JP2012144410A - Oxide sintered compact, and sputtering target - Google Patents

Oxide sintered compact, and sputtering target Download PDF

Info

Publication number
JP2012144410A
JP2012144410A JP2011005978A JP2011005978A JP2012144410A JP 2012144410 A JP2012144410 A JP 2012144410A JP 2011005978 A JP2011005978 A JP 2011005978A JP 2011005978 A JP2011005978 A JP 2011005978A JP 2012144410 A JP2012144410 A JP 2012144410A
Authority
JP
Japan
Prior art keywords
sintered body
oxide
metal
oxide sintered
relative density
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2011005978A
Other languages
Japanese (ja)
Inventor
Yasushi Goto
裕史 後藤
Yuki Iwasaki
祐紀 岩崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobelco Research Institute Inc
Original Assignee
Kobelco Research Institute Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobelco Research Institute Inc filed Critical Kobelco Research Institute Inc
Priority to JP2011005978A priority Critical patent/JP2012144410A/en
Priority to PCT/JP2012/050296 priority patent/WO2012096267A1/en
Priority to TW101101410A priority patent/TW201245097A/en
Publication of JP2012144410A publication Critical patent/JP2012144410A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/453Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on zinc, tin, or bismuth oxides or solid solutions thereof with other oxides, e.g. zincates, stannates or bismuthates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/08Oxides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • C23C14/3407Cathode assembly for sputtering apparatus, e.g. Target
    • C23C14/3414Metallurgical or chemical aspects of target preparation, e.g. casting, powder metallurgy
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3244Zirconium oxides, zirconates, hafnium oxides, hafnates, or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/327Iron group oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3279Nickel oxides, nickalates, or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3284Zinc oxides, zincates, cadmium oxides, cadmiates, mercury oxides, mercurates or oxide forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3286Gallium oxides, gallates, indium oxides, indates, thallium oxides, thallates or oxide forming salts thereof, e.g. zinc gallate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/34Non-metal oxides, non-metal mixed oxides, or salts thereof that form the non-metal oxides upon heating, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3418Silicon oxide, silicic acids or oxide forming salts thereof, e.g. silica sol, fused silica, silica fume, cristobalite, quartz or flint
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/34Non-metal oxides, non-metal mixed oxides, or salts thereof that form the non-metal oxides upon heating, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3427Silicates other than clay, e.g. water glass
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6567Treatment time
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/74Physical characteristics
    • C04B2235/77Density
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/80Phases present in the sintered or melt-cast ceramic products other than the main phase

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Ceramic Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Manufacturing & Machinery (AREA)
  • Structural Engineering (AREA)
  • Physical Vapour Deposition (AREA)
  • Compositions Of Oxide Ceramics (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an oxide sintered compact which is used appropriately for producing an oxide semiconductor film for a display; and a sputtering target having both high conductivity and high relative density.SOLUTION: The oxide sintered compact is obtained by mixing and sintering indium oxide powder, gallium oxide powder, zinc oxide powder, and the powder of at least one kind of metal (metal M) selected from the group consisting of Si, Ni and Hf. When the oxide sintered compact is subjected to X-ray diffraction, (1) InGaZnOis made a main phase, and at least part of the metal M is solid-dissolved in the InGaZnO, and (2) a ZnMOphase and an MOphase (x and y are an optional integer) are not detected.

Description

本発明は、液晶ディスプレイや有機ELディスプレイなどの表示装置に用いられる薄膜トランジスタ(TFT)の酸化物半導体薄膜をスパッタリング法で成膜するときに用いられる酸化物焼結体およびスパッタリングターゲットに関するものである。   The present invention relates to an oxide sintered body and a sputtering target used when a thin film transistor (TFT) oxide semiconductor thin film used in a display device such as a liquid crystal display or an organic EL display is formed by a sputtering method.

TFTに用いられるアモルファス(非晶質)酸化物半導体は、汎用のアモルファスシリコン(a−Si)に比べて高いキャリア移動度を有し、光学バンドギャップが大きく、低温で成膜できるため、大型・高解像度・高速駆動が要求される次世代ディスプレイや、耐熱性の低い樹脂基板などへの適用が期待されている。上記酸化物半導体(膜)の形成に当たっては、当該膜と同じ材料のスパッタリングターゲットをスパッタリングするスパッタリング法が好適に用いられている。スパッタリング法で形成された薄膜は、イオンプレーティング法や真空蒸着法、電子ビーム蒸着法で形成された薄膜に比べ、膜面方向(膜面内)における成分組成や膜厚などの面内均一性に優れており、スパッタリングターゲットと同じ成分組成の薄膜を形成できるという長所を有しているからである。スパッタリングターゲットは、通常、酸化物粉末を混合、焼結し、機械加工を経て形成されている。   Amorphous (amorphous) oxide semiconductors used for TFTs have higher carrier mobility than general-purpose amorphous silicon (a-Si), a large optical band gap, and can be formed at low temperatures. It is expected to be applied to next-generation displays that require high resolution and high-speed driving, and resin substrates with low heat resistance. In forming the oxide semiconductor (film), a sputtering method is preferably used in which a sputtering target made of the same material as the film is sputtered. In-plane uniformity of component composition and film thickness in the film surface direction (in the film surface) is smaller in the thin film formed by sputtering compared to thin films formed by ion plating, vacuum evaporation, and electron beam evaporation. This is because it has the advantage that a thin film having the same composition as the sputtering target can be formed. The sputtering target is usually formed by mixing and sintering oxide powder and machining.

表示装置に用いられる酸化物半導体の組成として最も開発が進められているのは、In含有のIn−Ga−Zn−O(IGZO)非晶質酸化物半導体であり、次世代の表示装置置用に高品質で安定した薄膜を形成し、TFT特性の信頼性を向上させるため、高品質なIGZO系酸化物半導体が提案されている(例えば特許文献1〜3)。   The most advanced composition of oxide semiconductors used in display devices is In-containing In—Ga—Zn—O (IGZO) amorphous oxide semiconductors, which are used for next-generation display devices. In order to form a high-quality and stable thin film and improve the reliability of TFT characteristics, high-quality IGZO-based oxide semiconductors have been proposed (for example, Patent Documents 1 to 3).

特開2008−214697号公報JP 2008-214697 A 特開2008−163441号公報JP 2008-163441 A 特開2008−163442号公報JP 2008-163442 A

表示装置用酸化物半導体膜の製造に用いられるスパッタリングターゲットおよびその素材である酸化物焼結体は、導電性に優れ、且つ高い相対密度を有していることが望まれる。また、大型基板上での大量生産や製造コストなどを考慮すると、高周波(RF)スパッタリング法でなく、高速成膜が容易な直流(DC)スパッタリング法で安定した製造可能なスパッタリングターゲットの提供が望まれている。   It is desired that a sputtering target used for manufacturing an oxide semiconductor film for a display device and an oxide sintered body that is a material thereof have excellent conductivity and a high relative density. In consideration of mass production and manufacturing cost on a large substrate, it is desired to provide a sputtering target that can be stably manufactured not by the high frequency (RF) sputtering method but by the direct current (DC) sputtering method that facilitates high-speed film formation. It is rare.

本発明は上記事情に鑑みてなされたものであり、その目的は、表示装置用酸化物半導体膜の製造に好適に用いられる酸化物焼結体およびスパッタリングターゲットであって、高い導電性と相対密度を兼ね備えた酸化物焼結体およびスパッタリングターゲットを提供することにある。   The present invention has been made in view of the above circumstances, and an object thereof is an oxide sintered body and a sputtering target that are suitably used for manufacturing an oxide semiconductor film for a display device, and have high conductivity and relative density. The object is to provide an oxide sintered body and a sputtering target having both of the above.

上記課題を解決し得た本発明の酸化物焼結体は、酸化インジウムと;酸化ガリウムと;酸化亜鉛と;Si、Ni、およびHfよりなる群から選択される少なくとも一種の金属(M金属)の酸化物の各粉末と、を混合および焼結して得られる酸化物焼結体であって、前記酸化物焼結体をX線回折したとき、(1)InGaZnO4を主相とし、M金属の少なくとも一部は前記InGaZnO4に固溶しており、且つ、(2)ZnMxy相およびMxy相(x、yは任意の整数である)は検出されないものであるところに要旨を有するものである。 The oxide sintered body of the present invention that can solve the above-mentioned problems is at least one metal (M metal) selected from the group consisting of indium oxide, gallium oxide, zinc oxide, Si, Ni, and Hf. When the oxide sintered body is subjected to X-ray diffraction, (1) InGaZnO 4 as a main phase, At least a part of the metal is dissolved in the InGaZnO 4 and (2) ZnM x O y phase and M x O y phase (x and y are arbitrary integers) are not detected. It has a gist.

本発明の好ましい実施形態において、前記酸化物焼結体に含まれる金属元素の含有量(原子%)をそれぞれ、[In]、[Ga]、[Zn]、[M金属]([M金属]は、酸化物焼結体に含まれる金属元素の合計量である)としたとき、[In]+[Ga]+[Zn]+[M金属]に対する[M金属]の比は、0.01以上0.05未満である。   In a preferred embodiment of the present invention, the content (atomic%) of the metal element contained in the oxide sintered body is set to [In], [Ga], [Zn], [M metal] ([M metal], respectively). Is the total amount of metal elements contained in the oxide sintered body), the ratio of [M metal] to [In] + [Ga] + [Zn] + [M metal] is 0.01. It is more than 0.05.

本発明の好ましい実施形態において、前記酸化物焼結体に含まれる金属元素の含有量(原子%)をそれぞれ、[In]、[Ga]、[Zn]とし、[In]+[Ga]+[Zn]に対する[In]、[Ga]、[Zn]の各比を[In]比、[Ga]比、[Zn]比としたとき、[In]比:[Ga]比:[Zn]比=0.32〜0.34:0.32〜0.34:0.32〜0.34の範囲に制御されている。   In a preferred embodiment of the present invention, the contents (atomic%) of the metal elements contained in the oxide sintered body are [In], [Ga], and [Zn], respectively, and [In] + [Ga] + [In] ratio: [Ga] ratio: [Zn] where the ratio of [In], [Ga], and [Zn] to [Zn] is [In] ratio, [Ga] ratio, and [Zn] ratio, respectively. The ratio is controlled in the range of 0.32 to 0.34: 0.32 to 0.34: 0.32 to 0.34.

本発明の好ましい実施形態において、上記酸化物焼結体の相対密度は90%以上、比抵抗は0.1Ωcm以下である。   In a preferred embodiment of the present invention, the oxide sintered body has a relative density of 90% or more and a specific resistance of 0.1 Ωcm or less.

また、上記課題を解決し得た本発明のスパッタリングターゲットは、上記酸化物焼結体を用いて得られるスパッタリングターゲットであって、相対密度90%以上、比抵抗0.1Ωcm以下であるところに要旨を有するものである。   Moreover, the sputtering target of the present invention that has solved the above-mentioned problems is a sputtering target obtained using the above oxide sintered body, and has a relative density of 90% or more and a specific resistance of 0.1 Ωcm or less. It is what has.

本発明によれば、導電性に優れ、且つ高い相対密度を有する酸化物焼結体およびスパッタリングターゲットが得られる。また、本発明によれば、直流放電安定性に優れ、成膜時の異常放電が少なく、面内の均質性および膜質安定性に優れたスパッタリングターゲットが得られる。本発明のスパッタリングターゲットを用いれば、高速成膜が容易な直流スパッタリング法により酸化物半導体膜を安価に且つ安定して成膜できるため、生産性が向上する。   ADVANTAGE OF THE INVENTION According to this invention, the oxide sintered compact and sputtering target which are excellent in electroconductivity and have a high relative density are obtained. Moreover, according to the present invention, a sputtering target having excellent direct current discharge stability, less abnormal discharge during film formation, and excellent in-plane uniformity and film quality stability can be obtained. When the sputtering target of the present invention is used, an oxide semiconductor film can be stably formed at low cost by a direct current sputtering method that facilitates high-speed film formation, and thus productivity is improved.

図1は、本発明の酸化物焼結体およびスパッタリングターゲットを製造するための基本的な工程を示す図である。FIG. 1 is a diagram showing a basic process for producing an oxide sintered body and a sputtering target of the present invention. 図2は、実験例1における本発明例の酸化物焼結体(Si比=0.01)のX線回折結果を示すグラフである。FIG. 2 is a graph showing the X-ray diffraction result of the oxide sintered body (Si ratio = 0.01) of the example of the present invention in Experimental Example 1. 図3は、実験例4における本発明例の酸化物焼結体(Si比=0.031)のX線回折結果を示すグラフである。FIG. 3 is a graph showing an X-ray diffraction result of an oxide sintered body (Si ratio = 0.031) of an example of the present invention in Experimental Example 4. 図4は、実験例7における比較例の酸化物焼結体(Si比=0.05)のX線回折結果を示すグラフである。FIG. 4 is a graph showing an X-ray diffraction result of the oxide sintered body (Si ratio = 0.05) of Comparative Example in Experimental Example 7.

本発明者らは、Inと、Gaと、Znと、を含む酸化物(IGZO)半導体について、高い導電性と高い相対密度を有しており、直流スパッタリング法を適用可能なスパッタリングターゲット用酸化物焼結体を提供するため、検討を重ねてきた。   The present inventors have disclosed an oxide for a sputtering target that has high conductivity and high relative density and can be applied to a direct current sputtering method for an oxide (IGZO) semiconductor containing In, Ga, and Zn. In order to provide a sintered body, investigation has been repeated.

その結果、(ア)IGZOを構成する金属元素(In、Ga、Zn)の酸化物に、Si、Ni、およびHfよりなる群から選択される少なくとも一種の金属(M金属)の酸化物の各粉末と、を混合および焼結して得られるM金属含有IGZO焼結体を用いれば、物理蒸着時の直流プラズマ放電安定性に特に優れており、成膜時の異常放電が少なく、密度が高い高品質なスパッタリングターゲット用酸化物焼結体が得られること、(イ)詳細には、上記酸化物焼結体をX線回折したとき、(1)InGaZnO4を主相とし、M金属の少なくとも一部は前記InGaZnO4に固溶しており、且つ、(2)スピネル型化合物である、ZnMxy相およびMxy相(x、yは任意の整数である)は検出されないような構成としたときに所期の目的が達成されること、(ウ)そして、このような相構成を有する本発明のM金属含有IGZO焼結体を得るためには、全金属元素に占めるM金属の合計量の比を所定範囲に制御された混合粉末に対し、所定の焼結条件(好ましくは非還元性雰囲気下にて、1250〜1600℃の温度で5時間以上焼成する)を行なえば良いことを見出し、本発明を完成した。 As a result, (a) each of oxides of metal elements (In, Ga, Zn) constituting IGZO and oxides of at least one metal (M metal) selected from the group consisting of Si, Ni, and Hf If an M metal-containing IGZO sintered body obtained by mixing and sintering powder is particularly excellent in direct current plasma discharge stability during physical vapor deposition, there is little abnormal discharge during film formation, and the density is high A high-quality oxide sintered body for a sputtering target is obtained. (A) Specifically, when the oxide sintered body is subjected to X-ray diffraction, (1) InGaZnO 4 is used as a main phase, and at least M metal A part is dissolved in the InGaZnO 4 , and (2) the ZnM x O y phase and the M x O y phase (x and y are arbitrary integers) that are spinel compounds are not detected. When you have the right structure (C) And, in order to obtain the M metal-containing IGZO sintered body of the present invention having such a phase structure, the ratio of the total amount of M metal in all metal elements is set within a predetermined range. The present inventors have found that the controlled mixed powder may be subjected to predetermined sintering conditions (preferably calcining at a temperature of 1250 to 1600 ° C. for 5 hours or more in a non-reducing atmosphere), thereby completing the present invention. .

まず、本発明のM金属含有IGZO焼結体について詳しく説明する。上述したように本発明は、上記酸化物焼結体をX線回折したとき、
(1)InGaZnO4を主相とし、M金属の少なくとも一部は前記InGaZnO4に固溶しており、且つ、
(2)スピネル型化合物である、ZnMxy相およびMxy相(x、yは任意の整数である)は検出されないような構成の酸化物焼結体としたところに特徴がある。
First, the M metal containing IGZO sintered body of the present invention will be described in detail. As described above, the present invention, when the oxide sintered body is X-ray diffracted,
(1) InGaZnO 4 as a main phase, at least a part of the M metal is dissolved in the InGaZnO 4 , and
(2) It is characterized in that it is an oxide sintered body having a structure in which the ZnM x O y phase and M x O y phase (x and y are arbitrary integers), which are spinel compounds, are not detected. .

本発明におけるX線回折条件は、以下のとおりである。
分析装置:理学電機製「X線回折装置RINT−1500」
分析条件
ターゲット:Cu
単色化:モノクロメートを使用(Kα)
ターゲット出力:40kV−200mA
(連続焼測定)θ/2θ走査
スリット:発散1/2°、散乱1/2°、受光0.15mm
モノクロメータ受光スリット:0.6mm
走査速度:2°/min
サンプリング幅:0.02°
測定角度(2θ):5〜90°
The X-ray diffraction conditions in the present invention are as follows.
Analysis device: “X-ray diffractometer RINT-1500” manufactured by Rigaku Corporation
Analysis conditions Target: Cu
Monochromatic: Uses a monochrome mate (Kα)
Target output: 40kV-200mA
(Continuous firing measurement) θ / 2θ scanning Slit: Divergence 1/2 °, Scattering 1/2 °, Received light 0.15 mm
Monochromator light receiving slit: 0.6mm
Scanning speed: 2 ° / min
Sampling width: 0.02 °
Measurement angle (2θ): 5 to 90 °

次に上記X線回折によって検出される(1)の化合物、または検出されない(2)の化合物について詳しく説明する。   Next, the compound (1) detected by the X-ray diffraction or the compound (2) not detected will be described in detail.

(1)InGaZnO4について
InGaZnO4化合物(相)は、本発明の酸化物焼結体を構成するInとGaとZnが結合して形成される酸化物である。この化合物は、所謂スピネル型化合物であり、電子材料として物性に富み、結晶構造の変化に伴って物性が変化するという特徴をもつ。本発明のようなIGZO系酸化物において、上記化合物は、酸化物焼結体の相対密度の向上に大きく寄与するものである。
(1) InGaZnO 4 for InGaZnO 4 compound (phase) is an oxide In, Ga, and Zn is formed by bonding of the oxide sintered body of the present invention. This compound is a so-called spinel-type compound, which is rich in physical properties as an electronic material and has the characteristics that the physical properties change as the crystal structure changes. In the IGZO-based oxide as in the present invention, the above compound greatly contributes to the improvement of the relative density of the oxide sintered body.

本発明では、上記InGaZnO4化合物を主相として含んでいる。ここで「主相」とは、上記X線回折によって検出される全化合物中、最も比率の多い化合物を意味している。 In the present invention, the InGaZnO 4 compound is included as a main phase. Here, the “main phase” means a compound having the highest ratio among all the compounds detected by the X-ray diffraction.

本発明において添加されるM金属の少なくとも一部は、上記InGaZnO4化合物に固溶している。好ましい態様は、M金属の全部が上記InGaZnO4化合物に固溶しているものであり、上記InGaZnO4化合物のみが単相で存在している酸化物焼結体は、相対密度がより高く、抵抗も一層低いため、非常に有用である。 At least a part of the M metal added in the present invention is dissolved in the InGaZnO 4 compound. Preferred embodiments are those in which all of the M metal is dissolved in the InGaZnO 4 compound, oxide sintered body only the InGaZnO 4 compound is present in a single phase, relative density higher resistance Is also very useful.

なお、本発明では、本発明の作用効果(高い相対密度と低い抵抗)を阻害しない限り、M金属の一部は(InAGaBZnCD)O2(A、B、C、Dは任意の整数である)として存在していても良い。後述するように、上記M金属の酸化物(M酸化物)は非導電相であるため、できるだけ少ない方が良いが、本発明の作用効果を阻害しない限度で(InAGaBZnCD)O2を微量程度含むものであれば、本発明の範囲内に包含される。 In the present invention, as long as it does not inhibit the effects of the present invention (high relative density and low resistance), the part of the M metal (In A Ga B Zn C M D) O 2 (A, B, C, D May be any integer). As will be described later, since the M metal oxide (M oxide) is a non-conductive phase, it should be as small as possible. However, as long as the effects of the present invention are not hindered (In A Ga B Zn C M D Anything containing a small amount of O 2 is included within the scope of the present invention.

(2)ZnMxy相およびMxy相(x、yは任意の整数である)について
ZnMxy相およびMxy相(x、yは任意の整数である)は、本発明の酸化物焼結体を構成するM金属が酸素(O)と結合して形成し得るスピネル型化合物であるが、本発明では、上記のX線回折を行なったとき、これらの化合物が検出されないところに特徴がある。M金属の酸化によって形成される上記酸化物(例えばZnMxy相や、例えばSiO2などのMxy相)は絶縁性が高く高抵抗であるため、M金属の酸化物が酸化物焼結体やスパッタリングターゲットに含まれていると抵抗が高くなったり、局所的に高抵抗となってプラズマ放電時のアーキング発生を誘発する原因となる。また、クラスター状に飛び出した上記酸化物が膜に混入して、薄膜の半導体特性が劣化し、キャリア移動度が低下する。このため、本発明では、後記する焼結条件の制御などによって酸化物焼結体中にM金属元素の酸化物相が形成するのを防止しており、大部分のM元素をInAGaBZnC相などに固溶させることによって薄膜の膜特性を安定させ、キャリア移動度の低下を防ぐことができる。
(2) ZnM x O y phase and M x O y phase (x and y are arbitrary integers) ZnM x O y phase and M x O y phase (x and y are arbitrary integers) Although the M metal constituting the oxide sintered body of the present invention is a spinel compound that can be formed by combining with oxygen (O), in the present invention, when the above X-ray diffraction is performed, these compounds are There is a feature that is not detected. The above oxide formed by oxidation of M metal (for example, ZnM x O y phase or M x O y phase such as SiO 2 ) has high insulation and high resistance. If it is contained in a sintered body or a sputtering target, the resistance becomes high, or the resistance becomes locally high, causing arcing during plasma discharge. In addition, the oxide protruding in a cluster shape is mixed into the film, so that the semiconductor characteristics of the thin film are deteriorated and the carrier mobility is lowered. For this reason, in the present invention, the oxide phase of the M metal element is prevented from forming in the oxide sintered body by controlling the sintering conditions described later, and most of the M element is converted to In A Ga B. By dissolving in a Zn C phase or the like, the film characteristics of the thin film can be stabilized and the decrease in carrier mobility can be prevented.

本発明において、M金属とは後記するように、Si、Ni、およびHfよりなる群から選択される少なくとも一種の金属であり、例えばM金属がSiの場合、ZnSiO2やSiO2などの化合物が検出されないことを意味する。なお、「検出されない」とは、上記のX線回折条件を行なったときに検出限界以下であることを意味する。添加されたM金属の全部またはその大部分は、InAGaBZnC化合物中に固溶していることを確認している。なお、InAGaBZnC化合物中に固溶していない残りのM金属は、酸化物焼結体の組成によって生成し得るZnOなどに固溶もしくは粒界に偏析していると推察される。 In the present invention, the M metal is at least one metal selected from the group consisting of Si, Ni, and Hf, as will be described later. For example, when the M metal is Si, a compound such as ZnSiO 2 or SiO 2 is used. Means not detected. “Not detected” means below the detection limit when the above-mentioned X-ray diffraction conditions are performed. All or most of of added M metal is confirmed that the solid solution in the In A Ga B Zn C compound. Incidentally, the remaining M metal that is not dissolved in the In A Ga B Zn C compound is presumed to be segregated in the solid solution or the grain boundaries such as ZnO which may be produced by the composition of the oxide sintered body .

次に、本発明の酸化物焼結体を構成する元素について詳しく説明する。本発明の酸化物焼結体は、酸化インジウムと;酸化ガリウムと;酸化亜鉛と;Si、Ni、およびHfよりなる群から選択される少なくとも一種の金属(M金属)の酸化物の各粉末と、を混合および焼結して得られるものである。   Next, the elements constituting the oxide sintered body of the present invention will be described in detail. The oxide sintered body of the present invention includes indium oxide, gallium oxide, zinc oxide, and powders of at least one metal (M metal) oxide selected from the group consisting of Si, Ni, and Hf. Are obtained by mixing and sintering.

ここで、In、Ga、Znの酸化物は、キャリア濃度を制御することによって半導体を形成する化合物であり、酸化物中の酸素含有量に応じて絶縁性から半導体、そして導電性へと性質を変化させることができる。これは、酸化物のなかに酸素欠損を故意に生じさせることによって余った電子がキャリアとなり、キャリアが比較的少数の場合は半導体に、キャリアが多量になれば縮退して導体化することが知られている。   Here, the oxides of In, Ga, and Zn are compounds that form a semiconductor by controlling the carrier concentration, and the properties change from insulating to semiconductor and conductive depending on the oxygen content in the oxide. Can be changed. This is because it is known that oxygen vacancies are intentionally generated in the oxide, and the surplus electrons become carriers, and when there are a relatively small number of carriers, it becomes a semiconductor, and when there are a large number of carriers, it degenerates and becomes a conductor. It has been.

本発明に用いられるM金属は、スパッタリングによって形成した膜特性の向上に有用な元素であり、IGZO系酸化物に適用した。上記M金属は、Si、Ni、およびHfよりなる群から選択され、単独で用いても良いし、2種以上を併用しても良い。   M metal used in the present invention is an element useful for improving the characteristics of a film formed by sputtering, and was applied to an IGZO-based oxide. The M metal is selected from the group consisting of Si, Ni, and Hf, and may be used alone or in combination of two or more.

本発明において、上記酸化物焼結体に含まれる金属元素の含有量(原子%)をそれぞれ、[In]、[Ga]、[Zn]、[M金属]([M金属]は、酸化物焼結体に含まれる金属元素の合計量である)としたとき、[In]+[Ga]+[Zn]+[M金属]に対する[M金属]の比(以下、M金属比と略記する場合がある。)は、0.01以上0.05未満であることが好ましい。上記M金属比が0.01未満の場合、M金属の添加による効果が得られず、薄膜を形成したときのTFTの信頼性が低下する。一方、上記M金属比が0.05以上の場合は、焼結体の密度を90%以上にすることはできず、比抵抗も高くなるため、直流プラズマ放電が安定せず、異常放電が発生し易くなる。より好ましいM金属比は、0.035以下である。後記する実施例では、M金属の種類に応じて、例えばM金属=Siの場合は、Si比と略記する場合がある。   In the present invention, [In], [Ga], [Zn], [M metal] ([M metal] is the oxide content of the metal element contained in the oxide sintered body (atomic%), respectively. (M metal) to [In] + [Ga] + [Zn] + [M metal] (hereinafter abbreviated as M metal ratio). In some cases) is preferably 0.01 or more and less than 0.05. When the M metal ratio is less than 0.01, the effect of adding the M metal cannot be obtained, and the reliability of the TFT when a thin film is formed is lowered. On the other hand, when the M metal ratio is 0.05 or more, the density of the sintered body cannot be increased to 90% or more, and the specific resistance also increases, so the DC plasma discharge is not stable and abnormal discharge occurs It becomes easy to do. A more preferable M metal ratio is 0.035 or less. In the examples described later, depending on the type of M metal, for example, when M metal = Si, the Si ratio may be abbreviated.

また本発明において、酸化物焼結体に含まれる金属元素の含有量(原子%)をそれぞれ、[In]、[Ga]、[Zn]とし、[In]比、[Ga]比、[Zn]比としたとき、[In]比:[Ga]比:[Zn]比=0.32〜0.34:0.32〜0.34:0.32〜0.34の範囲に制御されていることが好ましい。すなわち、これらの比は、±0.01の許容範囲内で、実質的に1:1:1の比で等しく添加されていることが好ましい。これにより、薄膜を形成したときのキャリア移動度が高くなり、例えば8cm2/Vs以上の高移動度が得られるようになる。 In the present invention, the content (atomic%) of the metal element contained in the oxide sintered body is [In], [Ga], and [Zn], respectively, and [In] ratio, [Ga] ratio, and [Zn]. ] Ratio, [In] ratio: [Ga] ratio: [Zn] ratio = 0.32 to 0.34: 0.32 to 0.34: 0.32 to 0.34. Preferably it is. That is, it is preferable that these ratios are substantially equally added at a ratio of 1: 1: 1 within an allowable range of ± 0.01. Thereby, the carrier mobility when a thin film is formed becomes high, and a high mobility of, for example, 8 cm 2 / Vs or more can be obtained.

本発明の酸化物焼結体、更には当該酸化物焼結体を用いて得られるスパッタリングターゲットは、相対密度90%以上、比抵抗0.1Ωcm以下であるところに特徴がある。   The oxide sintered body of the present invention and the sputtering target obtained using the oxide sintered body are characterized in that the relative density is 90% or more and the specific resistance is 0.1 Ωcm or less.

(相対密度90%以上)
本発明の酸化物焼結体は、相対密度が非常に高く、好ましくは90%以上であり、より好ましくは95%以上である。高い相対密度は、スパッタリング中での割れやノジュールの発生を防止し得るだけでなく、安定した放電をターゲットライフまで連続して維持するなどの利点をもたらす。
(Relative density 90% or more)
The oxide sintered body of the present invention has a very high relative density, preferably 90% or more, and more preferably 95% or more. A high relative density not only can prevent the generation of cracks and nodules during sputtering, but also provides advantages such as maintaining a stable discharge continuously to the target life.

なお、一般にIGZO系酸化物の場合、上述したようにInGaZnO4単相のみで構成されている方が焼結体の高密度化の観点からは好ましく、M金属酸化物粉末の添加によってZnMxy相やMxy相などが形成されてInGaZnO4以外の複数の相を形成すると相対密度の低下が生じ易くなることが知られている。これに対し本発明では、これらのZnMxy相やMxy相は含まれないため、相対密度の低下は見られず、所望レベルの90%以上を確保することができる。また本発明の酸化物焼結体は、M金属の大部分がInGaZnO4化合物に固溶しており、多少ではあるが、(InAGaBZnCD)O2などの酸化物も含み得るものであるが、このような相構成は、酸化物焼結体の緻密化を阻害するものではなく、薄膜の特性にも悪影響を及ぼすものでもない。 In general when the IGZO-based oxide, preferably from the viewpoint of high density of it is a sintered body that consists of only InGaZnO 4 single phase as mentioned above, ZnM x O by the addition of M metal oxide powder It is known that when a plurality of phases other than InGaZnO 4 are formed by forming a y phase, a M x O y phase, or the like, a relative density is likely to be lowered. On the other hand, in the present invention, since these ZnM x O y phases and M x O y phases are not included, the relative density is not lowered and 90% or more of the desired level can be secured. The oxide sintered body of the present invention contains most of M metal as a solid solution in an InGaZnO 4 compound, and includes oxides such as (In A Ga B Zn C M D ) O 2 to some extent. Although obtained, such a phase structure does not inhibit the densification of the oxide sintered body and does not adversely affect the properties of the thin film.

(比抵抗0.1Ωcm以下)
本発明の酸化物焼結体は、比抵抗が非常に小さく、0.1Ωcm以下であることが好ましく、より好ましくは0.05Ωcm以下である。これにより、直流電源を用いたプラズマ放電などによる直流スパッタリング法による成膜が可能となり、スパッタリングターゲットを用いた物理蒸着(スパッタリング法)を表示装置の生産ラインで効率よく行うことができる。
(Specific resistance 0.1Ωcm or less)
The oxide sintered body of the present invention has a very small specific resistance, preferably 0.1 Ωcm or less, more preferably 0.05 Ωcm or less. Accordingly, film formation by a direct current sputtering method using plasma discharge using a direct current power source is possible, and physical vapor deposition (sputtering method) using a sputtering target can be efficiently performed on the production line of the display device.

次に、本発明の酸化物焼結体を製造する方法について説明する。   Next, a method for producing the oxide sintered body of the present invention will be described.

本発明の酸化物焼結体は、酸化インジウムと;酸化ガリウムと;酸化亜鉛と;Si、Ni、およびHfよりなる群から選択される少なくとも一種の金属(M金属)の酸化物の各粉末と、を混合および焼結して得られる酸化物焼結体であり、原料粉末からスパッタリングターゲットまでの基本工程を図1に示す。図1には、酸化物の粉末を混合・粉砕→乾燥・造粒→成形→常圧焼結して得られた酸化物焼結体を、加工→ボンディグしてスパッタリングターゲットを得るまでの基本工程を示している。上記工程のうち本発明では、以下に詳述するように焼結条件を適切に制御したところに特徴があり、それ以外の工程は特に限定されず、通常用いられる工程を適宜選択することができる。以下、各工程を説明するが、本発明はこれに限定する趣旨ではない。   The oxide sintered body of the present invention includes indium oxide, gallium oxide, zinc oxide, and powders of at least one metal (M metal) oxide selected from the group consisting of Si, Ni, and Hf. FIG. 1 shows a basic process from raw material powder to a sputtering target. Fig. 1 shows the basic steps from mixing and crushing oxide powder to drying and granulating → forming → atmospheric pressure sintering, and then processing → bonding to obtain a sputtering target. Is shown. Among the above steps, the present invention is characterized in that the sintering conditions are appropriately controlled as will be described in detail below, and the other steps are not particularly limited, and usually used steps can be appropriately selected. . Hereinafter, although each process is demonstrated, this invention is not the meaning limited to this.

まず、酸化インジウム粉末、酸化ガリウム粉末、酸化亜鉛粉末、およびM金属の酸化物粉末を所定の割合に配合し、混合・粉砕する。用いられる各原料粉末の純度はそれぞれ、約99.99%以上が好ましい。微量の不純物元素が存在すると、酸化物半導体膜の半導体特性を損なう恐れがあるためである。各原料粉末の配合割合は、ZnおよびM金属の比率が前述した範囲内となるように制御することが好ましい。   First, indium oxide powder, gallium oxide powder, zinc oxide powder, and M metal oxide powder are mixed in a predetermined ratio, mixed and pulverized. The purity of each raw material powder used is preferably about 99.99% or more. This is because the presence of a trace amount of impurity elements may impair the semiconductor characteristics of the oxide semiconductor film. The blending ratio of each raw material powder is preferably controlled so that the ratio of Zn and M metal falls within the above-described range.

混合および粉砕はポットミルを使い、原料粉末を水と共に投入して行うことが好ましい。これらの工程に用いられるボールやビーズは、例えばナイロン、アルミナ、ジルコニアなどの材質のものが好ましく用いられる。   Mixing and pulverization are preferably carried out using a pot mill and adding the raw material powder together with water. The balls and beads used in these steps are preferably made of materials such as nylon, alumina, zirconia, and the like.

次に、上記工程で得られた混合粉末を乾燥し造粒した後、成形する。成形に当たっては、乾燥・造粒後の粉末を所定寸法の金型に充填し、金型プレスで予備成形した後、CIP(冷間静水圧プレス)などによって成形することが好ましい。焼結体の相対密度を上昇させるためには、予備成形の成形圧力を約0.2tonf/cm2以上に制御することが好ましく、成形時の圧力は約1.2tonf/cm2以上に制御することが好ましい。 Next, the mixed powder obtained in the above step is dried and granulated, and then molded. In the molding, it is preferable that the powder after drying and granulation is filled in a metal mold of a predetermined size, pre-molded by a mold press, and then molded by CIP (cold isostatic pressing) or the like. In order to increase the relative density of the sintered body, it is preferable to control the molding pressure for preforming to about 0.2 tonf / cm 2 or more, and the pressure at the time of molding to about 1.2 tonf / cm 2 or more. It is preferable.

次に、このようにして得られた成形体に対し、常圧にて焼成を行う。本発明では、所望の化合物相構成(InGaZnO4主体の相)とし、相対密度を高めるためには、焼成温度:約1250℃〜1600℃、保持時間:約5時間以上で焼結を行なうことが好ましい。焼成温度が高いほど焼結体の相対密度が向上し易く、かつ短時間で処理できるため好ましいが、温度が高くなり過ぎると焼結体が分解し易くなるため、焼成条件は上記の範囲とするのが好ましい。より好ましくは、焼成温度:約1300℃〜1550℃、保持時間:約8時間以上である。なお、焼成雰囲気は非還元性雰囲気が好ましく、例えば炉内に酸素ガスを導入することによって雰囲気を調整することが好ましい。 Next, the molded body thus obtained is fired at normal pressure. In the present invention, sintering is performed at a firing temperature of about 1250 ° C. to 1600 ° C. and a holding time of about 5 hours or more in order to obtain a desired compound phase structure (phase mainly composed of InGaZnO 4 ) and increase the relative density. preferable. The higher the firing temperature is, the easier it is to improve the relative density of the sintered body, and it can be processed in a short time, but it is preferable because the sintered body is easily decomposed when the temperature is too high. Is preferred. More preferably, the firing temperature is about 1300 ° C. to 1550 ° C., and the holding time is about 8 hours or more. The firing atmosphere is preferably a non-reducing atmosphere. For example, it is preferable to adjust the atmosphere by introducing oxygen gas into the furnace.

上記のようにして所望の酸化物焼結体を得た後、常法により、加工→ボンディングを行なうと本発明のスパッタリングターゲットが得られる。このようにして得られるスパッタリングターゲットの相対密度および比抵抗も、酸化物焼結体と同様、非常に良好なものであり、好ましい相対密度はおおむね90%以上であり、好ましい比抵抗はおおむね0.1Ωcm以下である。   After the desired oxide sintered body is obtained as described above, the sputtering target of the present invention is obtained by processing and bonding according to a conventional method. The relative density and specific resistance of the sputtering target thus obtained are also very good as in the case of the oxide sintered body, the preferable relative density is generally 90% or more, and the preferable specific resistance is generally about 0. 0. 1 Ωcm or less.

以下、実施例を挙げて本発明をより具体的に説明するが、本発明は、下記実施例に限定されず、本発明の趣旨に適合し得る範囲で適切に変更を加えて実施することも可能であり、それらはいずれも本発明の技術的範囲に含まれる。   EXAMPLES Hereinafter, the present invention will be described more specifically with reference to examples. However, the present invention is not limited to the following examples, and may be implemented with appropriate modifications within a scope that can meet the gist of the present invention. These are all possible and are within the scope of the present invention.

(実験例1)
本実験例1、並びに後記する実験例2および3では、M金属としてSiを含み、Si比=0.01のSi−IGZO焼結体を以下の方法により製造した。
(Experimental example 1)
In Experimental Example 1 and Experimental Examples 2 and 3 to be described later, an Si-IGZO sintered body containing Si as the M metal and having an Si ratio of 0.01 was manufactured by the following method.

純度99.99%の酸化インジウム粉末、純度99.99%の酸化ガリウム粉末、酸化亜鉛粉末(JIS1種、純度99.99%)、および純度99.99%のシリカ粉末を[In]:[Ga]:[Zn]:[Si]=33.0:33.0:33.0:1.0の原子比率で配合し、ナイロンボールミルで20時間混合した。次に、上記工程で得られた混合粉末を乾燥して造粒し、金型プレスにて成形圧力0.5tonf/cm2で予備成形した後、CIPにて成形圧力3tonf/cm2で本成形を行った。 Indium oxide powder having a purity of 99.99%, gallium oxide powder having a purity of 99.99%, zinc oxide powder (JIS 1 type, purity 99.99%), and silica powder having a purity of 99.99% [In]: [Ga ]: [Zn]: [Si] = 33.0: 33.0: 33.0: 1.0 was mixed at an atomic ratio and mixed for 20 hours with a nylon ball mill. Next, the mixed powder obtained in the above process is dried and granulated, pre-molded with a mold press at a molding pressure of 0.5 tonf / cm 2 , and then molded with CIP at a molding pressure of 3 tonf / cm 2. Went.

このようにして得られた成形体を、常圧にて1450℃で5時間保持して焼結を行なった。   The molded body thus obtained was sintered at 1450 ° C. for 5 hours at normal pressure.

このようにして得られた酸化物焼結体(Si−IGZO焼結体)を、前述した条件でX線回折による解析を行った結果を図2に示す。図2に示すように、上記酸化物焼結体はInGaZnO4を主相として含み、微量の(In0.5Ga0.2Zn0.2Si0.1)O2相を含んでいるが、ZnSixyおよびSiO2は検出されなかった。また、このようにして得られた酸化物焼結体の相対密度をアルキメデス法で測定したところ、91.6%であった。また、上記酸化物焼結体の比抵抗を四端子法によって測定したところ、2.7×10-2Ωcmであり、相対密度および比抵抗ともに良好な特性を有していた。 FIG. 2 shows the results of analyzing the oxide sintered body (Si-IGZO sintered body) thus obtained by X-ray diffraction under the conditions described above. As shown in FIG. 2, the oxide sintered body contains InGaZnO 4 as a main phase and contains a small amount of (In 0.5 Ga 0.2 Zn 0.2 Si 0.1 ) O 2 phase, but ZnSi x O y and SiO 2. Was not detected. Moreover, it was 91.6% when the relative density of the oxide sintered compact obtained in this way was measured by the Archimedes method. Further, when the specific resistance of the oxide sintered body was measured by a four-terminal method, it was 2.7 × 10 −2 Ωcm, and both the relative density and the specific resistance had good characteristics.

表1に、M金属としてSiを含む上記酸化物焼結体における相対密度および比抵抗の結果をまとめて示す。また表2に、上記酸化物焼結体のX線回折結果をまとめて示す。   Table 1 summarizes the results of relative density and specific resistance of the oxide sintered body containing Si as the M metal. Table 2 summarizes the X-ray diffraction results of the oxide sintered bodies.

更に、上記の焼結体を4インチφ、5mmtの形状に加工し、バッキングプレートにボンディングしてスパッタリングターゲットを得た。このようにして得られたスパッタリングターゲットをスパッタリング装置に取り付け、DC(直流)マグネトロンスパッタリングを行なった。スパッタリング条件は、DCスパッタリングパワー150W、Ar/0.1体積%O2雰囲気、圧力0.8mTorrとした。その結果、異常放電(アーキング)の発生は見られず、安定して放電することが確認された。 Further, the sintered body was processed into a shape of 4 inches φ and 5 mmt and bonded to a backing plate to obtain a sputtering target. The sputtering target thus obtained was attached to a sputtering apparatus, and DC (direct current) magnetron sputtering was performed. The sputtering conditions were a DC sputtering power of 150 W, an Ar / 0.1 volume% O 2 atmosphere, and a pressure of 0.8 mTorr. As a result, no abnormal discharge (arcing) was observed, and it was confirmed that the discharge was stable.

また、このようにして得られたスパッタリングターゲットの相対密度および比抵抗は、上記酸化物焼結体の値と同じであり、本発明で規定する条件(相対密度90%以上、比抵抗0.1Ωcm以下)を満足していた。   Moreover, the relative density and specific resistance of the sputtering target thus obtained are the same as the values of the oxide sintered body, and the conditions specified in the present invention (relative density of 90% or more, specific resistance of 0.1 Ωcm) The following was satisfied.

(実験例2)
前述した実験例1において、1400℃で8時間の焼結を行なったこと以外は、上記実験例1と同様にして実験を行なって酸化物焼結体を得た後、前述した条件でX線回折による解析を行ったところ、InGaZnO4を主相として含み、微量の(In0.5Ga0.2Zn0.2Si0.1)O2相を含んでいるが、ZnSixyおよびSiO2は検出されなかった(表2を参照)。
(Experimental example 2)
In Example 1 described above, an oxide sintered body was obtained by performing an experiment in the same manner as in Example 1 except that sintering was performed at 1400 ° C. for 8 hours. Analysis by diffraction revealed that InGaZnO 4 was contained as the main phase and a small amount of (In 0.5 Ga 0.2 Zn 0.2 Si 0.1 ) O 2 phase was contained, but ZnSi x O y and SiO 2 were not detected ( (See Table 2).

また、このようにして得られた酸化物焼結体の相対密度および比抵抗を実験例1と同様にして測定したところ、相対密度=93.7%、比抵抗=4.0×10-2Ωcmであり、相対密度および比抵抗ともに良好な特性を有していた(表1を参照)。 Further, when the relative density and specific resistance of the oxide sintered body thus obtained were measured in the same manner as in Experimental Example 1, the relative density = 93.7% and the specific resistance = 4.0 × 10 −2. It was Ωcm and had good characteristics in both relative density and specific resistance (see Table 1).

更に、上記の焼結体を用い、実験例1と同様にしてスパッタリングを行なったところ、安定して放電することが確認された。また、このようにして得られたスパッタリングターゲットの相対密度および比抵抗は、上記酸化物焼結体の値と同じであり、本発明で規定する条件(相対密度90%以上、比抵抗0.1Ωcm以下)を満足していた。   Furthermore, when the above sintered body was used and sputtering was performed in the same manner as in Experimental Example 1, it was confirmed that the discharge was stably performed. Moreover, the relative density and specific resistance of the sputtering target thus obtained are the same as the values of the oxide sintered body, and the conditions specified in the present invention (relative density of 90% or more, specific resistance of 0.1 Ωcm) The following was satisfied.

(実験例3)
前述した実験例1において、1500℃で5時間の焼結を行なったこと以外は、上記実験例1と同様にして実験を行なって酸化物焼結体を得た後、前述した条件でX線回折による解析を行ったところ、InGaZnO4を主相として含み、微量の(In0.5Ga0.2Zn0.2Si0.1)O2相を含んでいるが、ZnSixyおよびSiO2は検出されなかった(表2を参照)。
(Experimental example 3)
In Example 1 described above, except that sintering was performed at 1500 ° C. for 5 hours, an experiment was performed in the same manner as in Example 1 above to obtain an oxide sintered body. Analysis by diffraction revealed that InGaZnO 4 was contained as the main phase and a small amount of (In 0.5 Ga 0.2 Zn 0.2 Si 0.1 ) O 2 phase was contained, but ZnSi x O y and SiO 2 were not detected ( (See Table 2).

また、このようにして得られた酸化物焼結体の相対密度および比抵抗を実験例1と同様にして測定したところ、相対密度=92.3%、比抵抗=3.3×10-2Ωcmであり、相対密度および比抵抗ともに良好な特性を有していた(表1を参照)。 Further, when the relative density and specific resistance of the oxide sintered body thus obtained were measured in the same manner as in Experimental Example 1, the relative density = 92.3% and the specific resistance = 3.3 × 10 −2. It was Ωcm and had good characteristics in both relative density and specific resistance (see Table 1).

更に、上記の焼結体を用い、実験例1と同様にしてスパッタリングを行なったところ、安定して放電することが確認された。また、このようにして得られたスパッタリングターゲットの相対密度および比抵抗は、上記酸化物焼結体の値と同じであり、本発明で規定する条件(相対密度90%以上、比抵抗0.1Ωcm以下)を満足していた。   Furthermore, when the above sintered body was used and sputtering was performed in the same manner as in Experimental Example 1, it was confirmed that the discharge was stably performed. Moreover, the relative density and specific resistance of the sputtering target thus obtained are the same as the values of the oxide sintered body, and the conditions specified in the present invention (relative density of 90% or more, specific resistance of 0.1 Ωcm) The following was satisfied.

(実験例4)
本実験例4、並びに後記する実験例5および6では、M金属としてSiを含み、Si比=0.031のSi−IGZO焼結体を以下の方法により製造した。
(Experimental example 4)
In Experimental Example 4 and Experimental Examples 5 and 6 to be described later, an Si-IGZO sintered body containing Si as the M metal and having an Si ratio of 0.031 was manufactured by the following method.

詳細には、前述した実験例1において、[In]:[Ga]:[Zn]:[Si]=32.3:32.3:32.3:3.1の原子比率で配合し、且つ、1350℃で8時間の焼結を行なったこと以外は、上記実験例1と同様にして実験を行なって酸化物焼結体を得た後、前述した条件でX線回折による解析を行った。その結果を図3に示す。図3に示すように、上記酸化物焼結体はInGaZnO4を主相として含み、微量の(In0.5Ga0.2Zn0.2Si0.1)O2相を含んでいるが、ZnSixyおよびSiO2は検出されなかった(表2を参照)。 Specifically, in Experimental Example 1 described above, [In]: [Ga]: [Zn]: [Si] = 32.3: 32.3: 32.3: 3.1 are blended at an atomic ratio, and An oxide sintered body was obtained by conducting an experiment in the same manner as in Experimental Example 1 except that sintering was performed at 1350 ° C. for 8 hours, and then analysis by X-ray diffraction was performed under the conditions described above. . The result is shown in FIG. As shown in FIG. 3, the oxide sintered body contains InGaZnO 4 as a main phase and contains a small amount of (In 0.5 Ga 0.2 Zn 0.2 Si 0.1 ) O 2 phase, but ZnSi x O y and SiO 2. Was not detected (see Table 2).

また、このようにして得られた酸化物焼結体の相対密度および比抵抗を実験例1と同様にして測定したところ、相対密度=91.1%、比抵抗=5.6×10-2Ωcmであり、相対密度および比抵抗ともに良好な特性を有していた(表1を参照)。 Further, when the relative density and specific resistance of the oxide sintered body thus obtained were measured in the same manner as in Experimental Example 1, the relative density = 91.1% and the specific resistance = 5.6 × 10 −2. It was Ωcm and had good characteristics in both relative density and specific resistance (see Table 1).

更に、上記の焼結体を用い、実験例1と同様にしてスパッタリングを行なったところ、安定して放電することが確認された。また、このようにして得られたスパッタリングターゲットの相対密度および比抵抗は、上記酸化物焼結体の値と同じであり、本発明で規定する条件(相対密度90%以上、比抵抗0.1Ωcm以下)を満足していた。   Furthermore, when the above sintered body was used and sputtering was performed in the same manner as in Experimental Example 1, it was confirmed that the discharge was stably performed. Moreover, the relative density and specific resistance of the sputtering target thus obtained are the same as the values of the oxide sintered body, and the conditions specified in the present invention (relative density of 90% or more, specific resistance of 0.1 Ωcm) The following was satisfied.

(実験例5)
前述した実験例4において、1450℃で5時間の焼結を行なったこと以外は、上記実験例4と同様にして実験を行なって酸化物焼結体を得た後、前述した条件でX線回折による解析を行ったところ、InGaZnO4を主相として含み、微量の(In0.5Ga0.2Zn0.2Si0.1)O2相が含まれているが、ZnSixyおよびSiO2は検出されなかった(表2を参照)。
(Experimental example 5)
In Example 4 described above, an oxide sintered body was obtained by performing an experiment in the same manner as in Example 4 except that sintering was performed at 1450 ° C. for 5 hours. When analysis by diffraction was performed, InGaZnO 4 was contained as a main phase and a small amount of (In 0.5 Ga 0.2 Zn 0.2 Si 0.1 ) O 2 phase was contained, but ZnSi x O y and SiO 2 were not detected. (See Table 2).

また、このようにして得られた酸化物焼結体の相対密度および比抵抗を実験例1と同様にして測定したところ、相対密度=90.8%、比抵抗=6.1×10-2Ωcmであり、相対密度および比抵抗ともに良好な特性を有していた(表1を参照)。 Further, when the relative density and specific resistance of the oxide sintered body thus obtained were measured in the same manner as in Experimental Example 1, the relative density = 90.8% and the specific resistance = 6.1 × 10 −2. It was Ωcm and had good characteristics in both relative density and specific resistance (see Table 1).

更に、上記の焼結体を用い、実験例1と同様にしてスパッタリングを行なったところ、安定して放電することが確認された。また、このようにして得られたスパッタリングターゲットの相対密度および比抵抗は、上記酸化物焼結体の値と同じであり、本発明で規定する条件(相対密度90%以上、比抵抗0.1Ωcm以下)を満足していた。   Furthermore, when the above sintered body was used and sputtering was performed in the same manner as in Experimental Example 1, it was confirmed that the discharge was stably performed. Moreover, the relative density and specific resistance of the sputtering target thus obtained are the same as the values of the oxide sintered body, and the conditions specified in the present invention (relative density of 90% or more, specific resistance of 0.1 Ωcm) The following was satisfied.

(実験例6)
前述した実験例4において、1550℃で5時間の焼結を行なったこと以外は、上記実験例1と同様にして実験を行なって酸化物焼結体を得た後、前述した条件でX線回折による解析を行ったところ、InGaZnO4を主相として含み、微量の(In0.5Ga0.2Zn0.2Si0.1)O2相が含まれているが、ZnSixyおよびSiO2は検出されなかった(表2を参照)。
(Experimental example 6)
In Example 4 described above, an oxide sintered body was obtained by performing an experiment in the same manner as in Example 1 except that sintering was performed at 1550 ° C. for 5 hours. When analysis by diffraction was performed, InGaZnO 4 was contained as a main phase and a small amount of (In 0.5 Ga 0.2 Zn 0.2 Si 0.1 ) O 2 phase was contained, but ZnSi x O y and SiO 2 were not detected. (See Table 2).

また、このようにして得られた酸化物焼結体の相対密度および比抵抗を実験例1と同様にして測定したところ、相対密度=90.2%、比抵抗=4.1×10-2Ωcmであり、相対密度および比抵抗ともに良好な特性を有していた(表1を参照)。 Further, when the relative density and specific resistance of the oxide sintered body thus obtained were measured in the same manner as in Experimental Example 1, the relative density = 90.2% and the specific resistance = 4.1 × 10 −2. It was Ωcm and had good characteristics in both relative density and specific resistance (see Table 1).

更に、上記の焼結体を用い、実験例1と同様にしてスパッタリングを行なったところ、安定して放電することが確認された。また、このようにして得られたスパッタリングターゲットの相対密度および比抵抗は、上記酸化物焼結体の値と同じであり、本発明で規定する条件(相対密度90%以上、比抵抗0.1Ωcm以下)を満足していた。   Furthermore, when the above sintered body was used and sputtering was performed in the same manner as in Experimental Example 1, it was confirmed that the discharge was stably performed. Moreover, the relative density and specific resistance of the sputtering target thus obtained are the same as the values of the oxide sintered body, and the conditions specified in the present invention (relative density of 90% or more, specific resistance of 0.1 Ωcm) The following was satisfied.

(実験例7)
本実験例7、並びに後記する実験例8および9では、M金属としてSiを含み、Si比=0.05のSi−IGZO焼結体を以下の方法により製造した。
(Experimental example 7)
In Experimental Example 7 and Experimental Examples 8 and 9 to be described later, an Si-IGZO sintered body containing Si as the M metal and having an Si ratio of 0.05 was manufactured by the following method.

詳細には、前述した実験例1において、[In]:[Ga]:[Zn]:[Si]=31.7:31.7:31.6:4.9の原子比率で配合し、且つ、1200℃で5時間の焼結を行なったこと以外は、上記実験例1と同様にして実験を行なって酸化物焼結体を得た後、前述した条件でX線回折による解析を行った。その結果を図4に示す。図4に示すように、上記酸化物焼結体はInGaZnO4を主相として含むほか、少量の(In0.5Ga0.2Zn0.2Si0.1)O2相と、微量のZnSixyも含んでいた(表2を参照)。 Specifically, in Experimental Example 1 described above, [In]: [Ga]: [Zn]: [Si] = 31.7: 31.7: 31.6: 4.9 is blended at an atomic ratio, and Except that sintering was performed at 1200 ° C. for 5 hours, an experiment was performed in the same manner as in Experimental Example 1 to obtain an oxide sintered body, and then analysis by X-ray diffraction was performed under the conditions described above. . The result is shown in FIG. As shown in FIG. 4, the oxide sintered body contained InGaZnO 4 as a main phase, and also contained a small amount of (In 0.5 Ga 0.2 Zn 0.2 Si 0.1 ) O 2 phase and a small amount of ZnSi x O y . (See Table 2).

また、このようにして得られた酸化物焼結体の相対密度および比抵抗を実験例1と同様にして測定したところ、相対密度=77.4%と低く、比抵抗=1.9×10-1Ωcmと高くなった(表1を参照)。 Further, when the relative density and specific resistance of the oxide sintered body thus obtained were measured in the same manner as in Experimental Example 1, the relative density was as low as 77.4%, and the specific resistance was 1.9 × 10. It was as high as -1 Ωcm (see Table 1).

更に、上記の焼結体を用い、実験例1と同様にしてスパッタリングを行なったところ、スパッタリング中にアーキングによる以上放電が発生した。また、このようにして得られたスパッタリングターゲットの相対密度および比抵抗は、上記酸化物焼結体の値と同じであり、本発明で規定する条件(相対密度90%以上、比抵抗0.1Ωcm以下)を外れていた。   Further, when the above sintered body was used and sputtering was performed in the same manner as in Experimental Example 1, discharge occurred due to arcing during sputtering. Moreover, the relative density and specific resistance of the sputtering target thus obtained are the same as the values of the oxide sintered body, and the conditions specified in the present invention (relative density of 90% or more, specific resistance of 0.1 Ωcm) Below).

(実験例8)
前述した実験例7において、1350℃で8時間の焼結を行なったこと以外は、上記実験例7と同様にして実験を行なって酸化物焼結体を得た後、前述した条件でX線回折による解析を行ったところ、実験例7と同様、上記酸化物焼結体はInGaZnO4を主相として含むほか、少量の(In0.5Ga0.2Zn0.2Si0.1)O2相と、微量のZnSixyも含んでいた(表2を参照)。
(Experimental example 8)
In Example 7 described above, an oxide sintered body was obtained by performing an experiment in the same manner as in Example 7 except that sintering was performed at 1350 ° C. for 8 hours. As a result of analysis by diffraction, as in Experimental Example 7, the oxide sintered body contains InGaZnO 4 as a main phase, a small amount of (In 0.5 Ga 0.2 Zn 0.2 Si 0.1 ) O 2 phase, and a small amount of ZnSi. x O y was also included (see Table 2).

また、このようにして得られた酸化物焼結体の相対密度および比抵抗を実験例1と同様にして測定したところ、比抵抗は6.5×10-2Ωcmと良好であったが、相対密度は85.7%と低くなった(表1を参照)。 Further, when the relative density and specific resistance of the oxide sintered body thus obtained were measured in the same manner as in Experimental Example 1, the specific resistance was as good as 6.5 × 10 −2 Ωcm. The relative density was as low as 85.7% (see Table 1).

更に、上記の焼結体を用い、実験例1と同様にしてスパッタリングを行なったところ、スパッタリング中にアーキングによる異常放電が発生した。また、このようにして得られたスパッタリングターゲットの相対密度および比抵抗は、上記酸化物焼結体の値と同じであり、相対密度が本発明で規定する範囲を外れていた。   Furthermore, when sputtering was performed using the above sintered body in the same manner as in Experimental Example 1, abnormal discharge due to arcing occurred during sputtering. Moreover, the relative density and specific resistance of the sputtering target thus obtained were the same as the values of the oxide sintered body, and the relative density was outside the range defined in the present invention.

(実験例9)
前述した実験例7において、1450℃で5時間の焼結を行なったこと以外は、上記実験例7と同様にして実験を行なって酸化物焼結体を得た後、前述した条件でX線回折による解析を行ったところ、上記酸化物焼結体はInGaZnO4を主相として含むほか、微量のZnSixyも含んでいた(表2を参照)。
(Experimental example 9)
In Example 7 described above, an oxide sintered body was obtained by performing an experiment in the same manner as in Example 7 except that sintering was performed at 1450 ° C. for 5 hours. Analysis by diffraction revealed that the oxide sintered body contained InGaZnO 4 as a main phase and also contained a trace amount of ZnSi x O y (see Table 2).

また、このようにして得られた酸化物焼結体の相対密度および比抵抗を実験例1と同様にして測定したところ、比抵抗は8.9×10-2Ωcmと良好であったが、相対密度は79.8%と低くなった(表1を参照)。 Further, when the relative density and specific resistance of the oxide sintered body thus obtained were measured in the same manner as in Experimental Example 1, the specific resistance was as good as 8.9 × 10 −2 Ωcm. The relative density was as low as 79.8% (see Table 1).

更に、上記の焼結体を用い、実験例1と同様にしてスパッタリングを行なったところ、スパッタリング中にアーキングによる異常放電が発生した。また、このようにして得られたスパッタリングターゲットの相対密度および比抵抗は、上記酸化物焼結体の値と同じであり、相対密度が本発明で規定する範囲を外れていた。   Furthermore, when sputtering was performed using the above sintered body in the same manner as in Experimental Example 1, abnormal discharge due to arcing occurred during sputtering. Moreover, the relative density and specific resistance of the sputtering target thus obtained were the same as the values of the oxide sintered body, and the relative density was outside the range defined in the present invention.

(実験例10)
本実験例10では、M金属としてNi含むNi−IGZO焼結体(Ni比=0.031)を以下の方法により製造した。
(Experimental example 10)
In Experimental Example 10, a Ni-IGZO sintered body (Ni ratio = 0.031) containing Ni as the M metal was manufactured by the following method.

詳細には、前述した実験例4において、M金属として純度99.99%の酸化Ni粉末を用いたこと、および1500℃で8時間の焼結を行なったこと以外は、上記実験例4と同様にして実験を行なって酸化物焼結体を得た後、前述した条件でX線回折による解析を行ったところ、InGaZnO4を主相として含み、微量の(In0.5Ga0.2Zn0.2Ni0.1)O2相が含まれているが、ZnNixyおよびNiO2は検出されなかった。 Specifically, in Experimental Example 4 described above, the same as Experimental Example 4 except that Ni oxide powder having a purity of 99.99% was used as the M metal and sintering was performed at 1500 ° C. for 8 hours. After conducting an experiment to obtain an oxide sintered body, analysis by X-ray diffraction was performed under the above-described conditions. As a result, it contained InGaZnO 4 as a main phase and contained a small amount of (In 0.5 Ga 0.2 Zn 0.2 Ni 0.1 ). Although an O 2 phase was contained, ZnNi x O y and NiO 2 were not detected.

また、このようにして得られた酸化物焼結体の相対密度および比抵抗を実験例1と同様にして測定したところ、相対密度=91.0%、比抵抗=5.2×10-2Ωcmであり、相対密度および比抵抗ともに良好な特性を有していた。 Further, when the relative density and specific resistance of the oxide sintered body thus obtained were measured in the same manner as in Experimental Example 1, the relative density = 91.0% and the specific resistance = 5.2 × 10 −2. It was Ωcm, and both the relative density and specific resistance had good characteristics.

更に、上記の焼結体を用い、実験例1と同様にしてスパッタリングを行なったところ、安定して放電することが確認された。また、このようにして得られたスパッタリングターゲットの相対密度および比抵抗は、上記酸化物焼結体の値と同じであり、本発明で規定する条件(相対密度90%以上、比抵抗0.1Ωcm以下)を満足していた。   Furthermore, when the above sintered body was used and sputtering was performed in the same manner as in Experimental Example 1, it was confirmed that the discharge was stably performed. Moreover, the relative density and specific resistance of the sputtering target thus obtained are the same as the values of the oxide sintered body, and the conditions specified in the present invention (relative density of 90% or more, specific resistance of 0.1 Ωcm) The following was satisfied.

(実験例11)
本実験例11では、M金属としてHf含むHf−IGZO焼結体(Hf比=0.031)を以下の方法により製造した。
(Experimental example 11)
In Experimental Example 11, a Hf-IGZO sintered body (Hf ratio = 0.031) containing Hf as M metal was manufactured by the following method.

詳細には、前述した実験例6において、M金属として純度99.99%の酸化Hf粉末を用いたこと以外は、上記実験例6と同様にして実験を行なって酸化物焼結体を得た後、前述した条件でX線回折による解析を行ったところ、InGaZnO4を主相として含み、微量の(In0.5Ga0.2Zn0.2Hf0.1)O2相が含まれているが、ZnHfxyおよびHfOは検出されなかった。 Specifically, an oxide sintered body was obtained by performing an experiment in the same manner as in Experimental Example 6 except that in Example 6 described above, oxidized Hf powder having a purity of 99.99% was used as the M metal. Later, when analysis by X-ray diffraction was performed under the above-described conditions, it contained InGaZnO 4 as the main phase and contained a small amount of (In 0.5 Ga 0.2 Zn 0.2 Hf 0.1 ) O 2 phase, but ZnHf x O y. And HfO were not detected.

また、このようにして得られた酸化物焼結体の相対密度および比抵抗を実験例1と同様にして測定したところ、相対密度=90.6%、比抵抗=6.9×10-2Ωcmであり、相対密度および比抵抗ともに良好な特性を有していた。 Further, when the relative density and specific resistance of the oxide sintered body thus obtained were measured in the same manner as in Experimental Example 1, the relative density = 90.6% and the specific resistance = 6.9 × 10 −2. It was Ωcm, and both the relative density and specific resistance had good characteristics.

更に、上記の焼結体を用い、実験例1と同様にしてスパッタリングを行なったところ、安定して放電することが確認された。また、このようにして得られたスパッタリングターゲットの相対密度および比抵抗は、上記酸化物焼結体の値と同じであり、本発明で規定する条件(相対密度90%以上、比抵抗0.1Ωcm以下)を満足していた。   Furthermore, when the above sintered body was used and sputtering was performed in the same manner as in Experimental Example 1, it was confirmed that the discharge was stably performed. Moreover, the relative density and specific resistance of the sputtering target thus obtained are the same as the values of the oxide sintered body, and the conditions specified in the present invention (relative density of 90% or more, specific resistance of 0.1 Ωcm) The following was satisfied.

以上の実験結果より、本発明に用いられるM金属を含むIGZO系酸化物焼結体は、X線回折の結果、M金属の酸化物であるZnMxy相およびMxy相を分離形成せず、InGaZnO4を主相として含むことが確認された。その結果、本発明の酸化物焼結体および当該焼結体を用いて得られるスパッタリングターゲットは、高い相対密度および低い比抵抗を有しており、極めて良好な特性を有することが分かった。 From the above experimental results, the IGZO oxide sintered body containing M metal used in the present invention, as a result of X-ray diffraction, separated the Mn metal oxide ZnM x O y phase and M x O y phase. It was confirmed that it was not formed and contained InGaZnO 4 as a main phase. As a result, it was found that the oxide sintered body of the present invention and the sputtering target obtained using the sintered body have a high relative density and a low specific resistance, and have extremely good characteristics.

Claims (5)

酸化インジウムと;酸化ガリウムと;酸化亜鉛と;Si、Ni、およびHfよりなる群から選択される少なくとも一種の金属(M金属)の酸化物の各粉末と、を混合および焼結して得られる酸化物焼結体であって、
前記酸化物焼結体をX線回折したとき、
(1)InGaZnO4を主相とし、M金属の少なくとも一部は前記InGaZnO4に固溶しており、且つ、
(2)ZnMxy相およびMxy相(x、yは任意の整数である)は検出されないものであることを特徴とする酸化物焼結体。
Obtained by mixing and sintering indium oxide; gallium oxide; zinc oxide; and powders of at least one metal (M metal) oxide selected from the group consisting of Si, Ni, and Hf An oxide sintered body,
When X-ray diffraction of the oxide sintered body,
(1) InGaZnO 4 as a main phase, at least a part of the M metal is dissolved in the InGaZnO 4 , and
(2) An oxide sintered body characterized in that a ZnM x O y phase and an M x O y phase (x and y are arbitrary integers) are not detected.
前記酸化物焼結体に含まれる金属元素の含有量(原子%)をそれぞれ、[In]、[Ga]、[Zn]、[M金属]([M金属]は、酸化物焼結体に含まれる金属元素の合計量である)としたとき、[In]+[Ga]+[Zn]+[M金属]に対する[M金属]の比は、0.01以上0.05未満である請求項1に記載の酸化物焼結体。   [In], [Ga], [Zn], and [M metal] ([M metal] are contained in the oxide sintered body, respectively. The ratio of [M metal] to [In] + [Ga] + [Zn] + [M metal] is 0.01 or more and less than 0.05. Item 2. The oxide sintered body according to Item 1. 前記酸化物焼結体に含まれる金属元素の含有量(原子%)をそれぞれ、[In]、[Ga]、[Zn]とし、[In]+[Ga]+[Zn]に対する[In]、[Ga]、[Zn]の各比を[In]比、[Ga]比、[Zn]比としたとき、[In]比:[Ga]比:[Zn]比=0.32〜0.34:0.32〜0.34:0.32〜0.34の範囲に制御されている請求項1または2に記載の酸化物焼結体。   The contents (atomic%) of metal elements contained in the oxide sintered body are [In], [Ga], and [Zn], respectively, and [In] with respect to [In] + [Ga] + [Zn], When the ratios of [Ga] and [Zn] are [In] ratio, [Ga] ratio, and [Zn] ratio, [In] ratio: [Ga] ratio: [Zn] ratio = 0.32-0. 34: 0.32-0.34: The oxide sintered compact of Claim 1 or 2 currently controlled by the range of 0.32-0.34. 相対密度90%以上、比抵抗0.1Ωcm以下である請求項1〜3のいずれかに記載の酸化物焼結体。   The oxide sintered body according to any one of claims 1 to 3, which has a relative density of 90% or more and a specific resistance of 0.1 Ωcm or less. 請求項1〜4のいずれかに記載の酸化物焼結体を用いて得られるスパッタリングターゲットであって、相対密度90%以上、比抵抗0.1Ωcm以下であることを特徴とするスパッタリングターゲット。   A sputtering target obtained by using the oxide sintered body according to claim 1, wherein the sputtering target has a relative density of 90% or more and a specific resistance of 0.1 Ωcm or less.
JP2011005978A 2011-01-14 2011-01-14 Oxide sintered compact, and sputtering target Pending JP2012144410A (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2011005978A JP2012144410A (en) 2011-01-14 2011-01-14 Oxide sintered compact, and sputtering target
PCT/JP2012/050296 WO2012096267A1 (en) 2011-01-14 2012-01-11 Oxide sintered compact and sputtering target
TW101101410A TW201245097A (en) 2011-01-14 2012-01-13 Oxide sintered compact and sputtering target

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011005978A JP2012144410A (en) 2011-01-14 2011-01-14 Oxide sintered compact, and sputtering target

Publications (1)

Publication Number Publication Date
JP2012144410A true JP2012144410A (en) 2012-08-02

Family

ID=46507165

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011005978A Pending JP2012144410A (en) 2011-01-14 2011-01-14 Oxide sintered compact, and sputtering target

Country Status (3)

Country Link
JP (1) JP2012144410A (en)
TW (1) TW201245097A (en)
WO (1) WO2012096267A1 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014055348A (en) * 2012-08-10 2014-03-27 Mitsubishi Materials Corp Sputtering target for forming transparent oxide film and method for producing the same
JP2015189632A (en) * 2014-03-28 2015-11-02 出光興産株式会社 oxide sintered body and sputtering target
KR20160102165A (en) 2013-12-27 2016-08-29 이데미쓰 고산 가부시키가이샤 Oxide sintered body, method for producing same and sputtering target
JPWO2015199122A1 (en) * 2014-06-26 2017-06-01 住友金属鉱山株式会社 Oxide sintered body, sputtering target, and oxide semiconductor thin film obtained using the same
KR20180034318A (en) 2015-07-30 2018-04-04 이데미쓰 고산 가부시키가이샤 Crystalline oxide semiconductor thin film, method for producing crystalline oxide semiconductor thin film, and thin film transistor
WO2018110732A1 (en) * 2016-12-13 2018-06-21 희성금속 주식회사 Sputtering target, and transparent conductive thin film manufactured therefrom

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013193945A (en) * 2012-03-22 2013-09-30 Sumitomo Metal Mining Co Ltd SINTERED BODY OF In-Ga-Zn-O-BASED OXIDE, METHOD FOR PRODUCING THE SAME, SPUTTERING TARGET AND OXIDE SEMICONDUCTOR FILM
JP5690982B1 (en) * 2013-08-26 2015-03-25 Jx日鉱日石金属株式会社 Sintered body and amorphous film
TWI754542B (en) * 2016-07-11 2022-02-01 日商半導體能源研究所股份有限公司 Sputtering target and metal oxide

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08245220A (en) * 1994-06-10 1996-09-24 Hoya Corp Electrically conductive oxide and electrode using same

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5237558B2 (en) * 2007-01-05 2013-07-17 出光興産株式会社 Sputtering target and oxide semiconductor film
JP5237557B2 (en) * 2007-01-05 2013-07-17 出光興産株式会社 Sputtering target and manufacturing method thereof
JP5244327B2 (en) * 2007-03-05 2013-07-24 出光興産株式会社 Sputtering target

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08245220A (en) * 1994-06-10 1996-09-24 Hoya Corp Electrically conductive oxide and electrode using same

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014055348A (en) * 2012-08-10 2014-03-27 Mitsubishi Materials Corp Sputtering target for forming transparent oxide film and method for producing the same
KR20160102165A (en) 2013-12-27 2016-08-29 이데미쓰 고산 가부시키가이샤 Oxide sintered body, method for producing same and sputtering target
JP2015189632A (en) * 2014-03-28 2015-11-02 出光興産株式会社 oxide sintered body and sputtering target
JPWO2015199122A1 (en) * 2014-06-26 2017-06-01 住友金属鉱山株式会社 Oxide sintered body, sputtering target, and oxide semiconductor thin film obtained using the same
JPWO2015199121A1 (en) * 2014-06-26 2017-06-08 住友金属鉱山株式会社 Oxide sintered body, sputtering target, and oxide semiconductor thin film obtained using the same
KR20180034318A (en) 2015-07-30 2018-04-04 이데미쓰 고산 가부시키가이샤 Crystalline oxide semiconductor thin film, method for producing crystalline oxide semiconductor thin film, and thin film transistor
US10636914B2 (en) 2015-07-30 2020-04-28 Idemitsu Kosan Co., Ltd. Crystalline oxide semiconductor thin film, method for producing crystalline oxide semiconductor thin film, and thin film transistor
WO2018110732A1 (en) * 2016-12-13 2018-06-21 희성금속 주식회사 Sputtering target, and transparent conductive thin film manufactured therefrom

Also Published As

Publication number Publication date
TW201245097A (en) 2012-11-16
WO2012096267A1 (en) 2012-07-19

Similar Documents

Publication Publication Date Title
JP5651095B2 (en) Oxide sintered body and sputtering target
WO2012096267A1 (en) Oxide sintered compact and sputtering target
WO2012039351A1 (en) Oxide sintered compact and sputtering target
JP5750063B2 (en) Oxide sintered body and sputtering target
WO2012118156A1 (en) Sintered oxide and sputtering target
JP5796812B2 (en) Oxide sintered body, sputtering target, and manufacturing method thereof
JP5750065B2 (en) Oxide sintered body and sputtering target
WO2012118150A1 (en) Oxide sintered compact and sputtering target
JP5883367B2 (en) Oxide sintered body, sputtering target, and manufacturing method thereof
TWI574935B (en) Oxide sintered body, target for sputtering, and oxide semiconductor film using the same
JP2014058416A (en) Oxide sintered product and sputtering target
JP5952891B2 (en) Oxide sintered body and method for producing sputtering target
WO2012096343A1 (en) Oxide sintered body and sputtering target
JP2019038735A (en) Oxide sintered compact, method for producing oxide sintered compact, target for sputtering, and amorphous oxide semiconductor thin film
KR20180117631A (en) The oxide-sintered body and the sputtering target
JP5750064B2 (en) Oxide sintered body and sputtering target
JP2017019668A (en) Oxide sintered body and sputtering target and manufacturing method therefor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130805

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20141014

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20141212

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20150218