement and wind tunnel testing, flow visualization is an extremely effective technique for grasping phenomena, and is now an indispensable technique. Conventionally, the Schlieren method has been used to visualize the density gradient. (For example, see page 174 of Non-Patent Document 1.) As a related method, as a method of visualizing the density disturbance state, not the density gradient itself, the moire interferometry is a method of visualizing the density contour line. The Mach-Zehnder method is known. In recent years, as a method for quantitatively measuring a density gradient using a digital image, for example, the Background oriented schlieren method (hereinafter referred to as BOS method) as shown in Non-Patent Document 2 has been studied.

従来のシュリーレン法では密度勾配を持つ対象の流れ場の現象を可視化する場合、図8のような複雑な光学装置を必要とする。すなわち、測定部に均一な平行光線を照射する必要があるため、光源とコンデンサレンズ、ピンホール、更には測定部の寸法に見合う大きさの凹面鏡や凸レンズを必要とし、設置するための場所、撮影方向に制約がある。また光軸調整にも技術を要する等の問題があった。
また、従来のモアレ干渉法、マッハ・ツェンダー法では参照光路が必要となる。例えば非特許文献3に見られるように、これは従来のシュリーレン法以上に設置の場所、撮影方向に制約が課される。さらに空間分解能は密度等位線の間隔にとどまり、等位線の間は補間に頼らざるを得ないという問題があった。
また、BOS法では、密度勾配を相互相関法を用いて定量化できるが、非特許文献4に見られるように相互相関処理は計算負荷が大きく、定性的な可視化としての用途に不向きである。またエラー(誤ベクトル)の除去を行う処理が不可欠であるといった問題を伴っていた。
The conventional schlieren method requires a complicated optical device as shown in FIG. 8 in order to visualize the phenomenon of the flow field of a target having a density gradient. In other words, since it is necessary to irradiate the measurement unit with uniform parallel light, a light source, a condenser lens, a pinhole, and a concave mirror or convex lens of a size that matches the dimensions of the measurement unit are required. There are restrictions on the direction. In addition, there is a problem that a technique is required for adjusting the optical axis.
In addition, the conventional moire interferometry method and the Mach-Zehnder method require a reference optical path. For example, as can be seen in Non-Patent Document 3, this places restrictions on the installation location and shooting direction more than the conventional Schlieren method. Furthermore, there is a problem that the spatial resolution is limited to the interval between density contour lines, and interpolation between the contour lines must be relied upon.
In the BOS method, the density gradient can be quantified using the cross-correlation method. However, as seen in Non-Patent Document 4, the cross-correlation processing has a large calculation load and is not suitable for use as a qualitative visualization. In addition, there is a problem that processing for removing errors (false vectors) is indispensable.

「圧縮性流体の力学」 生井武文、松尾一泰 著 理工学社 2001年4月発行"Mechanics of Compressible Fluids" Takefumi Ikui, Kazuyasu Matsuo, Science and Engineering Company, April 2001 "Principle and applications of the background of riented schlieren (BOS) method" H. Richard and M. Raffel Measurement Science and Technology Vol.12, p.l576-1585, (2001)"Principle and applications of the background of riented schlieren (BOS) method" H. Richard and M. Raffel Measurement Science and Technology Vol.12, p.l576-1585, (2001) 「モアレ干渉法による自然対流温度場の計測」 石原勲他 機論B63-614(1997)"Measurement of natural convection temperature field by moire interferometry" Isao Ishihara et al. Theory B63-614 (1997) 「PIVハンドブック」 可視化情報学会編 森北出版 2002年7月発行“PIV Handbook” edited by Visualization Information Society Morikita Publishing July 2002

本発明の課題は、凹面鏡や凸レンズを必要せず、平易な画像演算によって気流の密度勾配の可視化を可能にする手法を提供することにある。   An object of the present invention is to provide a technique that does not require a concave mirror or a convex lens and makes it possible to visualize the density gradient of airflow by simple image calculation.

本発明の密度勾配を可視化する方法は、計測領域の背後に背景画像を、前方側にデジタルカメラを配置し、密度分布のない状態で計測領域を撮影した参照画像と、密度分布が発生した状態で撮影した計測画像の2つの画像から画素毎の差分と密度勾配を演算することによって得た結果画像を用いるものとした。
そして、結果画像を得る前記の演算は次式によって得られるものとした。
R_result(i,j)={R_run(i,j)−R_ref(i,j)}×∠R_run(i,j)+Offset
ここでR(i,j)はi、j番地の画素の輝度値を表し、添え字refは参照画像、runは計測画像、resultは結果の画像を表している。上式中の∠R_run(i,j)は、密度変化の方向を与える項であり、画素(i,j)点周りの1次微分値を用いる。
更に、例えば今、i方向の密度勾配を可視化するため、縞がi方向にあるとすると、最も平易な演算法として、前記の密度変化の方向を与える項∠R_run(i,j)は、次式によって得られるものとした。
∠R_run(i,j)=[{R_run(i+1,j)−R_run(i-1,j)}/2
+{R_ref(i+1,j)−R_ref(i-1,j)}/2]/2
更に、得られた結果画像に対して移動平均処理でスムージングを施すようにした。
The method of visualizing the density gradient according to the present invention includes a background image behind the measurement region, a digital camera placed in front, a reference image obtained by photographing the measurement region without the density distribution, and a state in which the density distribution has occurred. The result image obtained by calculating the difference and density gradient for each pixel from the two images of the measurement image photographed in FIG.
And the said calculation which obtains a result image shall be obtained by following Formula.
R_result (i, j) = {R_run (i, j) −R_ref (i, j)} × ∠R_run (i, j) + Offset
Here, R (i, j) represents the luminance value of the pixel at i and j, the subscript ref represents the reference image, run represents the measurement image, and result represents the resulting image. ∠R_run (i, j) in the above equation is a term that gives the direction of density change, and uses a first-order differential value around the pixel (i, j) point.
Further, for example, to visualize the density gradient in the i direction now, if the stripe is in the i direction, the term ∠R_run (i, j) that gives the direction of density change is It was obtained by the formula.
∠R_run (i, j) = [{R_run (i + 1, j) −R_run (i−1, j)} / 2
+ {R_ref (i + 1, j) -R_ref (i-1, j)} / 2] / 2
Furthermore, smoothing is performed on the obtained result image by moving average processing.

本発明の密度勾配を可視化する装置は、計測領域の背後に配置する背景画像と、計測領域の前方側に配置するデジタルカメラと、密度分布のない状態で計測領域を撮影した参照画像と、密度分布が発生した状態での計測画像の2つの画像から画素毎の差分と密度勾配を演算する手段とからなるものとした。
そして、前記背景画像には連続的な輝度分布の縞模様を用いるものとした。
また、一つの形態として前記演算手段はデジタルカメラのボディ内に設置する形態を採用した。
本発明の密度勾配を可視化する装置は、その計測領域は風洞内であって、該領域は背景画像側の後方と前方カメラ側は透明な窓部とされている構成を採用した。
An apparatus for visualizing a density gradient according to the present invention includes a background image arranged behind a measurement area, a digital camera arranged in front of the measurement area, a reference image obtained by photographing the measurement area without a density distribution, and a density It is assumed that it comprises means for calculating a difference and a density gradient for each pixel from two images of the measurement image in a state where the distribution is generated.
The background image uses a striped pattern with a continuous luminance distribution.
As one form, the calculation means is installed in the body of a digital camera.
The apparatus for visualizing the density gradient of the present invention employs a configuration in which the measurement area is in the wind tunnel, and the area is a rear window on the background image side and a transparent window on the front camera side.

本発明では、従来のシュリーレン法で不可欠な平行光線を作るための凹面鏡等による大がかりな光学系を必要としないシンプルな装置構成で実施できる。その結果、凹面鏡等の光学系の設置に依存する撮影方向の制約がなく、あらゆる方向からの可視化が可能である。このことによって従来、被写体の影になり可視化することができなかった部分の可視化が容易になる。更に、室内外等適用場所を問わない可搬性を持った計測法である。
また従来のBOS法で用いる直接相互相関法やフーリエ変換によるクロススペクトル計算といった複雑な演算や、それに伴って統計的に発生するエラーの除去を必要としない。
演算方法は式(1)に基づく単純な画像処理であるため、撮像装置内に組み込み、単体で可視化が可能な撮像装置を製品化することもできる。また光学的装置の設置調整も従来技術に比べて簡単に済むという効果を奏する。
The present invention can be implemented with a simple apparatus configuration that does not require a large-scale optical system such as a concave mirror for producing a collimated beam indispensable in the conventional Schlieren method. As a result, there is no restriction on the photographing direction depending on the installation of an optical system such as a concave mirror, and visualization from any direction is possible. This facilitates visualization of a portion that has conventionally become a shadow of the subject and could not be visualized. Furthermore, it is a measurement method having portability regardless of the application place such as indoors and outdoors.
In addition, it does not require complicated operations such as the direct cross-correlation method used in the conventional BOS method and cross spectrum calculation by Fourier transform, and the removal of errors that occur statistically.
Since the calculation method is simple image processing based on Equation (1), an imaging device that can be incorporated into the imaging device and visualized alone can be commercialized. In addition, there is an effect that the installation adjustment of the optical device can be simplified as compared with the prior art.

本発明の1実施例を示す図である。It is a figure which shows one Example of this invention. 本発明で使用する背景画像の1例を示す図である。It is a figure which shows an example of the background image used by this invention. 本発明の1実施例でのA参照画像と得られたB計測画像の例である。It is an example of A reference image in one Example of this invention, and B measurement image obtained. 本発明の手法で得られたA密度勾配の可視化画像とそれをB移動平均処理を施した画像である。It is the visualization image of A density gradient obtained by the method of the present invention, and an image obtained by subjecting it to B moving average processing. 本発明の手法を風洞装置に適用した形態(実施例2)を示す図である。It is a figure which shows the form (Example 2) which applied the method of this invention to the wind tunnel apparatus. Aは本発明の実施例2での背景画像を撮影した画像、Bは超音波風洞試験における計測画像、Cは演算結果の可視化像である。A is an image obtained by taking a background image in Example 2 of the present invention, B is a measurement image in the ultrasonic wind tunnel test, and C is a visualized image of the calculation result. 本発明の画像と従来のシュリーレン法画像との対比させた図である。It is the figure which contrasted the image of this invention and the conventional schlieren method image. 従来のシュリーレン装置の構成を説明する図である。It is a figure explaining the structure of the conventional schlieren apparatus.

以下、本発明の実施の形態について、詳細に説明する。
可視化したい密度勾配の方向に分布を持つ背景画像を用意する。例えば、モノクロカメラを用いて鉛直方向の密度勾配を可視化しようとする場合、図2に示すような縞状に輝度値分布を持つ画像を印刷したスクリーンを準備する。密度勾配を持つ対象の流れ場(測定領域)1、図1に示す例ではバナーの炎による高温雰囲気領域を挟んで、背景画像(スクリーン)2に対して反対側に撮影用のデジタルカメラまたはデジタルビデオカメラ3を設置する。本発明では画像情報取得のための装置は以上の構成で足りる。カメラ3と対象と背景2の位置関係は、従来のBOS法と同じ位置関係で最適値を決める。この際、想定される縞の移動量より、背景2の縞の間隔を大きくしておく。流れ場を生成する前に、予め背景画像2を参照画像として取得しておく。次いで流れ場1を生成し、参照画像2の取得と同様に計測画像を取得する。この計測画像では、発生した密度勾配によって光は屈折し、歪んだ縞の画像となってカメラ3に撮像される。
次いで、得られた計測画像と参照画像に対して以下の演算を行う。この演算は特殊な装置を必要とせず汎用のパーソナルコンピュータで行うことが可能であり、デジタルカメラのボディ内に内蔵させる形態も可能である。次式(1)はi、j番地の画素の計測画像と参照画像との差分とその密度変化の方向を示すものである。
R_result(i,j)={R_run(i,j)−R_ref(i,j)}×∠R_run(i,j)+Offset ………… (1)
ここでR(i,j)はi、j番地の画素の輝度値を表し、添え字refは参照画像、runは計測画像、resultは結果の画像を表している。式(1)中の∠R_run(i,j)は、密度変化の方向を与える項であり、(i,j)点周りの1次微分値を用いる。例えば今、i方向の密度勾配を可視化するため、縞がi方向にあるとすると、最も平易な演算法として、計測画像と参照画像の(i,j)点周りの空間差分の平均は次式(2)
∠R_run(i,j)=[{R_run(i+1,j)−R_run(i-1,j)}/2
+{R_ref(i+1,j)−R_ref(i-1,j)}/2]/2 ………… (2)
を用いることができる。
Hereinafter, embodiments of the present invention will be described in detail.
A background image having a distribution in the direction of the density gradient to be visualized is prepared. For example, when a density gradient in the vertical direction is to be visualized using a monochrome camera, a screen on which an image having a luminance value distribution in stripes as shown in FIG. 2 is prepared. Flow field (measurement region) 1 of a target having a density gradient, in the example shown in FIG. 1, a digital camera or digital camera for photographing on the opposite side of the background image (screen) 2 with a high-temperature atmosphere region caused by a banner flame A video camera 3 is installed. In the present invention, the above-described configuration is sufficient for an apparatus for acquiring image information. As for the positional relationship between the camera 3, the object, and the background 2, the optimum value is determined by the same positional relationship as in the conventional BOS method. At this time, the distance between the stripes of the background 2 is set larger than the assumed stripe movement amount. Prior to generating the flow field, the background image 2 is acquired in advance as a reference image. Next, the flow field 1 is generated, and the measurement image is acquired in the same manner as the acquisition of the reference image 2. In this measurement image, light is refracted by the generated density gradient and is captured by the camera 3 as a distorted fringe image.
Next, the following calculation is performed on the obtained measurement image and reference image. This calculation can be performed by a general-purpose personal computer without requiring a special device, and can be incorporated in the body of the digital camera. The following equation (1) shows the difference between the measurement image of the pixel at i and j and the reference image and the direction of density change.
R_result (i, j) = {R_run (i, j) −R_ref (i, j)} × ∠R_run (i, j) + Offset (1)
Here, R (i, j) represents the luminance value of the pixel at i and j, the subscript ref represents the reference image, run represents the measurement image, and result represents the resulting image. ∠R_run (i, j) in equation (1) is a term that gives the direction of density change, and uses a first-order differential value around point (i, j). For example, to visualize the density gradient in the i direction, assuming that the fringes are in the i direction, the average of the spatial differences around the (i, j) points of the measurement image and the reference image is the following simplest calculation method: (2)
∠R_run (i, j) = [{R_run (i + 1, j) −R_run (i−1, j)} / 2
+ {R_ref (i + 1, j) −R_ref (i-1, j)} / 2] / 2 ………… (2)
Can be used.

式(2)の作用により、式(1)の第1項は、密度の変化があった場所について、その方向と変化量に従った輝度値を与える。末尾のOffset項は、変化のない点の輝度値を与えるために用いる付与項である。モノクロ8ビットの場合、付与項の値をグレースケールの中間値である128とすると、従来のシュリーレン法のように、変化のない場合は灰、変化の方向に従って白または黒に変化する画像が得ることができる。カラー画像を用いる場合は、RGB値それぞれについて同様の演算を行えばよい。   Due to the action of the expression (2), the first term of the expression (1) gives the luminance value according to the direction and the change amount for the place where the density has changed. The offset term at the end is an addition term used to give a luminance value at a point where there is no change. In the case of monochrome 8-bit, if the value of the grant term is 128, which is the intermediate value of gray scale, an image that changes to gray or white or black according to the direction of change is obtained as in the conventional Schlieren method. be able to. When a color image is used, the same calculation may be performed for each RGB value.

温められた気流1の可視化の実施例を説明する。図1のようにデジタルカメラ3、背景画像2、ガスバーナー4を設置する。前記背景画像2はアクリルフレームに取付けられている。鉛直方向の密度勾配を得るために背景画像は図2に示す連続的な輝度分布の縞模様を用いた。前述したように従来のシュリーレン法ではこの現象を可視化する場合、図8のような複雑な光学装置を必要としていた。しかし、本発明ではこのような複雑な光学系は一切必要がなく、測定領域(温められた気流場)1の背後に背景画像2を設置するだけで前方所望角からデジタルカメラ3によって該測定領域を撮影すればよい。まず、ガスバーナー4を点火させない時点で図3Aに示す参照画像を取得し、ガスバーナーを点火後、図3Bに示す計測画像を取得する。取得したこの2つの画像情報から式(1)にしたがって画像処理をし、各(i,j)点についてR_result(i,j)を演算し、演算結果の合成画像として図4Aが得られる。この演算は図示していないパーソナルコンピュータを用いて実行する。この図4Aにおいては画像上向きに正の密度勾配がある場所は黒方向、負の密度勾配がある場合は白方向で階調化し可視化されている。高い解像度の撮像機材を用いると、図4Bに示すよう補間のために移動平均処理を行った場合、滑らかな自然な画像が十分な解像度でシュリーレン写真として得られることが分かる。   An example of visualization of the warmed airflow 1 will be described. As shown in FIG. 1, a digital camera 3, a background image 2, and a gas burner 4 are installed. The background image 2 is attached to an acrylic frame. In order to obtain the density gradient in the vertical direction, the background image used a striped pattern of continuous luminance distribution shown in FIG. As described above, the conventional schlieren method requires a complicated optical device as shown in FIG. 8 to visualize this phenomenon. However, in the present invention, such a complicated optical system is not required at all, and the measurement area is measured by the digital camera 3 from the desired front angle only by placing the background image 2 behind the measurement area (warmed airflow field) 1. Can be taken. First, when the gas burner 4 is not ignited, the reference image shown in FIG. 3A is acquired. After the gas burner is ignited, the measurement image shown in FIG. 3B is acquired. Image processing is performed from the acquired two pieces of image information according to Expression (1), R_result (i, j) is calculated for each (i, j) point, and FIG. 4A is obtained as a composite image of the calculation results. This calculation is executed using a personal computer (not shown). In FIG. 4A, a place where there is a positive density gradient upward in the image is grayed and visualized in the black direction, and if there is a negative density gradient, the gradation is visualized in the white direction. It can be seen that when a high-resolution imaging device is used, a smooth natural image can be obtained as a schlieren photograph with sufficient resolution when the moving average processing is performed for interpolation as shown in FIG. 4B.

次に本発明の手法を超音速風洞試験における密度勾配の可視化に適用した実施例を説明する。図5のように供試体5を風洞6内の測定領域1内の設置し、その背後に背景画像2、前方に風洞にデジタルカメラ3を設置する。風洞6に流す気流はM=3.0の超音速流れであり、流れの中では円錐の供試体5周りには、衝撃波による圧縮領域と、膨張波による膨張領域が生じる。背景画像は図6Aに示す縞模様を用いた。気流を発生させる前に参照画像を取得し、気流を発生させた後、図6Bに示す計測画像を取得する。先の実施例と同様に各(i,j)点についてR_result(i,j)を演算し、演算結果の合成画像として式(1)にしたがって画像処理をし、結果の画像として図6Cを得た。画像では、圧縮領域が黒色に、膨張領域が白く可視化されている。   Next, an embodiment in which the method of the present invention is applied to visualization of density gradient in a supersonic wind tunnel test will be described. As shown in FIG. 5, the specimen 5 is installed in the measurement region 1 in the wind tunnel 6, the background image 2 is placed behind it, and the digital camera 3 is placed in the wind tunnel ahead. The airflow flowing in the wind tunnel 6 is a supersonic flow of M = 3.0, and in the flow, a compression region due to a shock wave and an expansion region due to an expansion wave are generated around the conical specimen 5. The background image used the striped pattern shown in FIG. 6A. A reference image is acquired before the airflow is generated, and the measurement image shown in FIG. 6B is acquired after the airflow is generated. As in the previous embodiment, R_result (i, j) is calculated for each (i, j) point, and image processing is performed according to Equation (1) as a composite image of the calculation result, and FIG. 6C is obtained as a result image. It was. In the image, the compression area is visualized as black and the expansion area is visualized as white.

図7に本発明による可視化画像を従来のシュリーレン画像と比較して示す。上側画像が本発明による画像で、下側画像が従来のシュリーレン画像である。図5に見られるように本発明は、設置が容易かつ平演算も平易である上、従来のシュリーレン法と同等の画像を得ることができる。図7では上側の本発明による画像の撮像感度が下側の従来のシュリーレン画像よりよく、その結果、衝撃波による圧縮領域と、膨張波による膨張領域がより鮮明に得られている。   FIG. 7 shows a visualized image according to the present invention in comparison with a conventional schlieren image. The upper image is an image according to the present invention, and the lower image is a conventional schlieren image. As can be seen from FIG. 5, the present invention is easy to install and easy to calculate, and can obtain an image equivalent to the conventional Schlieren method. In FIG. 7, the imaging sensitivity of the image according to the present invention on the upper side is better than that of the conventional schlieren image on the lower side, and as a result, the compression region due to the shock wave and the expansion region due to the expansion wave are clearly obtained.

1 測定領域(密度勾配の場) 2 背景画像
3 デジタルカメラ 4 ガスバーナ
5 供試体 6 風洞
7 窓部 8 光源
DESCRIPTION OF SYMBOLS 1 Measurement area (density gradient field) 2 Background image 3 Digital camera 4 Gas burner 5 Specimen 6 Wind tunnel 7 Window part 8 Light source

Claims (8)

計測領域の背後に背景画像を、前方側にデジタルカメラを配置し、密度分布のない状態で計測領域を撮影した参照画像と、密度分布が発生した状態での計測画像の2つの画像から画素毎の差分と密度勾配を演算することによって得た結果画像から密度勾配を可視化する方法。   A background image is placed behind the measurement area, a digital camera is placed on the front side, and a reference image obtained by photographing the measurement area without a density distribution and a measurement image with the density distribution generated are displayed for each pixel. To visualize the density gradient from the result image obtained by calculating the difference and the density gradient. 結果画像は次式によって得られるものである請求項1に記載の密度勾配を可視化する方法。
R_result(i,j)={R_run(i,j)−R_ref(i,j)}×∠R_run(i,j)+Offset
ここでR(i,j)はi、j番地の画素の輝度値を表し、添え字refは参照画像、runは計測画像、resultは結果の画像を表している。上式中の∠R_run(i,j)は、密度変化の方向を与える項であり、画素(i,j)点周りの1次微分値を用いる。
The method for visualizing a density gradient according to claim 1, wherein the result image is obtained by the following equation.
R_result (i, j) = {R_run (i, j) −R_ref (i, j)} × ∠R_run (i, j) + Offset
Here, R (i, j) represents the luminance value of the pixel at i and j, the subscript ref represents the reference image, run represents the measurement image, and result represents the resulting image. ∠R_run (i, j) in the above equation is a term that gives the direction of density change, and uses a first-order differential value around the pixel (i, j) point.
密度変化の方向を与える項∠R_run(i,j)は、次式によって得られるものである請求項2に記載の密度勾配を可視化する方法。
∠R_run(i,j)=[{R_run(i+1,j)−R_run(i-1,j)}/2
+{R_ref(i+1,j)−R_ref(i-1,j)}/2]/2
The method for visualizing a density gradient according to claim 2, wherein the term ∠R_run (i, j) giving the direction of density change is obtained by the following equation.
∠R_run (i, j) = [{R_run (i + 1, j) −R_run (i−1, j)} / 2
+ {R_ref (i + 1, j) -R_ref (i-1, j)} / 2] / 2
得られた結果画像に対して移動平均処理でスムージングを施す請求項3に記載の密度勾配を可視化する方法。   The method for visualizing a density gradient according to claim 3, wherein the obtained result image is smoothed by a moving average process. 計測領域の背後に配置する背景画像と、計測領域の前方側に配置するデジタルカメラと、密度分布のない状態で計測領域を撮影した参照画像と、密度分布が発生した状態での計測画像の2つの画像から画素毎の差分と密度勾配を演算する手段とからなる密度勾配を可視化する装置。   2 of a background image arranged behind the measurement region, a digital camera arranged in front of the measurement region, a reference image obtained by photographing the measurement region without a density distribution, and a measurement image with a density distribution generated An apparatus for visualizing a density gradient comprising a pixel-by-pixel difference and a means for calculating the density gradient from one image. 背景画像には連続的な輝度分布の縞模様を用いたものである請求項5に記載の密度勾配を可視化する装置。   The apparatus for visualizing a density gradient according to claim 5, wherein the background image uses a stripe pattern having a continuous luminance distribution. 前記演算手段はデジタルカメラのボディ内に設置したものである請求項5又は6に記載の密度勾配を可視化する装置。   The apparatus for visualizing a density gradient according to claim 5 or 6, wherein the calculation means is installed in a body of a digital camera. 計測領域は風洞内であって、該領域は背景画像側の後方と前方カメラ側は透明な窓部とされている請求項5乃至7のいずれかに記載の密度勾配を可視化する装置。   The device for visualizing a density gradient according to any one of claims 5 to 7, wherein the measurement region is in a wind tunnel, and the region is a transparent window on the rear side of the background image side and on the front camera side.
JP2011003736A 2011-01-12 2011-01-12 Visualization method and apparatus of density gradient Active JP5800174B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011003736A JP5800174B2 (en) 2011-01-12 2011-01-12 Visualization method and apparatus of density gradient

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011003736A JP5800174B2 (en) 2011-01-12 2011-01-12 Visualization method and apparatus of density gradient

Publications (2)

Publication Number Publication Date
JP2012145430A true JP2012145430A (en) 2012-08-02
JP5800174B2 JP5800174B2 (en) 2015-10-28

Family

ID=46789133

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011003736A Active JP5800174B2 (en) 2011-01-12 2011-01-12 Visualization method and apparatus of density gradient

Country Status (1)

Country Link
JP (1) JP5800174B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111426641A (en) * 2019-01-09 2020-07-17 国家纳米科学中心 Method for detecting density distribution state of nano material

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005301789A (en) * 2004-04-14 2005-10-27 Nara Institute Of Science & Technology Cluster analysis device, cluster analysis method and cluster analysis program
JP2005311164A (en) * 2004-04-23 2005-11-04 Nikon Corp Laser annealing apparatus
JP2006284495A (en) * 2005-04-04 2006-10-19 Swcc Showa Device Technology Co Ltd Method and instrument for measuring refractive index dispersion of transparent object
JP2008267837A (en) * 2007-04-16 2008-11-06 Toyota Motor Corp Apparatus for detecting state of exhaust gas from vehicle
JP2009222557A (en) * 2008-03-17 2009-10-01 Nissan Motor Co Ltd Homogeneity determination method of fluid, homogeneity determination device, homogeneity determination program used for homogeneity determination device, and information recording medium
WO2010092727A1 (en) * 2009-02-16 2010-08-19 コニカミノルタオプト株式会社 Blood test apparatus

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005301789A (en) * 2004-04-14 2005-10-27 Nara Institute Of Science & Technology Cluster analysis device, cluster analysis method and cluster analysis program
JP2005311164A (en) * 2004-04-23 2005-11-04 Nikon Corp Laser annealing apparatus
JP2006284495A (en) * 2005-04-04 2006-10-19 Swcc Showa Device Technology Co Ltd Method and instrument for measuring refractive index dispersion of transparent object
JP2008267837A (en) * 2007-04-16 2008-11-06 Toyota Motor Corp Apparatus for detecting state of exhaust gas from vehicle
JP2009222557A (en) * 2008-03-17 2009-10-01 Nissan Motor Co Ltd Homogeneity determination method of fluid, homogeneity determination device, homogeneity determination program used for homogeneity determination device, and information recording medium
WO2010092727A1 (en) * 2009-02-16 2010-08-19 コニカミノルタオプト株式会社 Blood test apparatus

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111426641A (en) * 2019-01-09 2020-07-17 国家纳米科学中心 Method for detecting density distribution state of nano material
CN111426641B (en) * 2019-01-09 2024-04-09 国家纳米科学中心 Method for detecting density distribution state of nano material

Also Published As

Publication number Publication date
JP5800174B2 (en) 2015-10-28

Similar Documents

Publication Publication Date Title
Richard et al. II. 3. Demonstration of the applicability of a Background Oriented Schlieren (BOS) method
Elsinga et al. Assessment and application of quantitative schlieren methods: Calibrated color schlieren and background oriented schlieren
Kang et al. Fiber-based endoscopes for 3D combustion measurements: view registration and spatial resolution
Javh et al. Measuring full-field displacement spectral components using photographs taken with a DSLR camera via an analogue Fourier integral
CN110360954B (en) Surface shape measuring method and system based on space coordinate calculation
JP7088530B2 (en) 3D method and device for projecting measurement result-related information on the surface of an object to be measured
CN109708842A (en) A kind of camera lens point spread function measurement method based on single pixel imaging
JP7207319B2 (en) Two-dimensional flicker measuring device, two-dimensional flicker measuring system, two-dimensional flicker measuring method, and two-dimensional flicker measuring program
JPWO2017175341A1 (en) Measuring method, measuring apparatus, measuring program, and computer-readable recording medium recording the measuring program
CN108050955B (en) Filtering method is disturbed based on structured light projection high temperature air relevant to digital picture
JP2015087135A (en) Micro displacement measurement system
JP2009014359A (en) Three-dimensional noncontact temperature measuring instrument, and three-dimensional noncontact temperature measuring method
Tan et al. Target-free vision-based approach for modal identification of a simply-supported bridge
Mier et al. Color gradient background-oriented schlieren imaging
JP5800174B2 (en) Visualization method and apparatus of density gradient
JP2007205875A (en) Position correcting method for infrared thermoelastic stress measurement
Felipe-Sesé et al. Exploiting phase-based motion magnification for the measurement of subtle 3D deformation maps with FP+ 2D-DIC
Zhu et al. Full-field modal identification using reliability-guided frequency-domain-based digital image correlation method based on multi-camera system
JPH1082614A (en) Minute displacement-measuring apparatus using moire fringe
KR20180056324A (en) Apparatus and method for measuring displacement and strain of plane using distributed laser speckle image
Lyu et al. Non-contact low-frequency vibration rapid measurement based on hue-height mapping
Alexeev et al. Mirror alignment control for COMPASS RICH-1 detector
Price A comparison of Operating Deflection Shape and Motion Amplification Video Techniques for Vibration Analysis
JP2017006468A (en) Radiation imaging apparatus and differential direction estimation method
Grantham et al. Speckle measurements of sample deformation in the split Hopkinsons pressure bar

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140109

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140116

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140729

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140806

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140917

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20150204

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150428

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20150511

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150729

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150812

R150 Certificate of patent or registration of utility model

Ref document number: 5800174

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250