JP2012145387A - Current sensor - Google Patents

Current sensor Download PDF

Info

Publication number
JP2012145387A
JP2012145387A JP2011002683A JP2011002683A JP2012145387A JP 2012145387 A JP2012145387 A JP 2012145387A JP 2011002683 A JP2011002683 A JP 2011002683A JP 2011002683 A JP2011002683 A JP 2011002683A JP 2012145387 A JP2012145387 A JP 2012145387A
Authority
JP
Japan
Prior art keywords
current
current line
current sensor
detection unit
magnetoresistive element
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2011002683A
Other languages
Japanese (ja)
Inventor
Masanori Samejima
正憲 鮫島
Hideo Okoshi
偉生 大越
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Original Assignee
Panasonic Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp filed Critical Panasonic Corp
Priority to JP2011002683A priority Critical patent/JP2012145387A/en
Publication of JP2012145387A publication Critical patent/JP2012145387A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Measuring Instrument Details And Bridges, And Automatic Balancing Devices (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a current sensor having so high versatility as to be able to be commonly used even if a device to which the current sensor is applied is changed.SOLUTION: A current sensor comprises a detector 24 having a magnetic detection part 23 built-in and a holder part 25 having a half-square tubular holding part 27. The detector 24 is attached on a top face 27a of the holding part 27. A current line 22 where current to be measured flows is housed in a groove part constituted by an underside 27b of the holding part 27 where a convex contact part 28 contacting with the current line 22 is provided and side faces 27c and 27d adjacent to the top face 27a.

Description

本発明は、被測定電流が流れる電流線の周囲に発生する磁界により、被測定電流を検出する電流センサに関するものである。   The present invention relates to a current sensor that detects a current to be measured by a magnetic field generated around a current line through which the current to be measured flows.

近年、ハイブリッドカー、EV車等のバッテリーの充放電電流や、電気モーターの駆動突入電流等の数十Aから数百Aレベルの大電流を高精度に計測するための電流センサが求められている。図6は磁気抵抗素子を磁界検出素子として用いた電流センサの斜視図である。図6において、この電流センサは磁気抵抗素子1と、磁気抵抗素子1にバイアス磁界Hbを印加する永久磁石2と、電流iを流す導体3とをケース4に収容してなる。このように構成した電流センサは、電流iを導体3に流した時に発生する検出磁界Hが磁気抵抗素子1に作用して発生する抵抗変化から導体3に流れる電流の大きさが検出されるものである。この出願の発明に関する先行技術文献情報としては、例えば、特許文献1が知られている。   In recent years, there has been a demand for a current sensor for accurately measuring large currents on the order of several tens of A to several hundreds of A such as charge / discharge currents of batteries of hybrid cars, EV cars, etc., and drive inrush currents of electric motors. . FIG. 6 is a perspective view of a current sensor using a magnetoresistive element as a magnetic field detecting element. In FIG. 6, the current sensor includes a case 4 that includes a magnetoresistive element 1, a permanent magnet 2 that applies a bias magnetic field Hb to the magnetoresistive element 1, and a conductor 3 that conducts a current i. In the current sensor configured as described above, the magnitude of the current flowing through the conductor 3 is detected from the resistance change generated when the detection magnetic field H generated when the current i flows through the conductor 3 acts on the magnetoresistive element 1. It is. For example, Patent Document 1 is known as prior art document information relating to the invention of this application.

特開平1−299481号公報Japanese Patent Laid-Open No. 1-292981

図6に示した電流センサにおいては、磁気抵抗素子1に作用する磁界が小さい場合にも、磁気抵抗素子1には大きな抵抗変化が発生するため高感度の電流測定が可能である。しかしながら、磁気抵抗素子1と導体3との距離により、電流iを導体3に流した時に磁気抵抗素子1に作用する磁界Hが大きく変化するため、磁気抵抗素子1を導体3に対して一定の位置に保持する必要があるとともに、導体3の断面形状、測定電流範囲が多岐にわたるため、磁気抵抗素子1と導体3とを収容するケース4を、電流センサを適用するセットごとに設計、製造しなければならなかった。これにより、製造コストが増大するとともに、開発期間も長期化してしまうという課題があった。   In the current sensor shown in FIG. 6, even when the magnetic field acting on the magnetoresistive element 1 is small, a large resistance change occurs in the magnetoresistive element 1 so that highly sensitive current measurement is possible. However, since the magnetic field H acting on the magnetoresistive element 1 when the current i flows through the conductor 3 varies greatly depending on the distance between the magnetoresistive element 1 and the conductor 3, the magnetoresistive element 1 is fixed to the conductor 3. Since the conductor 3 needs to be held in position, and the cross-sectional shape and measurement current range of the conductor 3 are diverse, the case 4 that accommodates the magnetoresistive element 1 and the conductor 3 is designed and manufactured for each set to which the current sensor is applied. I had to. As a result, there is a problem that the manufacturing cost increases and the development period is prolonged.

本発明は、上記従来の問題点を解決するもので、電流センサが適用される機器が変わっても共通に使用できる、汎用性の高い電流センサを提供することを目的とするものである。   The present invention solves the above-described conventional problems, and an object of the present invention is to provide a highly versatile current sensor that can be used in common even if a device to which the current sensor is applied changes.

上記目的を達成するために、本発明は以下の構成を有するものである。   In order to achieve the above object, the present invention has the following configuration.

本発明の請求項1に記載の発明は、磁気抵抗体を含み、電流線に流れる電流によって発生する磁界を検出する磁気検出部を内蔵する検出部と、前記検出部を第1の面上に保持し、前記第1の面と対向する第2の面側に前記電流線と当接する凸状の当接部を有するとともに、前記第2の面に隣接する第3、第4の面を有し、前記第2、第3、第4の面で構成される溝部内に前記電流線を収納するホルダ部とを備えたもので、この構成によれば、電流センサが適用される電流線の形状に応じてホルダ部のみを変更することにより、磁気抵抗素子を前記電流線に対して一定の位置に保持することができるために、同一の検出部を使用しながら多種多様なセットの電流を測定することができるという作用効果を有するものである。また電流線とホルダ部はホルダ部の第2の面に設けた凸状の当接部で当接しているために、電流線とホルダ部が面で接触する場合と比べて、電流線とホルダ部間に異物が介在して磁気抵抗素子と電流線との距離が変動する可能性を大幅に小さくできるという作用効果をも有するものである。   According to a first aspect of the present invention, there is provided a detection unit including a magnetoresistor and including a magnetic detection unit for detecting a magnetic field generated by a current flowing in a current line, and the detection unit on the first surface. A convex abutting portion that abuts the current line on the second surface side facing the first surface, and has third and fourth surfaces adjacent to the second surface. And a holder portion for storing the current line in a groove portion constituted by the second, third, and fourth surfaces. According to this configuration, the current line to which the current sensor is applied is provided. By changing only the holder part according to the shape, the magnetoresistive element can be held at a fixed position with respect to the current line, so that various sets of currents can be generated while using the same detection part. It has the effect that it can be measured. In addition, since the current line and the holder part are in contact with each other at the convex contact part provided on the second surface of the holder part, the current line and the holder part are compared with the case where the current line and the holder part are in contact with each other. This also has the effect that the possibility that the distance between the magnetoresistive element and the current line fluctuates due to the presence of foreign matter between the parts can be greatly reduced.

本発明の請求項2に記載の発明は、特に、前記検出部に設けた突起部を、前記ホルダ部の第1の面から第2の面にわたって設けた貫通孔に貫挿、固定し、前記ホルダ部の第2の面から突出した前記突起部の先端を前記電流線と当接する凸状の当接部としたもので、この構成によれば、検出部に設けた突起部の先端が直接、電流線に当接するために、磁気抵抗素子と電流線との距離を正確に一定の位置に保持することができ、これにより、高精度の電流測定が可能となるという作用効果を有するものである。   In the invention according to claim 2 of the present invention, in particular, the protrusion provided on the detection part is inserted and fixed in a through-hole provided from the first surface to the second surface of the holder part, The tip of the projection protruding from the second surface of the holder is a convex contact that contacts the current line. According to this configuration, the tip of the projection provided on the detection unit is directly In order to make contact with the current line, the distance between the magnetoresistive element and the current line can be accurately held at a certain position, and this has the effect of enabling high-precision current measurement. is there.

以上のように本発明は、磁気抵抗体を含み、電流線に流れる電流によって発生する磁界を検出する磁気検出部を内蔵する検出部と、前記検出部を第1の面上に保持し、前記第1の面と対向する第2の面側に前記電流線と当接する当接部を有するとともに、前記第2の面に隣接する第3、第4の面を有し、前記第2、第3、第4の面で構成される溝部内に前記電流線を収納するホルダ部とを備えたもので、電流センサが適用される電流線の形状に応じてホルダ部のみを変更することにより、磁気抵抗素子を前記電流線に対して一定の位置に保持することができ、これにより、同一の検出部を使用しながら多種多様なセットの電流を測定することができるという優れた効果を奏するものである。   As described above, the present invention includes a detection unit that includes a magnetoresistor and includes a magnetic detection unit that detects a magnetic field generated by a current flowing through a current line, and holds the detection unit on the first surface, The second surface facing the first surface has a contact portion that contacts the current line, and has third and fourth surfaces adjacent to the second surface, and the second, second 3, provided with a holder part for storing the current line in the groove part constituted by the fourth surface, by changing only the holder part according to the shape of the current line to which the current sensor is applied, The magnetoresistive element can be held at a fixed position with respect to the current line, thereby providing an excellent effect that a wide variety of sets of currents can be measured while using the same detection unit. It is.

本発明の実施の形態1における電流センサの斜視図The perspective view of the current sensor in Embodiment 1 of the present invention 同電流センサにおけるA−A線断面図AA line sectional view of the same current sensor 本発明の実施の形態1における磁気検出部の断面図Sectional drawing of the magnetic detection part in Embodiment 1 of this invention 磁束密度の観測位置が初期位置から+x方向、+z方向に変位した時の、磁束密度のx方向成分Bxの変化を示すシミュレーション結果を示す図The figure which shows the simulation result which shows the change of the x direction component Bx of magnetic flux density when the observation position of magnetic flux density is displaced to + x direction and + z direction from the initial position. 本発明の実施の形態2における電流センサの断面図Sectional drawing of the current sensor in Embodiment 2 of this invention 従来の電流センサの斜視図A perspective view of a conventional current sensor

(実施の形態1)
以下、実施の形態1を用いて、本発明の請求項1に記載の発明について説明する。図1は本発明の一実施の形態における電流センサ21の斜視図、図2は前記電流センサ21をA−A線で切った時の断面図であり、電気自動車あるいはハイブリッドカーのバッテリーと動力用モーターを接続する電流バー等に流れる電流を検出するのに好適なものである。
(Embodiment 1)
Hereinafter, the first aspect of the present invention will be described using the first embodiment. FIG. 1 is a perspective view of a current sensor 21 according to an embodiment of the present invention. FIG. 2 is a cross-sectional view of the current sensor 21 taken along line AA. This is suitable for detecting a current flowing in a current bar or the like connecting a motor.

図1、図2において、XYZ座標系を図のようにとった時、Y軸方向に電流Iが流れる電流線22の上には、磁気抵抗体を含み、電流線22に流れる電流によって発生する磁界を検出する磁気検出部23を内蔵する検出部24と、ホルダ部25とを備えた電流センサ21が配置されている。   1 and 2, when the XYZ coordinate system is taken as shown in the figure, the current line 22 through which the current I flows in the Y-axis direction includes a magnetoresistor and is generated by the current flowing through the current line 22. A current sensor 21 including a detection unit 24 including a magnetic detection unit 23 that detects a magnetic field and a holder unit 25 is disposed.

ここで、電流線22はX軸、Z軸方向の長さが各々18mm、3mmの矩形断面を有する銅等からなり、XY面上にX軸、Y軸、Z軸方向の長さが各々およそ8mm、8mm、0.5mmの磁気検出部23が配置されているものである。   Here, the current line 22 is made of copper or the like having a rectangular cross section of 18 mm and 3 mm in the X-axis and Z-axis directions, respectively, and the lengths in the X-axis, Y-axis, and Z-axis directions are approximately on the XY plane. 8 mm, 8 mm, and 0.5 mm magnetic detectors 23 are arranged.

磁気検出部23は、絶縁基板上に形成された磁気抵抗素子と、この磁気抵抗素子上に絶縁層を介して形成された薄膜磁石と、絶縁基板の周囲に絶縁被覆した銅線を巻回してなるキャンセルコイルとから構成されている。   The magnetic detection unit 23 is formed by winding a magnetoresistive element formed on an insulating substrate, a thin film magnet formed on the magnetoresistive element via an insulating layer, and a copper wire coated with insulation around the insulating substrate. And a cancel coil.

磁気検出部23の構成を図3を用いて簡単に説明する。図3は磁気検出部23の断面図であり、図3(a)は、磁気検出部23を水平に切った時の断面図であり、図3(b)は図3(a)をB−B線で切った時の断面図である。   The configuration of the magnetic detection unit 23 will be briefly described with reference to FIG. 3 is a cross-sectional view of the magnetic detection unit 23, FIG. 3A is a cross-sectional view when the magnetic detection unit 23 is cut horizontally, and FIG. 3B is a cross-sectional view of FIG. It is sectional drawing when cut by B line.

図3において、絶縁基板30上に印加電極31a、第1の出力電極31b、第2の出力電極31cおよびグランド電極31dの4個の電極が形成されている。また印加電極31aと第1の出力電極31bとの間には磁気抵抗体からなり蛇行形状の磁気抵抗素子32aが形成されている。同様に第1の出力電極31bとグランド電極31dとの間、印加電極31aと第2の出力電極31cとの間、第2の出力電極31cとグランド電極31dとの間には各々蛇行形状の磁気抵抗素子32b、32c、32dが形成されている。このような電気的な接続を行なうことで、磁気抵抗素子32a、32b、32c、32dはブリッジ回路を構成する。磁気抵抗素子32a、32b、32c、32dはNi−Co等の強磁性体からなる厚み約0.1μmの磁気抵抗薄膜である。また、図3において、磁気抵抗素子32aは、紙面で右斜め上に傾いた45°の方向に蛇行パターンの長手方向が位置しているが、これと隣接する磁気抵抗素子32bは、紙面で左斜め上に傾いた45°の方向に蛇行パターンの長手方向が位置しており、両者の角度は直角である。磁気抵抗素子32cと磁気抵抗素子32dとの位置関係も同様である。さらに、磁気抵抗素子32aと磁気抵抗素子32cとの位置関係も同様である。ここで、磁気抵抗素子32a、32b、32c、32dの感磁方向は各々の蛇行パターンの長手方向に直角な方向である。   In FIG. 3, four electrodes, that is, an application electrode 31a, a first output electrode 31b, a second output electrode 31c, and a ground electrode 31d are formed on an insulating substrate 30. A meandering magnetoresistive element 32a made of a magnetoresistor is formed between the application electrode 31a and the first output electrode 31b. Similarly, between the first output electrode 31b and the ground electrode 31d, between the application electrode 31a and the second output electrode 31c, and between the second output electrode 31c and the ground electrode 31d, a meandering magnetic field is formed. Resistive elements 32b, 32c, and 32d are formed. By making such an electrical connection, the magnetoresistive elements 32a, 32b, 32c, and 32d constitute a bridge circuit. The magnetoresistive elements 32a, 32b, 32c, and 32d are magnetoresistive thin films having a thickness of about 0.1 μm made of a ferromagnetic material such as Ni—Co. In FIG. 3, the magnetoresistive element 32a has the longitudinal direction of the meandering pattern in a 45 ° direction inclined obliquely upward to the right on the paper surface. The longitudinal direction of the meander pattern is located in a 45 ° direction inclined obliquely upward, and the angle between them is a right angle. The positional relationship between the magnetoresistive element 32c and the magnetoresistive element 32d is the same. Further, the positional relationship between the magnetoresistive element 32a and the magnetoresistive element 32c is the same. Here, the magnetosensitive directions of the magnetoresistive elements 32a, 32b, 32c and 32d are perpendicular to the longitudinal direction of each meander pattern.

絶縁層33は厚みが約1μmのSiO2薄膜からなり、磁気抵抗素子32a、32b、32c、32dを覆うことにより後述する薄膜磁石34との電気的絶縁を行うものである。 The insulating layer 33 is made of a SiO 2 thin film having a thickness of about 1 μm, and electrically insulates the thin film magnet 34 described later by covering the magnetoresistive elements 32a, 32b, 32c, and 32d.

薄膜磁石34は、厚みが約0.6μmのCoPt等からなり、絶縁層33の上に蒸着、スパッタ法等により形成した後、露光、エッチングによりパターニングして長手方向を有する複数の略長方体に分割されている。その発生する磁界の方向は、薄膜磁石34の長手方向の直角方向、図3における紙面左右方向である。また、薄膜磁石34は磁気抵抗素子32a、32b、32c、32dのパターンの長手方向に対し45°をなす方向に長手方向を有する複数の略長方体に分割されている。この方向は、磁気抵抗素子32a、32b、32c、32dの感磁方向に対しても45°をなす方向でもある。なお、薄膜磁石34が発生する磁界は、電流線22を流れる電流と同じ方向、すなわち、電流線22を流れる被測定電流による磁界の直角方向になるように配置される。絶縁層35はSiO2薄膜からなり、薄膜磁石34を覆うものである。 The thin film magnet 34 is made of CoPt or the like having a thickness of about 0.6 μm, and is formed on the insulating layer 33 by vapor deposition, sputtering, or the like, and then patterned by exposure and etching to have a plurality of substantially rectangular parallelepiped shapes having a longitudinal direction. It is divided into The direction of the generated magnetic field is the direction perpendicular to the longitudinal direction of the thin-film magnet 34, that is, the left-right direction in FIG. The thin film magnet 34 is divided into a plurality of substantially rectangular parallelepipeds having a longitudinal direction in a direction forming 45 ° with respect to the longitudinal direction of the pattern of the magnetoresistive elements 32a, 32b, 32c, and 32d. This direction is also a direction that forms 45 ° with respect to the magnetosensitive direction of the magnetoresistive elements 32a, 32b, 32c, and 32d. The magnetic field generated by the thin film magnet 34 is arranged in the same direction as the current flowing through the current line 22, that is, in the direction perpendicular to the magnetic field generated by the current to be measured flowing through the current line 22. The insulating layer 35 is made of a SiO 2 thin film and covers the thin film magnet 34.

キャンセルコイル36は表面を絶縁被覆した銅線を巻回してなり、絶縁基板30を囲んで周回させるとともに、その巻回軸が電流Iと垂直(すなわち電流Iによって誘起される磁界と同じ方向)になるように設けられている。   The cancel coil 36 is formed by winding a copper wire having an insulating coating on the surface thereof, and surrounds the insulating substrate 30, and its winding axis is perpendicular to the current I (that is, in the same direction as the magnetic field induced by the current I). It is provided to become.

以上の構成を備えた磁気検出部23の動作について、以下に説明をする。   The operation of the magnetic detection unit 23 having the above configuration will be described below.

印加電極31aには所定の電圧を印加し、グランド電極31dとの間で一定の電位差を生じさせるようにしておく。   A predetermined voltage is applied to the application electrode 31a so as to generate a constant potential difference with the ground electrode 31d.

電流線22に流れる電流が0の時、薄膜磁石34からのバイアス磁界HBのみが磁気抵抗素子32a、32b、32c、32dのそれぞれの感磁方向に対し45°をなすように印加される。このときには、磁気抵抗素子32a、32b、32c、32dの抵抗値は同一になり、ブリッジ回路の中点電位となる第1の出力電極31bと第2の出力電極31cの電位は同じになるため、電流センサからの出力は現れないことになる。 When the current flowing through the current line 22 is 0, only the bias magnetic field H B from the thin film magnet 34 is applied so as to form 45 ° with respect to the respective magnetosensitive directions of the magnetoresistive elements 32a, 32b, 32c, and 32d. At this time, the resistance values of the magnetoresistive elements 32a, 32b, 32c, and 32d are the same, and the potentials of the first output electrode 31b and the second output electrode 31c that are the midpoint potential of the bridge circuit are the same. The output from the current sensor will not appear.

電流線22に電流Iが流れると、この電流Iによる磁界HIが発生して磁気検出部23に印加される。このとき、磁気抵抗素子32a、32b、32c、32dには、バイアス磁界HBと電流Iによる磁界HIが合成された磁界が印加される。このとき、磁気抵抗素子32aと磁気抵抗素子32bの抵抗値は異なるものとなり、また磁気抵抗素子32cと磁気抵抗素子32dの抵抗値も異なるものとなる。このため、ブリッジ回路の平衡が破れ、第1の出力電極31bと第2の出力電極31cとの間に電位差が発生する。この電位差を負帰還することによって、前記キャンセルコイル36に負帰還電流を流し、磁気検出部23に前記被測定電流Iによる磁界と逆方向の磁界を発生させる。そして、前記第1の出力電極31bと第2の出力電極31cとの間の電位差がゼロになる時に前記キャンセルコイル36に流れる負帰還電流値から被測定電流Iを計測するものである。 When the current I flows through the current line 22, a magnetic field H I due to the current I is generated and applied to the magnetic detection unit 23. At this time, a magnetic field obtained by combining the bias magnetic field H B and the magnetic field H I due to the current I is applied to the magnetoresistive elements 32a, 32b, 32c, and 32d. At this time, the resistance values of the magnetoresistive element 32a and the magnetoresistive element 32b are different, and the resistance values of the magnetoresistive element 32c and the magnetoresistive element 32d are also different. For this reason, the balance of the bridge circuit is broken, and a potential difference is generated between the first output electrode 31b and the second output electrode 31c. By negatively feeding back this potential difference, a negative feedback current is caused to flow through the cancel coil 36, and a magnetic field in the direction opposite to the magnetic field caused by the current I to be measured is generated in the magnetic detection unit 23. Then, the measured current I is measured from the negative feedback current value flowing through the cancel coil 36 when the potential difference between the first output electrode 31b and the second output electrode 31c becomes zero.

ホルダ部25は液晶ポリマーやPPS等の高耐熱樹脂を成型してなり、両側にハイブリッドカー等の車体(図示せず)への取り付け用のフランジ26を設け、中央部に半角筒状の保持部27を設けたものである。検出部24は保持部27の上面27aに取付けられ、電流線22は前記上面27aに対向する下面27bと、前記下面27bに隣接する側面27c、27dとで構成される溝部内に収納されている。そして、前記下面27bには電流線22と当接する凸状の当接部28が設けられている。   The holder portion 25 is formed by molding a high heat-resistant resin such as liquid crystal polymer or PPS, provided with flanges 26 for attachment to a vehicle body (not shown) such as a hybrid car on both sides, and a half-square cylindrical holding portion at the center portion. 27 is provided. The detection unit 24 is attached to the upper surface 27a of the holding unit 27, and the current line 22 is accommodated in a groove portion that includes a lower surface 27b facing the upper surface 27a and side surfaces 27c and 27d adjacent to the lower surface 27b. . A convex contact portion 28 that contacts the current line 22 is provided on the lower surface 27b.

検出部24の保持部27への取り付けは、検出部24の底面と保持部27の上面27aとを接着して行なうことも可能であるが、本実施の形態1においては、検出部24の底面に設けた突起部24aを、保持部27の上面27aから下面27bにわたって設けた貫通孔27eに貫挿し、突起部24aと貫通孔27eを接着、溶着等の方法を用いて固定して行なうようにしている。   The detection unit 24 can be attached to the holding unit 27 by bonding the bottom surface of the detection unit 24 and the upper surface 27a of the holding unit 27. In the first embodiment, the bottom surface of the detection unit 24 is used. The protruding portion 24a provided on the holding portion 27 is inserted into a through hole 27e provided from the upper surface 27a to the lower surface 27b of the holding portion 27, and the protruding portion 24a and the through hole 27e are fixed using a method such as adhesion or welding. ing.

図2において、電流線22に電流Iが流れると、電流線22の周りには磁界が発生する。たとえば、電流線22に400Aの電流が流れている時、シミュレーション結果によれば、Z軸上で電流線22の上面から5mmの位置で観測される磁束密度のx方向成分Bxは8.3mTの磁界となる。ここで、磁束密度のx方向成分Bxは磁気検出部23の磁気検出素子32a、32b、32c、32dに作用して抵抗変化を発生させる磁束密度成分である。   In FIG. 2, when a current I flows through the current line 22, a magnetic field is generated around the current line 22. For example, when a current of 400 A flows through the current line 22, according to the simulation results, the x-direction component Bx of the magnetic flux density observed at a position 5 mm from the upper surface of the current line 22 on the Z axis is 8.3 mT. It becomes a magnetic field. Here, the x-direction component Bx of the magnetic flux density is a magnetic flux density component that acts on the magnetic detection elements 32a, 32b, 32c, and 32d of the magnetic detection unit 23 to cause a resistance change.

図4は観測位置が上記の位置から+x方向、+z方向に変位した時、磁束密度のx方向成分Bxがどのように変化するかを計算したシミュレーション結果である。この結果から、観測位置がx方向に変位しても観測される磁束密度のx方向成分Bxはほとんど変化しないのに対して、観測位置がz方向に変位した場合には観測される磁束密度のx方向成分Bxは大きく変化し、たとえば観測される磁束密度のx方向成分Bxのバラツキを±5%以下にしようとすれば、z方向の観測位置精度を±0.3mm以下とする必要があることが分かる。   FIG. 4 shows a simulation result of calculating how the x-direction component Bx of the magnetic flux density changes when the observation position is displaced from the above position in the + x direction and the + z direction. From this result, the x-direction component Bx of the observed magnetic flux density hardly changes even when the observation position is displaced in the x direction, whereas when the observation position is displaced in the z direction, the observed magnetic flux density The x-direction component Bx varies greatly. For example, if the variation in the observed x-direction component Bx of the magnetic flux density is to be ± 5% or less, the observation position accuracy in the z direction needs to be ± 0.3 mm or less. I understand that.

本発明の実施の形態1における電流センサ21においては、電流センサ21が適用される電流線22の形状に応じてホルダ部の溝幅、深さのみを変更することにより、磁気検出部23上の磁気抵抗素子と電流線22との間の特にz方向の距離を一定に保持することができるために、同一の検出部24を使用しながら多種多様なセットの電流を測定することができる。また電流線22とホルダ部25はホルダ部25の下面27bに設けた凸状の当接部28で当接しているために、電流線22とホルダ部25が面で接触する場合と比べて、電流線22とホルダ部25間に異物が介在して磁気検出部23上の磁気抵抗素子と電流線22との間の距離が変動する可能性を大幅に小さくできる。また、電流線22とホルダ部25はホルダ部25の下面27bに設けた凸状の当接部28で当接しているために、熱伝導率が小さくなり、電流線22に大電流が流れる際に発生する熱が検出部24に伝わり難くなる。これにより、磁気検出部23の温度上昇を抑えることができ、電流測定精度の温度による劣化を防止することもできるものである。なお、本発明の実施の形態1における電流センサ21においては、凸状の当接部28をホルダ部25の下面27bのみに設けたが、検出部24の底面またはホルダ部25の上面27aにも同様な当接部を設け、ホルダ部25の上面27aと検出部24をこの当接部にて当接させることにより、検出部24とホルダ部25間に異物が介在して磁気検出部23上の磁気抵抗素子と電流線22との間の距離が変動する可能性をさらに小さくできるとともに、磁気検出部23の温度上昇をさらに抑えることができる。   In the current sensor 21 according to the first embodiment of the present invention, only the groove width and depth of the holder part are changed according to the shape of the current line 22 to which the current sensor 21 is applied, so that Since the distance between the magnetoresistive element and the current line 22 in particular in the z direction can be kept constant, a wide variety of sets of currents can be measured while using the same detector 24. Further, since the current line 22 and the holder part 25 are in contact with each other at the convex contact part 28 provided on the lower surface 27b of the holder part 25, compared with the case where the current line 22 and the holder part 25 are in contact with each other, The possibility that the distance between the magnetoresistive element on the magnetic detection unit 23 and the current line 22 varies due to the presence of foreign matter between the current line 22 and the holder unit 25 can be greatly reduced. In addition, since the current line 22 and the holder portion 25 are in contact with each other at a convex contact portion 28 provided on the lower surface 27 b of the holder portion 25, the thermal conductivity is reduced and a large current flows through the current line 22. It is difficult for the heat generated in to be transmitted to the detection unit 24. Thereby, the temperature rise of the magnetic detection part 23 can be suppressed, and deterioration of the current measurement accuracy due to temperature can also be prevented. In the current sensor 21 according to the first embodiment of the present invention, the convex contact portion 28 is provided only on the lower surface 27b of the holder portion 25, but also on the bottom surface of the detection portion 24 or the upper surface 27a of the holder portion 25. A similar contact portion is provided, and the upper surface 27a of the holder portion 25 and the detection portion 24 are brought into contact with each other at this contact portion, so that foreign matter is interposed between the detection portion 24 and the holder portion 25 and the magnetic detection portion 23 The possibility that the distance between the magnetoresistive element and the current line 22 fluctuates can be further reduced, and the temperature rise of the magnetic detection unit 23 can be further suppressed.

(実施の形態2)
以下、実施の形態2を用いて、本発明の特に請求項2に記載の発明について説明する。図5は本発明の実施の形態2における電流センサの断面図を示したものである。なお、この本発明の実施の形態2においては、上記した本発明の実施の形態1の構成と同様の構成を有するものについては、同一符号を付しており、その説明は省略する。
(Embodiment 2)
The second aspect of the present invention will be described below with reference to the second embodiment. FIG. 5 shows a cross-sectional view of a current sensor according to Embodiment 2 of the present invention. In the second embodiment of the present invention, components having the same configuration as the configuration of the first embodiment of the present invention described above are denoted by the same reference numerals, and the description thereof is omitted.

図5において、本発明の実施の形態2が上記した本発明の実施の形態1と相違する点は、前記ホルダ部25の保持部27の上面27aから下面27bにわたって設けた貫通孔27eに貫挿、固定した前記検出部24に設けた突起部24aの先端を前記電流線22と当接する凸状の当接部29とした点であり、その他の構成は図2に示したものと同様である。このように構成した電流センサにおいては、検出部24と電流線22との間の距離が検出部24の底面に設けた突起部24aの長さにより一義的に決定されるため、磁気検出部23上の磁気抵抗素子と電流線22との間の特にz方向の距離を一定に保持することができ、電流センサが適用される電流線22の形状に応じてホルダ部のみを変更することにより、磁気抵抗素子を前記電流線22に対してさらに正確に一定の位置に保持することができるものである。   5, the second embodiment of the present invention is different from the first embodiment of the present invention described above in that it is inserted into a through hole 27 e provided from the upper surface 27 a to the lower surface 27 b of the holding portion 27 of the holder portion 25. The protrusion 24a provided on the fixed detection unit 24 is provided with a convex contact portion 29 that contacts the current line 22, and the other configuration is the same as that shown in FIG. . In the current sensor configured as described above, the distance between the detection unit 24 and the current line 22 is uniquely determined by the length of the protrusion 24a provided on the bottom surface of the detection unit 24. The distance between the magnetoresistive element and the current line 22 in particular in the z direction can be kept constant, and by changing only the holder portion according to the shape of the current line 22 to which the current sensor is applied, The magnetoresistive element can be more accurately held at a fixed position with respect to the current line 22.

本発明に係る電流センサは電流センサが適用される電流線の形状に応じてホルダ部のみを変更することにより、磁気抵抗素子を前記電流線に対して一定の位置に保持することができ、これにより、同一の検出部を使用しながら多種多様なセットの電流を測定することができる、という効果を有するものであり、特に、車両、産業機器等内における電流を検出する電流センサとして有用なものである。   The current sensor according to the present invention can hold the magnetoresistive element at a fixed position with respect to the current line by changing only the holder portion according to the shape of the current line to which the current sensor is applied. Can be used to measure a wide variety of sets of currents while using the same detector, and is particularly useful as a current sensor for detecting currents in vehicles, industrial equipment, etc. It is.

21 電流センサ
22 電流線
24 検出部
24a 突起部
25 ホルダ部
28、29 凸状の当接部
21 Current sensor 22 Current line 24 Detection unit 24a Projection unit 25 Holder unit 28, 29 Convex contact unit

Claims (2)

磁気抵抗体を含み、電流線に流れる電流によって発生する磁界を検出する磁気検出部を内蔵する検出部と、前記検出部を第1の面上に保持し、前記第1の面と対向する第2の面側に前記電流線と当接する凸状の当接部を有するとともに、前記第2の面に隣接する第3、第4の面を有し、前記第2、第3、第4の面で構成される溝部内に前記電流線を収納するホルダ部とを備えた電流センサ。 A detection unit including a magnetoresistor and including a magnetic detection unit configured to detect a magnetic field generated by a current flowing in a current line; and a first unit that holds the detection unit on a first surface and faces the first surface 2 has a convex contact portion that contacts the current line, and has third and fourth surfaces adjacent to the second surface, and the second, third, and fourth surfaces. A current sensor comprising: a holder portion that houses the current line in a groove portion constituted by a surface. 前記検出部に設けた突起部を、前記ホルダ部の第1の面から第2の面にわたって設けた貫通孔に貫挿、固定し、前記ホルダ部の第2の面から突出した前記突起部の先端を前記電流線と当接する凸状の当接部とすることを特徴とする請求項1記載の電流センサ。 The protrusion provided on the detection part is inserted and fixed in a through-hole provided from the first surface to the second surface of the holder part, and the protrusion of the protrusion protruded from the second surface of the holder part. The current sensor according to claim 1, wherein the tip is a convex contact portion that contacts the current line.
JP2011002683A 2011-01-11 2011-01-11 Current sensor Pending JP2012145387A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011002683A JP2012145387A (en) 2011-01-11 2011-01-11 Current sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011002683A JP2012145387A (en) 2011-01-11 2011-01-11 Current sensor

Publications (1)

Publication Number Publication Date
JP2012145387A true JP2012145387A (en) 2012-08-02

Family

ID=46789100

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011002683A Pending JP2012145387A (en) 2011-01-11 2011-01-11 Current sensor

Country Status (1)

Country Link
JP (1) JP2012145387A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103760476A (en) * 2013-12-24 2014-04-30 兰州空间技术物理研究所 Device, system and method for testing internal discharge of cables for satellite
JP2016178799A (en) * 2015-03-20 2016-10-06 株式会社デンソー Control device for rotary electric machine

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103760476A (en) * 2013-12-24 2014-04-30 兰州空间技术物理研究所 Device, system and method for testing internal discharge of cables for satellite
CN103760476B (en) * 2013-12-24 2017-02-01 兰州空间技术物理研究所 Device, system and method for testing internal discharge of cables for satellite
JP2016178799A (en) * 2015-03-20 2016-10-06 株式会社デンソー Control device for rotary electric machine

Similar Documents

Publication Publication Date Title
US8779756B2 (en) Current sensor
JP6220971B2 (en) Multi-component magnetic field sensor
US8269492B2 (en) Magnetic balance type current sensor
JP5888402B2 (en) Magnetic sensor element
WO2014192625A1 (en) Current sensor
JP2015137894A (en) current detection structure
JP2012078232A (en) Current detection device
JP6384677B2 (en) Current sensor
WO2014050068A1 (en) Current sensor
JP2016099292A (en) Current detector and current detection method
JP5990963B2 (en) Magnetic sensor device and current sensor circuit
JP2015179043A (en) current sensor
JP2015190781A (en) Circuit board
JP2012145387A (en) Current sensor
JP5187598B2 (en) Current detection circuit
JP2002328140A (en) Current sensor
JP2012145532A (en) Current sensor
WO2013105489A1 (en) Current sensor
JP2013047610A (en) Magnetic balance type current sensor
JP2012002690A (en) Current sensor and current sensor array
WO2012063584A1 (en) Current sensor
WO2013179613A1 (en) Current sensor
JP2014098634A (en) Current sensor
JP2012159309A (en) Magnetic sensor and magnetic sensor apparatus
JP5796804B2 (en) How to install the current sensor