JP2012143731A - Ultraviolet ray irradiation apparatus - Google Patents

Ultraviolet ray irradiation apparatus Download PDF

Info

Publication number
JP2012143731A
JP2012143731A JP2011005756A JP2011005756A JP2012143731A JP 2012143731 A JP2012143731 A JP 2012143731A JP 2011005756 A JP2011005756 A JP 2011005756A JP 2011005756 A JP2011005756 A JP 2011005756A JP 2012143731 A JP2012143731 A JP 2012143731A
Authority
JP
Japan
Prior art keywords
ultraviolet
water
treated
internal space
window member
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2011005756A
Other languages
Japanese (ja)
Inventor
Narifumi Tadokoro
成文 田所
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Lighting and Technology Corp
Original Assignee
Harison Toshiba Lighting Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Harison Toshiba Lighting Corp filed Critical Harison Toshiba Lighting Corp
Priority to JP2011005756A priority Critical patent/JP2012143731A/en
Publication of JP2012143731A publication Critical patent/JP2012143731A/en
Pending legal-status Critical Current

Links

Images

Abstract

PROBLEM TO BE SOLVED: To provide an ultraviolet ray irradiation apparatus by which water treatment by ultraviolet rays can be certainly and efficiently performed even to water to be treated of low ultraviolet ray transmittance.SOLUTION: The ultraviolet ray irradiation apparatus 100 includes a treatment container 12 which has a window member 19 with ultraviolet ray transmissivity, an internal space 16 filled with water to be treated and a bottom 21 capable of moving in a height direction of the internal space 16, an ultraviolet ray lamp 14 which is arranged to face the window member 19 and irradiates the internal space 16 with ultraviolet ray via the window member 19, an ultraviolet ray sensor 26 which is arranged in the treatment container 12 and receives ultraviolet rays from the ultraviolet ray lamp 14 via water to be treated and a controlling part 31 which regulates height of the internal space by moving the bottom 21 on the basis of ultraviolet ray quantity received by the ultraviolet ray sensor 26.

Description

この発明の実施形態は、紫外線ランプを用いて水道水、下水、海水、養殖用水、再生水などの流体の殺菌・不活化・有機物分解などの処理を行う紫外線照射装置に関する。   Embodiments of the present invention relate to an ultraviolet irradiation apparatus that performs processing such as sterilization, inactivation, and organic matter decomposition of fluids such as tap water, sewage, seawater, aquaculture water, and reclaimed water using an ultraviolet lamp.

従来の紫外線殺菌装置は、流入口と流出口が設けられた紫外線照射槽の中央に、被処理水と紫外線ランプを隔てる保護管を取付け、その内部に紫外線ランプが設置されている。   In the conventional ultraviolet sterilizer, a protective tube that separates the water to be treated and the ultraviolet lamp is attached to the center of the ultraviolet irradiation tank provided with an inlet and an outlet, and the ultraviolet lamp is installed therein.

また、紫外線漏れを防ぐケーシング内部に、被処理水が流れる紫外線透過性の材料からなる通水管を設置し、ランプホルダーで固定した紫外線ランプにより殺菌を行う構造となっている。   Further, a water pipe made of an ultraviolet light permeable material through which water to be treated flows is installed inside the casing for preventing ultraviolet leakage, and is sterilized by an ultraviolet lamp fixed by a lamp holder.

特開2009-148657公報JP 2009-148657 A 特開平5-253565公報JP-A-5-253565

従来の紫外線照射装置は、あらかじめ槽内に通す被処理水を設定し、その水質に基づいて処理槽を製作している。そのため、その被処理水よりも紫外線透過率が悪い被処理水の場合には、効率よく処理することができなかったり、処理が不足したりするなどの問題がある。   The conventional ultraviolet irradiation apparatus sets the to-be-processed water passed through a tank beforehand, and manufactures the processing tank based on the water quality. Therefore, in the case of the water to be treated having a lower ultraviolet transmittance than that of the water to be treated, there are problems that it cannot be efficiently treated or the treatment is insufficient.

そこで、紫外線透過率の悪い被処理水に対しても、紫外線による水処理を確実かつ効率よく行うことが可能な紫外線照射装置を提供する。   In view of this, an ultraviolet irradiation device capable of reliably and efficiently performing water treatment with ultraviolet rays even on water to be treated with low ultraviolet transmittance is provided.

実施形態の紫外線照射装置は、紫外線透過性の窓部材および被処理水を満たす内部空間を備えるとともに、前記内部空間の高さ方向に可動可能な底部を備える処理容器と、前記窓部材に対向配置され、前記窓部材を介して前記内部空間に紫外線を照射する紫外線ランプと、前記処理容器内に配置され、前記被処理水を介して前記紫外線ランプからの紫外線を受光する紫外線センサーと、前記紫外線センサーが受光した紫外線量に基づき、前記底部を移動させ、前記内部空間の高さを調整する制御部と、を具備したことを特徴とする。   An ultraviolet irradiation device according to an embodiment includes an ultraviolet transmissive window member and an internal space that fills water to be treated, and a processing container that includes a bottom that is movable in the height direction of the internal space, and is disposed opposite to the window member. An ultraviolet lamp that irradiates the internal space with ultraviolet rays through the window member, an ultraviolet sensor that is disposed in the treatment container and receives ultraviolet rays from the ultraviolet lamp through the water to be treated, and the ultraviolet rays And a controller that moves the bottom and adjusts the height of the internal space based on the amount of ultraviolet light received by the sensor.

紫外線照射装置に関する第1の実施形態について説明するための分解斜視図である。It is a disassembled perspective view for demonstrating 1st Embodiment regarding an ultraviolet irradiation device. 図1を組み立て状態と制御系について説明するための断面図である。FIG. 2 is a cross-sectional view for explaining the assembled state and the control system in FIG. 1. 図2に示す処理槽深度を変えた状態について説明するための断面図である。It is sectional drawing for demonstrating the state which changed the processing tank depth shown in FIG. 紫外線照射装置に関する各実施形態で用いる紫外線ランプの一例について説明するための構成図である。It is a block diagram for demonstrating an example of the ultraviolet lamp used by each embodiment regarding an ultraviolet irradiation device. 紫外線照射装置に関する第2の実施形態について説明するための断面図である。It is sectional drawing for demonstrating 2nd Embodiment regarding an ultraviolet irradiation device. 図5のIa−Ib線断面図である。FIG. 6 is a sectional view taken along line Ia-Ib in FIG. 5. 紫外線照射装置に関する第3の実施形態について説明するための断面図である。It is sectional drawing for demonstrating 3rd Embodiment regarding an ultraviolet irradiation device.

以下、実施形態について、図面を参照しながら詳細に説明する。   Hereinafter, embodiments will be described in detail with reference to the drawings.

(第1の実施形態)
図1〜図4は、紫外線照射装置に関する第1の実施形態について説明するためのもので、図1は分解斜視図で、図2は図1の組み立て状態と制御系を示した断面図で、図3は図2の処理槽深度調整機構の位置を変えた状態を示す断面図で、図4はこの実施形態で用いる紫外線光源の一例について説明するための構成図である。
(First embodiment)
1-4 is for demonstrating 1st Embodiment regarding an ultraviolet irradiation device, FIG. 1 is an exploded perspective view, FIG. 2 is sectional drawing which showed the assembly state and control system of FIG. FIG. 3 is a cross-sectional view showing a state in which the position of the treatment tank depth adjusting mechanism of FIG. 2 is changed, and FIG. 4 is a configuration diagram for explaining an example of an ultraviolet light source used in this embodiment.

図1および図2において、100は、ランプハウス11および処理容器12から構成され、例えば水道水などの被処理水に紫外線を照射させて殺菌処理を行う紫外線照射装置である。ランプハウス11は、上面が塞がれ、下面に近い側に開口部13が設けられた箱状の形状をしている。ランプハウス11内には、例えば180〜400nmの紫外線を放射させることが可能な光源である紫外線ランプ14が配置される。また、ランプハウス11内には、紫外線ランプ14で発生した紫外線を開口部13、すなわち処理容器12側に反射させるように、リフレクタ151,152が配置される。   In FIG. 1 and FIG. 2, reference numeral 100 denotes an ultraviolet irradiation device that includes a lamp house 11 and a processing container 12 and performs sterilization treatment by irradiating water to be treated such as tap water with ultraviolet rays. The lamp house 11 has a box shape in which the upper surface is closed and the opening 13 is provided on the side close to the lower surface. In the lamp house 11, for example, an ultraviolet lamp 14 that is a light source capable of emitting ultraviolet rays of 180 to 400 nm is disposed. In the lamp house 11, reflectors 151 and 152 are arranged so as to reflect the ultraviolet rays generated by the ultraviolet lamp 14 toward the opening 13, that is, the processing container 12 side.

ここで、紫外線ランプ14について、図4を参照してさらに説明すると、紫外線ランプ14は、電極を持たない、いわゆる無電極ランプである。141は、例えば石英ガラスからなる紫外線透過性の円筒形状のバルブであり、その外径φは15±1mm程度、長さLは240mm程度である。バルブ141の発光空間内には、例えば、不活性ガスとそれに水銀と鉄を主成分とする放電媒体が封入される。バルブ141の両端には、支持部142,143が一体的に形成されており、紫外線ランプ14はその支持部142,143によって、ランプハウス11に固定される。このように構成された紫外線ランプ14は、図示しないマグネトロンを用いて発生されたマイクロ波が照射されることで、バルブ141内に封入された放電媒体に基づいた、波長180〜400nmの紫外線を発生させる。   Here, the ultraviolet lamp 14 will be further described with reference to FIG. 4. The ultraviolet lamp 14 is a so-called electrodeless lamp having no electrode. Reference numeral 141 denotes an ultraviolet transmissive cylindrical bulb made of, for example, quartz glass, and has an outer diameter φ of about 15 ± 1 mm and a length L of about 240 mm. In the light emitting space of the bulb 141, for example, an inert gas and a discharge medium mainly composed of mercury and iron are enclosed. Support portions 142 and 143 are integrally formed at both ends of the bulb 141, and the ultraviolet lamp 14 is fixed to the lamp house 11 by the support portions 142 and 143. The ultraviolet lamp 14 configured in this manner generates ultraviolet rays having a wavelength of 180 to 400 nm based on the discharge medium enclosed in the bulb 141 by being irradiated with microwaves generated using a magnetron (not shown). Let

処理容器12は、ステンレスなどの耐腐食性の金属で形成された円筒であり、内部には水処理を行う内部空間16が形成される。処理容器12の上部開口17には、蓋18が配置される。この蓋18は、処理容器12の内面に一体的に形成された鍔に、接着剤等により水漏れしないように接着されている。なお、蓋18は処理容器12と一体的に構成されていてもよい。また、蓋18には、紫外線透過性に優れた石英ガラスなどからなる窓部材19が嵌め込まれている。   The processing container 12 is a cylinder formed of a corrosion-resistant metal such as stainless steel, and an internal space 16 for water treatment is formed inside. A lid 18 is disposed in the upper opening 17 of the processing container 12. The lid 18 is bonded to a gutter integrally formed on the inner surface of the processing container 12 with an adhesive or the like so as not to leak water. The lid 18 may be configured integrally with the processing container 12. The lid 18 is fitted with a window member 19 made of quartz glass or the like having excellent ultraviolet transparency.

処理容器12側壁の上部開口17近傍には被処理水を排出するための流出口20が形成される。21は、処理容器12内において内部空間16の高さ方向、すなわち上下に可動可能な底部である。底部21の外周には、パッキン22が取り付けられており、内部空間16に被処理水が供給されても、底部21と処理容器12の隙間からの水漏れすることはない。底部21の中央部には、例えば石英ガラスからなる紫外線透過性の透過部材23が嵌め込まれている。底部21の透過部材23とパッキン22との間の部分には、被処理水を供給させるための流入口24が形成される。なお、流入口24にも、流出口20にも図示しないパイプが接続されており、内部空間16の内外に被処理水を給排水可能となっている。このように、流入口24を底部21に、流出口20を上部開口17近傍の処理容器12側壁に形成することで、流入口24に取り込まれた被処理水は、浅い位置と深い位置の何れの位置も通過し流出口20から送り出されることになるため、この過程で被処理水には満遍なく紫外線が照射されることになり、確実な殺菌処理を行うことができる。   An outlet 20 for discharging the water to be treated is formed in the vicinity of the upper opening 17 on the side wall of the processing vessel 12. Reference numeral 21 denotes a bottom that is movable in the height direction of the internal space 16 in the processing container 12, that is, up and down. A packing 22 is attached to the outer periphery of the bottom portion 21, so that water to be treated does not leak from the gap between the bottom portion 21 and the processing container 12 even when the water to be treated is supplied to the internal space 16. An ultraviolet transmissive transmitting member 23 made of, for example, quartz glass is fitted into the center of the bottom 21. An inlet 24 for supplying water to be treated is formed in a portion between the permeable member 23 and the packing 22 of the bottom portion 21. Note that pipes (not shown) are connected to the inlet 24 and the outlet 20 so that the water to be treated can be supplied and discharged inside and outside the internal space 16. Thus, by forming the inflow port 24 at the bottom 21 and the outflow port 20 on the side wall of the processing vessel 12 near the upper opening 17, the water to be treated taken into the inflow port 24 can be either a shallow position or a deep position. Since this position also passes through and is sent out from the outlet 20, the water to be treated is uniformly irradiated with ultraviolet rays in this process, and a reliable sterilization treatment can be performed.

底部21の下面側には、底部21を支える支持部材25が配置される。支持部材25は上面に凹部251が形成されており、この凹部251内には紫外線センサー26が配置される。この紫外線センサー26は受光部が透過部材23と対向するように配置されているため、透過部材23を介して紫外線の受光することが可能となっている。なお、紫外線センサー26は支持部材25側の底部21に、受光部側を向けた状態で接着剤等の固定手段を用いて直接取り付けるようにしても構わない。   A support member 25 that supports the bottom portion 21 is disposed on the lower surface side of the bottom portion 21. A concave portion 251 is formed on the upper surface of the support member 25, and the ultraviolet sensor 26 is disposed in the concave portion 251. Since the ultraviolet sensor 26 is disposed so that the light receiving portion faces the transmitting member 23, it is possible to receive ultraviolet rays through the transmitting member 23. The ultraviolet sensor 26 may be directly attached to the bottom portion 21 on the support member 25 side using a fixing means such as an adhesive with the light receiving portion side facing.

支持部材25の底部には、外周にギア271が形成された支軸27が固着される。28はギア271に噛合される回転ギアであり、回転ギア28はモータ29の回転軸30に取着される。モータ29が時計方向あるいは反時計方向に回転することで、支軸27を上下に移動させ、支持部材25を介して底部21も上下させることができる。すなわち、モータ29や支軸27は内部空間16の幅を変更する空間変更構造として機能する。これら空間変更構造は駆動部32によって駆動され、駆動部32は制御部31によって制御される構造になっている。なお、空間変更構造としては、周面にネジが形成された処理槽を上下されるための支え棒そのものを直接モータで回転させてもよいし、油圧ジャッキによって上下させるようにしても構わない。また、ワイヤ、チェーンそれにギア等を使って底部をエレベータの上下手段で上下させても構わない。   A support shaft 27 having a gear 271 formed on the outer periphery is fixed to the bottom of the support member 25. Reference numeral 28 denotes a rotating gear meshed with the gear 271, and the rotating gear 28 is attached to the rotating shaft 30 of the motor 29. By rotating the motor 29 clockwise or counterclockwise, the support shaft 27 can be moved up and down, and the bottom 21 can be moved up and down via the support member 25. That is, the motor 29 and the support shaft 27 function as a space changing structure that changes the width of the internal space 16. These space changing structures are driven by the drive unit 32, and the drive unit 32 is controlled by the control unit 31. In addition, as a space change structure, the support rod itself for moving up and down the processing tank with the screw formed on the peripheral surface may be directly rotated by a motor, or may be moved up and down by a hydraulic jack. Further, the bottom portion may be moved up and down by an elevator vertical means using a wire, a chain, a gear or the like.

次に、図2および図3を参照しながら、一実施形態における作用について説明する。   Next, the operation of the embodiment will be described with reference to FIGS. 2 and 3.

内部空間16に被処理水が供給された状態で、紫外線ランプ14から紫外線が照射されると、その紫外線は窓部材19、被処理水、透過部材23を介して紫外線センサー26に入光する。紫外線センサー26では被処理水を通過した紫外線量が測定され、その情報は制御部31に伝達される。制御部31では、受信した紫外線量の情報から被処理水の水質、特に透過率がどの程度であるのかを特定する。具体的には、制御部31が備えるROM(Read Only Memory)に、透過率に関する紫外線データと底部21の位置関係を予め記憶させておき、紫外線センサー26の検出結果と記憶素子の紫外線データとの演算を行うことで、被処理水の透過率を推定する。そして、その被処理水の透過率の測定結果に基づいて、制御部31はモータ29の回転ギア28を時計方向あるいは反時計方向に駆動するように駆動部32を制御して、底部21を上下させる。   When ultraviolet light is irradiated from the ultraviolet lamp 14 in a state where the water to be treated is supplied to the internal space 16, the ultraviolet light enters the ultraviolet sensor 26 through the window member 19, the water to be treated, and the transmission member 23. The ultraviolet sensor 26 measures the amount of ultraviolet light that has passed through the water to be treated, and the information is transmitted to the control unit 31. The control unit 31 specifies the quality of the water to be treated, particularly the transmittance, from the received information on the amount of ultraviolet rays. More specifically, a ROM (Read Only Memory) provided in the control unit 31 stores in advance the ultraviolet data relating to the transmittance and the positional relationship between the bottom 21 and the detection result of the ultraviolet sensor 26 and the ultraviolet data of the storage element. By performing the calculation, the permeability of the water to be treated is estimated. Then, based on the measurement result of the transmittance of the water to be treated, the control unit 31 controls the drive unit 32 so as to drive the rotating gear 28 of the motor 29 in the clockwise direction or the counterclockwise direction, thereby moving the bottom portion 21 up and down. Let

つまり、紫外線センサー26での紫外線量の測定の結果、被処理水の透過率が高いと判断した場合には、図2のように底部21を下げて被処理水が深くなるように調整を行う。逆に、被処理水の透過率が低いと判断した場合には、図3のように底部21を上げて被処理水が浅くなるように調整を行う。このように、被処理水の透過率によって、底部21を上下させ、被処理水ごとに好適な深さとすることで、確実かつ効率よく紫外線照射処理をすることができる。   That is, as a result of the measurement of the amount of ultraviolet rays by the ultraviolet sensor 26, when it is determined that the transmittance of the water to be treated is high, the bottom 21 is lowered as shown in FIG. . Conversely, when it is determined that the transmittance of the water to be treated is low, adjustment is performed so that the water to be treated becomes shallower by raising the bottom 21 as shown in FIG. Thus, the ultraviolet irradiation process can be reliably and efficiently performed by raising and lowering the bottom 21 depending on the transmittance of the water to be treated and setting the depth to a suitable depth for each water to be treated.

なお、種類の異なるランプへの交換、投入電力の変化、ランプの寿命などにより、紫外線ランプ14の紫外線出力が大きく変わる場合があるため、紫外線量も被処理水の深さを変える情報として活用すると好適である。すなわち、制御部31のROMに被処理水の透過率および紫外線量と底部21との位置関係について予め記憶させておき、紫外線センサー26で測定された紫外線量と被処理水の透過率から底部21を上下させるようにすることで、被処理水をより望ましい深さとすることができる。   In addition, since the ultraviolet output of the ultraviolet lamp 14 may change greatly due to replacement with different types of lamps, change in input power, lamp life, etc., the amount of ultraviolet rays can also be used as information to change the depth of water to be treated. Is preferred. That is, the transmittance of the water to be treated and the positional relationship between the amount of ultraviolet rays and the bottom 21 are stored in advance in the ROM of the control unit 31, and the bottom 21 is determined from the amount of ultraviolet rays measured by the ultraviolet sensor 26 and the transmittance of the water to be treated. The water to be treated can be made to a more desirable depth by moving up and down.

ここで、被処理水の透過率の測定は、被処理水の種類や水質が変わったときに行うだけでもよいし、ある処理時間の経過後に定期的に行うようにしてもよい。また、制御部31にその透過率ごとの好適な流量などの情報も記憶させておくことで、底部21を上下させるだけでなく、被処理水の流量も変化させるようにしてもよい。さらに、開口部13よりも紫外線ランプ14側の位置、例えば、開口部13やランプハウス11内、リフレクタ151,152の側壁に紫外線ランプ14の紫外線出力測定用の紫外線センサーを別途設けてもよい。これにより、被処理水を通る前と通った後の紫外線量を測定できることになるため、紫外線ランプ14の紫外線出力が変化しても被処理水の透過率を正確に把握できるようになり、底部21を好適な高さに制御することが可能となる。   Here, the measurement of the transmittance of the water to be treated may be performed only when the type or quality of the water to be treated is changed, or may be periodically performed after a certain treatment time has elapsed. Further, by storing information such as a suitable flow rate for each transmittance in the control unit 31, not only the bottom portion 21 is moved up and down, but also the flow rate of the water to be treated may be changed. Further, an ultraviolet sensor for measuring the ultraviolet output of the ultraviolet lamp 14 may be separately provided at a position closer to the ultraviolet lamp 14 than the opening 13, for example, in the opening 13, the lamp house 11, or the side walls of the reflectors 151 and 152. As a result, the amount of ultraviolet light before and after passing through the water to be treated can be measured, so that the transmittance of the water to be treated can be accurately grasped even if the ultraviolet light output of the ultraviolet lamp 14 changes. 21 can be controlled to a suitable height.

この実施形態では、被処理水の透過率を紫外線センサー26で測定し、その紫外線センサー26による透過率の測定結果に基づいて底部21を制御部31によって上下させ、被処理水を処理する最適な処理槽深度に設定することで、確実かつ効率良く被処理水を処理することができる。   In this embodiment, the transmittance of the water to be treated is measured by the ultraviolet sensor 26, and the bottom 21 is moved up and down by the control unit 31 based on the measurement result of the transmittance by the ultraviolet sensor 26, thereby optimally treating the water to be treated. By setting the treatment tank depth, the water to be treated can be treated reliably and efficiently.

また、紫外線ランプ14は、被処理水の透過率測定と紫外線照射処理の機能を兼ねているため、部品点数の少ない紫外線照射装置を実現することができる。   Moreover, since the ultraviolet lamp 14 has both the function of measuring the transmittance of water to be treated and the function of ultraviolet irradiation treatment, it is possible to realize an ultraviolet irradiation apparatus with a small number of components.

(第2の実施形態)
図5は紫外線照射装置に関する第2の実施形態について説明するための断面図、図6は図5のIa−Ib線断面図である。第1の実施形態と同一の機能部分には同一の符号を付して説明する。
(Second Embodiment)
FIG. 5 is a cross-sectional view for explaining a second embodiment relating to the ultraviolet irradiation device, and FIG. 6 is a cross-sectional view taken along the line Ia-Ib of FIG. The same functional parts as those in the first embodiment will be described with the same reference numerals.

この実施形態は、処理容器の内部の深さ方向に複数の内部空間を形成し、その内部空間の一つまたは複数に被処理水を満たすようにすることで、紫外線を照射する被処理水の深さを変えるようにしている。   In this embodiment, a plurality of internal spaces are formed in the depth direction inside the processing container, and one or a plurality of the internal spaces are filled with the water to be treated, so that the water to be treated is irradiated with ultraviolet rays. I try to change the depth.

具体的に説明すると、処理容器12の内部の底部211と窓部材191との間には、例えば石英ガラスからなる紫外線透過性の仕切部材192,193がほぼ同間隔で配置される。仕切部材192,193の配置は、処理容器12内に形成されている図示しない鍔によって行われる。これによって、処理容器12の内部空間は、縦方向に3段に分割され、上段に第1の内部空間として内部空間161、中段に第2の内部空間として内部空間162、下段に第3の内部空間として内部空間163が形成される。つまり、処理容器12は、内部空間の幅を3種類に変更可能な空間変更構造を備える。これら内部空間161〜163には、内部空間161と繋がるように流入口241および流出口201、内部空間162と繋がるように流入口242および流出口202、内部空間163と繋がるように流入口243および流出口203が形成される。これら内部空間161〜163は、それぞれ独立した状態にあるため、被処理水が相互を行き交う状態にはない。   More specifically, between the bottom portion 211 inside the processing container 12 and the window member 191, ultraviolet transmissive partition members 192 and 193 made of, for example, quartz glass are arranged at substantially the same interval. Arrangement of the partition members 192 and 193 is performed by a trough (not shown) formed in the processing container 12. Thereby, the internal space of the processing container 12 is divided into three stages in the vertical direction, the internal space 161 as the first internal space in the upper stage, the internal space 162 as the second internal space in the middle stage, and the third internal space in the lower stage. An internal space 163 is formed as a space. That is, the processing container 12 includes a space changing structure that can change the width of the internal space into three types. In these internal spaces 161 to 163, the inflow port 241 and the outflow port 201 are connected to the internal space 161, the inflow port 242 and the outflow port 202 are connected to the internal space 162, and the inflow ports 243 and 163 are connected to the internal space 163. An outlet 203 is formed. Since these internal spaces 161 to 163 are in an independent state, the water to be treated is not in a state where they pass each other.

51は被処理水を供給させるための供給パイプであり、供給パイプ51の途中から分岐パイプ511〜513に分岐し、パイプ511は流入口241に、パイプ512は流入口242に、パイプ513は流入口243にそれぞれ結合される。このとき、分岐パイプ511〜513の総断面積と供給パイプ51の断面積は同じような大きさにしてある。これは、レンズの働きをし、紫外線の照射方向を設計値と異ならしめる可能性のある気泡がパイプ内に発生することを抑えるためである。分岐パイプ511〜513にはそれぞれ被処理水の流れの制御を行う電磁バルブ521〜523がそれぞれに設置される。   Reference numeral 51 denotes a supply pipe for supplying water to be treated. The supply pipe 51 branches from the middle of the supply pipe 51 to the branch pipes 511 to 513. The pipe 511 is connected to the inlet 241; the pipe 512 is connected to the inlet 242; Each is coupled to an inlet 243. At this time, the total cross-sectional area of the branch pipes 511 to 513 and the cross-sectional area of the supply pipe 51 are the same size. This is to suppress the generation of bubbles in the pipe that act as a lens and may cause the ultraviolet irradiation direction to differ from the design value. The branch pipes 511 to 513 are provided with electromagnetic valves 521 to 523 for controlling the flow of the water to be treated, respectively.

531〜533は、内部空間161〜163で処理された被処理水を排出させるための排出パイプであり、パイプ531は流出口201に、パイプ532は流出口202に、パイプ533は流出口203にそれぞれ結合される。パイプ531〜533のそれぞれ他端は、送水パイプ53で結合される。つまり、パイプ531〜533をそれぞれ流れてきた被処理水は、送水パイプ53で合流される。   Reference numerals 531 to 533 are discharge pipes for discharging the water to be treated processed in the internal spaces 161 to 163. The pipe 531 is the outlet 201, the pipe 532 is the outlet 202, and the pipe 533 is the outlet 203. Each is combined. The other ends of the pipes 531 to 533 are connected by a water supply pipe 53. That is, the water to be treated that has flowed through the pipes 531 to 533 is joined by the water supply pipe 53.

次に、第2の実施形態の作用について説明する。各内部空間161〜163に被処理水が満たされた状態で、紫外線ランプ14を点灯したとする。すると、底部211に配置された紫外線センサー26は、窓部材191、内部空間161〜163に満たされた被処理水、仕切部材192、193、透過部材23を介して紫外線ランプ14からの紫外線を受光する。紫外線センサー26では紫外線量が測定され、その情報は制御部31に送信される。そして、制御部31は被処理水の透過率を特定し、被処理水の透過率の測定結果に基づいて、電磁バルブ521〜523の開閉の制御を行う。   Next, the operation of the second embodiment will be described. It is assumed that the ultraviolet lamp 14 is turned on in a state where the water to be treated is filled in the internal spaces 161 to 163. Then, the ultraviolet sensor 26 disposed on the bottom 211 receives the ultraviolet light from the ultraviolet lamp 14 through the window member 191, the water to be treated filled in the internal spaces 161 to 163, the partition members 192 and 193, and the transmission member 23. To do. The amount of ultraviolet rays is measured by the ultraviolet sensor 26, and the information is transmitted to the control unit 31. And the control part 31 specifies the transmittance | permeability of to-be-processed water, and controls opening / closing of the electromagnetic valves 521-523 based on the measurement result of the to-be-processed water transmittance | permeability.

つまり、紫外線センサー26での紫外線量の測定の結果、被処理水の透過率が高いと判断した場合には、電磁バルブ521〜523を開いて内部空間161〜163に被処理水を供給し、紫外線が透過する被処理水の厚みが全体として深くなるように調整を行う。逆に、被処理水の透過率が低いと判断した場合には、電磁バルブ522、523を閉じて内部空間161のみに被処理水を供給したり、電磁バルブ523を閉じて内部空間161、162に被処理水を供給し、被処理水が全体として浅くなるように調整を行う。このように、被処理水の透過率によって、被処理水を流す内部空間を変更し、被処理水ごとに好適な深さとすることで確実かつ効率よく紫外線照射処理をすることができる。   That is, as a result of measuring the amount of ultraviolet rays by the ultraviolet sensor 26, when it is determined that the transmittance of the water to be treated is high, the electromagnetic valves 521 to 523 are opened to supply the water to be treated to the internal spaces 161 to 163, Adjustment is performed so that the thickness of the water to be treated through which ultraviolet rays pass becomes deep as a whole. Conversely, when it is determined that the transmittance of the water to be treated is low, the electromagnetic valves 522 and 523 are closed to supply the water to be treated only to the internal space 161, or the electromagnetic valve 523 is closed and the internal spaces 161 and 162 are closed. To be treated, the water to be treated is adjusted to be shallow as a whole. Thus, the ultraviolet irradiation treatment can be reliably and efficiently performed by changing the internal space through which the water to be treated flows according to the transmittance of the water to be treated and setting the depth to be suitable for each water to be treated.

また、底部を動かす大がかりな機械的な構造を必要としないばかりか、電磁バルブの電磁弁の開閉を制御するだけで、被処理水の紫外線透過率の状態に合わせた処理をタイムリーに行うことができる。   In addition, not only does it require a large mechanical structure to move the bottom, but also controls the opening and closing of the solenoid valve to perform the treatment in a timely manner according to the state of UV transmittance of the water to be treated. Can do.

なお、分割される内部空間の個数は3つに限らず、2つ、または4つ以上であっても問題はない。また、被処理水の透過率の測定は、全ての内部空間に被処理水を満たした状態で行う必要はなく、被処理水の深さと透過率について関係付けしておけば、一つの内部空間のみに被処理水を満たした状態で行ってもかまわない。   Note that the number of internal spaces to be divided is not limited to three, and there is no problem even if the number is two, or four or more. Moreover, it is not necessary to measure the permeability of the water to be treated in a state where all the internal spaces are filled with the water to be treated. If the depth and permeability of the water to be treated are related, It may be performed only in a state where the water to be treated is filled.

(第3の実施形態)
図7は、紫外線照射装置に関する第3の実施形態について説明するための断面図である。
(Third embodiment)
FIG. 7 is a cross-sectional view for explaining a third embodiment relating to the ultraviolet irradiation device.

この実施形態は、内部に独立した空間を有する容器を複数組み合わせて、処理容器を構成している。   In this embodiment, a processing container is configured by combining a plurality of containers having independent spaces inside.

具体的に説明すると、処理容器12は、内部にそれぞれ内部空間164〜166を備える容器121〜123を縦に3つ積み重ねることによって構成されている。容器121には紫外線ランプ14側に窓部材191、底部211側に仕切部材71、容器122には紫外線ランプ14側に仕切部材72、底部211側に仕切部材73、容器123には紫外線ランプ14側に仕切部材74がそれぞれ嵌め込まれる。窓部材191、71〜74は何れも石英ガラスなどの紫外線透過性のガラスからなるものであり、紫外線ランプ14からの紫外線は、内部空間164〜166の何れにも照射できるようになっている。したがって、本実施の形態でも第2の実施形態と同様に、紫外線センサーによる被処理水の透過率の測定結果に基づいて、内部空間164〜166の何れか、または全てに被処理水を供給し、被処理水ごとに好適な深さとすることで確実かつ効率よく紫外線照射処理をすることができる。   If demonstrating it concretely, the processing container 12 will be comprised by stacking three containers 121-123 each provided with internal space 164-166 inside vertically. The container 121 has a window member 191 on the ultraviolet lamp 14 side, a partition member 71 on the bottom 211 side, a container 122 has a partition member 72 on the ultraviolet lamp 14 side, a partition member 73 on the bottom 211 side, and an ultraviolet lamp 14 side on the container 123. The partition members 74 are fitted into the respective parts. Each of the window members 191 and 71 to 74 is made of ultraviolet transmissive glass such as quartz glass, and the ultraviolet rays from the ultraviolet lamp 14 can be applied to any of the internal spaces 164 to 166. Therefore, in the present embodiment, similarly to the second embodiment, the water to be treated is supplied to any or all of the internal spaces 164 to 166 based on the measurement result of the transmittance of the water to be treated by the ultraviolet sensor. By setting the depth suitable for each water to be treated, the ultraviolet irradiation treatment can be reliably and efficiently performed.

なお、図7のように、紫外線センサーを複数設ける構成にしてもよい。つまり、仕切部材71、73および底部211に、紫外線センサー261〜263をそれぞれ配置してもよい。このように内部空間164〜166ごとに紫外線センサー261〜263を設けることで、さらに精度の高い被処理水の透過率測定が可能となるとともに、紫外線センサーの異常や故障が生じても影響なく被処理水を処理することができる。   As shown in FIG. 7, a plurality of ultraviolet sensors may be provided. That is, the ultraviolet sensors 261 to 263 may be disposed on the partition members 71 and 73 and the bottom portion 211, respectively. By providing the ultraviolet sensors 261 to 263 for the internal spaces 164 to 166 in this way, it becomes possible to measure the transmittance of the water to be treated with higher accuracy, and even if an abnormality or failure of the ultraviolet sensor occurs, the measurement is not affected. Treated water can be treated.

ところで、当業者にあっては、本発明の技術思想および技術範囲から逸脱せずに種々の変形・変更を加えることが可能である。   A person skilled in the art can make various modifications and changes without departing from the technical concept and technical scope of the present invention.

例えば、第1〜第3の実施形態では、紫外線ランプ14と空間変更構造とが上下に並ぶ関係で配置されているため、内部空間の高さを変更する例となっているが、紫外線ランプ14と空間変更構造とを左右に並ぶ関係に配置し、内部空間の幅を変更するようにしてもよい。   For example, in the first to third embodiments, since the ultraviolet lamp 14 and the space changing structure are arranged in a vertical relationship, the height of the internal space is changed. And the space changing structure may be arranged in a side-by-side relationship to change the width of the internal space.

紫外線ランプ14は、180〜400nm付近の紫外線を発光させることができる光源であればよいので、メタルハライドランプ、低圧水銀ランプ、HIDランプ、UV−LED等に置き換えが可能である。   The ultraviolet lamp 14 only needs to be a light source that can emit ultraviolet rays in the vicinity of 180 to 400 nm, and can be replaced with a metal halide lamp, a low-pressure mercury lamp, an HID lamp, a UV-LED, or the like.

紫外線センサー26は、紫外線ランプ14からの紫外線を基に被処理水を測定する必要はなく、例えば処理容器またはパイプ等の内外に被処理水の透過率測定用の光源として別途UV−LEDなどを設け、被処理水の透過率はその光源によって測定するようにしてもよい。   The ultraviolet sensor 26 does not need to measure the water to be treated based on the ultraviolet light from the ultraviolet lamp 14. For example, a UV-LED or the like is separately provided as a light source for measuring the transmittance of the water to be treated inside or outside the treatment container or pipe. The transmittance of the water to be treated may be measured by the light source.

なお、センサーとしては、被処理水の透過率を測定可能な紫外線センサーのほかに、被処理水の濁り具合を測定可能な濁度センサー、純度を測定可能な不純物検出センサーなどであってもよい。要は好適な紫外線照射を行える条件を決定できる程度に被処理水の水質を測定可能なものであればよい。   The sensor may be a turbidity sensor capable of measuring the turbidity of the water to be treated, an impurity detection sensor capable of measuring the purity, in addition to the ultraviolet sensor capable of measuring the transmittance of the water to be treated. . In short, it is only necessary to be able to measure the quality of the water to be treated to such an extent that conditions for suitable ultraviolet irradiation can be determined.

第2および第3の実施形態において、電磁バルブは、完全に被処理水の供給を止めるのではなく、紫外線センサーが検出した紫外線量に基づき、内部空間ごとに被処理水の流速を調整するやり方も考えられる。例えば、被処理水の透過率が低い場合には、紫外線ランプに遠い側の内部空間に流す被処理水の流速を、紫外線ランプに近い側よりも所定だけ遅くするなどである。   In the second and third embodiments, the electromagnetic valve does not completely stop the supply of treated water, but adjusts the flow rate of treated water for each internal space based on the amount of ultraviolet light detected by the ultraviolet sensor. Is also possible. For example, when the transmittance of the water to be treated is low, the flow rate of the water to be treated flowing into the internal space on the side far from the ultraviolet lamp is set slower than the side near the ultraviolet lamp by a predetermined amount.

すなわち、紫外線透過性の窓部材および被処理水を満たす内部空間を備える処理容器と、前記内部空間を第1、第2の内部空間に分割する紫外線透過性の仕切板と、前記窓部材に対向配置され、前記窓部材を介して前記第1および第2の内部空間に紫外線を照射する紫外線ランプと、前記被処理水を介して前記紫外線ランプからの紫外線を受光する紫外線センサーと、前記紫外線センサーが受光した紫外線量に基づき、前記第1および第2の内部空間に供給する前記被処理水の流速を制御する制御部と、を具備したことを特徴とする発明であってもよい。   That is, a treatment container having an ultraviolet transparent window member and an internal space filled with water to be treated, an ultraviolet transparent partition plate that divides the internal space into first and second internal spaces, and facing the window member An ultraviolet lamp that is disposed and irradiates the first and second internal spaces with ultraviolet rays through the window member, an ultraviolet sensor that receives ultraviolet rays from the ultraviolet lamp through the water to be treated, and the ultraviolet sensor And a controller that controls the flow rate of the water to be treated supplied to the first and second internal spaces based on the amount of ultraviolet rays received by the first and second internal spaces.

いくつかの実施形態を説明したが、これらの実施形態は、例として提示したものであり、発明の範囲を限定することは意図していない。これら新規な実施形態は、その他の様々な形態で実施されることが可能であり、発明の要旨を逸脱しない範囲で、種々の省略、置き換え、変更を行うことができる。これら実施形態やその変形は、発明の範囲や要旨に含まれるとともに、特許請求の範囲に記載された発明とその均等の範囲に含まれる。   Although several embodiments have been described, these embodiments have been presented by way of example and are not intended to limit the scope of the invention. These novel embodiments can be implemented in various other forms, and various omissions, replacements, and changes can be made without departing from the scope of the invention. These embodiments and modifications thereof are included in the scope and gist of the invention, and are included in the invention described in the claims and the equivalents thereof.

100 紫外線照射装置
12 処理容器
14 紫外線ランプ
16,161〜166 内部空間
19,191 窓部材
192,193,71〜74 仕切部材
21 底部
26,261〜263 紫外線センサー
31 制御部
521〜523 電磁バルブ
DESCRIPTION OF SYMBOLS 100 Ultraviolet irradiation apparatus 12 Processing container 14 Ultraviolet lamp 16,161-166 Internal space 19,191 Window member 192,193,71-74 Partition member 21 Bottom part 26,261-263 Ultraviolet sensor 31 Control part 521-523 Electromagnetic valve

Claims (3)

紫外線透過性の窓部材および被処理水を満たす内部空間を備えるとともに、前記内部空間の高さ方向に可動可能な底部を備える処理容器と、
前記窓部材に対向配置され、前記窓部材を介して前記内部空間に紫外線を照射する紫外線ランプと、
前記処理容器内に配置され、前記被処理水を介して前記紫外線ランプからの紫外線を受光する紫外線センサーと、
前記紫外線センサーが受光した紫外線量に基づき、前記底部を移動させ、前記内部空間の高さを調整する制御部と、を具備したことを特徴とする紫外線照射装置。
A processing container having an inner space filled with an ultraviolet light transmissive window member and water to be treated, and a bottom that is movable in the height direction of the inner space;
An ultraviolet lamp disposed opposite to the window member and irradiating the internal space with ultraviolet rays through the window member;
An ultraviolet sensor that is disposed in the treatment container and receives ultraviolet rays from the ultraviolet lamp through the treated water;
An ultraviolet irradiation apparatus comprising: a control unit configured to move the bottom and adjust the height of the internal space based on the amount of ultraviolet light received by the ultraviolet sensor.
紫外線透過性の窓部材および被処理水を満たす内部空間を備える処理容器と、
前記内部空間を第1、第2の内部空間に分割する紫外線透過性の仕切板と、
前記窓部材に対向配置され、前記窓部材を介して前記第1および第2の内部空間に紫外線を照射する紫外線ランプと、
前記被処理水を介して前記紫外線ランプからの紫外線を受光する紫外線センサーと、
前記紫外線センサーが受光した紫外線量に基づき、前記第1または第2の内部空間に前記被処理水を供給するか、前記第1および第2の内部空間に前記被処理水を供給するかを制御する制御部と、を具備したことを特徴とする紫外線照射装置。
A treatment container having an interior space filled with an ultraviolet-transmissive window member and water to be treated;
An ultraviolet transmissive partition plate that divides the internal space into first and second internal spaces;
An ultraviolet lamp disposed opposite to the window member and irradiating the first and second internal spaces with ultraviolet rays through the window member;
An ultraviolet sensor that receives ultraviolet rays from the ultraviolet lamp through the treated water;
Control whether to supply the treated water to the first or second internal space or to supply the treated water to the first and second internal spaces based on the amount of ultraviolet light received by the ultraviolet sensor. And an ultraviolet irradiation device characterized by comprising:
紫外線透過性の窓部材および被処理水を満たす内部空間を備えるとともに、前記内部空間の長さを変更可能な空間変更構造を備えた処理容器と、
前記窓部材を介して前記内部空間に紫外線を照射する紫外線光源と、
前記被処理水の水質を測定可能なセンサーと、
前記センサーで測定された前記被処理水の水質に基づき、前記被処理水の幅方向全域にわたって、前記紫外線光源からの紫外線を照射可能なように前記空間変更構造を制御する制御部と、を具備したことを特徴とする紫外線照射装置。
A processing container provided with a space changing structure capable of changing the length of the internal space, as well as an internal space that fills the ultraviolet light transmissive window member and the water to be treated;
An ultraviolet light source that irradiates the internal space with ultraviolet light through the window member;
A sensor capable of measuring the quality of the treated water;
A controller that controls the space changing structure so that the ultraviolet light from the ultraviolet light source can be irradiated over the entire width direction of the treated water based on the quality of the treated water measured by the sensor. An ultraviolet irradiation device characterized by that.
JP2011005756A 2011-01-14 2011-01-14 Ultraviolet ray irradiation apparatus Pending JP2012143731A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011005756A JP2012143731A (en) 2011-01-14 2011-01-14 Ultraviolet ray irradiation apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011005756A JP2012143731A (en) 2011-01-14 2011-01-14 Ultraviolet ray irradiation apparatus

Publications (1)

Publication Number Publication Date
JP2012143731A true JP2012143731A (en) 2012-08-02

Family

ID=46787865

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011005756A Pending JP2012143731A (en) 2011-01-14 2011-01-14 Ultraviolet ray irradiation apparatus

Country Status (1)

Country Link
JP (1) JP2012143731A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017505227A (en) * 2014-02-11 2017-02-16 フィリップス ライティング ホールディング ビー ヴィ Receptor with variable geometry for water purification by UV

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017505227A (en) * 2014-02-11 2017-02-16 フィリップス ライティング ホールディング ビー ヴィ Receptor with variable geometry for water purification by UV
US10221080B2 (en) 2014-02-11 2019-03-05 Philips Lighting Holding B.V. Recipient with variable geometry for UV water purification

Similar Documents

Publication Publication Date Title
US10442704B2 (en) Ultraviolet fluid disinfection system with feedback sensor
US10118839B2 (en) Irradiation assembly for liquid purification assembly, purification assembly and beverage dispenser
US10329170B2 (en) Liquid purification apparatus and method
US20100314551A1 (en) In-line Fluid Treatment by UV Radiation
CN104418403A (en) Fluid sterilizer and associated connecting device
US9168321B2 (en) Toroidal-shaped treatment device for disinfecting a fluid such as air or water
WO2007027419A2 (en) Ultraviolet light treatment chamber
NO147471B (en) PROCEDURE AND DEVICE FOR CLEANING, SPECIAL STERILIZATION AND DISINFECTION OF STREAMABLE MEDIA
JP2011255365A (en) Ballast water treating system having back pressure forming part, and method therefor
CN106477666B (en) Water purification system and sterilization method
US20200392019A1 (en) WATER DISINFECTION CHAMBER AND SYSTEM WITH UVC LEDs
JP2019076879A (en) UV sterilizer
JP2012143731A (en) Ultraviolet ray irradiation apparatus
JP2018023923A (en) Ultraviolet irradiation device
JP2017505227A5 (en)
JP6726090B2 (en) UV irradiation device
JP2013075271A (en) Water treatment method and water treatment apparatus
CA2709264A1 (en) Radiation source assembly and fluid treatment system
JP2018134607A (en) UV sterilization system and UV irradiation device
JP2013013871A (en) Ultraviolet irradiation apparatus
KR20150028190A (en) a flowable typed sterilizing device and connector using the same
KR101811639B1 (en) Aqueous solution sterilizers and method using UV reflector
KR200375253Y1 (en) Ultraviolet sterilizer for open channel
RU2335460C1 (en) Device for water media decontamination
KR20210121771A (en) Ultra-violet sterilizing device