JP2012145267A - Boiler device - Google Patents

Boiler device Download PDF

Info

Publication number
JP2012145267A
JP2012145267A JP2011003617A JP2011003617A JP2012145267A JP 2012145267 A JP2012145267 A JP 2012145267A JP 2011003617 A JP2011003617 A JP 2011003617A JP 2011003617 A JP2011003617 A JP 2011003617A JP 2012145267 A JP2012145267 A JP 2012145267A
Authority
JP
Japan
Prior art keywords
nozzle
air supply
supply nozzle
furnace
air
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2011003617A
Other languages
Japanese (ja)
Other versions
JP5530373B2 (en
Inventor
Akihito Orii
明仁 折井
Hirofumi Okazaki
洋文 岡崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Power Ltd
Original Assignee
Babcock Hitachi KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Babcock Hitachi KK filed Critical Babcock Hitachi KK
Priority to JP2011003617A priority Critical patent/JP5530373B2/en
Priority to PL12734688T priority patent/PL2664847T3/en
Priority to EP12734688.0A priority patent/EP2664847B1/en
Priority to TW101101229A priority patent/TW201248089A/en
Priority to PCT/JP2012/050412 priority patent/WO2012096319A1/en
Publication of JP2012145267A publication Critical patent/JP2012145267A/en
Application granted granted Critical
Publication of JP5530373B2 publication Critical patent/JP5530373B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23CMETHODS OR APPARATUS FOR COMBUSTION USING FLUID FUEL OR SOLID FUEL SUSPENDED IN  A CARRIER GAS OR AIR 
    • F23C7/00Combustion apparatus characterised by arrangements for air supply
    • F23C7/02Disposition of air supply not passing through burner
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23CMETHODS OR APPARATUS FOR COMBUSTION USING FLUID FUEL OR SOLID FUEL SUSPENDED IN  A CARRIER GAS OR AIR 
    • F23C6/00Combustion apparatus characterised by the combination of two or more combustion chambers or combustion zones, e.g. for staged combustion
    • F23C6/04Combustion apparatus characterised by the combination of two or more combustion chambers or combustion zones, e.g. for staged combustion in series connection
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23CMETHODS OR APPARATUS FOR COMBUSTION USING FLUID FUEL OR SOLID FUEL SUSPENDED IN  A CARRIER GAS OR AIR 
    • F23C7/00Combustion apparatus characterised by arrangements for air supply
    • F23C7/002Combustion apparatus characterised by arrangements for air supply the air being submitted to a rotary or spinning motion
    • F23C7/004Combustion apparatus characterised by arrangements for air supply the air being submitted to a rotary or spinning motion using vanes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23DBURNERS
    • F23D1/00Burners for combustion of pulverulent fuel
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23LSUPPLYING AIR OR NON-COMBUSTIBLE LIQUIDS OR GASES TO COMBUSTION APPARATUS IN GENERAL ; VALVES OR DAMPERS SPECIALLY ADAPTED FOR CONTROLLING AIR SUPPLY OR DRAUGHT IN COMBUSTION APPARATUS; INDUCING DRAUGHT IN COMBUSTION APPARATUS; TOPS FOR CHIMNEYS OR VENTILATING SHAFTS; TERMINALS FOR FLUES
    • F23L9/00Passages or apertures for delivering secondary air for completing combustion of fuel 
    • F23L9/02Passages or apertures for delivering secondary air for completing combustion of fuel  by discharging the air above the fire
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23MCASINGS, LININGS, WALLS OR DOORS SPECIALLY ADAPTED FOR COMBUSTION CHAMBERS, e.g. FIREBRIDGES; DEVICES FOR DEFLECTING AIR, FLAMES OR COMBUSTION PRODUCTS IN COMBUSTION CHAMBERS; SAFETY ARRANGEMENTS SPECIALLY ADAPTED FOR COMBUSTION APPARATUS; DETAILS OF COMBUSTION CHAMBERS, NOT OTHERWISE PROVIDED FOR
    • F23M5/00Casings; Linings; Walls
    • F23M5/08Cooling thereof; Tube walls
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23CMETHODS OR APPARATUS FOR COMBUSTION USING FLUID FUEL OR SOLID FUEL SUSPENDED IN  A CARRIER GAS OR AIR 
    • F23C2201/00Staged combustion
    • F23C2201/10Furnace staging
    • F23C2201/101Furnace staging in vertical direction, e.g. alternating lean and rich zones
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23CMETHODS OR APPARATUS FOR COMBUSTION USING FLUID FUEL OR SOLID FUEL SUSPENDED IN  A CARRIER GAS OR AIR 
    • F23C2900/00Special features of, or arrangements for combustion apparatus using fluid fuels or solid fuels suspended in air; Combustion processes therefor
    • F23C2900/06041Staged supply of oxidant
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23CMETHODS OR APPARATUS FOR COMBUSTION USING FLUID FUEL OR SOLID FUEL SUSPENDED IN  A CARRIER GAS OR AIR 
    • F23C2900/00Special features of, or arrangements for combustion apparatus using fluid fuels or solid fuels suspended in air; Combustion processes therefor
    • F23C2900/07021Details of lances
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23DBURNERS
    • F23D2201/00Burners adapted for particulate solid or pulverulent fuels
    • F23D2201/20Fuel flow guiding devices
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23DBURNERS
    • F23D2900/00Special features of, or arrangements for burners using fluid fuels or solid fuels suspended in a carrier gas
    • F23D2900/01001Pulverised solid fuel burner with means for swirling the fuel-air mixture

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Air Supply (AREA)
  • Combustion Of Fluid Fuel (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a boiler device with improved reliability and economical efficiency, including a sound air supply nozzle, forming a strong swirl flow along the inner surface of a furnace wall and also suppressing burnout caused by radiation heat, even if a gap is formed between the nozzle provided in a through hole communicating with the inside of a furnace and the through hole.SOLUTION: In the air supply nozzle, the through hole is formed in the furnace wall constituted of a water pipe, the air supply nozzle is inserted into the through hole, and the gap is provided between the nozzle and the through hole. The position of the tip end of the nozzle is separated from the inner surface of the furnace wall by 0.8 times or more the inside diameter of the nozzle. Gas jetted from the inside of the nozzle has a turning speed component.

Description

本発明はボイラ装置に係り、特に火炉内に空気を供給する空気供給ノズルを有するボイラ装置に関する。   The present invention relates to a boiler device, and more particularly to a boiler device having an air supply nozzle for supplying air into a furnace.

例えば石炭を微粉砕し、火炉内で浮遊させて燃焼させる微粉炭焚きボイラでは、特許文献1に開示されているようにボイラ火炉には下部に微粉炭バーナが設けられ、バーナの下流(ボイラ上部)にはアフタエアノズルが設けられ、バーナからは微粉炭燃料と燃焼用空気が供給され、アフタエアノズルからは空気のみが供給される。   For example, in a pulverized coal fired boiler in which coal is finely pulverized and suspended in a furnace and burned, a pulverized coal burner is provided in the lower part of the boiler furnace as disclosed in Patent Document 1, and the downstream of the burner (upper part of the boiler) ) Is provided with an after air nozzle, pulverized coal fuel and combustion air are supplied from the burner, and only air is supplied from the after air nozzle.

バーナ部での燃焼では、微粉炭燃料を完全燃焼させるために必要な理論空気比以下となる量の空気をバーナから供給し、空気不足の状態で微粉炭を燃焼させ、還元雰囲気とし、NOx生成を抑制している。しかしながら、この還元雰囲気では酸素不足により未燃焼分が残り、CO(一酸化炭素)が発生する。この還元雰囲気で発生した未燃焼分やCOを完全燃焼させるため、バーナの下流に位置するアフタエアノズルから理論空気比の不足分となる空気量より若干多めの燃焼用空気を火炉内に供給し、未燃焼分やCOを低減した燃焼排ガスが火炉から排出される。   In combustion in the burner section, air is supplied from the burner in an amount that is less than the theoretical air ratio required for complete combustion of the pulverized coal fuel, and the pulverized coal is combusted in a shortage of air, creating a reducing atmosphere and generating NOx. Is suppressed. However, in this reducing atmosphere, an unburned portion remains due to oxygen shortage, and CO (carbon monoxide) is generated. In order to completely burn the unburned portion and CO generated in this reducing atmosphere, a slightly larger amount of combustion air is supplied into the furnace than the amount of air that becomes a shortage of the theoretical air ratio from the after air nozzle located downstream of the burner, Combustion exhaust gas with reduced unburned matter and CO is discharged from the furnace.

特開平9−310807号公報Japanese Patent Laid-Open No. 9-310807 特開平4−52414号公報Japanese Unexamined Patent Publication No. 4-52414 特開2009−174751号公報JP 2009-174751 A

微粉炭焚きボイラや油焚きボイラなどの燃焼装置では燃料を完全燃焼させることが重要である。このため、例えば前述の微粉炭焚きボイラのようにバーナ下流のアフタエアノズルから空気を供給し完全燃焼させる場合、空気を火炉内に均一に分布させて未燃焼分との混合を促進することが望ましい。この場合には、火炉中央に空気を供給するほか、火炉壁近傍の燃料の未燃焼分を低減させるため火炉壁近傍に空気を供給する必要がある。空気を火炉壁近傍に供給する手段としては、空気をノズル内で旋回させて旋回流として火炉内に供給する方法がある。例えば、特許文献2にはアフタエア噴流の流動様式を調整し、混合を促進するため空気に直進流と旋回流を与える旋回構造が開示されている。上記構造にて火炉壁近傍に空気を供給する場合、旋回流の割合を増やし、遠心力により空気をノズルから噴出後に拡散させる方法がとられる。特に強い旋回流を生じさせると、ノズルから噴出後も空気が壁面に沿って流れるコアンダ効果により火炉壁面に沿った壁面流が形成できる。   In a combustion apparatus such as a pulverized coal fired boiler or an oil fired boiler, it is important to completely burn the fuel. For this reason, for example, when air is supplied from the after air nozzle downstream of the burner and completely burned like the above-described pulverized coal burning boiler, it is desirable to promote the mixing with the unburned portion by uniformly distributing the air in the furnace. . In this case, in addition to supplying air to the center of the furnace, it is necessary to supply air to the vicinity of the furnace wall in order to reduce the amount of unburned fuel near the furnace wall. As a means for supplying air to the vicinity of the furnace wall, there is a method in which air is swirled in a nozzle and supplied into the furnace as a swirling flow. For example, Patent Document 2 discloses a swirling structure that adjusts the flow pattern of an after-air jet and imparts a straight flow and a swirling flow to air in order to promote mixing. When air is supplied to the vicinity of the furnace wall with the above structure, a method of increasing the ratio of the swirling flow and diffusing the air after being ejected from the nozzle by centrifugal force is used. When a particularly strong swirling flow is generated, a wall surface flow along the furnace wall surface can be formed by the Coanda effect in which air flows along the wall surface even after ejection from the nozzle.

ところで、ボイラの火炉を構成する隔壁である火炉壁は炉内温度の上昇に伴い熱膨張する。一般に火炉はその上部が支持され、吊り下げられる。このため、熱膨張により火炉壁は下方向に移動する。また、火炉をその下部で支持する場合は、熱膨張により火炉壁が上方向に移動する。このため、アフタエアノズル等の空気供給ノズルは、火炉内へ通じる貫通孔に密着させず間隙(ギャップ)を設けることが一般的である。間隙を設けることで熱膨張により移動する火炉壁の貫通孔に対し、設備基礎に固定される空気供給ノズルとの接触や干渉が生じない。   By the way, the furnace wall which is a partition which comprises the furnace of a boiler thermally expands with the rise in furnace temperature. In general, the upper part of a furnace is supported and suspended. For this reason, the furnace wall moves downward due to thermal expansion. Moreover, when supporting a furnace in the lower part, a furnace wall moves to upper direction by thermal expansion. For this reason, an air supply nozzle such as an after air nozzle is generally provided with a gap (gap) without being brought into close contact with a through-hole communicating with the furnace. By providing the gap, contact or interference with the air supply nozzle fixed to the equipment base does not occur with respect to the through hole of the furnace wall that moves due to thermal expansion.

一方、火炉内は燃焼ガスが炉外へ流出しないようにするため負圧に制御されており、この間隙から火炉内へ向かって空気がリーク流として流入する。リーク流は直進して火炉内へ向かって流れるため旋回流の流れを阻害する方向に働き、壁に沿う強い壁面流を形成するのが困難となる。また、空気供給ノズルと火炉壁との間に空気の流入を阻止する構造物(シール部材)を設けた場合でも、空気供給ノズルと火炉壁との間に生じる段差部分は、流路が急拡大するため、流れが壁面から剥離し、循環流が生じてノズルから噴出する空気が壁面に沿って流れるのを妨げる。このため、火炉壁面に沿った流れの形成が難しくなり、火炉壁近傍に空気が充分に供給されず未燃焼分が残留する可能性がある。   On the other hand, the inside of the furnace is controlled to a negative pressure in order to prevent the combustion gas from flowing out of the furnace, and air flows from the gap into the furnace as a leak flow. Since the leak flow goes straight and flows into the furnace, it works in a direction that obstructs the flow of the swirl flow, making it difficult to form a strong wall flow along the wall. Even when a structure (seal member) that prevents the inflow of air between the air supply nozzle and the furnace wall is provided, the flow path rapidly expands in the step portion generated between the air supply nozzle and the furnace wall. Therefore, the flow is separated from the wall surface, and a circulating flow is generated to prevent the air ejected from the nozzle from flowing along the wall surface. For this reason, it becomes difficult to form a flow along the furnace wall surface, and there is a possibility that air is not sufficiently supplied in the vicinity of the furnace wall and an unburned portion remains.

特許文献3には、水管壁に沿って空気を噴出させるノズルが開示されている。しかしながら構成部材が火炉内部に突き出しており、バーナ火炎の輻射熱によりノズル部材が焼損して必要な空気噴流が形成できないおそれがある。   Patent Document 3 discloses a nozzle that ejects air along a water pipe wall. However, the component member protrudes into the furnace, and the nozzle member may be burned by the radiant heat of the burner flame, so that a necessary air jet may not be formed.

本発明の目的は、火炉内へ通じる火炉壁の貫通孔に設けたノズルと貫通孔の間に間隙があっても、強い旋回流を形成し火炉内壁面に壁面流を形成できると共に輻射熱によるノズル焼損を抑制し健全性を高めた空気供給ノズルを提供し、信頼性、経済性を高めたボイラ装置を提供することにある。   An object of the present invention is to form a strong swirling flow and form a wall surface flow on the furnace inner wall surface even if there is a gap between the nozzle provided in the through hole of the furnace wall leading to the furnace and the through hole, and a nozzle by radiant heat An object of the present invention is to provide an air supply nozzle that suppresses burning and enhances soundness, and provides a boiler device that has improved reliability and economy.

本発明は、火炉内に供給された燃料を燃焼するバーナと、水管が配設され貫通孔が形成された火炉を構成する火炉壁と、貫通孔に挿入され火炉内に空気を供給するノズルおよびノズル内に供給された空気に旋回速度成分を与える旋回部材とを有し、ノズルと貫通孔の間に間隙を有する空気供給ノズルを備えたボイラ装置において、空気供給ノズルの貫通孔内における先端位置を火炉壁内面からノズル内直径の0.8倍以上の距離を離間して設置することを特徴とする。   The present invention relates to a burner that burns fuel supplied into a furnace, a furnace wall that constitutes a furnace in which a water pipe is provided and a through hole is formed, a nozzle that is inserted into the through hole and supplies air into the furnace, and In a boiler apparatus having an air supply nozzle having a swirl member that imparts a swirl speed component to air supplied into the nozzle and having a gap between the nozzle and the through hole, the tip position of the air supply nozzle in the through hole Is installed at a distance of 0.8 times or more the nozzle inner diameter from the furnace wall inner surface.

また、空気供給ノズルを備えたボイラ装置において、ノズル先端部が下流側に向かい断面積が拡がる拡管構造を有することを特徴とする。   Moreover, the boiler apparatus provided with the air supply nozzle has a tube expansion structure in which the nozzle tip portion is directed downstream and the cross-sectional area is expanded.

また、空気供給ノズルを備えたボイラ装置において、ノズル内部に下流側に向かい断面積が拡がる円筒状の拡管部材を設けたことを特徴とする。   Moreover, the boiler apparatus provided with the air supply nozzle is characterized in that a cylindrical tube expansion member having a cross-sectional area expanding toward the downstream side is provided inside the nozzle.

また、空気供給ノズルを備えたボイラ装置において、ノズルの先端に凹凸状の部材を設けたことを特徴とする。   Moreover, in the boiler apparatus provided with the air supply nozzle, an uneven member is provided at the tip of the nozzle.

また、空気供給ノズルを備えたボイラ装置において、貫通孔の火炉内面側が拡管構造を持つことを特徴とする。   Moreover, in the boiler apparatus provided with the air supply nozzle, the furnace inner surface side of the through hole has a tube expansion structure.

また、空気供給ノズルを備えたボイラ装置において、火炉壁の外側と前記ノズルが接する箇所に空気の流入を阻止する構造物を設けたことを特徴とする。   Moreover, the boiler apparatus provided with the air supply nozzle is characterized in that a structure for preventing the inflow of air is provided at a location where the nozzle contacts the outside of the furnace wall.

また、空気供給ノズルを備えたボイラ装置において、流体の旋回速度成分を調整する調整部材を設けたことを特徴とする。   Moreover, the boiler apparatus provided with the air supply nozzle is provided with an adjusting member for adjusting a swirl velocity component of the fluid.

また、空気供給ノズルを備えたボイラ装置において、前記バーナの下流側に空気供給ノズルを設けたことを特徴とする。   Moreover, the boiler apparatus provided with the air supply nozzle WHEREIN: The air supply nozzle was provided in the downstream of the said burner, It is characterized by the above-mentioned.

さらに、空気供給ノズルを備えたボイラ装置において、バーナの下流側にバーナでの燃焼用空気不足分を火炉内に供給するノズルを少なくとも2段以上設け、前記ノズルの一部として前記空気供給ノズルを設けたことを特徴とする。   Further, in the boiler apparatus provided with the air supply nozzle, at least two stages of nozzles for supplying a shortage of combustion air in the burner into the furnace are provided on the downstream side of the burner, and the air supply nozzle is provided as a part of the nozzle. It is provided.

さらに、空気供給ノズルを備えたボイラ装置において、バーナを配置した高さに前記空気供給ノズルを設けたことを特徴とする。   Furthermore, in the boiler apparatus provided with the air supply nozzle, the air supply nozzle is provided at a height at which the burner is disposed.

本発明によれば、ノズルの先端が火炉壁内面から0.8D以上離間し設置されているためノズルから噴出した流れは徐々に径方向に拡大し、貫通孔出口より上流側で貫通孔の内壁に沿って流れる。貫通孔出口でさらに拡がり、水管表面の火炉壁内面を沿って流れる。このため、火炉内へ通じる貫通孔に設けたノズルと貫通孔に間隙があっても壁に沿う壁面流を形成できる。   According to the present invention, since the tip of the nozzle is disposed at a distance of 0.8 D or more from the furnace wall inner surface, the flow ejected from the nozzle gradually expands in the radial direction, and the inner wall of the through hole upstream from the through hole outlet. Flowing along. It further expands at the outlet of the through hole and flows along the furnace wall inner surface of the water pipe surface. For this reason, even if there is a gap between the nozzle provided in the through hole leading into the furnace and the through hole, a wall surface flow along the wall can be formed.

本発明の空気供給ノズルをバーナの下流に設置した場合は、壁近傍に十分な酸素を供給でき壁近傍に存在する未燃焼分やCOが低減する。また、バーナを配置した高さに設置した場合は、火炉壁表面に沿って酸素を供給し、腐食を抑制できると共に、ノズルが火炉内に突出していないため輻射熱によるノズルの焼損を抑制でき信頼性、経済性の高いボイラ装置を提供することができる。   When the air supply nozzle of the present invention is installed downstream of the burner, sufficient oxygen can be supplied in the vicinity of the wall, and unburned components and CO existing in the vicinity of the wall are reduced. In addition, when installed at the height where the burner is placed, oxygen can be supplied along the furnace wall surface to suppress corrosion, and because the nozzle does not protrude into the furnace, it can suppress the burning of the nozzle due to radiant heat. It is possible to provide a highly economical boiler device.

本発明の実施例1による空気供給ノズルの正面図。The front view of the air supply nozzle by Example 1 of this invention. 図1のA−A断面を示す模式図。The schematic diagram which shows the AA cross section of FIG. Lと間隙24の有無による噴流状態を表すグラフ。The graph showing the jet state by the presence or absence of L and the clearance gap 24. FIG. 図3での壁面流の場合(H領域)の噴流を示す模式図。The schematic diagram which shows the jet flow in the case of the wall surface flow in FIG. 3 (H area | region). 図3での壁面流にならない場合(F領域)の噴流を示す模式図。The schematic diagram which shows the jet of the case where it does not become a wall surface flow in FIG. 3 (F area | region). 本発明の実施例2による空気供給ノズルの模式図。The schematic diagram of the air supply nozzle by Example 2 of this invention. 本発明の実施例3による空気供給ノズルの模式図。The schematic diagram of the air supply nozzle by Example 3 of this invention. 本発明の実施例4による空気供給ノズルの模式図。The schematic diagram of the air supply nozzle by Example 4 of this invention. 本発明の実施例5による空気供給ノズルの模式図。The schematic diagram of the air supply nozzle by Example 5 of this invention. 本発明の実施例6による空気供給ノズルの模式図。The schematic diagram of the air supply nozzle by Example 6 of this invention. 本発明の実施例7を示すボイラ装置の模式図。The schematic diagram of the boiler apparatus which shows Example 7 of this invention. 本発明の実施例7を示すボイラ装置の模式図。The schematic diagram of the boiler apparatus which shows Example 7 of this invention. 図12のボイラのB−B矢視図。The BB arrow line view of the boiler of FIG.

本発明の実施例であるボイラについて図面を参照して以下に説明する。   The boiler which is an Example of this invention is demonstrated below with reference to drawings.

図1に本発明の実施例による空気供給ノズル4の正面図を、図2に図1のA−A断面の模式図を示す。火炉壁1の表面には水管11が設けられ、円形の貫通孔30に干渉しないように水管11も貫通孔30の形状に沿って変形して設置されている。火炉壁1は火炉内の熱による熱膨張で下方に伸びるため、貫通孔30内に設置するノズル20の外径と貫通孔30の内径との間に間隙24を設けている。ノズル20内には空気の旋回部材として円形の旋回羽根25を設置している。ダクト16は空気15をノズル20を介して貫通孔30から火炉内に供給できるよう構成されている。
空気15はダクト16内を通り、ノズル20に設けた流入孔22から流入し、旋回羽根25により旋回速度成分の流速を有する旋回流となりノズル20の先端から流出し、貫通孔30から火炉内へ流れる。空気流量はダンパ21の開度で調整する。空気15が火炉内に全量流れるように火炉壁1とダクト16を密着させるが、ダクト16と火炉壁1の間に間隙26が存在する。
FIG. 1 shows a front view of an air supply nozzle 4 according to an embodiment of the present invention, and FIG. 2 shows a schematic diagram of a cross section AA in FIG. A water pipe 11 is provided on the surface of the furnace wall 1, and the water pipe 11 is also deformed and installed along the shape of the through hole 30 so as not to interfere with the circular through hole 30. Since the furnace wall 1 extends downward due to thermal expansion due to heat in the furnace, a gap 24 is provided between the outer diameter of the nozzle 20 installed in the through hole 30 and the inner diameter of the through hole 30. A circular swirl vane 25 is installed in the nozzle 20 as a swirl member for air. The duct 16 is configured so that the air 15 can be supplied from the through hole 30 into the furnace through the nozzle 20.
The air 15 passes through the duct 16 and flows in from an inflow hole 22 provided in the nozzle 20, becomes a swirl flow having a swirl speed component by the swirl vanes 25, flows out from the tip of the nozzle 20, and enters the furnace from the through hole 30. Flowing. The air flow rate is adjusted by the opening degree of the damper 21. The furnace wall 1 and the duct 16 are brought into close contact so that the entire amount of air 15 flows into the furnace, but a gap 26 exists between the duct 16 and the furnace wall 1.

火炉内は燃焼ガスが炉外に出ないように運転時は常に負圧に制御されている。よって間隙26から空気が流入し、間隙24から火炉内に噴出するリーク流23が存在する。このリーク流23は火炉内へ向かう直進流であるため、ノズル20から噴出する強旋回流による壁に沿う壁面流を阻害する。また、リーク流23を抑制するために空気の流入を阻止するシール部材27でシールした場合でも、間隙24があるためノズル20の先端部分で循環流31が生じてノズル20から噴出する旋回流が壁面に沿って流れるのを妨げる。   The inside of the furnace is always controlled to a negative pressure during operation so that the combustion gas does not go out of the furnace. Therefore, there is a leak flow 23 in which air flows in from the gap 26 and is ejected from the gap 24 into the furnace. Since the leak flow 23 is a straight flow toward the furnace, the wall flow along the wall due to the strong swirling flow ejected from the nozzle 20 is obstructed. Further, even when sealing with a sealing member 27 that prevents the inflow of air in order to suppress the leak flow 23, the circulating flow 31 is generated at the tip of the nozzle 20 due to the gap 24, and the swirling flow ejected from the nozzle 20 is generated. Prevents flow along the wall.

図3に間隙24の有無が及ぼす噴流への影響を示す。横軸は図2に示すノズル20の先端から火炉壁1内面までの距離Lをノズル20の内直径Dで除した値(L/D)を示す。縦軸は間隙24の有無を示す。図中の○は貫通孔30からの噴流が壁に沿って噴出する壁面流であることを示し、×は壁面流でないことを示す。図中のハッチング部Hが壁面流が生じる領域を示し、Fは非壁面流領域を示している。図中の領域Fでも一時的に壁面流が生じる場合もあるが、火炉内の圧力変動などによる外乱を与えると壁面流を安定して維持できない。領域Hの条件下では、これら外乱にも影響されず安定した壁面流を形成できる。図3から間隙24がある場合に壁面流を形成するにはノズル20の先端から火炉壁1内面までの距離Lはノズル20の内直径Dの約0.8倍以上必要であることがわかる。   FIG. 3 shows the influence of the presence or absence of the gap 24 on the jet flow. The horizontal axis represents a value (L / D) obtained by dividing the distance L from the tip of the nozzle 20 shown in FIG. 2 to the inner surface of the furnace wall 1 by the inner diameter D of the nozzle 20. The vertical axis indicates the presence or absence of the gap 24. In the figure, ◯ indicates that the jet flow from the through hole 30 is a wall surface flow ejected along the wall, and × indicates that it is not a wall surface flow. A hatched portion H in the figure indicates a region where a wall surface flow occurs, and F indicates a non-wall surface flow region. Even in the region F in the figure, a wall surface flow may occur temporarily, but the wall surface flow cannot be stably maintained if a disturbance due to pressure fluctuation in the furnace is applied. Under the condition of region H, a stable wall flow can be formed without being affected by these disturbances. 3 that the distance L from the tip of the nozzle 20 to the inner surface of the furnace wall 1 needs to be about 0.8 times or more the inner diameter D of the nozzle 20 in order to form a wall flow when there is a gap 24.

図4に、図3の領域Hに相当する壁面流となる場合の噴流の模式図を示す。ノズル20の先端位置が火炉壁1内面から0.8D以上、十分離間し設置されているため、ノズルから噴出した旋回流は徐々に径方向に拡大し、リーク流23、循環流31の流れを抑え込みながら貫通孔30の出口でさらに拡がり、水管11表面の火炉壁1内面を沿って流れる壁面流となる。   FIG. 4 shows a schematic diagram of a jet flow in the case of a wall surface flow corresponding to the region H in FIG. Since the tip position of the nozzle 20 is sufficiently spaced apart from the inner surface of the furnace wall 1 by 0.8D or more, the swirling flow ejected from the nozzle gradually expands in the radial direction, and the flow of the leak flow 23 and the circulation flow 31 is While being suppressed, it further expands at the outlet of the through hole 30 and becomes a wall surface flow that flows along the inner surface of the furnace wall 1 on the surface of the water pipe 11.

一方、図3の領域Fに相当する非壁面流の場合の噴流の模式図を図5に示す。ノズル20の先端が火炉壁1内面近くにあるため、ノズル20から噴出した旋回流は径方向に拡がらないうちに火炉内に向かって流出する。リーク流23は火炉内に向かって直進して流れ、循環流31も壁面流となるのを阻害するため、安定した壁面流となり難くい。   On the other hand, the schematic diagram of the jet in the case of the non-wall surface flow corresponding to the region F in FIG. 3 is shown in FIG. Since the tip of the nozzle 20 is near the inner surface of the furnace wall 1, the swirling flow ejected from the nozzle 20 flows out into the furnace before spreading in the radial direction. Since the leak flow 23 flows straight toward the furnace and the circulation flow 31 is inhibited from becoming a wall surface flow, it is difficult to become a stable wall surface flow.

実施例1によれば、火炉へ通じる貫通孔30とノズル20との間隙24がある場合でも、ノズル20の先端位置を火炉壁1内面からノズル20の内直径Dの0.8倍以上離間することで、炉内圧力の変動などによる外乱にも影響されず安定した壁面流を形成することができる。   According to the first embodiment, even when there is a gap 24 between the through hole 30 leading to the furnace and the nozzle 20, the tip position of the nozzle 20 is separated from the inner surface of the furnace wall 1 by 0.8 times or more of the inner diameter D of the nozzle 20. Thus, a stable wall flow can be formed without being affected by disturbance due to fluctuations in the pressure in the furnace.

図6に本発明の実施例2によるノズルの模式図を示す。実施例1のノズル先端位置の条件に加え、本ノズルはノズル20の先端が下流側に向かい断面積が拡がる拡管構造となっている。実施例2によれば、ノズル20に設けた拡管部32が径方向に向かっているため循環流31の生成を抑制し、ノズル20から噴出した旋回流が径方向に拡がり易くなり、より安定した壁面流を形成できるというメリットがある。   FIG. 6 shows a schematic diagram of a nozzle according to Example 2 of the present invention. In addition to the conditions for the nozzle tip position in the first embodiment, this nozzle has a tube expansion structure in which the tip of the nozzle 20 is directed downstream and the cross-sectional area is expanded. According to the second embodiment, since the expanded pipe portion 32 provided in the nozzle 20 is directed in the radial direction, the generation of the circulating flow 31 is suppressed, and the swirling flow ejected from the nozzle 20 is easily spread in the radial direction, and is more stable. There is an advantage that a wall flow can be formed.

図7に本発明の実施例3によるノズルの模式図を示す。本ノズルはノズル20内側の先端部に、下流側に向かい断面積が拡がる円筒状の拡管部材33を設けている。実施例3も拡管部材33が径方向に向かっているため旋回流が径方向に拡がり易く、循環流31の生成を抑制するため、より安定した壁面流を形成できる。また拡管部材33がノズル内部にあるため輻射熱による影響も少なくて済むというメリットがある。   FIG. 7 shows a schematic diagram of a nozzle according to Example 3 of the present invention. This nozzle is provided with a cylindrical tube expansion member 33 whose cross-sectional area expands toward the downstream side at the tip end inside the nozzle 20. In the third embodiment as well, since the pipe expansion member 33 faces in the radial direction, the swirling flow easily spreads in the radial direction, and the generation of the circulating flow 31 is suppressed, so that a more stable wall surface flow can be formed. Further, since the pipe expansion member 33 is inside the nozzle, there is an advantage that the influence of the radiant heat can be reduced.

図8に本発明の実施例4によるノズルの模式図を示す。本ノズルはノズル20内の先端部に歯状または短冊状の部材を円周方向に配列した凹凸状の部材34を設けている。部材34によってノズルから噴出する流れに乱れが生じ、周方向に流れが拡散し易くなる。このため、ノズルから噴出する流れが拡がり易くなり、循環流31の生成を抑制するため、ノズル20から噴出する流れは安定した壁面流となる。   FIG. 8 shows a schematic diagram of a nozzle according to Example 4 of the present invention. This nozzle is provided with an uneven member 34 in which tooth-like or strip-like members are arranged in the circumferential direction at the tip of the nozzle 20. The member 34 disturbs the flow ejected from the nozzle, and the flow is easily diffused in the circumferential direction. For this reason, the flow ejected from the nozzle is easily expanded, and the flow ejected from the nozzle 20 becomes a stable wall surface flow in order to suppress the generation of the circulating flow 31.

図9に本発明の実施例5によるノズルの模式図を示す。本ノズルは火炉壁1の貫通孔30出口部分に、出口に向かって拡大した拡管部28が形成された拡管構造を有している。実施例5によれば、ノズル20から噴出した旋回流が貫通孔30出口で径方向に拡がり易く、循環流31の生成を抑制するため、より安定した壁面流を形成できるとういうメリットがある。   FIG. 9 shows a schematic diagram of a nozzle according to Example 5 of the present invention. This nozzle has an expanded structure in which an expanded portion 28 that is expanded toward the exit is formed at the exit portion of the through hole 30 of the furnace wall 1. According to the fifth embodiment, the swirling flow ejected from the nozzle 20 easily spreads in the radial direction at the outlet of the through hole 30 and suppresses the generation of the circulating flow 31, so that there is an advantage that a more stable wall surface flow can be formed.

図10に本発明の実施例6によるノズルの模式図を示す。図9に示す旋回羽根25に替えて、円周方向に配列した半径方向の羽根の角度を傾斜調整可能とした案内羽根29としたものである。空気流量はダンパ36で調整する。実施例6でも図9と同様に壁面流となる強旋回流を発生できる。さらに案内羽根29の角度を調整部材である調整ハンドル35で調整することで、旋回速度成分(旋回強度)を調整できるため、噴流の形状を幅広く制御できるというメリットがある。   FIG. 10 shows a schematic diagram of a nozzle according to Example 6 of the present invention. In place of the swirl vane 25 shown in FIG. 9, a guide vane 29 is provided in which the angle of the radial vanes arranged in the circumferential direction is adjustable. The air flow rate is adjusted by the damper 36. In the sixth embodiment, a strong swirl flow that is a wall surface flow can be generated as in FIG. Furthermore, since the turning speed component (turning strength) can be adjusted by adjusting the angle of the guide vane 29 with the adjusting handle 35 as an adjusting member, there is an advantage that the shape of the jet can be controlled widely.

図11に、実施例7における本発明のノズル構造を適用したボイラの模式図を示す。ボイラの下部にはバーナ2を備え、バーナ部から上昇する未燃焼分を含むガス5をボイラ上部に設けたアフタエアノズル3からアフタエア(空気)7を供給し未燃焼分を完全燃焼させて排ガス9として炉外へ排出している。アフタエアノズル3の下段には本発明の空気供給ノズル4を備えている。アフタエアノズル3では供給できない壁近傍に空気(酸素)を壁面流8として供給することで、火炉内で均一に空気を混合でき、壁近傍の未燃焼分、COを低減することができる。よって火炉内での燃料の燃焼率が向上し、経済性の高いボイラを提供することができる。   In FIG. 11, the schematic diagram of the boiler to which the nozzle structure of this invention in Example 7 is applied is shown. A burner 2 is provided at the lower part of the boiler, and after-air (air) 7 is supplied from an after-air nozzle 3 provided at the upper part of the boiler with a gas 5 containing an unburned part rising from the burner part. Is discharged outside the furnace. The lower stage of the after air nozzle 3 is provided with the air supply nozzle 4 of the present invention. By supplying air (oxygen) as a wall surface flow 8 near the wall that cannot be supplied by the after-air nozzle 3, the air can be mixed uniformly in the furnace, and the unburned portion and CO near the wall can be reduced. Therefore, the combustion rate of the fuel in the furnace is improved, and a highly economical boiler can be provided.

図12に、実施例8における本発明の空気供給ノズル構造を適用したボイラの模式図を示す。実施例8ではボイラの下部のバーナ2近傍に空気供給ノズル4を備えている。バーナ近傍は酸素濃度が低く、火炉壁の腐食が生じ易い。図13に図12のB−B矢視図を示す。バーナ設置高さに本発明の空気供給ノズル4を設置することで、図13に示す噴流8のように火炉壁に沿った壁面流により空気(酸素)が水管表面を流れるため水管表面を酸化雰囲気にでき、腐食を抑制することができる。また、ノズルを構成する部材が火炉内に突出していないので輻射熱による焼損もなく、信頼性も高い。図12ではバーナ2は片側にしかないが、図11のように両側にバーナ2があっても効果は同じである。また、本実施例を示す図12では、バーナ2設置面以外の3面に空気供給ノズル4を備えるが、バーナ2設置面に設けることも可能である。また、本実施例を示す図12では、バーナ2の最下段高さに空気供給ノズル4を備えるが、アフタエアノズル3より下側(上流側)であるバーナ2の設置高さの何れでも良い。   In FIG. 12, the schematic diagram of the boiler to which the air supply nozzle structure of this invention in Example 8 is applied is shown. In the eighth embodiment, an air supply nozzle 4 is provided in the vicinity of the burner 2 below the boiler. In the vicinity of the burner, the oxygen concentration is low and the furnace wall tends to corrode. FIG. 13 is a view taken along arrow BB in FIG. By installing the air supply nozzle 4 of the present invention at the burner installation height, air (oxygen) flows on the surface of the water tube by the wall surface flow along the furnace wall as in the jet 8 shown in FIG. And corrosion can be suppressed. Further, since the members constituting the nozzle do not protrude into the furnace, there is no burning due to radiant heat, and the reliability is high. In FIG. 12, the burner 2 is only on one side, but the effect is the same even if the burner 2 is on both sides as shown in FIG. Moreover, in FIG. 12 which shows a present Example, although the air supply nozzle 4 is provided in 3 surfaces other than the burner 2 installation surface, it is also possible to provide in the burner 2 installation surface. Moreover, in FIG. 12 which shows a present Example, although the air supply nozzle 4 is provided in the lowest step height of the burner 2, any installation height of the burner 2 below (upstream side) from the after air nozzle 3 may be sufficient.

本発明によれば、火炉内へ通じる貫通孔に設けたノズルと貫通孔に間隙があっても、壁に沿う流れを形成でき、バーナの下流に位置するアフタエアノズルに適用すると、壁近傍に酸素を供給でき、壁近傍に存在する未燃焼分、COが低減する。また、バーナ近傍に適用すると水管表面に沿って酸素を供給でき、火炉壁の腐食を抑制できると共にノズルを構成する構造材が火炉内に突出していないため、輻射熱によるノズル部材の焼損を抑制でき、信頼性、経済性の高いボイラ装置を提供することができる。   According to the present invention, even if there is a gap between the nozzle provided in the through-hole leading into the furnace and the through-hole, a flow along the wall can be formed, and when applied to an after-air nozzle located downstream of the burner, oxygen is present in the vicinity of the wall. , And the amount of unburned CO present in the vicinity of the wall is reduced. In addition, when applied in the vicinity of the burner, oxygen can be supplied along the surface of the water tube, corrosion of the furnace wall can be suppressed, and the structural material constituting the nozzle does not protrude into the furnace, so that burning of the nozzle member due to radiant heat can be suppressed, A boiler device with high reliability and economy can be provided.

1・・・火炉壁
3・・・アフタエアノズル
4・・・空気供給ノズル
8・・・空気噴流
9・・・燃焼排ガス
11・・・水管
15・・・空気流
20・・・ノズル
23・・・リーク流
24、26・・・間隙
25・・・旋回羽根
27・・・シール部材
28、32・・・拡管部
29・・・案内羽根
30・・・貫通孔
31・・・循環流
33・・・円筒状拡管部材
34・・・凸凹状部材
35・・・調整ハンドル
D・・・ノズル内直径
L・・・ノズル先端と火炉壁内面の距離
1 ... Furnace wall
3 ... After air nozzle
4 ... Air supply nozzle 8 ... Air jet
9 ... Combustion exhaust gas
11 ... Water pipe
15 ... Air flow
20 ... Nozzle
23 ... Leak flow
24, 26 ... gap
25 ... swirl blade 27 ... seal member
28, 32 ... tube expansion part
29 ... Guide feather
30 ... through hole
31 ... Circulating flow 33 ... Cylindrical tube expansion member
34 .. Uneven member
35 ... Adjustment handle
D ... Nozzle inner diameter
L: Distance between nozzle tip and furnace wall inner surface

Claims (10)

火炉内に供給された燃料を燃焼するバーナと、水管が配設され貫通孔が形成された前記火炉を構成する火炉壁と、前記貫通孔に挿入され前記火炉内に空気を供給するノズルおよび該ノズル内に供給された空気に旋回速度成分を与える旋回部材とを有し、前記ノズルと前記貫通孔の間に間隙を有する空気供給ノズルを備えたボイラ装置において、
前記空気供給ノズルの前記ノズルの貫通孔内における先端位置を前記火炉壁内面からノズル内直径の0.8倍以上の距離を離間して設置することを特徴とする空気供給ノズルを備えたボイラ装置。
A burner that burns fuel supplied into the furnace, a furnace wall that constitutes the furnace in which a water pipe is disposed and a through hole is formed, a nozzle that is inserted into the through hole and supplies air into the furnace, and the A boiler device having an air supply nozzle having a swirl member that imparts a swirl speed component to the air supplied into the nozzle, and having a gap between the nozzle and the through hole;
A boiler apparatus having an air supply nozzle, wherein the tip position of the air supply nozzle in the through hole of the nozzle is disposed at a distance of 0.8 times or more of the nozzle inner diameter from the furnace wall inner surface. .
請求項1記載の空気供給ノズルを備えたボイラ装置において、前記ノズル先端部が下流側に向かい断面積が拡がる拡管構造を有することを特徴とする空気供給ノズルを備えたボイラ装置。   The boiler apparatus provided with the air supply nozzle of Claim 1 which has a pipe expansion structure where the nozzle front-end | tip part expands a cross-sectional area toward a downstream side, The air supply nozzle characterized by the above-mentioned. 請求項1記載の空気供給ノズルを備えたボイラ装置において、前記ノズル内部に下流側に向かい断面積が拡がる円筒状の拡管部材を設けたことを特徴とする空気供給ノズルを備えたボイラ装置。   The boiler apparatus provided with the air supply nozzle of Claim 1 provided with the cylindrical pipe expansion member which a cross-sectional area expands toward the downstream in the said nozzle inside. 請求項1記載の空気供給ノズルを備えたボイラ装置において、前記ノズルの先端に凹凸状の部材を設けたことを特徴とする空気供給ノズルを備えたボイラ装置。   The boiler apparatus provided with the air supply nozzle of Claim 1 WHEREIN: The uneven | corrugated shaped member was provided in the front-end | tip of the said nozzle, The boiler apparatus provided with the air supply nozzle characterized by the above-mentioned. 請求項1乃至4のいずれかに記載の空気供給ノズルを備えたボイラ装置において、前記貫通孔の火炉内面側が拡管構造を持つことを特徴とする空気供給ノズルを備えたボイラ装置。   The boiler apparatus provided with the air supply nozzle in any one of Claims 1 thru | or 4 WHEREIN: The furnace inner surface side of the said through-hole has a pipe expansion structure, The boiler apparatus provided with the air supply nozzle characterized by the above-mentioned. 請求項1乃至5のいずれかに記載の空気供給ノズルを備えたボイラ装置において、前記火炉壁の外側と前記ノズルが接する箇所に空気の流通を防止する構造物を設けたことを特徴とする空気供給ノズルを備えたボイラ装置。   6. A boiler apparatus comprising the air supply nozzle according to claim 1, wherein a structure for preventing air from flowing is provided at a location where the nozzle contacts the outside of the furnace wall. A boiler device equipped with a supply nozzle. 請求項1乃至6のいずれかに記載の空気供給ノズルを備えたボイラ装置において、前記流体の旋回速度成分を調整する調整部材を設けたことを特徴とする空気供給ノズルを備えたボイラ装置。   The boiler apparatus provided with the air supply nozzle in any one of Claims 1 thru | or 6 WHEREIN: The adjustment member which adjusts the turning speed component of the said fluid was provided, The boiler apparatus provided with the air supply nozzle characterized by the above-mentioned. 請求項1乃至7のいずれかに記載の空気供給ノズルを備えたボイラ装置において、前記バーナの下流側に前記空気供給ノズルを設けたことを特徴とする空気供給ノズルを備えたボイラ装置。   The boiler apparatus provided with the air supply nozzle in any one of Claims 1 thru | or 7 WHEREIN: The said air supply nozzle was provided in the downstream of the said burner, The boiler apparatus provided with the air supply nozzle characterized by the above-mentioned. 請求項8記載の空気供給ノズルを備えたボイラ装置において、前記バーナの下流側にバーナでの燃焼用空気不足分を火炉内に供給するノズルを少なくとも2段以上設け、前記ノズルの一部に前記空気供給ノズルを設けたことを特徴とする空気供給ノズルを備えたボイラ装置。   9. A boiler apparatus having an air supply nozzle according to claim 8, wherein at least two or more stages of nozzles for supplying a shortage of combustion air in the burner into the furnace are provided downstream of the burner, and a part of the nozzle is provided with the nozzle. The boiler apparatus provided with the air supply nozzle provided with the air supply nozzle. 請求項1乃至9のいずれかに記載の空気供給ノズルを備えたボイラ装置において、前記バーナを配置した高さに前記空気供給ノズルを設けたことを特徴とする空気供給ノズルを備えたボイラ装置。   The boiler apparatus provided with the air supply nozzle in any one of Claims 1 thru | or 9 WHEREIN: The said air supply nozzle was provided in the height which has arrange | positioned the said burner, The boiler apparatus provided with the air supply nozzle characterized by the above-mentioned.
JP2011003617A 2011-01-12 2011-01-12 Boiler equipment Active JP5530373B2 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2011003617A JP5530373B2 (en) 2011-01-12 2011-01-12 Boiler equipment
PL12734688T PL2664847T3 (en) 2011-01-12 2012-01-12 Boiler device
EP12734688.0A EP2664847B1 (en) 2011-01-12 2012-01-12 Boiler device
TW101101229A TW201248089A (en) 2011-01-12 2012-01-12 Boiler device
PCT/JP2012/050412 WO2012096319A1 (en) 2011-01-12 2012-01-12 Boiler device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011003617A JP5530373B2 (en) 2011-01-12 2011-01-12 Boiler equipment

Publications (2)

Publication Number Publication Date
JP2012145267A true JP2012145267A (en) 2012-08-02
JP5530373B2 JP5530373B2 (en) 2014-06-25

Family

ID=46507211

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011003617A Active JP5530373B2 (en) 2011-01-12 2011-01-12 Boiler equipment

Country Status (5)

Country Link
EP (1) EP2664847B1 (en)
JP (1) JP5530373B2 (en)
PL (1) PL2664847T3 (en)
TW (1) TW201248089A (en)
WO (1) WO2012096319A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102021002508A1 (en) 2021-05-12 2022-11-17 Martin GmbH für Umwelt- und Energietechnik Nozzle for injecting gas into an incinerator with a tube and a swirler, flue with such a nozzle and method for using such a nozzle

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59109714A (en) * 1982-12-15 1984-06-25 Babcock Hitachi Kk After-air feeding device
JPH01167514A (en) * 1987-12-22 1989-07-03 Babcock Hitachi Kk After-air supplying device
JPH09112816A (en) * 1995-10-11 1997-05-02 Babcock Hitachi Kk After-air feeding device
JP2001355832A (en) * 2000-06-15 2001-12-26 Babcock Hitachi Kk Air port structure
JP2004125184A (en) * 2002-09-30 2004-04-22 Samson Co Ltd Self-recirculating burner
JP2006132811A (en) * 2004-11-04 2006-05-25 Babcock Hitachi Kk Air port for fuel combustion, its manufacturing method and boiler
WO2007105335A1 (en) * 2006-03-14 2007-09-20 Babcock-Hitachi Kabushiki Kaisha In-furnace gas injection port
JP2009250532A (en) * 2008-04-07 2009-10-29 Hitachi Ltd Pulverized coal boiler

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE743173C (en) * 1941-02-27 1943-12-20 William Meier Dr Ing Device for blowing second air into the combustion chamber by means of several nested nozzles
JPS59195016A (en) * 1983-04-15 1984-11-06 Babcock Hitachi Kk Combustion device
JP3107214B2 (en) 1990-06-19 2000-11-06 バブコツク日立株式会社 Combustion air supply device
FI103904B1 (en) * 1995-04-06 1999-10-15 Ahlstrom Machinery Oy Method and apparatus for introducing air into the furnace
JP3350750B2 (en) 1996-05-24 2002-11-25 株式会社日立製作所 Pulverized coal combustion apparatus and combustion method
US5931654A (en) * 1997-06-30 1999-08-03 Praxair Technology, Inc. Recessed furnace lance purge gas system
AU2005229668B2 (en) * 2004-11-04 2008-03-06 Babcock-Hitachi K.K. Overfiring air port, method for manufacturing air port, boiler, boiler facility, method for operating boiler facility and method for improving boiler facility
JP5022248B2 (en) 2008-01-23 2012-09-12 三菱重工業株式会社 Boiler structure

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59109714A (en) * 1982-12-15 1984-06-25 Babcock Hitachi Kk After-air feeding device
JPH01167514A (en) * 1987-12-22 1989-07-03 Babcock Hitachi Kk After-air supplying device
JPH09112816A (en) * 1995-10-11 1997-05-02 Babcock Hitachi Kk After-air feeding device
JP2001355832A (en) * 2000-06-15 2001-12-26 Babcock Hitachi Kk Air port structure
JP2004125184A (en) * 2002-09-30 2004-04-22 Samson Co Ltd Self-recirculating burner
JP2006132811A (en) * 2004-11-04 2006-05-25 Babcock Hitachi Kk Air port for fuel combustion, its manufacturing method and boiler
WO2007105335A1 (en) * 2006-03-14 2007-09-20 Babcock-Hitachi Kabushiki Kaisha In-furnace gas injection port
JP2009250532A (en) * 2008-04-07 2009-10-29 Hitachi Ltd Pulverized coal boiler

Also Published As

Publication number Publication date
PL2664847T3 (en) 2017-09-29
EP2664847A1 (en) 2013-11-20
TW201248089A (en) 2012-12-01
EP2664847A4 (en) 2015-05-20
JP5530373B2 (en) 2014-06-25
WO2012096319A1 (en) 2012-07-19
EP2664847B1 (en) 2017-04-26

Similar Documents

Publication Publication Date Title
EP2886956B1 (en) Solid-fuel burner
US6056538A (en) Apparatus for suppressing flame/pressure pulsations in a furnace, particularly a gas turbine combustion chamber
KR100330675B1 (en) Pulverized coal burner
CA2719040C (en) Solid fuel burner, combustion apparatus using solid fuel burner and method of operating the combustion apparatus
WO2018034286A1 (en) Solid fuel burner
KR20150074155A (en) Sequential combustion with dilution gas mixer
JP2009079794A (en) Solid fuel burner, combustion device using the same, and its operation method
JP2011149676A (en) Combustion burner and boiler with the combustion burner
JP2018028418A5 (en)
KR101560076B1 (en) Solid fuel burner
JP2013155917A (en) Burner device
JP2007146697A (en) Combustor and combustion air supply method of combustor
JP5530373B2 (en) Boiler equipment
JP2010270990A (en) Fuel burner and turning combustion boiler
CN111033122B (en) Combustion head for a burner with low NOx emissions and burner comprising such a head
JP4386279B2 (en) Burner operation
JP2006242399A (en) Combustion equipment and combustion method by combustion equipment
JP2016109349A (en) Solid fuel burner and boiler including solid fuel burner
JP2010054142A (en) Combustor
JP2009250532A (en) Pulverized coal boiler
WO2011030501A1 (en) Pulverized coal boiler
JP2007232328A (en) Air port for dual-stage combustion, its operation method, and boiler
US11692705B2 (en) Solid fuel burner, boiler equipment, nozzle unit for solid fuel burner, and guide vane unit
JP2011080698A (en) Burner
WO2020230245A1 (en) Solid fuel burner, boiler device, and nozzle unit for solid fuel burner

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130215

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20131217

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140214

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140325

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140418

R150 Certificate of patent or registration of utility model

Ref document number: 5530373

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350