JP2012144532A - Hypotensive agent - Google Patents

Hypotensive agent Download PDF

Info

Publication number
JP2012144532A
JP2012144532A JP2011280973A JP2011280973A JP2012144532A JP 2012144532 A JP2012144532 A JP 2012144532A JP 2011280973 A JP2011280973 A JP 2011280973A JP 2011280973 A JP2011280973 A JP 2011280973A JP 2012144532 A JP2012144532 A JP 2012144532A
Authority
JP
Japan
Prior art keywords
formula
acid
phenyl
valerolactone
represented
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2011280973A
Other languages
Japanese (ja)
Other versions
JP6021166B2 (en
JP2012144532A5 (en
Inventor
Akiko Takagaki
晶子 高垣
Yasuji Kobayashi
泰次 小林
Fumio Nanjo
文雄 南条
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Norin Co Ltd
Original Assignee
Mitsui Norin Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Norin Co Ltd filed Critical Mitsui Norin Co Ltd
Priority to JP2011280973A priority Critical patent/JP6021166B2/en
Publication of JP2012144532A publication Critical patent/JP2012144532A/en
Publication of JP2012144532A5 publication Critical patent/JP2012144532A5/ja
Application granted granted Critical
Publication of JP6021166B2 publication Critical patent/JP6021166B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

PROBLEM TO BE SOLVED: To provide a hypotensive agent and an angiotensin-converting enzyme inhibitor utilizing a new functionality inherent in catechin metabolites, and to provide an object containing the same for applying to the oral cavity.SOLUTION: The hypotensive agent and angiotensin-converting enzyme inhibitor are characterized by including, as active ingredient, at least one compound among a phenylcarboxylic acid having been reported as an enterobacterial metabolite of tea catechins and represented by formula (I); 5-phenyl-γ-valerolactone represented by formula (II); and 5-phenyl-4-hydroxyvaleric acid represented by formula (III).

Description

本発明は、茶カテキン由来の代謝物質を有効成分とする新しい血圧降下剤に関するものであり、更に詳細には式(I)記載のフェニルカルボン酸、式(II)記載の5−フェニル−γ−バレロラクトンおよび式(III)記載の5−フェニル−4−ハイドロキシ吉草酸を有効成分とすることを特徴とした血圧降下剤、アンジオテンシン変換酵素阻害剤並びにそれらを含有し、高血圧症の予防もしくは改善のために用いられる口腔適用対象物に関するものである。 The present invention relates to a novel antihypertensive agent comprising a metabolite derived from tea catechin as an active ingredient. More specifically, the present invention relates to a phenylcarboxylic acid represented by formula (I) and 5-phenyl-γ-formula described by formula (II). An antihypertensive agent, an angiotensin converting enzyme inhibitor characterized by containing valerolactone and 5-phenyl-4-hydroxyvaleric acid described in formula (III) as active ingredients, and preventing or improving hypertension The present invention relates to an oral application object used for the purpose.

植物ポリフェノールの一種である茶由来のカテキン類には、抗菌、抗ウイルス、抗酸化、抗癌、抗う蝕、抗突然変異、血小板凝集抑制、血中コレステロール低下、血糖上昇抑制、抗アレルギー、消臭作用など、非常に広範な生理活性があることが知られており、様々な分野で利用されている。
また、カテキン類を経口摂取した後の生体内動態に関する研究も広く行われている。カテキン類は優れた生体調節作用をもつものの、生体内への吸収量(生体利用率)は非常に低いと考えられており、カテキンを経口摂取した後に生体内に吸収されるのは、カテキン類自体よりも、腸内細菌により分解されて生じた代謝物が主であると考えられている。実際にラットや人に茶を経口投与した試験では、尿中には5−フェニル−γ−バレロラクトンやフェニル酢酸などが検出されるという報告がなされている(非特許文献1、2、10、11)。
カテキン類が腸管内で腸内細菌による分解を受けることについては多くの報告がある。カテキン類は腸内細菌により、主に5−フェニル−γ−バレロラクトン(5−phenyl−γ−valerolactone)や5−フェニル−4−ハイドロキシ吉草酸(5−phenyl−4−hydroxy−valeric acid)に変換し、さらには5−フェニル吉草酸(5−phenyl−valeric acid)、3−フェニルプロピオン酸(3−phenyl−propionic acid)、フェニル酢酸(phenyl acetic acid)、安息香酸(benzoic acid)などに変換す
ることも報告されている(非特許文献3、4、5)。このようにカテキンは微生物分解を受けやすいため、経口摂取後に生体内に吸収されるのは、茶カテキンよりも微生物分解により生成した代謝物である可能性の方が高いと考えられている。
しかしながら、カテキン代謝産物に関しては、生体内での機能性についてほとんど知見がない。唯一、カテキン類の代謝産物である式(II)に示される化合物の一つである5−(3’,4’,5’−トリハイドロキシフェニル)−γ−バレロラクトンの一酸化窒素(NO)産生抑制効果が報告されているにすぎない(非特許文献6)。
Tea-derived catechins, a kind of plant polyphenols, have antibacterial, antiviral, antioxidant, anticancer, anticariogenic, antimutation, platelet aggregation suppression, blood cholesterol lowering, blood sugar elevation suppression, antiallergic, deodorant It is known to have a very wide range of physiological activities such as action, and is used in various fields.
Studies on in vivo kinetics after ingestion of catechins have also been widely conducted. Although catechins have excellent bioregulatory effects, the amount absorbed into the living body (bioavailability) is considered to be very low, and catechins are absorbed into the living body after ingestion of catechins. It is thought that the metabolites produced by intestinal bacteria are more dominant than the metabolites themselves. In a test in which tea is actually orally administered to rats or humans, it has been reported that 5-phenyl-γ-valerolactone, phenylacetic acid, etc. are detected in urine (Non-patent Documents 1, 2, 10, 11).
There are many reports that catechins are degraded by enterobacteria in the intestine. Catechin is mainly converted into 5-phenyl-γ-valerolactone or 5-phenyl-4-hydroxy-valeric acid by intestinal bacteria. Converted to 5-phenyl-valeric acid, 3-phenyl-propionic acid, phenylacetic acid, benzoic acid, etc. It has also been reported (Non-Patent Documents 3, 4, and 5). Thus, since catechin is susceptible to microbial degradation, it is considered that the possibility of catechin being absorbed in vivo after ingestion is more likely to be a metabolite produced by microbial degradation than tea catechin.
However, regarding catechin metabolites, little is known about the functionality in vivo. Nitric oxide (NO), 5- (3 ′, 4 ′, 5′-trihydroxyphenyl) -γ-valerolactone, which is one of the compounds represented by formula (II) which is the only metabolite of catechins Only a production inhibitory effect has been reported (Non-patent Document 6).

J.Agric.Food Chem.,49、 4102−4112,2001.J. et al. Agric. Food Chem. 49, 4102-4112, 2001. Chem.Res.Toxicol.,13, 177−184,2000.Chem. Res. Toxicol. 13, 177-184, 2000. J.Agric.Food Chem.,51、5561−5566 2003.J. et al. Agric. Food Chem. , 51, 5561-5566 2003. J.Agric.Food Chem.、51、6893−6898 2003.J. et al. Agric. Food Chem. 51, 6893-6898 2003. J.Agric.Food Chem., 58, 1313−1321, 2010.J. et al. Agric. Food Chem. , 58, 1313-1321, 2010. J.Agric.Food Chem., 58, 1296−1304, 2010.J. et al. Agric. Food Chem. , 58, 1296-1304, 2010. Chem.Pharm.Bull.,45, 888−893,1997.Chem. Pharm. Bull. 45, 888-893, 1997. Bioor.Med.Chem.Lett.,15, 873−876,2005.Bioor. Med. Chem. Lett. 15, 873-876, 2005.

本発明は、カテキン代謝物の新たな機能性を利用した血圧降下剤及びアンジオテンシン変換酵素阻害剤を提供するとともに、それを含有した口腔適用対象物を提供することを目的とする。 An object of the present invention is to provide an antihypertensive agent and an angiotensin converting enzyme inhibitor utilizing the new functionality of a catechin metabolite, and to provide an oral application object containing the same.

本発明者らは、主なカテキン類の代謝物として報告のある式(I)記載のフェニルカルボン酸、式(II)記載の5−フェニル−γ−バレロラクトン、および式(III)記載の5−フェニル−4−ハイドロキシ吉草酸の生理活性作用を検討した。その結果、これらのカテキン代謝物には、血圧上昇に関与するアンジオテンシン変換酵素(ACE)の働きを抑制する効果があることを見出し、本発明を完成するに至った。茶カテキン代謝物が血圧降下作用をもつことは、これまでに報告された例はなく、全く新しい知見である。 The inventors of the present invention have reported phenylcarboxylic acids described in formula (I), 5-phenyl-γ-valerolactone described in formula (II), and 5 described in formula (III) as the main metabolites of catechins. The physiological activity of -phenyl-4-hydroxyvaleric acid was examined. As a result, these catechin metabolites were found to have an effect of suppressing the action of angiotensin converting enzyme (ACE) involved in blood pressure increase, and the present invention was completed. The fact that tea catechin metabolites have an antihypertensive effect has not been reported so far and is a completely new finding.

すなわち、本願請求項1記載の発明は、式(I)で表されるフェニルカルボン酸、式(II)で表される5−フェニル−γ−バレロラクトンおよび式(III)で表される5−フェニル−4−ハイドロキシ吉草酸の少なくとも1種類以上を有効成分として含有することを特徴とする血圧降下剤である。

式(I)
(式(I)のnは整数の1−7を表し、R1、R2、R3はそれぞれ独立に水酸基(OH)または水素(H)を表す。)

式(II)
(式(II)のR1、R2はそれぞれ独立に水酸基(OH)または水素(H)を表す。)

式(III)
(式(III)のR1、R2はそれぞれ独立に水酸基(OH)または水素(H)を表す。)

本願請求項2記載の発明は、式(I)に示すフェニルカルボン酸のnが3〜6の整数である請求項1記載の血圧降下剤である。
本願請求項3記載の発明は、式(I)で表されるフェニルカルボン酸、式(II)で表される5−フェニル-γ−バレロラクトンおよび式(III)で表される5−フェニル−4−ハイドロキシ吉草酸の少なくとも1種類以上を有効成分として含有することを特徴とするアンジオテンシン変換酵素阻害剤である。
さらに本願請求項4記載の発明は、請求項1乃至2記載の血圧降下剤、あるいは請求項3記載のアンジオテンシン変換酵素阻害剤を含有する口腔適用対象物である。
請求項5記載の本願発明は、飲食品である請求項4記載の口腔適用対象物である。
請求項6記載の本願発明は、医薬部外品または医薬品である請求項4記載の口腔適用対象物である。
That is, the invention of claim 1 of the present application is a phenylcarboxylic acid represented by the formula (I), 5-phenyl-γ-valerolactone represented by the formula (II) and 5-phenyl represented by the formula (III). An antihypertensive agent comprising at least one of phenyl-4-hydroxyvaleric acid as an active ingredient.

Formula (I)
(In formula (I), n represents an integer of 1-7, and R1, R2, and R3 each independently represent a hydroxyl group (OH) or hydrogen (H).)

Formula (II)
(R1 and R2 in the formula (II) each independently represent a hydroxyl group (OH) or hydrogen (H).)

Formula (III)
(R1 and R2 in the formula (III) each independently represent a hydroxyl group (OH) or hydrogen (H).)

The invention according to claim 2 of the present application is the blood pressure lowering agent according to claim 1, wherein n of the phenylcarboxylic acid represented by the formula (I) is an integer of 3 to 6.
The invention according to claim 3 of the present application includes a phenylcarboxylic acid represented by formula (I), 5-phenyl-γ-valerolactone represented by formula (II), and 5-phenyl- represented by formula (III). An angiotensin-converting enzyme inhibitor comprising at least one 4-hydroxyvaleric acid as an active ingredient.
Further, the invention according to claim 4 of the present application is an oral application object containing the blood pressure lowering agent according to claim 1 or 2, or the angiotensin converting enzyme inhibitor according to claim 3.
The present invention according to claim 5 is an oral application object according to claim 4 which is a food or drink.
The present invention according to claim 6 is the object to be applied to the oral cavity according to claim 4 which is a quasi-drug or a pharmaceutical product.

本発明はカテキン代謝物である式(I)記載のフェニルカルボン酸、式(II)記載の5−フェニル-γ−バレロラクトン、および式(III)記載の5−フェニル−4−ハイドロキシ吉草酸を有効成分とした新しい血圧降下剤およびアンジオテンシン変換酵素阻害剤を提供するものである。また、本発明は飲食品や医薬品などに幅広く応用出来る汎用性の高いものであり、高血圧症の予防および/または改善につなげることができる。 The present invention provides a catechin metabolite, a phenylcarboxylic acid described by formula (I), a 5-phenyl-γ-valerolactone described by formula (II), and a 5-phenyl-4-hydroxyvaleric acid described by formula (III). The present invention provides a novel antihypertensive agent and an angiotensin converting enzyme inhibitor as active ingredients. The present invention is highly versatile and can be widely applied to foods and drinks, pharmaceuticals, and the like, and can be used to prevent and / or improve hypertension.

本発明で示す血圧降下作用とは血圧を下げる効果のみではなく、血圧を上昇することを抑制する作用も包含する。 The blood pressure lowering action shown in the present invention includes not only an effect of lowering blood pressure but also an action of suppressing an increase in blood pressure.

本発明におけるカテキン代謝物は、公知の有機化学合成法(非特許文献6、7)により,または必要に応じて有機合成方法を組み合わせることにより得ることができる。また腸内細菌による微生物変換法により製造することも可能である(非特許文献3、4、5)。
Synthesis 2010, No.9, pp1512−1520
The catechin metabolite in the present invention can be obtained by a known organic chemical synthesis method (Non-patent Documents 6 and 7) or by combining organic synthesis methods as necessary. Moreover, it is also possible to manufacture by the microbial conversion method by intestinal bacteria (nonpatent literature 3, 4, 5).
Synthesis 2010, No. 1 9, pp1512-1520

上記の有機化学合成法や微生物変換法により得られるカテキン代謝物は、医薬上または食品上許容しうる規格に適合し,本発明の効果を発揮するものであれば,粗精製物であってもよく,さらに得られた合成物や抽出物を公知の分離精製方法を適宜組み合わせて純度を上げても良い。 The catechin metabolite obtained by the organic chemical synthesis method or the microbial conversion method described above may be a crude product as long as it conforms to a pharmaceutically or food acceptable standard and exhibits the effects of the present invention. Moreover, the purity of the obtained synthesized product or extract may be increased by appropriately combining known separation and purification methods.

有機合成方法によって該目的化合物を製造する場合、種々の既知精製手段を選択し、組合わせて行うことができる。例えば水、熱水、アルコール等の極性溶媒、または非極性溶媒を用いて行う溶剤抽出方法や、遠心分離、高速液体クロマトグラフやカラムクロマトグラフ等の精製手段が挙げられる。 When the target compound is produced by an organic synthesis method, various known purification means can be selected and combined. For example, a solvent extraction method using a polar solvent such as water, hot water, alcohol or the like, or a nonpolar solvent, and purification means such as centrifugation, high performance liquid chromatograph, column chromatograph, etc.

微生物変換によりカテキン代謝物を製造する場合、ラットの腸内細菌を含む糞や盲腸内容物を培養して腸内細菌を増殖させた後、この培養菌体を緩衝液、生理食塩水、水などに懸濁させた溶液に出発原料(基質)となる茶カテキンを加え嫌気条件でインキュベーション処理を行うことで茶カテキン代謝物を製造することが出来る。他の方法としては、カテキン類を変換する能力を持つ菌株を数種類組み合わせてインキュベーション処理を行ってもよい。この場合、茶カテキン類を変換する能力とは、式(IV)に示したカテキン類を式(V)に示したカテキン誘導体に変換する能力、また式(V)記載のカテキン誘導体を式(II)に記載の5−フェニル−γ−バレロラクトンおよび/または式(III)5−フェニル−4−ハイドロキシ吉草酸に変換する能力を示す。
式(IV)
(式中、Rは水酸基(OH)または水素(H)を表す)

式(V)
(式中、R1、R2はそれぞれ独立に水酸基(OH)または水素(H)を表す)
When producing catechin metabolites by microbial conversion, after incubating feces and caecal contents containing rat intestinal bacteria and growing intestinal bacteria, the cultured cells are buffered, physiological saline, water, etc. A tea catechin metabolite can be produced by adding tea catechin as a starting material (substrate) to the solution suspended in the solution and incubating under anaerobic conditions. As another method, the incubation treatment may be performed by combining several strains having the ability to convert catechins. In this case, the ability to convert tea catechins refers to the ability to convert catechins represented by formula (IV) into catechin derivatives represented by formula (V), and catechin derivatives represented by formula (V) represented by formula (II) The ability to convert to 5-phenyl-γ-valerolactone and / or formula (III) 5-phenyl-4-hydroxyvaleric acid as described in 1).
Formula (IV)
(Wherein R represents a hydroxyl group (OH) or hydrogen (H))

Formula (V)
(Wherein R1 and R2 each independently represent a hydroxyl group (OH) or hydrogen (H))

式(IV)に示したカテキン類を、式(V)に示したカテキン誘導体に変換する能力を持つ微生物の好ましい例としては、エガーテラ・レンタ:Eggerthella lenta JCM9979株およびアドラークルーツィア・エクオーリファシエンス:Adlercreutzia equolifaciens MT4s−5株 (受託番号FERM P−21738)を挙げることができる。 Preferred examples of microorganisms having the ability to convert the catechins represented by the formula (IV) into the catechin derivatives represented by the formula (V) include Egerterra lenta: Egerthella lenta JCM9979 strain and Adler Cruzia equolifaciens : Adlercreutzia equifaciens MT4s-5 strain (Accession No. FERM P-21738).

また式(V)に示したカテキン誘導体を、式(II)記載の5−フェニル−γ−バレロラクトンおよび/または式(III)で示される5−フェニル−4−ハイドロキシ吉草酸に変換する能力を有する微生物の好ましい例としてはユウバクテリウム属細菌およびクロスリジウム属細菌(新学名としてフラボニフラクター属細菌に属する細菌)を上げることができ、さらに好ましくは、ユウバクテリウム・プラウティ:Eubacterium plautii(新学名;フラボニフラクター・プラウティ:Flavonifractor plautii)ATCC29863株、ユウバクテリウム・プラウティ:Eubacterium plautii(新学名;フラボニフラクター・プラウティ:Flavonifractor plautii)MT42株(FERM P−21765)およびクロストリジウム・オルビシンデンス:Clostridium orbiscindens(新学名;フラボニフラクター・プラウティ:Flavonifractor plautii)ATCC49531株を挙げることができる。 Further, the ability to convert the catechin derivative represented by the formula (V) into 5-phenyl-γ-valerolactone represented by the formula (II) and / or 5-phenyl-4-hydroxyvaleric acid represented by the formula (III) Preferable examples of the microorganisms include Eubacterium bacteria and Clostridium bacteria (bacteria belonging to Flavonifractor bacteria as a new scientific name), and more preferably, Eubacterium plautii (new). Scientific name; Flavoni fractor pluti: ATCC 29863 strain, Eubacterium pluti: Eubacterium plutii (new scientific name: Flavoni fractor plutii) MT42 strain (FERM P-21765) and Clostridium orbiviruses thin dense: Clostridium orbiscindens (new names; Flavobacterium two Hula restrictor-Purauti: Flavonifractor plautii) can be mentioned ATCC49531 shares.

段落[0013]記載の、式(IV)に示したカテキン類を式(V)に示したカテキン誘導体に変換する能力を持つ微生物と、段落[0014]記載の、式(V)に示したカテキン誘導体含有物を式(II)記載の5−フェニル−γ−バレロラクトンおよび/また式(III)記載の5−フェニル−4−ハイドロキシ吉草酸に変換する能力を有する微生物を共存させた培養菌体懸濁液または培養液に、式(IV)に示したカテキン類および/またはカテキン含有物を出発原料(基質)として添加して嫌気条件下でインキュベーション処理することにより、容易に上記に示した5−フェニル−4−ハイドロキシ吉草酸および/または5−フェニル−γ−バレロラクトン含有物を得ることができる。このインキュベーション処理は、前記微生物を培養後、培養菌体を集菌し、この菌体を緩衝液、生理食塩水、水などに懸濁させた後に基質を添加するか、前記微生物を培養する際あるいは培養開始後一定期間経過した培養液に基質を添加して行うことができる。または当該微生物が生育する培養液中に、出発原料(基質)である式(IV)で示されるカテキン類および/またはカテキン含有物を添加して嫌気条件下でインキュベーション処理することにより、容易に式(II)および/または式(III)の化合物を得ることも可能である。 A microorganism capable of converting a catechin represented by formula (IV) into a catechin derivative represented by formula (V) described in paragraph [0013], and a catechin represented by formula (V) described in paragraph [0014] Cultured cells in which a microorganism having the ability to convert a derivative-containing material into 5-phenyl-γ-valerolactone described in formula (II) and / or 5-phenyl-4-hydroxyvaleric acid described in formula (III) coexists By adding the catechins represented by the formula (IV) and / or a catechin-containing material as a starting material (substrate) to the suspension or culture solution and incubating under anaerobic conditions, the above-mentioned 5 -Phenyl-4-hydroxyvaleric acid and / or 5-phenyl-γ-valerolactone-containing product can be obtained. In this incubation treatment, after culturing the microorganism, the cultured cells are collected and suspended in a buffer solution, physiological saline, water, etc., and then a substrate is added or the microorganism is cultured. Or it can carry out by adding a substrate to the culture solution which passed for a fixed period after the culture | cultivation start. Alternatively, by adding a catechin and / or a catechin-containing material represented by the formula (IV), which is a starting material (substrate), to a culture solution in which the microorganism grows, an incubation treatment is performed under anaerobic conditions. It is also possible to obtain compounds of formula (II) and / or formula (III).

なお、式(IV)に示したカテキン類のうち、Rが水素であるカテキン類を式(V)のR1およびR2が水素であるカテキン誘導体に微生物変換するためには、培地中に水素および/または蟻酸を添加することが望ましい。また、式(IV)のうちRが水酸基であるカテキン類を式(V)のR1が水酸基、R2が水素であるカテキン誘導体に微生物変換するためには、培地中に水素および/または蟻酸を添加する必要がある。さらに、水素や蟻酸を培地中に添加しない場合には、水素および/または蟻酸生成微生物を共存させることも可能である。このような微生物の例として、大腸菌(Escherichia coli)を挙げることができる。 Of the catechins represented by formula (IV), in order to microbially convert catechins in which R is hydrogen into catechin derivatives in which R1 and R2 in formula (V) are hydrogen, hydrogen and / or Or it is desirable to add formic acid. In addition, in order to microbially convert catechins of formula (IV) in which R is a hydroxyl group into catechin derivatives in which R1 of formula (V) is a hydroxyl group and R2 is hydrogen, hydrogen and / or formic acid is added to the medium. There is a need to. Furthermore, when hydrogen and formic acid are not added to the medium, hydrogen and / or formic acid-producing microorganisms can coexist. Examples of such microorganisms include Escherichia coli.

前記に示した微生物を培養する場合には、該微生物が生育できる栄養源含有培地に接種し、嫌気的条件下で培養する。培養菌体を得るための微生物の培養および基質存在下での微生物の培養は、一般的な嫌気性微生物の培養方法を採用することができる。また、培養菌体を集菌した後、前記基質の存在下でインキュベーション処理する場合にも、嫌気条件下で行うことが望ましい。培養に用いられる培地としては、前記微生物が生育できる培地であれば特に限定されないが、例を挙げればGAMブイヨン(日水製薬(株)製)などが利用可能である。
培養条件は、前記微生物が生育しうる範囲内で適宜選択することができる。通常、pH6.0〜7.5、35〜40℃であり、好ましくはpH6.5〜7.3、37〜39℃である。培養時間は通常24〜120時間、好ましくは48〜72時間である。上述した各種の培養条件は、使用する微生物の種類や特性、外部条件などに応じて適宜変更でき、最適条件を選択することができる。
When culturing the microorganisms described above, they are inoculated into a nutrient source-containing medium in which the microorganisms can grow and cultured under anaerobic conditions. A general anaerobic microorganism culture method can be employed for culturing microorganisms for obtaining cultured cells and culturing microorganisms in the presence of a substrate. In addition, it is desirable to carry out the incubation under anaerobic conditions also when incubation is performed in the presence of the substrate after collecting the cultured cells. The medium used for the culture is not particularly limited as long as the microorganism can grow therein. For example, GAM bouillon (manufactured by Nissui Pharmaceutical Co., Ltd.) can be used.
The culture conditions can be appropriately selected within the range in which the microorganism can grow. Usually, it is pH 6.0-7.5, 35-40 degreeC, Preferably it is pH 6.5-7.3, 37-39 degreeC. The culture time is usually 24 to 120 hours, preferably 48 to 72 hours. The various culture conditions described above can be appropriately changed according to the type and characteristics of microorganisms used, external conditions, and the like, and optimal conditions can be selected.

また、微生物変換により茶カテキン代謝物を製造する場合、調製時には数種類のカテキン代謝物を含む抽出物が得られるが、精製を重ねることで高純度の茶カテキン代謝物を得ることが出来る。有機合成方法と同様に種々の既知精製手段を選択し、組み合わせて行うことで精製度合いを調製することが出来る。例えば、酢酸エチル、エーテル、ブタノールなどを用いた溶媒抽出、合成樹脂吸着剤の脱吸着を利用する方法、シリカゲルなどのカラムクロマトグラフィーや高速液体クロマトグラフィーを単独あるいは適宜組み合わせて分離・精製することで、抽出物中の茶カテキン代謝物の含有率を調節することが出来る。 In addition, when producing a tea catechin metabolite by microbial conversion, an extract containing several types of catechin metabolites is obtained at the time of preparation, but a highly purified tea catechin metabolite can be obtained by repeated purification. The degree of purification can be adjusted by selecting and combining various known purification means in the same manner as in the organic synthesis method. For example, separation / purification by solvent extraction using ethyl acetate, ether, butanol, method using desorption of synthetic resin adsorbent, column chromatography such as silica gel or high performance liquid chromatography alone or in combination as appropriate. The content of tea catechin metabolites in the extract can be adjusted.

また、微生物変換によるカテキン代謝物の製造の場合、精製度合いを調整することで抽出物中に含まれるカテキン代謝物の種類も調節することが出来る。血圧降下作用を増強させる観点から、血圧降下剤として、カテキン代謝物を数種類含む抽出物を用いてもよい。 In the case of producing a catechin metabolite by microbial conversion, the type of catechin metabolite contained in the extract can be adjusted by adjusting the degree of purification. From the viewpoint of enhancing the blood pressure lowering action, an extract containing several types of catechin metabolites may be used as a blood pressure lowering agent.

本発明の血圧降下剤乃至アンジオテンシン変換酵素阻害剤は利用の形態は限定されないが、たとえば液状、粉末状、顆粒状などが挙げられ、食品または栄養補助品として、通常用いられる形態、たとえば液剤、懸濁剤、散剤、顆粒剤、細粒剤、錠剤、カプセル剤、シロップ剤、エリキシル剤、酒精剤に利用することが出来る。本発明において、口腔適用対象物とは、口に含むことができるものであれば、どのような形態でもよい。 The form of use of the antihypertensive agent or angiotensin converting enzyme inhibitor of the present invention is not limited, and examples thereof include liquids, powders, granules, etc., and forms usually used as foods or nutritional supplements such as liquids, suspensions, etc. It can be used for suspensions, powders, granules, fine granules, tablets, capsules, syrups, elixirs and spirits. In the present invention, the oral application target may be in any form as long as it can be contained in the mouth.

本発明の血圧降下剤乃至アンジオテンシン変換酵素阻害剤は、更に他の血圧降下剤(例えば、α遮断薬、β遮断薬、αβ遮断薬、ACE阻害剤、アンジオテンシンII受容体拮抗薬、Caブロッカー、利尿薬、抗精神薬など)、各種ビタミン剤(例えばビタミンA,ビタミンB、B、B、B12、ビタミンC,ビタミンD,ビタミンEなど)と併用して利用することが可能である。 The antihypertensive agent or angiotensin converting enzyme inhibitor of the present invention may be used as another antihypertensive agent (for example, α blocker, β blocker, αβ blocker, ACE inhibitor, angiotensin II receptor antagonist, Ca blocker, diuresis). Drugs, antipsychotics, etc.) and various vitamin agents (for example, vitamin A, vitamin B 1 , B 2 , B 6 , B 12 , vitamin C, vitamin D, vitamin E, etc.) .

また、本発明の血圧降下剤乃至アンジオテンシン変換酵素阻害剤を医薬品として用いる場合は、日本薬局方に収められている医薬品で口に含むことができれば特に限定されるものではなく、上記有効成分に薬学的に許容される担体を添加して、経口用の製剤とすることが出来る。製剤形態としては、錠剤、顆粒剤、細粒剤、丸剤、散剤、カプセル剤、トローチ剤、チュアブル剤、液剤(ドリンク剤)などが挙げられる。 In addition, when the antihypertensive agent or angiotensin converting enzyme inhibitor of the present invention is used as a medicine, it is not particularly limited as long as it can be contained in the mouth with a medicine stored in the Japanese Pharmacopoeia. Orally acceptable carriers can be added to make oral preparations. Examples of the dosage form include tablets, granules, fine granules, pills, powders, capsules, troches, chewables, liquids (drinks) and the like.

医薬部外品としては厚生労働大臣が指定した医薬部外品で口に含むことができれば特に限定されるものではなく、例えば、内服液剤、健康飲料、ビタミン含有保健剤などが挙げられる。 The quasi-drug is not particularly limited as long as it is a quasi-drug specified by the Minister of Health, Labor and Welfare and can be contained in the mouth. Examples thereof include oral liquids, health drinks, vitamin-containing health agents, and the like.

本発明の血圧降下剤あるいはアンジオテンシン変換酵素阻害剤を含有する食品はどのような形態であってもよく、例えば、水溶液や混濁物や乳化物などの液状形態であっても、ゲル状やペースト状の半固形状形態であっても、粉末や顆粒やカプセルやタブレットなどのサプリメント等の固形状形態であってもよい。 The food containing the antihypertensive agent or angiotensin converting enzyme inhibitor of the present invention may be in any form, for example, a liquid form such as an aqueous solution, a turbid substance or an emulsion, a gel form or a paste form. Or a solid form such as a supplement such as powder, granule, capsule or tablet.

本発明の血圧降下剤あるいはアンジオテンシン変換酵素阻害剤を含有する飲食品としては、例えば、即席食品類(即席めん、カップめん、レトルト・調理食品、調理缶詰め、電子レンジ食品、即席味噌汁・吸い物、スープ缶詰め、フリーズドライ食品など)、炭酸飲料、柑橘類(グレープフルーツ、オレンジ、レモンなど)の果汁や果汁飲料や果汁入り清涼飲料、柑橘類の果肉飲料や果粒入り果実飲料、トマト、ピーマン、セロリ、ウリ、ニンジン、ジャガイモ、アスパラガスなどの野菜を含む野菜系飲料、豆乳・豆乳飲料、コーヒー飲料、お茶飲料、粉末飲料、濃縮飲料、スポーツ飲料、栄養飲料、アルコール飲料やタバコなどの嗜好飲料・嗜好品類、マカロニ・スパゲッティ、麺類、ケーキミックス、唐揚げ粉、パン粉、ギョーザの皮などの小麦粉製品、キャラメル・キャンディー、チューイングガム、チョコレート、クッキー・ビスケット、ケーキ・パイ、スナック・クラッカー、和菓子・米菓子・豆菓子、デザート菓子などの菓子類、しょうゆ、みそ、ソース類、トマト加工調味料、みりん類、食酢類、甘味料などの基礎調味料、風味調味料、調理ミックス、カレーの素類、たれ類、ドレッシング類、めんつゆ類、スパイス類などの複合調味料・食品類、バター、マーガリン類、マヨネーズ類、植物油などの油脂類、牛乳・加工乳、乳飲料、ヨーグルト類、乳酸菌飲料、チーズ、アイスクリーム類、調製粉乳類、クリームなどの乳・乳製品、素材冷凍食品、半調理冷凍食品、調理済み冷凍食品などの冷凍食品、水産缶詰め、果実缶詰め・ペースト類、魚肉ハム・ソーセージ、水産練り製品、水産珍味類、水産乾物類、佃煮類などの水産加工品、畜産缶詰め・ペースト類、畜肉缶詰め、果実缶詰め、ジャム・マーマレード類、漬物・煮豆類、農産乾物類、シリアル(穀物加工品)などの農産加工品、ベビーフード、ふりかけ・お茶漬けのりなどの市販食品などが挙げられる。 Examples of the food and drink containing the blood pressure lowering agent or angiotensin converting enzyme inhibitor of the present invention include instant foods (immediate noodles, cup noodles, retort / cooked foods, cooked canned foods, microwave foods, instant miso soup and sucked foods, soup canned foods) , Freeze-dried foods, etc.), carbonated drinks, citrus fruits (grapefruits, oranges, lemons, etc.), juices, fruit drinks, soft drinks with fruit juices, citrus fruit drinks, fruit drinks with fruits, tomatoes, peppers, celery, cucumbers, carrots , Vegetable drinks including vegetables such as potatoes, asparagus, soy milk and soy milk drinks, coffee drinks, tea drinks, powdered drinks, concentrated drinks, sports drinks, nutrition drinks, alcoholic drinks and tobacco, etc., macaroni・ Spaghetti, noodles, cake mix, deep-fried flour, bread crumbs, gyoza skin Flour products, caramel candy, chewing gum, chocolate, cookies and biscuits, cakes and pie, snacks and crackers, Japanese confectionery, rice confectionery, bean confectionery, dessert confectionery, soy sauce, miso, sauces, tomato processed seasoning , Basic seasonings such as mirins, vinegars, sweeteners, flavor seasonings, cooking mixes, curry ingredients, sauces, dressings, noodle soups, spices and other complex seasonings and foods, butter, margarine , Mayonnaise, oils and fats such as vegetable oil, milk / processed milk, milk beverages, yogurt, lactic acid bacteria beverages, cheese, ice creams, prepared powdered milk, milk and dairy products such as cream, frozen material, semi-cooked frozen Food, frozen food such as cooked frozen food, canned fish, canned fruits and pastes, fish ham and sausage Marine products, marine products such as marine products, marine products, canned fish, canned fish, canned meat, canned fruits, jams, marmalades, pickles, boiled beans, dried agricultural products, cereals ) And other processed agricultural products, baby foods, and commercial foods such as sprinkles and green tea paste.

飲食品に対する本発明の組成物の配合量は、特に制限されないが、対象となる飲食品により配合量を適宜設定する。一般的には、最終製品中で0.01〜20重量%であることが好ましく、0.05〜10重量%であることがより好ましく、0.1〜5%であることがさらに好ましい。 Although the compounding quantity of the composition of this invention with respect to food / beverage products is not restrict | limited in particular, A compounding quantity is suitably set with the food / beverage products used as object. Generally, it is preferably 0.01 to 20% by weight in the final product, more preferably 0.05 to 10% by weight, and even more preferably 0.1 to 5%.

以下に、製造例、試験例に基づき本発明を更に詳細に説明するが、本発明はこれらの実施例に限定されるものではない。 Hereinafter, the present invention will be described in more detail based on production examples and test examples, but the present invention is not limited to these examples.

製造例1:微生物変換による5−(3’,4’,5’トリハイドロキシフェニル)吉草酸[5−(3’,4’,5’−trihydroxyphenyl)−valeric acid]および5−(3’,5’−ジハイドロキシフェニル吉草酸[5−(3’,5’−dihydroxyphenyl)−valeric acid]の製造方法
Wistar系ラット(♂、日本チャールスリバー株式会社)3匹から糞便(3.6g)を採取し、GAMブイヨン(組成(1L中):ペプトン10g、ダイズペプトン3g、プロテオーゼペプトン10g、消化血清末13.5g、酵母エキス5g、肉エキス2.2g、肝臓エキス1.2g、ブドウ糖3g、リン酸二水素カリウム2.5g、塩化ナトリウム3g、溶性デンプン5g、L−システイン塩酸塩0.3g、チオグリコール酸ナトリウム0.3g、pH7.1、日水製薬(株)製)500mlに入れ、37℃で2日間嫌気培養を行った。滅菌済みの遠心管に培養液を入れ、9000rpmで20分間遠心分離を行った。上清を捨て、菌体に200mlの滅菌水を加えて菌体を洗浄した後、再度遠心分離を行った。得られた菌体を200mgのエピガロカテキン(EGC)を含む150mlの0.2Mリン酸緩衝液(pH7.2)に懸濁した。37℃の嫌気条件下でインキュベーション処理を行った。培養2日目に溶液50mlを回収し、2M塩酸水を2.5ml加えpH5.5に調整し、一旦冷凍保存を行った。また培養4日後に残りの溶液100mlに2M塩酸水を5ml加えpH5.5に調整した。これらの培養液を合わせて、高速遠心分離(15000×g、20分)に供し、菌体を除去した。100mlの酢酸エチルで3回抽出を行った後、有機溶媒相を合わせてエバポレータに供し、有機溶媒を除去し、乾固させた。乾固物を10%メタノール水溶液で溶解し、分取HPLCに供した。分取HPLCの条件を以下に記載する。
Production Example 1: 5- (3 ′, 4 ′, 5′trihydroxyphenyl) valeric acid [5- (3 ′, 4 ′, 5′-trihydroxyphenyl) -valeric acid] and 5- (3 ′, Method for Producing 5′-Dihydroxyphenylvaleric Acid [5- (3 ′, 5′-dihydroxyphenyl) -valeric acid] Feces (3.6 g) were collected from three Wistar rats ( Nada , Charles River Japan Co., Ltd.). GAM bouillon (composition (in 1 L)): 10 g peptone, 3 g soybean peptone, 10 g proteose peptone, 13.5 g digested serum powder, 5 g yeast extract, 2.2 g meat extract, 1.2 g liver extract, 3 g glucose, phosphorus Potassium dihydrogen 2.5 g, sodium chloride 3 g, soluble starch 5 g, L-cysteine hydrochloride 0.3 g Sodium thioglycolate 0.3 g, pH 7.1, manufactured by Nissui Pharmaceutical Co., Ltd.) was subjected to anaerobic culture for 2 days at 37 ° C. The culture solution was placed in a sterilized centrifuge tube at 9000 rpm for 20 minutes. The supernatant was discarded, 200 ml of sterilized water was added to the cells, the cells were washed, and then centrifuged again, and 200 mg of epigallocatechin (EGC) was added to the obtained cells. The resulting suspension was suspended in 150 ml of 0.2 M phosphate buffer (pH 7.2) and incubated under anaerobic conditions at 37 ° C. 50 ml of the solution was recovered on the second day of culture, and 2 M hydrochloric acid water was added. 5 ml was added to adjust the pH to 5.5, and once frozen, and after 4 days of culture, 5 ml of 2M hydrochloric acid was added to the remaining 100 ml of the solution to adjust the pH to 5.5. 15000 × g, 20 minutes), and the cells were removed, extracted three times with 100 ml of ethyl acetate, and the organic solvent phases were combined and used in an evaporator to remove the organic solvent and dry. The dried solid was dissolved in a 10% aqueous methanol solution and subjected to preparative HPLC, and the preparative HPLC conditions are described below.

使用カラム:CAPCELLPAK MG(20×150mm、5μm、(株)資生堂製)、流速:9.8ml/分、カラム温度:40℃、溶媒A;メタノール:水:酢酸(10:90:1 容量比(v/v/v))、溶媒B;メタノール:酢酸(100:1 容量比(v/v))、グラジエント;0分:A95% B5%、30分:A60% B40%、40分:A20% B80%、43分:A10% B90%、45分:A95% B5%、検出器:UV230nmとした。
分画したフラクションをそれぞれLC/MS分析に供し、代謝物の含まれる画分を確認した。LC/MS分析条件を以下に記載する。
Column used: CAPCELLPAK MG (20 × 150 mm, 5 μm, manufactured by Shiseido Co., Ltd.), flow rate: 9.8 ml / min, column temperature: 40 ° C., solvent A; methanol: water: acetic acid (10: 90: 1 volume ratio ( v / v / v)), solvent B; methanol: acetic acid (100: 1 volume ratio (v / v)), gradient; 0 min: A95% B5%, 30 min: A60% B40%, 40 min: A20% B80%, 43 minutes: A10% B90%, 45 minutes: A95% B5%, detector: UV 230 nm.
The fractionated fractions were each subjected to LC / MS analysis, and fractions containing metabolites were confirmed. The LC / MS analysis conditions are described below.

使用カラム:CAPCELLPAK C18 MG(2.0×100.0mm,5μm、(株)資生堂製)、カラム温度:40℃、流速:0.2ml/分、移動相A(水/アセトニトリル/酢酸=100/2.5/0.1 容量比(v/v/v)),B(水/アセトニトリル/メタノール/酢酸=50/2.5/50/0.1 容量比(v/v/v/v))、グラジエント:0−2分 アイソクラティック A100%、2−25分 リニアグラジエント A 100−0%、B0−100%、25.1−33分 アイソクラティック A100%、検出器:UV270nm、インターフェース:ESI、ポラリティ:ネガティブ。 Column used: CAPCELLPAK C18 MG (2.0 × 100.0 mm, 5 μm, manufactured by Shiseido Co., Ltd.), column temperature: 40 ° C., flow rate: 0.2 ml / min, mobile phase A (water / acetonitrile / acetic acid = 100 / 2.5 / 0.1 volume ratio (v / v / v)), B (water / acetonitrile / methanol / acetic acid = 50 / 2.5 / 50 / 0.1 volume ratio (v / v / v / v) ), Gradient: 0-2 minutes Isocratic A 100%, 2-25 minutes Linear gradient A 100-0%, B0-100%, 25.1-33 minutes Isocratic A 100%, detector: UV 270 nm, interface: ESI, polarity: negative.

LC/MS分析の結果から、代謝物が含まれる画分を確認し、エバポレータで濃縮乾固した。乾固物に5mlの純水を加えて溶解し、再度減圧下で濃縮乾固した。この操作を3回繰り返し行い、有機溶媒相に含まれていた酸を完全に除去した。乾固物に少量の純水を加えて溶解し、凍結乾燥に供した。これにより5−(3’,4’,5’−トリハイドロキシフェニル)−吉草酸[5−(3’,4’,5’−trihydroxyphenyl)−valeric acid]:15mg(HPLC面積百分率98.0%以上)、5−(3’,5’−ジハイドロキシフェニル)−吉草酸[5−(3’,5’−dihydrox
yphenyl)−valeric acid]:68.6mg(HPLC面積百分率98.0%以上)を得た。
From the results of LC / MS analysis, a fraction containing a metabolite was confirmed and concentrated to dryness with an evaporator. 5 ml of pure water was added to the dried product to dissolve it, and the solution was again concentrated to dryness under reduced pressure. This operation was repeated three times to completely remove the acid contained in the organic solvent phase. A small amount of pure water was added to the dried product to dissolve it and subjected to lyophilization. Thereby, 5- (3 ′, 4 ′, 5′-trihydroxyphenyl) -valeric acid [5- (3 ′, 4 ′, 5′-trihydroxyphenyl) -valeric acid]: 15 mg (HPLC area percentage 98.0%) ), 5- (3 ′, 5′-dihydroxyphenyl) -valeric acid [5- (3 ′, 5′-dihydrox)
yphenyl) -valeric acid]: 68.6 mg (HPLC area percentage: 98.0% or more).

製造例2:微生物変換による5−(3’―ハイドロキシフェニル)−吉草酸[5−(3’―hydroxyphenyl)−valeric acid]、3−ハイドロキシフェニル酢酸[3−hydroxyphenyl acetic acid]の製造方法
Wistar系ラット(♂、日本チャールスリバー株式会社)3匹から盲腸内容物(2.0g)を採取し、GAMブイヨン(日水製薬(株)製)200mlに入れ、37℃で4日間嫌気培養を行った。滅菌済みの遠心管に培養液を入れ、9000rpmで20分間遠心分離を行った。上清を捨て、菌体に100mlの滅菌水を加えて菌体を洗浄した後、再度遠心分離を行った。得られた菌体を100mgの(−)−エピカテキン(EC)を含む150mlの0.2Mリン酸緩衝液(pH7.2)に懸濁した。37℃の嫌気条件下でインキュベーション処理を行った。培養10日後に塩酸を加えpH4.0に調整した。培養液を遠心分離(15000×g、20分)に供し、菌体を除去した。100mlの酢酸エチルで3回抽出を行った後、有機溶媒相を合わせてエバポレータに供し、有機溶媒を除去し、乾固させた。乾固物を10%メタノール水溶液で溶解し、分取HPLCに供した。分取HPLCの条件を以下に記載する。
Production Example 2: Process for producing 5- (3′-hydroxyphenyl) -valeric acid [5- (3′-hydroxyphenyl) -valeric acid], 3-hydroxyphenylacetic acid [3-hydroxyphenyl acid acid] by microbial conversion Wistar system Cecal contents (2.0 g) were collected from 3 rats (Nada, Charles River Japan Co., Ltd.), placed in 200 ml of GAM bouillon (manufactured by Nissui Pharmaceutical Co., Ltd.), and subjected to anaerobic culture at 37 ° C. for 4 days. . The culture solution was put into a sterilized centrifuge tube and centrifuged at 9000 rpm for 20 minutes. The supernatant was discarded, and 100 ml of sterilized water was added to the cells to wash the cells, and then centrifuged again. The obtained microbial cells were suspended in 150 ml of 0.2 M phosphate buffer (pH 7.2) containing 100 mg of (−)-epicatechin (EC). Incubation treatment was performed under anaerobic conditions at 37 ° C. After 10 days of culture, hydrochloric acid was added to adjust the pH to 4.0. The culture solution was subjected to centrifugation (15000 × g, 20 minutes) to remove the cells. Extraction was performed 3 times with 100 ml of ethyl acetate, and then the organic solvent phases were combined and subjected to an evaporator to remove the organic solvent and dry. The dried solid was dissolved in a 10% aqueous methanol solution and subjected to preparative HPLC. Preparative HPLC conditions are described below.

使用カラム:YMC−Pack ODS−A(20×150mm、5μm、(株)YMC製)、流速:9.8ml/分、カラム温度:40℃、溶媒A;メタノール:水:酢酸(10:90:1 容量比(v/v/v))、溶媒B;メタノール:酢酸(100:1 容量比(v/v))、グラジエント;0分:A80% B20%、15分:A60% B40%、30分:A30% B70%、35分:A80% B20%、検出器:UV230nmとした。
分画したフラクションをそれぞれ製造例1の段落[0030]記載のLC/MS分析法と同条件で分析し、代謝物を確認した。代謝物の含まれる画分は製造例1の段落[0031]記載の方法と同様に処理、凍結乾燥を行った。これにより5−(3’―ハイドロキシフェニル)−吉草酸[5−(3’−hydroxyphenyl)−valeric acid]:14.8mg(HPLC面積百分率98.0%以上)、3−ハイドロキシフェニル酢酸[3−hydroxyphenyl acetic acid]:5.0mg(HPLC面積百分率98.0%以上)を得た。
Column used: YMC-Pack ODS-A (20 × 150 mm, 5 μm, manufactured by YMC), flow rate: 9.8 ml / min, column temperature: 40 ° C., solvent A; methanol: water: acetic acid (10:90: 1 volume ratio (v / v / v)), solvent B; methanol: acetic acid (100: 1 volume ratio (v / v)), gradient; 0 min: A80% B20%, 15 min: A60% B40%, 30 Minute: A30% B70%, 35 minutes: A80% B20%, detector: UV 230 nm.
The fractionated fractions were analyzed under the same conditions as the LC / MS analysis method described in paragraph [0030] of Production Example 1 to confirm metabolites. The fraction containing metabolites was treated and freeze-dried in the same manner as in the method described in paragraph [0031] of Production Example 1. Thereby, 5- (3′-hydroxyphenyl) -valeric acid [5- (3′-hydroxyphenyl) -valeric acid]: 14.8 mg (HPLC area percentage: 98.0% or more), 3-hydroxyphenylacetic acid [3- Hydroxyphenyl acid acid]: 5.0 mg (HPLC area percentage 98.0% or more) was obtained.

製造例3:エガーテラ・レンタJCM9979株とクロストリジウム・オルビシンデンス(フラボニフラクター・プラウティ)ATCC49531株の共存下でのエピガロカテキンからの5−(3’、4’、5’−トリハイドロキシフェニル)−4−ハイドロキシ吉草酸および5−(3’、4’、5’−トリハイドロキシフェニル)−γ−バレロラクトンの製造方法
エガーテラ・レンタJCM9979株とクロストリジウム・オルビシンデンス(フラボニフラクター・プラウティ)ATCC49531株をそれぞれ30mlのGAMブイヨン(日水製薬(株)製)に植菌し、37℃で48時間嫌気培養した。エピガロカテキン221.4mgを含む同培地100mlに上記2菌株の培養液を加えた。この培地を37℃で3日間嫌気培養を行った。高速遠心分離(15000×g、10分間、10℃)により菌体を除去した後、得られた上清にリン酸を添加してpH1.5に調整した。この溶液に100mlの酢酸エチル:ブタノール(1:1、v/v)を加えてよく混合した。遠心分離機(5000×g、5分間)で2相に分けた後、有機溶媒相を回収した。この抽出操作を3回繰り返し行った。有機溶媒相(300ml)に等量(300ml)の0.1M炭酸ナトリウム水溶液(0.1%アスコルビン酸ナトリウムを含む)を加えよく混合した後、遠心分離機(5000×g、5分間)で有機溶媒相と水相に分けた。有機溶媒相は製造例1記載の方法と同様に処理を行い、5−(3’、4’、5’−トリハイドロキシフェニル)−γ−バレロラクトン[5−(3’、4’、5’−trihydroxyphenyl)−γ−valerolactone] 31mg(HPLC面積百分率98.0%以上)を得た。水相(300ml)は酸を加えてpHを7.0に調整後、約30mlになるまで減圧下で濃縮した。この濃縮液に5倍量のエタノールを添加し、高速遠心分離(15000×g、15分、4℃)で不溶物を除去した。得られた上清をさらに減圧下で約1mlになるまで濃縮し、2MHClでpH2.0−3.0に調整した。この溶液を分取HPLCに供した。分取HPLCの条件を以下に記載する。
Production Example 3: 5- (3 ′, 4 ′, 5′-trihydroxyphenyl) from epigallocatechin in the presence of Egerterra Renta JCM9979 strain and Clostridium orubicindens (Flavonifracter plowty) ATCC 49931 strain -4-Hydroxyvaleric acid and 5- (3 ′, 4 ′, 5′-trihydroxyphenyl) -γ-valerolactone production method Egerterra Renta JCM9979 strain and Clostridium orubicindens (flavonifracter -Prouty: ATCC49531 strain was inoculated into 30 ml of GAM bouillon (manufactured by Nissui Pharmaceutical Co., Ltd.) and anaerobically cultured at 37 ° C for 48 hours. The culture solution of the two strains was added to 100 ml of the same medium containing 221.4 mg of epigallocatechin. This medium was anaerobically cultured at 37 ° C. for 3 days. After removing the cells by high-speed centrifugation (15000 × g, 10 minutes, 10 ° C.), phosphoric acid was added to the obtained supernatant to adjust the pH to 1.5. To this solution, 100 ml of ethyl acetate: butanol (1: 1, v / v) was added and mixed well. After separating into two phases with a centrifuge (5000 × g, 5 minutes), the organic solvent phase was recovered. This extraction operation was repeated three times. To an organic solvent phase (300 ml), an equal amount (300 ml) of a 0.1 M aqueous sodium carbonate solution (containing 0.1% sodium ascorbate) was added and mixed well, and then organically separated by a centrifuge (5000 × g, 5 minutes). It was divided into a solvent phase and an aqueous phase. The organic solvent phase is treated in the same manner as described in Production Example 1, and 5- (3 ′, 4 ′, 5′-trihydroxyphenyl) -γ-valerolactone [5- (3 ′, 4 ′, 5 ′). -Trihydroxyphenyl) -γ-valerolactone] was obtained in an amount of 31 mg (HPLC area percentage: 98.0% or more). The aqueous phase (300 ml) was adjusted to pH 7.0 by adding acid, and then concentrated under reduced pressure until it reached about 30 ml. Five times the amount of ethanol was added to this concentrated solution, and insoluble matters were removed by high-speed centrifugation (15000 × g, 15 minutes, 4 ° C.). The obtained supernatant was further concentrated to about 1 ml under reduced pressure, and adjusted to pH 2.0-3.0 with 2M HCl. This solution was subjected to preparative HPLC. Preparative HPLC conditions are described below.

カラム:CAPCELLPAK MG(20×150mm、5μm、((株)資生堂製)、流速9.5ml/分、温度40℃、溶媒A:アセトニトリル:メタノール:水(5:5:90 容量比(v/v/v))、溶媒B:アセトニトリル:メタノール:水(5:60:35 容量比(v/v/v))、グラジエント;A80% B20%のアイソクラティック、検出器:UV230nmとした。 Column: CAPCELLPAK MG (20 × 150 mm, 5 μm, manufactured by Shiseido Co., Ltd.), flow rate 9.5 ml / min, temperature 40 ° C., solvent A: acetonitrile: methanol: water (5: 5: 90 volume ratio (v / v / v)), solvent B: acetonitrile: methanol: water (5:60:35 volume ratio (v / v / v)), gradient; A80% B20% isocratic, detector: UV 230 nm.

分取後、5−(3’、4’、5’−トリハイドロキシフェニル)−4−ハイドロキシ吉草酸を含む画分はさらに陽イオン交換処理を行った。5−(3’、4’、5’−トリハイドロキシフェニル)−4−ハイドロキシ吉草酸を含む画分(50ml)に、1/2量の純水(25ml)を添加後、減圧下で濃縮し、溶液中の溶媒を除去して水溶液にした。この水溶液を純水で平衡化した陽イオン交換樹脂(ダイアイオンSK1B ナトリウム型、10×65mm)に通液し、さらに純水で溶出した。得られた溶液を減圧濃縮し凍結乾燥した結果、5−(3’、4’、5’−トリハイドロキシフェニル)−4−ハイドロキシ吉草酸 [5−(3’、4’、5’−trihydroxyphenyl)−4−hydroxyvaleric acid]のナトリウム塩65mg(HPLC面積百分率98.0%以上)を得た。 After fractionation, the fraction containing 5- (3 ', 4', 5'-trihydroxyphenyl) -4-hydroxyvaleric acid was further subjected to cation exchange treatment. To a fraction (50 ml) containing 5- (3 ′, 4 ′, 5′-trihydroxyphenyl) -4-hydroxyvaleric acid, ½ amount of pure water (25 ml) was added and concentrated under reduced pressure. The solvent in the solution was removed to make an aqueous solution. This aqueous solution was passed through a cation exchange resin (diaion SK1B sodium type, 10 × 65 mm) equilibrated with pure water, and further eluted with pure water. The resulting solution was concentrated under reduced pressure and freeze-dried. As a result, 5- (3 ′, 4 ′, 5′-trihydroxyphenyl) -4-hydroxyvaleric acid [5- (3 ′, 4 ′, 5′-trihydroxyphenyl) was obtained. -4-hydroxyvaleric acid] sodium salt (65 mg, HPLC area percentage: 98.0% or more) was obtained.

製造例4:エガーテラ・レンタJCM9979株とユウバクテリウム・プラウティ(フラボニフラクター・プラウティ)ATCC29863株および大腸菌K12株の共存下での5−(3’、5’−ジハイドロキシフェニル)−4−ハイドロキシ吉草酸および5−(3’、5’−ジハイドロキシフェニル)−γ−バレロラクトン含有物の製造方法
エガーテラ・レンタJCM9979株を30mlのGAMブイヨン(日水製薬(株)製)に植菌し、37℃で48時間嫌気培養し、前培養液とした。大腸菌K12株およびユウバクテリウム・プラウティ(フラボニフラクター・プラウティ)ATCC29863株は10mlのGAMブイヨン(日水製薬(株)製)で24時間嫌気培養し、前培養液とした。(−)−エピガロカテキン290mgを含む100mlのGAMブイヨン(日水製薬(株)製)に上記3菌株の前培養液を加え、37℃で48時間嫌気培養して変換反応を行い、5−(3’、5’−ジハイドロキシフェニル)−4−ハイドロキシ吉草酸および5−(3’、5’−ジハイドロキシフェニル)−γ―バレロラクトン含有物を得た。培養液を高速遠心分離(15000×g、10分間、10℃)し、菌体を除去した。上清に塩酸を加えpH3.5に調整した後、120mlの酢酸エチルで3回抽出した。酢酸エチル相(約350ml)に40mM炭酸ナトリウム水溶液100mlを加えよく混合した。遠心分離(5000×g、5分間)により2相に分離させ、水相を回収した。再度酢酸エチル相に40mM炭酸ナトリウム水溶液100mlを加え、同様に2相に分離した。回収した炭酸ナトリウム水溶液のpHを7.0付近に調整した後、約5mlになるまで減圧濃縮した。さらに塩酸を加えてpH2.0〜5.0に調製し、高速遠心分離(15000×g、20分、4℃)後、上清を分取用HPLCに供した。分取HPLCは製造例3の段落[0035]記載の方法に従って行った。但しグラジエントはグラジエント;0分:A80% B20%、5分:A80% B20%、15分:A20% B80%、18分:A20% B80%、19分:A80% B20%、24分:A80% B20%、で行った。
Production Example 4: 5- (3 ′, 5′-dihydroxyphenyl) -4-hydroxyx in the presence of Egerterra Renta JCM9979, Eubacterium pluti (Flavonifracter pruti) ATCC 29863, and Escherichia coli K12 Method for producing valeric acid and 5- (3 ', 5'- dihydroxyphenyl )-[gamma] -valerolactone-containing material Egertera Renta JCM9979 strain into 30 ml GAM bouillon (manufactured by Nissui Pharmaceutical Co., Ltd.) Inoculated and anaerobically cultured at 37 ° C. for 48 hours to obtain a preculture solution. Escherichia coli K12 and Eubacterium pluti (Flavonifracter pruti) ATCC 29863 were anaerobically cultured in 10 ml of GAM bouillon (manufactured by Nissui Pharmaceutical Co., Ltd.) for 24 hours as a preculture. (-)-Pre-culture solution of the above three strains was added to 100 ml of GAM bouillon (manufactured by Nissui Pharmaceutical Co., Ltd.) containing 290 mg of epigallocatechin and subjected to a conversion reaction by anaerobic culture at 37 ° C. for 48 hours. (3 ′, 5′-dihydroxyphenyl) -4-hydroxyvaleric acid and 5- (3 ′, 5′-dihydroxyphenyl) -γ-valerolactone-containing product were obtained. The culture solution was centrifuged at high speed (15000 × g, 10 minutes, 10 ° C.) to remove the cells. Hydrochloric acid was added to the supernatant to adjust the pH to 3.5, followed by extraction with 120 ml of ethyl acetate three times. To the ethyl acetate phase (about 350 ml), 100 ml of 40 mM sodium carbonate aqueous solution was added and mixed well. The aqueous phase was recovered by separating into two phases by centrifugation (5000 × g, 5 minutes). Again, 100 ml of 40 mM aqueous sodium carbonate solution was added to the ethyl acetate phase, and the two phases were similarly separated. After adjusting the pH of the collected aqueous sodium carbonate solution to around 7.0, the solution was concentrated under reduced pressure to about 5 ml. Further, hydrochloric acid was added to adjust the pH to 2.0 to 5.0, and after high speed centrifugation (15000 × g, 20 minutes, 4 ° C.), the supernatant was subjected to preparative HPLC. Preparative HPLC was performed according to the method described in paragraph 3 of Production Example 3. However, the gradient is gradient; 0 min: A80% B20%, 5 min: A80% B20%, 15 min: A20% B80%, 18 min: A20% B80%, 19 min: A80% B20%, 24 min: A80% B20%.

分取後、5−(3’、5’−ジハイドロキシフェニル)−γ−バレロラクトンを含む画分は製造例1の段落[0031]記載の方法に従い、濃縮、凍結乾燥に供し、45mgが得られた。また、5−(3’、5’−ジハイドロキシフェニル)−4−ハイドロキシ吉草酸を含む画分は製造例3の段落[0036]記載の陽イオン交換処理を行った後、凍結乾燥に供した。その結果、5−(3’、5’−ジハイドロキシフェニル)−4−ハイドロキシ吉草酸[5−(3’、5’−dihydroxyphenyl)−4−hydroxyvaleric acid]のナトリウム塩が103mg(HPLC面積百分率98.0%以上)得られた。 After fractionation, the fraction containing 5- (3 ′, 5′-dihydroxyphenyl) -γ-valerolactone was subjected to concentration and lyophilization according to the method described in paragraph [0031] of Production Example 1 to obtain 45 mg. It was. Moreover, the fraction containing 5- (3 ′, 5′-dihydroxyphenyl) -4-hydroxyvaleric acid was subjected to cation exchange treatment described in paragraph [0036] of Production Example 3 and then subjected to lyophilization. . As a result, 103 mg (HPLC area percentage 98) of sodium salt of 5- (3 ′, 5′-dihydroxyphenyl) -4-hydroxyvaleric acid [5- (3 ′, 5′-dihydroxyphenyl) -4-hydroxyvaleric acid] was obtained. 0.0% or more).

製造例5:エガーテラ・レンタJCM9979株およびユウバクテリウム・プラウティ(フラボニフラクター・プラウティ)MT42(FERM P−21765)株の共存下での5−(3’、4’−ジハイドロキシフェニル)−γ−バレロラクトン[5−(3’、4’−dihydroxyphenyl)−γ−valerolactone]の製造方法
エガーテラ・レンタJCM9979株を30mlのGAMブイヨン(日水製薬(株)製)に植菌し、37℃で48時間嫌気培養した。またユウバクテリウム・プラウティ(フラボニフラクター・プラウティ)MT42株は10mlのGAMブイヨン(日水製薬(株)製)で24時間嫌気培養した。(−)−エピカテキン215mgを含む100mlのGAMブイヨン(日水製薬(株)製)に上記2株の前培養液を加え、37℃で48時間嫌気培養して変換反応を行い、5−(3’、4’−ジハイドロキシフェニル)−4−ハイドロキシ吉草酸および5−(3’、4’−ジハイドロキシフェニル)−γ―バレロラクトンを生成させた。培養液を高速遠心分離(15000×g、10分間、10℃)して、菌体を除去後、上清に塩酸を加えpH3.5に調整した。この上清液を120mlの酢酸エチルで3回抽出し、酢酸エチル相を減圧下で濃縮乾固した。沈殿を少量の純水に溶解し、凍結乾燥した結果、5−(3’、4’−ジハイドロキシフェニル)−4−ハイドロキシ吉草酸、5−(3’、4’−ジハイドロキシフェニル)−γ−バレロラクトン含有物506mgを得た。
Production Example 5: 5- (3 ′, 4′-Dihydroxyphenyl) -γ in the Coexistence of Egerterra Renta JCM9979 Strain and Eubacterium Pluti (Flavonifracter Pruti) MT42 (FERM P-21765) Strain -Method for producing valerolactone [5- (3 ', 4'-dihydroxyphenyl) -gamma-valerolactone] Inoculated Egerterra Renta JCM9979 strain in 30 ml GAM bouillon (Nissui Pharmaceutical Co., Ltd.) And anaerobic culture at 37 ° C. for 48 hours. Further, Eubacterium pluti (Flavonifracter pruti) MT42 strain was anaerobically cultured with 10 ml of GAM bouillon (Nissui Pharmaceutical Co., Ltd.) for 24 hours. (-)-Epicatechin 215 mg containing 100 ml of GAM bouillon (manufactured by Nissui Pharmaceutical Co., Ltd.) is added with the above two strains of pre-cultured solution, anaerobically cultured at 37 ° C. for 48 hours, and converted to 5- ( 3 ′, 4′-Dihydroxyphenyl) -4-hydroxyvaleric acid and 5- (3 ′, 4′-dihydroxyphenyl) -γ-valerolactone were produced. The culture solution was centrifuged at high speed (15000 × g, 10 minutes, 10 ° C.) to remove the cells, and then hydrochloric acid was added to the supernatant to adjust the pH to 3.5. This supernatant was extracted three times with 120 ml of ethyl acetate, and the ethyl acetate phase was concentrated to dryness under reduced pressure. As a result of dissolving the precipitate in a small amount of pure water and freeze-drying, 5- (3 ′, 4′-dihydroxyphenyl) -4-hydroxyvaleric acid, 5- (3 ′, 4′-dihydroxyphenyl) -γ -506 mg of valerolactone-containing material was obtained.

得られた含有物を純水30mlに溶解後、2M塩酸を添加してpH1.5に調整した。この水溶液を室温で24時間放置し、5−(3’、4’−ハイドロキシフェニル)−4−ハイドロキシ吉草酸を5−(3’、4’−ハイドロキシフェニル)−γ−バレロラクトンへ変換した。水溶液のpHを1M炭酸ナトリウムで4.0に調整後、製造例1記載の方法で分取HPLC、凍結乾燥を行った。その結果、5−(3’、4’−ジハイドロキシフェニル)−γ−バレロラクトン[5−(3’、4’−dihydroxyphenyl)−γ−valerolactone]73mg(HPLC面積百分率98.0%以上)が得られた。 The obtained content was dissolved in 30 ml of pure water, and then adjusted to pH 1.5 by adding 2M hydrochloric acid. This aqueous solution was allowed to stand at room temperature for 24 hours to convert 5- (3 ', 4'-hydroxyphenyl) -4-hydroxyvaleric acid into 5- (3', 4'-hydroxyphenyl) -γ-valerolactone. After adjusting the pH of the aqueous solution to 4.0 with 1 M sodium carbonate, preparative HPLC and lyophilization were performed by the method described in Production Example 1. As a result, 73 mg (HPLC area percentage: 98.0% or more) of 5- (3 ′, 4′-dihydroxyphenyl) -γ-valerolactone [5- (3 ′, 4′-dihydroxyphenyl) -γ-valerolactone] was obtained. Obtained.

試験例1:カテキン代謝物のアンジオテンシン変換酵素(ACE)阻害活性試験
以下にACE活性阻害試験について説明する。
試験に供したカテキン代謝物のうち、5−(3’、4’−ジハイドロキシフェニル)−γ−バレロラクトン[5−(3’、4’−dihydroxyphenyl)−γ−valerolactone]、5−(3’、5’−ジハイドロキシフェニル)−4−ハイドロキシ吉草酸[5−(3’、5’−dihydroxyphenyl)−4−hydroxyvaleric acid]、5−(3’、5’−ジハイドロキシフェニル)−γ−バレロラクトン[5−(3’、5’−dihydroxyphenyl)−γ−valerolactone]、5−(3’−ハイドロキシフェニル)−吉草酸[5−(3’−hydroxyphenyl)−valeric acid]、5−(3’,4’,5’−トリハイドロキシフェニル)−吉草酸[5−(3’,4’,5’−trihydroxyphenyl)−valeric acid]、5−(3’,5’−ジハイドロキシフェニル)−吉草酸[5−(3’,5’−dihydroxyphenyl)−valeric acid]、5−(3’、4’、5’−トリハイドロキシフェニル)−γ−バレロラクトン[5−(3’、4’、5’−trihydroxyphenyl)−γ−valerolactone]、5−(3’、4’、5’−トリハイドロキシフェニル)−4−ハイドロキシ吉草酸[5−(3’、4’、5’−trihydroxyphenyl)−4−hydroxyvaleric acid]は製造例1〜5記載の方法により調製したものを使用した。
5−フェニル吉草酸[5−phenyl−valeric acid]、6−フェニルヘキサン酸[6−phenyl−hexanoic acid]、2−ハイドロキシフェニル酢酸[2−hydroxyphenyl acetic acid]、4−ハイドロキシフェニル酢酸[4−hydroxyphenyl acetic acid]、3−(4’−ハイドロキシフェニル)−プロピオン酸[3−(4’−hydroxyphenyl)−propionic acid]、3−ハイドロキシフェニル酢酸[3−hydroxyphenyl acetic acid]はACROS ORGANICS社のものを使用した。
阻害剤として使用する上記代謝物類は一晩40℃の減圧条件下で加熱乾燥した後、重量測定を行った。各物質ごとに5%メタノールを含む1mMリン酸―クエン酸緩衝液(pH4.0)に溶解し、90〜20mMの阻害剤溶液を調製した。各阻害剤溶液はさらに5%メタノールを含有する1mMリン酸―クエン酸緩衝液(pH4.0)で5段階的に希釈し、3〜20mMの濃度範囲内で段階的に異なった濃度の阻害剤溶液を調製した。
150mMのHEPES(4−(2−hydroxyethyl)−1−piperazineethanesulfonic acid)緩衝液(pH8.3)に塩化ナトリウムを450mM添加して溶解した。この溶液にさらに反応基質となるHippuryl−L−histidyl−L−leucine(HHL)を4mM添加して溶解し、基質溶液とした。
マイクロチューブに基質溶液200μl、0.1U/mlのAngiotensin Converting Enzyme(ACE)(SIGMA−ALDRICH社製)水溶液 40μl、阻害剤溶液(代謝物溶液)を60μl加え、37℃の湯浴中で30分間インキュベーションした。1Mの酢酸緩衝液(pH4.0)を200μl加えて反応を停止後、LC/MS分析に供した。Selected ion mode(SIM)により分析を行い、反応により出てきた馬尿酸を測定した。この馬尿酸測定時のLC/MS分析条件を以下に記載する。
Test Example 1: Angiotensin converting enzyme (ACE) inhibitory activity test for catechin metabolites The ACE activity inhibitory test is described below.
Among the catechin metabolites used for the test, 5- (3 ′, 4′-dihydroxyphenyl) -γ-valerolactone [5- (3 ′, 4′-dihydroxyphenyl) -γ-valelalactone], 5- (3 ', 5'-dihydroxyphenyl) -4-hydroxyvaleric acid [5- (3', 5'-dihydroxyphenyl) -4-hydroxyvaleric acid], 5- (3 ', 5'-dihydroxyphenyl) -γ- Valerolactone [5- (3 ′, 5′-dihydroxyphenyl) -γ-valelalactone], 5- (3′-hydroxyphenyl) -valeric acid [5- (3′-hydroxyphenyl) -valeric acid], 5- (3 ', 4', 5'-trihydroxyphenyl) -valeric acid [5- (3 ', 4', 5'-t rihydroxyphenyl) -valeric acid], 5- (3 ′, 5′-dihydroxyphenyl) -valeric acid [5- (3 ′, 5′-dihydroxyphenyl) -valeric acid], 5- (3 ′, 4 ′, 5 '-Trihydroxyphenyl) -γ-valerolactone [5- (3', 4 ', 5'-trihydroxyphenyl) -γ-valeractrone], 5- (3', 4 ', 5'-trihydroxyphenyl) -4 —Hydroxyvaleric acid [5- (3 ′, 4 ′, 5′-trihydroxyphenyl) -4-hydroxyvaleric acid] prepared by the method described in Production Examples 1 to 5 was used.
5-phenyl-valeric acid [6-phenyl-valeric acid], 6-phenylhexanoic acid [6-phenyl-hexanoic acid], 2-hydroxyphenyl acetic acid [2-hydroxyphenyl acetic acid], 4-hydroxyphenyl acetic acid [4-hydroxyphenyl] [Acetic acid], 3- (4′-hydroxyphenyl) -propionic acid [3- (4′-hydroxyphenyl) -propionic acid], 3-hydroxyphenyl acetic acid [3-hydroxyphenyl acetic acid] used by ACROS ORGANICS did.
The metabolites used as inhibitors were dried under heat at 40 ° C. under reduced pressure overnight and then weighed. Each substance was dissolved in 1 mM phosphate-citrate buffer (pH 4.0) containing 5% methanol to prepare a 90-20 mM inhibitor solution. Each inhibitor solution was further diluted in 5 steps with 1 mM phosphate-citrate buffer (pH 4.0) containing 5% methanol, and inhibitors having different concentrations stepwise within a concentration range of 3 to 20 mM. A solution was prepared.
To 150 mM HEPES (4- (2-hydroxyethyl) -1-piperazine etheric acid) buffer (pH 8.3), 450 mM sodium chloride was added and dissolved. To this solution, 4 mM Hippuryl-L-histidyl-L-leucine (HHL) as a reaction substrate was added and dissolved to obtain a substrate solution.
Add 200 μl of substrate solution, 40 μl of 0.1 U / ml Angiotensin Converting Enzyme (ACE) (manufactured by SIGMA-ALDRICH), 60 μl of inhibitor solution (metabolite solution) to a microtube, and in a 37 ° C. water bath for 30 minutes Incubated. The reaction was stopped by adding 200 μl of 1M acetate buffer (pH 4.0), and then subjected to LC / MS analysis. Analysis was performed by a selected ion mode (SIM), and hippuric acid produced by the reaction was measured. The LC / MS analysis conditions for this hippuric acid measurement are described below.

カラム:CAPCELLPAK MG(2.0×100.0mm,5μm (株)資生堂製)、流速:0.2ml/ml、温度:40℃、移動相A:10% アセトニトリル、0.2% ギ酸、移動相B:40% アセトニトリル、0.2% ギ酸
グラジエント条件:0−3min A100% B0%、3−15min A50% B50%、15−16min A100% B0%、16―20min A100% B0%
検出器:ポラリティ:ポジティブ、Selected ion mode(SIM)m/z180測定した結果をグラフにプロットし、指数近似による近似曲線を作成し、そこからIC50値を算出した。
Column: CAPCELLPAK MG (2.0 × 100.0 mm, 5 μm, manufactured by Shiseido Co., Ltd.), flow rate: 0.2 ml / ml, temperature: 40 ° C., mobile phase A: 10% acetonitrile, 0.2% formic acid, mobile phase B: 40% acetonitrile, 0.2% formic acid gradient conditions: 0-3 min A100% B0%, 3-15 min A50% B50%, 15-16 min A100% B0%, 16-20 min A100% B0%
Detector: Polarity: Positive, Selected ion mode (SIM) m / z 180 The measurement results were plotted on a graph, an approximate curve by exponential approximation was created, and IC50 value was calculated therefrom.

(結果)
(result)

表1に示すように、供試した全ての代謝物でACE阻害活性が確認された。特に式(I)記載のフェニルカルボン酸である5−(3’,4’,5’−trihydroxyphenyl)−valeric acid(R1,R2、R3は水酸基、nは整数の4)、5−(3’,5’−dihydroxyphenyl)−valeric acid(R1、R3は水酸基、R2は水素、nは整数の4)、5−(3’ −hydroxyphenyl)−valeric acid(R1は水酸基、R2,R3は水素、nは整数の4)、また式(II)記載の5−フェニル−γ−バレロラクトンである5−(3’,4’,5’−trihydroxyphenyl)−γ−valerolactone(R1、R2は水酸基)には高いACE阻害活性が確認された。 As shown in Table 1, ACE inhibitory activity was confirmed for all metabolites tested. In particular, 5- (3 ′, 4 ′, 5′-trihydroxyphenyl) -valeric acid (R1, R2, and R3 are hydroxyl groups, n is an integer 4) and 5- (3 ′) which are phenylcarboxylic acids described in formula (I) , 5′-dihydroxyphenyl) -valeric acid (R1, R3 are hydroxyl groups, R2 is hydrogen, n is an integer 4), 5- (3′-hydroxyphenyl) -valeric acid (R1 is hydroxyl group, R2, R3 are hydrogen, n Is an integer 4), and 5- (3 ′, 4 ′, 5′-trihydroxyphenyl) -γ-valelalactone (R1 and R2 are hydroxyl groups) which is 5-phenyl-γ-valerolactone described in formula (II) High ACE inhibitory activity was confirmed.

試験例2:SHRラットを用いた血圧降下試験(100mg/kg)
(a)使用動物および方法
10週齢の雄性自然発症高血圧ラット(SHR)を購入し、飼育環境に馴化させるために4週間飼育した。飼育期間中に市販のラット用非観血式自動血圧測定装置BP−98A(ソフトロン社製)を用いて不連続的に3回以上血圧を測定し、血圧測定操作に馴れさせた後、評価試験を実施した。ラットはすべて室温23℃±3℃、相対湿度50±5%、照射時間12時間の条件下(ラット区域内飼育室)で飼育した。
Test Example 2: Blood pressure lowering test using SHR rats (100 mg / kg)
(A) Animals and methods of use 10-week-old male spontaneously hypertensive rats (SHR) were purchased and raised for 4 weeks in order to acclimate to the breeding environment. During the rearing period, blood pressure was measured discontinuously three times or more using a commercially available non-invasive automatic blood pressure measuring device for rats BP-98A (manufactured by Softron), and evaluation was performed after acclimatization to blood pressure measurement operation. The test was conducted. All rats were housed under conditions of room temperature 23 ° C. ± 3 ° C., relative humidity 50 ± 5%, and irradiation time 12 hours (rat room breeding room).

(b) 投与方法および測定方法
製造例3記載の方法に従って調製した5−(3’、4’、5’−トリハイドロキシフェニル)−γ−バレロラクトン[5−(3’、4’、5’−trihydroxyphenyl)−γ−valerolactone]を生理食塩水に溶解し、ラットの体重1kg当たり100mg(100mg/kg)となるように、金属製胃ゾンデを用いてSHRラットに経口投与した。投与量は1ml/匹とし、投与群として8匹のラットに経口投与した。対照群として生理食塩水1mlを8匹のラットに投与した。投与後2時間および4時間にラット用非観血式自動血圧測定装置BP―98A(ソフトロン社製)を用いて収縮期血圧を測定した。なお、予め投与前の血圧も測定した。
(B) Administration method and measurement method 5- (3 ′, 4 ′, 5′-trihydroxyphenyl) -γ-valerolactone [5- (3 ′, 4 ′, 5 ′) prepared according to the method described in Production Example 3. -Trihydroxyphenyl) -γ-valerolactone] was dissolved in physiological saline, and orally administered to SHR rats using a metal gastric sonde so as to be 100 mg (100 mg / kg) per kg body weight of the rats. The dose was 1 ml / animal, and orally administered to 8 rats as an administration group. As a control group, 1 ml of physiological saline was administered to 8 rats. At 2 hours and 4 hours after administration, systolic blood pressure was measured using a non-invasive automatic blood pressure measuring device for rats BP-98A (manufactured by Softron). The blood pressure before administration was also measured in advance.

(C) 統計処理方法
得られた測定結果から、投与前と投与後の収縮期血圧の差を算出した。得られた結果を平均値(mean)および標準誤差(SE)で示し、welch’s t−testにより投与前と投与後の有意差を調べた。有意水準は*p<0.05、**p<0.01とした。
(C) Statistical processing method The difference of systolic blood pressure before and after administration was calculated from the obtained measurement results. The obtained result was shown by the mean value (mean) and standard error (SE), and the significant difference before and after administration was examined by welch's t-test. Significance levels were set to * p <0.05 and ** p <0.01.

(結果)
(result)

5−(3’、4’、5’−トリハイドロキシフェニル)−γ−バレロラクトンを100mg/kgの投与量でSHRラットに経口投与した場合、投与群では投与前の収縮期血圧に対し、投与後4時間の収縮期血圧が有意に低下することが認められた。 When 5- (3 ′, 4 ′, 5′-trihydroxyphenyl) -γ-valerolactone was orally administered to SHR rats at a dose of 100 mg / kg, it was administered to the systolic blood pressure before administration in the administration group. It was observed that the systolic blood pressure for the next 4 hours was significantly reduced.

試験例3:SHRラットによる血圧降下試験(150mg/kg)
(a)使用動物および方法
段落[0045]記載の使用動物および方法に準じて実施した。
Test Example 3: Blood pressure lowering test using SHR rats (150 mg / kg)
(A) Animal and method to be used It was carried out according to the animal and method to be used described in paragraph [0045].

(b)投与方法および測定方法
段落[0046]記載の投与方法に従い、試験を行った。但し、5−(3’、4’、5’−トリハイドロキシフェニル)−γ−バレロラクトン[5−(3’、4’、5’−trihydroxyphenyl)−γ−valerolactone]をラットの体重1kg当たり150mg(150mg/kg)となるよう生理食塩水に溶解して、SHRラットに経口投与を行った。供試したラットは投与群、対照群ともに7匹とした。
(B) Administration method and measurement method The test was conducted according to the administration method described in paragraph [0046]. However, 5- (3 ′, 4 ′, 5′-trihydroxyphenyl) -γ-valerolactone [5- (3 ′, 4 ′, 5′-trihydroxyphenyl) -γ-valelalactone] is 150 mg per 1 kg body weight of the rat. (150 mg / kg) was dissolved in physiological saline and orally administered to SHR rats. The number of rats tested was 7 in both the administration group and the control group.

(c)統計処理方法
段落[0047]記載の方法と同様の方法である。
(C) Statistical processing method This is the same method as described in paragraph [0047].

(結果)
(result)

5−(3’、4’、5’−トリハイドロキシフェニル)−γ−バレロラクトンを150mg/kgの投与量でラットに経口投与した場合、投与群では投与前の収縮期血圧に対し、投与後2時間および4時間の収縮期血圧が有意に低下することが認められた。 When 5- (3 ′, 4 ′, 5′-trihydroxyphenyl) -γ-valerolactone was orally administered to rats at a dose of 150 mg / kg, the post-administration blood pressure was compared with the systolic blood pressure before administration in the administration group. Significant reductions in 2 and 4 hour systolic blood pressure were observed.

製造例:キャンディー
砂糖:33重量%、水飴:66重量%、クエン酸:0.67重量%、香料:0.21重量%、着色料:0.07重量%及び5−(3’、4’、5’−トリハイドロキシフェニル)−γ−バレロラクトン0.05重量%をキャンディー処方により常法で調製し、5−(3’、4’、5’−トリハイドロキシフェニル)−γ−バレロラクトンを含有する高血圧の予防・改善を目的としたキャンディーを得た。
Production Examples: Candy sugar: 33% by weight, starch syrup: 66% by weight, citric acid: 0.67% by weight, flavoring: 0.21% by weight, coloring: 0.07% by weight and 5- (3 ′, 4 ′) 0.05 ′% of 5′-trihydroxyphenyl) -γ-valerolactone was prepared by a conventional method using a candy formulation, and 5- (3 ′, 4 ′, 5′-trihydroxyphenyl) -γ-valerolactone was prepared. A candy for the purpose of prevention and improvement of contained hypertension was obtained.

製造例:清涼飲料水
果糖ブドウ糖液糖13%、クエン酸0.3%、アスコルビン酸0.03%、クエン酸ナトリウム0.02%、香料(グレープフルーツフレーバー)0.1%、5−(3’、4’、5’−トリハイドロキシフェニル)−4−ハイドロキシ−吉草酸0.1%に水を加えて溶解し、5リットルの飲料を調整した。溶液は100mlをガラス瓶容器に分注して、常法により殺菌を行い、5−(3’、4’、5’−トリハイドロキシフェニル)−4−ハイドロキシ−吉草酸を含有する高血圧の予防・改善を目的とした清涼飲料を得た。
Production Example: Soft Drink Fructose Glucose Liquid Sugar 13%, Citric Acid 0.3%, Ascorbic Acid 0.03%, Sodium Citrate 0.02%, Fragrance (Grapefruit Flavor) 0.1%, 5- (3 ′ 4 ', 5'-trihydroxyphenyl) -4-hydroxy-valeric acid was dissolved by adding water to 0.1% to prepare a 5-liter beverage. Dissolve 100 ml of the solution into a glass bottle container, sterilize by a conventional method, and prevent and improve hypertension containing 5- (3 ′, 4 ′, 5′-trihydroxyphenyl) -4-hydroxy-valeric acid A soft drink aimed at.

製造例:無糖茶飲料
市販無糖茶飲料として緑茶(サントリー株式会社製)500mlに2−ハイドロキシフェニル酢酸[2−hydroxyphenyl acetic acid]0.1gを添加溶解後、常法にて殺菌し、2−ハイドロキシフェニル酢酸を含有する高血圧の予防・改善を目的とした無糖茶飲料を得た。
Production example: Sugar-free tea beverage As a commercially available sugar-free tea beverage, 0.1 g of 2-hydroxyphenylacetic acid [0.1 g] was added to 500 ml of green tea (manufactured by Suntory Ltd.), dissolved and then sterilized by a conventional method. -A sugar-free tea beverage containing hydroxyphenylacetic acid for the purpose of preventing and improving hypertension was obtained.

製造例:チュアブル錠剤
5−フェニル吉草酸0.5重量部、キシリトール33.8重量部、マンニトール30.6重量部、微結晶性セルロース6.1重量部、着香料14.1重量部、ステアリン酸4.3重量部、タルク0.6重量部、ソルビトール10.0重量部を混合した粉体を錠剤プレスによって圧縮し、5−フェニル吉草酸を含有する錠剤を得た。
Production example: chewable tablet 5-phenyl valeric acid 0.5 parts by weight, xylitol 33.8 parts by weight, mannitol 30.6 parts by weight, microcrystalline cellulose 6.1 parts by weight, flavoring 14.1 parts by weight, stearic acid A powder containing 4.3 parts by weight, 0.6 parts by weight of talc, and 10.0 parts by weight of sorbitol was compressed by a tablet press to obtain a tablet containing 5-phenylvaleric acid.

製造例:スポーツ飲料
5−(3’、4’、5’−トリハイドロキシフェニル)−γ−バレロラクトン0.1mg、ビタミンB1塩酸塩0.45mg、ビタミンB20.2mg、ビタミンC10mg、ナイアシン0.8mg、パントテン酸Ca0.22mg、クエン酸鉄アンモニウム12.57mg、クエン酸100mg及び果糖2.5gの成分にイオン交換水を加え全量を200mlとし、5−(3’、4’、5’−トリハイドロキシフェニル)−γ−バレロラクトンを含有するスポーツ飲料を調製した。
Production Example: Sports beverage 5- (3 ′, 4 ′, 5′-trihydroxyphenyl) -γ-valerolactone 0.1 mg, vitamin B1 hydrochloride 0.45 mg, vitamin B20.2 mg, vitamin C 10 mg, niacin 0.8 mg , Pantothenic acid Ca 0.22 mg, ammonium iron citrate 12.57 mg, citric acid 100 mg and fructose 2.5 g were added with ion-exchanged water to make a total volume of 200 ml, and 5- (3 ′, 4 ′, 5′-trihydroxy A sports drink containing phenyl) -γ-valerolactone was prepared.

本発明の血圧降下剤乃至アンジオテンシン変換酵素阻害剤は、医薬品や医薬部外品などのほか、健康志向型食品として、健康食品、栄養補助食品、特定保健用食品、成分調製食品等で利用することが出来るものである。


The blood pressure lowering agent or angiotensin converting enzyme inhibitor of the present invention can be used in health foods, nutritional supplements, foods for specified health use, ingredient preparation foods, etc. as health-oriented foods in addition to pharmaceuticals and quasi drugs. Is something you can do.


Claims (6)

式(I)で表されるフェニルカルボン酸、式(II)で表される5−フェニル−γ−バレロラクトンおよび式(III)で表される5−フェニル−4−ハイドロキシ吉草酸の少なくとも1種類以上を有効成分として含有することを特徴とする血圧降下剤。

式(I)
(式(I)のnは整数の1−7を表し、R1、R2、R3はそれぞれ独立に水酸基(OH)または水素(H)を表す。)

式(II)
(式(II)のR1、R2はそれぞれ独立に水酸基(OH)または水素(H)を表す。)
式(III)
(式(III)のR1、R2はそれぞれ独立に水酸基(OH)または水素(H)を表す。)
At least one of phenylcarboxylic acid represented by formula (I), 5-phenyl-γ-valerolactone represented by formula (II) and 5-phenyl-4-hydroxyvaleric acid represented by formula (III) An antihypertensive agent comprising the above as an active ingredient.

Formula (I)
(In formula (I), n represents an integer of 1-7, and R1, R2, and R3 each independently represent a hydroxyl group (OH) or hydrogen (H).)

Formula (II)
(R1 and R2 in the formula (II) each independently represent a hydroxyl group (OH) or hydrogen (H).)
Formula (III)
(R1 and R2 in the formula (III) each independently represent a hydroxyl group (OH) or hydrogen (H).)
式(I)に示すフェニルカルボン酸のnが3〜6の整数である請求項1記載の血圧降下剤。 2. The blood pressure lowering agent according to claim 1, wherein n of the phenylcarboxylic acid represented by the formula (I) is an integer of 3 to 6. 式(I)で表されるフェニルカルボン酸、式(II)で表される5−フェニル−γ−バレロラクトンおよび式(III)で表される5−フェニル−4−ハイドロキシ吉草酸の少なくとも1種類以上を有効成分として含有することを特徴とするアンジオテンシン変換酵素阻害剤。 At least one of phenylcarboxylic acid represented by formula (I), 5-phenyl-γ-valerolactone represented by formula (II) and 5-phenyl-4-hydroxyvaleric acid represented by formula (III) The angiotensin converting enzyme inhibitor characterized by including the above as an active ingredient. 請求項1乃至2記載の血圧降下剤、あるいは請求項3記載のアンジオテンシン変換酵素阻害剤を含有する口腔適用対象物。 An oral application target comprising the blood pressure lowering agent according to claim 1 or 2, or the angiotensin converting enzyme inhibitor according to claim 3. 飲食品である請求項4記載の口腔適用対象物。   The object to be applied to the oral cavity according to claim 4, which is a food or drink. 医薬部外品または医薬品である請求項4記載の口腔適用対象物。
The object to be applied to the oral cavity according to claim 4, which is a quasi-drug or a pharmaceutical product.
JP2011280973A 2010-12-24 2011-12-22 Antihypertensive Active JP6021166B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011280973A JP6021166B2 (en) 2010-12-24 2011-12-22 Antihypertensive

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2010288096 2010-12-24
JP2010288096 2010-12-24
JP2011280973A JP6021166B2 (en) 2010-12-24 2011-12-22 Antihypertensive

Publications (3)

Publication Number Publication Date
JP2012144532A true JP2012144532A (en) 2012-08-02
JP2012144532A5 JP2012144532A5 (en) 2014-11-27
JP6021166B2 JP6021166B2 (en) 2016-11-09

Family

ID=46788480

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011280973A Active JP6021166B2 (en) 2010-12-24 2011-12-22 Antihypertensive

Country Status (1)

Country Link
JP (1) JP6021166B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014185172A (en) * 2014-06-23 2014-10-02 Mitsui Norin Co Ltd Catechin metabolite-containing composition
JP2017061438A (en) * 2015-09-25 2017-03-30 静岡県公立大学法人 Cranial nerve cell proliferation promoter
JP2017101010A (en) * 2015-12-04 2017-06-08 国立大学法人神戸大学 Sugar uptake promoter
WO2021065307A1 (en) * 2019-09-30 2021-04-08 丸善製薬株式会社 Angiotensin-converting enzyme inhibitor, blood pressure-lowering agent, and beverages and food products
JP7290905B2 (en) 2020-03-31 2023-06-14 三井農林株式会社 Method for producing catechin metabolite

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07504810A (en) * 1991-11-27 1995-06-01 バイオリサーチ・インコーポレイテツド Specific edible taste modifier
JPH1192410A (en) * 1997-09-25 1999-04-06 Naohiko Sato Antioxidatively active substance
JP2005160402A (en) * 2003-12-03 2005-06-23 Kiyomitsu Kawasaki Method for producing flavor of crustacean
JP2014185172A (en) * 2014-06-23 2014-10-02 Mitsui Norin Co Ltd Catechin metabolite-containing composition

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07504810A (en) * 1991-11-27 1995-06-01 バイオリサーチ・インコーポレイテツド Specific edible taste modifier
JPH1192410A (en) * 1997-09-25 1999-04-06 Naohiko Sato Antioxidatively active substance
JP2005160402A (en) * 2003-12-03 2005-06-23 Kiyomitsu Kawasaki Method for producing flavor of crustacean
JP2014185172A (en) * 2014-06-23 2014-10-02 Mitsui Norin Co Ltd Catechin metabolite-containing composition

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
BIOORGANIC & MEDICINAL CHEMISTRY LETTERS, 2005, VOL.15, P.873-876, JPN6015019926, ISSN: 0003406877 *
PFUETZNER, RICHARD A. ET AL: "Synergistic binding of ligands to angiotensin-converting enzyme", JOURNAL OF BIOLOGICAL CHEMISTRY, vol. 263, no. 9, JPN7015002054, 1988, pages 4056 - 4058, ISSN: 0003406876 *
TUNDIS, R. ET AL: "Chemical Composition of and Inhibition of Angiotensin-Converting Enzyme by Senecio samnitum huet", PHARMACEUTICAL BIOLOGY, vol. 3, no. 7, JPN6015030207, 2005, pages 605 - 608, ISSN: 0003406875 *
UNNO, TOMONORI ET AL: "Urinary Excretion of 5-(3',4'-Dihydroxyphenyl)-γ-valerolactone, a Ring-Fission Metabolite of (-)-Ep", JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY, vol. 51, no. 23, JPN6015030208, 2003, pages 6893 - 6898, ISSN: 0003406878 *

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014185172A (en) * 2014-06-23 2014-10-02 Mitsui Norin Co Ltd Catechin metabolite-containing composition
JP2017061438A (en) * 2015-09-25 2017-03-30 静岡県公立大学法人 Cranial nerve cell proliferation promoter
JP2017101010A (en) * 2015-12-04 2017-06-08 国立大学法人神戸大学 Sugar uptake promoter
WO2021065307A1 (en) * 2019-09-30 2021-04-08 丸善製薬株式会社 Angiotensin-converting enzyme inhibitor, blood pressure-lowering agent, and beverages and food products
CN114449906A (en) * 2019-09-30 2022-05-06 丸善制药株式会社 Angiotensin converting enzyme inhibitor, antihypertensive agent, and food or drink
JP7290905B2 (en) 2020-03-31 2023-06-14 三井農林株式会社 Method for producing catechin metabolite

Also Published As

Publication number Publication date
JP6021166B2 (en) 2016-11-09

Similar Documents

Publication Publication Date Title
CA2854281C (en) A muscle atrophy inhibitor
JP6021166B2 (en) Antihypertensive
US20080319052A1 (en) Lipopexia Inhibitor and Food or Beverage
JPWO2010092941A1 (en) Composition having vasodilatory effect, production method and use
JP4201779B2 (en) Novel gallic acid conjugated linoleic acid fatty ester, process for producing the same and composition containing the same
WO2006082743A1 (en) Therapeutic agent
JP5568276B2 (en) Method for producing catechin metabolites
JP6443804B2 (en) Natural killer cell activity promoter
JP6855263B2 (en) Dipeptidylpeptidase-IV inhibitor
JP5781199B2 (en) Catechin metabolite-containing composition
JP2023033087A (en) Vascular flexibility improving composition, vascular endothelial function improving composition, platelet aggregation inhibitory composition, blood flow improving composition, and oral composition
JP5000214B2 (en) Novel compounds and osteoclast differentiation / proliferation inhibitors
KR101608502B1 (en) Composition for prevention or treatment of cardiovascular diseases comprising fermentation product of garlic
JP5744507B2 (en) α-Amylase inhibitor
AU2013367872B2 (en) Igf-1 production-promoting agent
JP6369830B2 (en) Immune cell proliferation promoter
JP5167462B2 (en) Novel compounds and osteoclast differentiation / proliferation inhibitors
JP5673207B2 (en) New resveratrol derivatives
JP2007269685A (en) Physiological function enhancing composition
US20090292012A1 (en) Therapeutic Agent
JP5801572B2 (en) PPARγ activator
JP2012184208A (en) Sucrase inhibitor
JP2023109364A (en) Composition containing lythrum anceps
JP2020094021A (en) Novel method for producing resveratrol derivative and novel use
JP2018123077A (en) Adl improvement agent

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140926

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20141008

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A132

Effective date: 20150728

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150911

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160218

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160415

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160415

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160929

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160929

R150 Certificate of patent or registration of utility model

Ref document number: 6021166

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250