JP2012143718A - Device for generating active oxygen species - Google Patents

Device for generating active oxygen species Download PDF

Info

Publication number
JP2012143718A
JP2012143718A JP2011004793A JP2011004793A JP2012143718A JP 2012143718 A JP2012143718 A JP 2012143718A JP 2011004793 A JP2011004793 A JP 2011004793A JP 2011004793 A JP2011004793 A JP 2011004793A JP 2012143718 A JP2012143718 A JP 2012143718A
Authority
JP
Japan
Prior art keywords
oxygen species
active oxygen
anode
cathode
electrodes
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2011004793A
Other languages
Japanese (ja)
Other versions
JP5212486B2 (en
Inventor
Mari Orito
真理 折戸
Shiro Takeuchi
史朗 竹内
Junichiro Hoshizaki
潤一郎 星崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2011004793A priority Critical patent/JP5212486B2/en
Publication of JP2012143718A publication Critical patent/JP2012143718A/en
Application granted granted Critical
Publication of JP5212486B2 publication Critical patent/JP5212486B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Water Treatment By Electricity Or Magnetism (AREA)
  • Electrolytic Production Of Non-Metals, Compounds, Apparatuses Therefor (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a device for generating active oxygen species, which efficiently generates highly-concentrated active oxygen species.SOLUTION: The device for generating active oxygen species includes: a plurality of cathodes 2 and a plurality of anodes 3 that are connected to a voltage application means 6; and an oxygen species generation vessel 1 in which process water 5 is stored to immerse the cathodes 2 and the anodes 3 in the process water 5. A set of electrodes is constituted of a piece of anode 3 and two pieces of cathode 2 arranged both sides of the anode 3, and a plurality of sets of electrodes are aligned in the oxygen species generation vessel 1.

Description

この発明は、電極反応を利用して活性酸素種を生成する活性酸素種生成装置に関するものである。   The present invention relates to an active oxygen species generating apparatus that generates active oxygen species using an electrode reaction.

電極反応を利用して活性酸素種を生成する装置の従来技術として、例えば、下記特許文献1に記載のものがある。特許文献1に記載のものでは、装置内で陰極と陽極とを交互に配置し、活性酸素種の生成を行っている。   As a prior art of an apparatus that generates an active oxygen species using an electrode reaction, for example, there is one described in Patent Document 1 below. In the device described in Patent Document 1, cathodes and anodes are alternately arranged in the apparatus to generate active oxygen species.

特許第3492327号公報Japanese Patent No. 3492327

特許文献1に記載のものでは、陰極及び陽極が1:1の比率で配置されているため、活性酸素種を陰極の全面で均等に生成することができる。しかし、かかる構成では、陰極で生成された活性酸素種が陽極で消失する消失反応が生じ易く、活性酸素種の見かけの生成効率(陰極で実際に生成される量ではなく、生成後も活性酸素種として残存させることができる量)が低下するといった問題があった。   In the thing of patent document 1, since a cathode and an anode are arrange | positioned by the ratio of 1: 1, an active oxygen seed | species can be produced | generated uniformly on the whole surface of a cathode. However, in such a configuration, the reaction of disappearance of the active oxygen species generated at the cathode is likely to occur at the anode, and the apparent generation efficiency of the active oxygen species (not the amount actually generated at the cathode, but the active oxygen after generation) There is a problem that the amount that can be left as seeds decreases.

この発明は、上述のような課題を解決するためになされたもので、その目的は、高濃度の活性酸素種を効率的に生成することができる活性酸素種生成装置を提供することである。   The present invention has been made to solve the above-described problems, and an object thereof is to provide an active oxygen species generating apparatus capable of efficiently generating a high concentration of active oxygen species.

この発明に係る活性酸素種生成装置は、所定の電圧印加手段に接続された複数の陰極及び複数の陽極と、処理水が溜められ、陰極及び陽極が処理水に浸された活性酸素種生成槽と、活性酸素種生成槽の内部を仕切るための遮蔽物と、を備え、各陽極は、一面が陰極に対向し、各陰極は、一面が陽極に対向し、遮蔽物は、隣接する陰極の各他面間に配置されたものである。   The active oxygen species generating apparatus according to the present invention includes a plurality of cathodes and a plurality of anodes connected to a predetermined voltage application means, and treated water is stored, and the active oxygen species generating tank in which the cathode and anode are immersed in the treated water. And a shield for partitioning the inside of the active oxygen species generation tank, each anode facing one side of the cathode, each cathode facing one side of the anode, and the shield covering the adjacent cathode It is arranged between each other surface.

また、この発明に係る活性酸素種生成装置は、所定の電圧印加手段に接続された複数の陰極及び複数の陽極と、処理水が溜められ、陰極及び陽極が処理水に浸された活性酸素種生成槽と、を備え、1つの陽極とその陽極の両側に配置された2つの陰極とによって一組の電極を構成し、活性酸素種生成槽に、複数組の電極が並べて配置されたものである。   Further, the active oxygen species generating apparatus according to the present invention comprises a plurality of cathodes and a plurality of anodes connected to a predetermined voltage application means, and treated water, in which the treated oxygen is immersed in the treated water. A generation tank, and one anode and two cathodes arranged on both sides of the anode constitute a set of electrodes, and a plurality of sets of electrodes are arranged side by side in the active oxygen species generation tank. is there.

この発明に係る活性酸素種生成装置であれば、高濃度の活性酸素種を効率的に生成することができ、装置の小型化、及びエネルギー消費量の削減が可能となる。   With the active oxygen species generating apparatus according to the present invention, high-concentration active oxygen species can be efficiently generated, and the apparatus can be reduced in size and energy consumption can be reduced.

この発明の実施の形態1における活性酸素種生成装置の構成を示す概略図である。It is the schematic which shows the structure of the active oxygen species production | generation apparatus in Embodiment 1 of this invention. 電極構成と活性酸素種生成量との関係を示す図である。It is a figure which shows the relationship between an electrode structure and the amount of generation of active oxygen species. 並べて配置する電極数と活性酸素種生成量との関係を示す図である。It is a figure which shows the relationship between the number of electrodes arrange | positioned side by side, and an active oxygen species production amount. 酸化還元反応によるポリアニリンの構造変化を示した図である。It is the figure which showed the structural change of the polyaniline by oxidation-reduction reaction. この発明の実施の形態2における活性酸素種生成装置の要部の構成を示す概略図である。It is the schematic which shows the structure of the principal part of the active oxygen species production | generation apparatus in Embodiment 2 of this invention.

この発明をより詳細に説明するため、添付の図面に従ってこれを説明する。なお、各図中、同一又は相当する部分には同一の符号を付しており、その重複説明は適宜に簡略化ないし省略する。   In order to explain the present invention in more detail, it will be described with reference to the accompanying drawings. In addition, in each figure, the same code | symbol is attached | subjected to the part which is the same or it corresponds, The duplication description is simplified or abbreviate | omitted suitably.

実施の形態1.
図1はこの発明の実施の形態1における活性酸素種生成装置の構成を示す概略図である。図1に示すように、活性酸素種生成槽1には、複数の陰極2及び複数の陽極3が備えられている。4は活性酸素種生成槽1に設けられた遮蔽体(遮蔽物)、5は活性酸素種生成槽1に溜められた処理水である。
Embodiment 1 FIG.
1 is a schematic diagram showing a configuration of an active oxygen species generating apparatus according to Embodiment 1 of the present invention. As shown in FIG. 1, the active oxygen species generation tank 1 is provided with a plurality of cathodes 2 and a plurality of anodes 3. 4 is a shield (shield) provided in the active oxygen species generation tank 1, and 5 is treated water stored in the active oxygen species generation tank 1.

陰極2及び陽極3は、例えば、板状を呈する部材からなり、それぞれの一部(或いは、全部)が処理水5に浸されている。各陰極2及び各陽極3は、電圧印加手段6に接続されており、所定の電圧が印加できるように構成されている。   The cathode 2 and the anode 3 are made of, for example, a plate-like member, and a part (or all) of each is immersed in the treated water 5. Each cathode 2 and each anode 3 are connected to a voltage applying means 6 and configured to apply a predetermined voltage.

各陽極3は、少なくとも一方の面(一面)が陰極2に対向するように配置される。各陰極2は、少なくとも一方の面(一面)が陽極3に対向するように配置される。また、陰極2は、複数あるうちの少なくとも一部が、互いに隣接するように配置されており、遮蔽体4は、隣接する陰極2の各他面間に配置される。なお、隣接して配置された陰極2間の全てに遮蔽体4を配置する必要はない。   Each anode 3 is disposed so that at least one surface (one surface) faces the cathode 2. Each cathode 2 is disposed so that at least one surface (one surface) faces the anode 3. In addition, the cathode 2 is arranged such that at least a part of the plurality is adjacent to each other, and the shield 4 is arranged between the other surfaces of the adjacent cathode 2. In addition, it is not necessary to arrange | position the shield 4 between all the cathodes 2 arrange | positioned adjacently.

図1に示す陰極2及び陽極3の配置は、活性酸素種を生成する上で好ましいものを示している。具体的に、図1に示すものでは、1枚の陽極3とその陽極3の両側(一面側及び他面側)に配置された2枚の陰極2とによって一組の電極を構成している。そして、一組又は複数組の電極が、活性酸素種生成槽1内に並べて配置されている。例えば、電極二組の配置は、「陰極−陽極−陰極−陰極−陽極−陰極」となり、電極三組の配置は、「陰極−陽極−陰極−陰極−陽極−陰極−陰極−陽極−陰極」となる。   The arrangement of the cathode 2 and the anode 3 shown in FIG. 1 is preferable for generating active oxygen species. Specifically, in the one shown in FIG. 1, one set of electrodes is constituted by one anode 3 and two cathodes 2 arranged on both sides (one side and the other side) of the anode 3. . One set or a plurality of sets of electrodes are arranged side by side in the active oxygen species generation tank 1. For example, the arrangement of two electrodes is “cathode-anode-cathode-cathode-anode-cathode”, and the arrangement of three electrodes is “cathode-anode-cathode-cathode-anode-cathode-cathode-anode-cathode”. It becomes.

遮蔽体4は、活性酸素種生成槽1の内部を仕切る役割を担っている。遮蔽体4は、電極間での反応が影響し合わないように備えられたものであり、絶縁性の部材であることが好ましい。この遮蔽体4により、活性酸素種生成槽1の内部に、活性酸素種を生成するための複数の生成領域が形成される。   The shield 4 plays a role of partitioning the inside of the active oxygen species generation tank 1. The shield 4 is provided so that reactions between the electrodes do not affect each other, and is preferably an insulating member. By the shield 4, a plurality of generation regions for generating active oxygen species are formed inside the active oxygen species generating tank 1.

遮蔽体4の形状としては、板状、箔状、粒子状、網目状、多孔質体状といった種々のものが採用できる。また、遮蔽体4の素材としては、活性酸素種に対して化学的に安定なABS、PP、フッ素系樹脂といった高分子、チタン、ステンレス、タンタル、イリジウムといった金属の他、セラミックやカーボン等が採用できる。   As the shape of the shield 4, various shapes such as a plate shape, a foil shape, a particle shape, a mesh shape, and a porous shape can be adopted. In addition, as the material of the shield 4, polymers such as ABS, PP, fluorine resin, which are chemically stable against active oxygen species, metals such as titanium, stainless steel, tantalum, iridium, ceramics, carbon, etc. are adopted. it can.

各生成領域に上記構成の電極をその厚さ方向に並べて配置することにより、陰極2は、内側の面が陽極3に対向し、外側の面が、隣接する電極の陰極2に対向する。また、生成領域の最も外側に配置された電極では、陰極2は、外側の面が遮蔽体4或いは活性酸素種生成槽1の側壁に対向する。陽極3は、その両面が同じ電極の陰極2に対向する。   By arranging the electrodes having the above-described configuration in each generation region in the thickness direction, the cathode 2 has the inner surface facing the anode 3 and the outer surface facing the cathode 2 of the adjacent electrode. Further, in the electrode arranged on the outermost side of the generation region, the outer surface of the cathode 2 faces the shield 4 or the side wall of the active oxygen species generation tank 1. The anode 3 faces the cathode 2 of the same electrode on both sides.

なお、処理水5が貯留された活性酸素種生成槽1の内部を上記遮蔽体4によって仕切り、活性酸素種生成槽1内に生成領域を複数(例えば、図1に示すものでは2つ)形成する場合、各生成領域には、二組以下の電極を配置することが好ましい。   In addition, the inside of the active oxygen species generation tank 1 in which the treated water 5 is stored is partitioned by the shielding body 4, and a plurality of generation regions (for example, two in the case shown in FIG. 1) are formed in the active oxygen species generation tank 1. In this case, it is preferable to arrange two or less sets of electrodes in each generation region.

上記構成を有する活性酸素種生成装置では、陰極2及び陽極3の電極反応により、活性酸素種生成槽1内に貯留された処理水5中に、所定の活性酸素種が生成される。活性酸素種は、主に、陰極2側で生成される。   In the active oxygen species generating apparatus having the above configuration, a predetermined active oxygen species is generated in the treated water 5 stored in the active oxygen species generating tank 1 by the electrode reaction of the cathode 2 and the anode 3. Active oxygen species are mainly generated on the cathode 2 side.

本活性酸素種生成装置では、上述したように、「陰極−陽極−陰極」を一組の電極として構成している。以下に、図2を参照し、この電極構成が好ましい理由について説明する。   In the present active oxygen species generating apparatus, as described above, the “cathode-anode-cathode” is configured as a set of electrodes. The reason why this electrode configuration is preferred will be described below with reference to FIG.

図2は電極構成と活性酸素種生成量との関係を示す図であり、出願人が行った検証結果を示している。
電極反応では、生成物の拡散速度によって生成効率が変化する。生成効率を向上させるためには、電極周辺に十分な空間を確保し、生成物の拡散を促進させることが重要となる。出願人は、本試験において、活性酸素種生成槽1の各壁面との間に十分な距離を設けて電極を設置し、生成物の拡散が電極の側方及び下方に可能となるようにした。そして、「陰極−陽極−陰極」を一組の電極とした場合(本願電極構成)と、「陰極−陽極−陰極−陽極」を一組の電極として構成した場合とにおいて、活性酸素種の一種である過酸化水素を生成し、その濃度の経時変化を測定することによって、電極の組数(セット数)に対する活性酸素種の生成濃度の差異を検証した。
FIG. 2 is a diagram showing the relationship between the electrode configuration and the amount of active oxygen species generated, and shows the verification results performed by the applicant.
In the electrode reaction, the production efficiency varies depending on the diffusion rate of the product. In order to improve the production efficiency, it is important to secure a sufficient space around the electrode and promote the diffusion of the product. In this test, the applicant installed an electrode with a sufficient distance between each wall of the active oxygen species generation tank 1 so that the product can be diffused laterally and below the electrode. . A kind of active oxygen species in the case where “cathode-anode-cathode” is a set of electrodes (the electrode configuration of the present application) and the case where “cathode-anode-cathode-anode” is configured as a set of electrodes. The difference in the generation concentration of the active oxygen species with respect to the number of sets of electrodes (the number of sets) was verified by generating hydrogen peroxide, which is

具体的に、図2は、水道水1Lを貯留した活性酸素種生成槽1に上記各電極を設置して試験を行った結果であり、24時間経過後の過酸化水素濃度を示している。図2に示すように、電極を「陰極−陽極−陰極」配置にした時の過酸化水素濃度は、「陰極−陽極−陰極−陽極」配置にした時の濃度に対し、電極二組で1.3倍、電極三組で1.5倍と高くなった。即ち、電極を「陰極−陽極−陰極」として構成することにより、処理水5中に多くの過酸化水素を供給することができ、見かけの生成効率を向上させることが可能となる。これは、「陰極−陽極−陰極」配置の方が陽極3の設置枚数が少なく、生成された過酸化水素の消失反応が抑制されたことによるものである。   Specifically, FIG. 2 is a result of performing the test by installing each electrode in the active oxygen species generating tank 1 storing 1 L of tap water, and shows the hydrogen peroxide concentration after 24 hours. As shown in FIG. 2, the hydrogen peroxide concentration when the electrodes are arranged in the “cathode-anode-cathode” arrangement is 1 for the two sets of electrodes with respect to the concentration when the “cathode-anode-cathode-anode” arrangement is used. .3 times and 1.5 times higher with 3 sets of electrodes. That is, by configuring the electrode as “cathode-anode-cathode”, a large amount of hydrogen peroxide can be supplied into the treated water 5, and the apparent generation efficiency can be improved. This is because the “cathode-anode-cathode” arrangement has a smaller number of anodes 3 and the disappearance reaction of the generated hydrogen peroxide is suppressed.

なお、電極の組数が同じであれば、「陰極−陽極−陰極」配置、及び「陰極−陽極−陰極−陽極」配置において、陰極2の設置枚数は同じになる。電極の組数が同じ場合、異なるのは、陽極3の設置枚数である。即ち、電極構成を「陰極−陽極−陰極」にすることにより、「陰極−陽極−陰極−陽極」として構成した時と比較して、電極を二組設置すれば陽極3を1枚、三組設置すれば陽極3を2枚少なくすることができる。
このため、「陰極−陽極−陰極」の電極構成であれば、装置の小型化が可能となる。また、電極に必要な電流密度を低く抑えることができるため、省エネ効果も期待できる。
If the number of sets of electrodes is the same, the number of cathodes 2 installed is the same in the “cathode-anode-cathode” arrangement and the “cathode-anode-cathode-anode” arrangement. When the number of sets of electrodes is the same, the difference is the number of anodes 3 installed. That is, by setting the electrode configuration to “cathode-anode-cathode”, as compared with the case where it is configured as “cathode-anode-cathode-anode”, if two sets of electrodes are installed, one anode 3 and three sets If installed, two anodes 3 can be reduced.
For this reason, if the electrode configuration is “cathode-anode-cathode”, the apparatus can be miniaturized. Moreover, since the current density required for the electrode can be kept low, an energy saving effect can be expected.

また、本活性酸素種生成装置では、各生成領域に配置される電極が二組以下となるように、活性酸素種生成槽1の内部を遮蔽体4で仕切っている。以下に、図3を参照し、この遮蔽体4の配置が好ましい理由について説明する。   Moreover, in this active oxygen species production | generation apparatus, the inside of the active oxygen species production | generation tank 1 is partitioned off with the shield 4 so that the electrode arrange | positioned at each production | generation area | region may be two sets or less. The reason why the arrangement of the shield 4 is preferable will be described below with reference to FIG.

図3は、並べて配置する電極数と活性酸素種生成量との関係を示す図であり、出願人が行った他の検証結果を示している。
陽極3では、活性酸素種の消失反応時、酸素が生成される。一方、陰極2が隣接して配置された空間では酸素供給源がなく、溶存酸素濃度が著しく低下する。図3は、同一空間に存在する電極組数が多いほど、この影響を受けてしまうことを示している。
FIG. 3 is a diagram showing the relationship between the number of electrodes arranged side by side and the amount of active oxygen species generated, and shows another verification result performed by the applicant.
At the anode 3, oxygen is generated during the disappearance reaction of the active oxygen species. On the other hand, there is no oxygen supply source in the space in which the cathode 2 is arranged adjacently, and the dissolved oxygen concentration is significantly reduced. FIG. 3 shows that the greater the number of electrode pairs existing in the same space, the more affected.

本試験においても、電極構成の検討を行った上記の場合と同様に、活性酸素種生成槽1に水道水1Lを貯留し、活性酸素種生成槽1の各壁面との間に十分な距離を設けて電極を設置した。そして、処理水5中に活性酸素種の一種である過酸化水素を生成させ、その濃度の経時変化を測定した。   Also in this test, similarly to the case where the electrode configuration was examined, 1 L of tap water was stored in the active oxygen species generation tank 1, and a sufficient distance was provided between each wall of the active oxygen species generation tank 1. An electrode was installed. Then, hydrogen peroxide, which is a kind of active oxygen species, was generated in the treated water 5 and the change with time in the concentration was measured.

図3に示すように、電極を「陰極−陽極−陰極」として構成し、複数組の電極を活性酸素種生成槽1内に配置した場合、電極単位面積当たりに換算された過酸化水素濃度(以下、「過酸化水素生成能」という)は、電極が二組の時に対し、三組では0.6倍に低下した。電極を一組から二組に増やした場合、過酸化水素の濃度は、陰極2が浸漬している面積に比例して増加している。一方、電極を二組から三組以上に増やした場合、過酸化水素の濃度は、陰極2の浸漬面積に比例して増加してはいない。このため、電極を三組以上並べて配置すると、過酸化水素生成能は低下する。   As shown in FIG. 3, when the electrodes are configured as “cathode-anode-cathode” and a plurality of sets of electrodes are arranged in the active oxygen species generation tank 1, the hydrogen peroxide concentration converted per electrode unit area ( In the following, the “hydrogen peroxide generating ability”) was reduced to 0.6 times in the three sets compared to the two sets of electrodes. When the number of electrodes is increased from one set to two sets, the concentration of hydrogen peroxide increases in proportion to the area in which the cathode 2 is immersed. On the other hand, when the number of electrodes is increased from two to three or more, the concentration of hydrogen peroxide does not increase in proportion to the immersion area of the cathode 2. For this reason, when three or more sets of electrodes are arranged side by side, the hydrogen peroxide generating ability decreases.

詳細なメカニズムは不明であるが、その原因の一つとして、以下のことが考えられる。即ち、活性酸素種生成槽1に貯留されている水が一定、つまり、水中の溶存酸素量が一定であるのに対し、電極の設置組数が増加するほど溶存酸素の消費量が増加し、隣接する陰極2間で不足する溶存酸素濃度が過酸化水素の生成を阻害する影響度合いが大きくなる。このため、電極を三組以上並べて配置すると、過酸化水素生成能の低下度合いが増大すると考えられる。   Although the detailed mechanism is unknown, one of the causes is considered as follows. That is, while the water stored in the active oxygen species generation tank 1 is constant, that is, the amount of dissolved oxygen in the water is constant, the consumption of dissolved oxygen increases as the number of installed electrodes increases. The degree of influence that the dissolved oxygen concentration deficient between the adjacent cathodes 2 hinders the generation of hydrogen peroxide increases. For this reason, it is considered that when three or more sets of electrodes are arranged side by side, the degree of decrease in hydrogen peroxide generating ability increases.

陰極2の基材として金属、カーボンを用いることにより、活性酸素種を生成することができる。一方、低電圧印加であっても活性酸素種の生成効率を向上させることができる手段の一つに、陰極2(或いは、陽極3)にレドックスポリマーを担持させるという方法がある。なお、レドックスポリマーとして、ポリアニリン、ポリチオフェン、ポリピロール、ポリアセン等があるが、ポリアニリンを陰極2に担持させる構成が特に好ましい。   By using a metal or carbon as the base material of the cathode 2, active oxygen species can be generated. On the other hand, as a means for improving the generation efficiency of active oxygen species even when a low voltage is applied, there is a method in which a redox polymer is supported on the cathode 2 (or the anode 3). The redox polymer includes polyaniline, polythiophene, polypyrrole, polyacene, and the like, and a configuration in which polyaniline is supported on the cathode 2 is particularly preferable.

レドックスポリマーとは、化学的重合、電気的重合といった重合方法に関わらず生成され、電子の授受により酸化状態或いは還元状態に可逆的に変化する物質のことである。図4は酸化還元反応によるポリアニリンの構造変化を示した図である。図4に示すように、ポリアニリンは、還元型から酸化型に構造変化する際に、触媒的作用によって電子と水中の酸素とが反応し、活性酸素種の一種であるスーパーオキシド(O )を生成する(下記式1参照)。このポリアニリンを介した反応は、陰極2で生じる。
+PAn(red)→O +PAn(ox) ・・・(1)
A redox polymer is a substance that is produced regardless of a polymerization method such as chemical polymerization or electrical polymerization, and reversibly changes to an oxidized state or a reduced state by exchange of electrons. FIG. 4 is a diagram showing the structural change of polyaniline due to the oxidation-reduction reaction. As shown in FIG. 4, when the polyaniline undergoes a structural change from a reduced form to an oxidized form, a reaction of electrons with oxygen in water causes a superoxide (O 2 ) which is a kind of active oxygen species. (See Equation 1 below). This reaction via polyaniline occurs at the cathode 2.
O 2 + PAn (red) → O 2 + PAn (ox) (1)

以下に、レドックスポリマーとしてポリアニリンを採用した場合を例に説明する。
ポリアニリンを絶縁性の基材上に塗布すると、通常、その表面抵抗値は、10Ω/m以上となる。このため、ポリアニリンを陰極2の基材上に塗布して使用するためには、電圧の入力値を高くしなければならない。しかし、それでは水が電気分解されてしまい、発生した水素や酸素が活性酸素種の生成を阻害してしまう。
Below, the case where polyaniline is employ | adopted as a redox polymer is demonstrated to an example.
When polyaniline is coated on an insulating substrate, the surface resistance value is usually 10 3 Ω / m 2 or more. For this reason, in order to apply polyaniline on the base material of the cathode 2, the voltage input value must be increased. However, the water is electrolyzed, and the generated hydrogen and oxygen inhibit the generation of active oxygen species.

一方、導電性の基材、或いはカーボンや金属等の通電補助材が分散添加された導電性の基材にポリアニリンを担持させることにより、陰極2の基材の表面抵抗値を10−3〜10Ω/m程度にすることができる。かかる構成であれば、水素や酸素の副生成物が発生しない−2.5V以下の低電圧域においても、スーパーオキシドや過酸化水素等の活性酸素種を効率的に生成することができる。 On the other hand, the surface resistance value of the base material of the cathode 2 is 10 −3 to 10 by supporting polyaniline on a conductive base material or a conductive base material to which a current-carrying auxiliary material such as carbon or metal is dispersed and added. It can be about 3 Ω / m 2 . With such a configuration, active oxygen species such as superoxide and hydrogen peroxide can be efficiently generated even in a low voltage range of −2.5 V or less where hydrogen and oxygen by-products are not generated.

通電による時間の経過と共に、陰極2のポリアニリンは、還元反応によって還元型へと構造変化する。更に通電を続けると、陰極2のポリアニリンは、図4に示すような完全還元型となり、活性酸素種の生成能力を失ってしまう。このような現象を防止するため、電圧印加手段6に、電圧の極性を切り換える切換手段を具備しておき、陰極2に担持されたポリアニリンが完全還元型に構造変化してしまう前に上記切換手段によって極性を反転させ、ポリアニリンを酸化型側に回復させることが好ましい。或いは、ポリアニリンを担持した陰極2の基材より酸化還元電位が大きな基材を連結させ、電圧印加手段6が動作していない時に、ポリアニリンを酸化型側に回復させることが好ましい。   As time elapses due to energization, the structure of the polyaniline of the cathode 2 changes to a reduced form by a reduction reaction. When energization continues further, the polyaniline of the cathode 2 becomes a complete reduction type as shown in FIG. 4 and loses the ability to generate active oxygen species. In order to prevent such a phenomenon, the voltage applying means 6 is provided with a switching means for switching the polarity of the voltage, and the switching means before the polyaniline carried on the cathode 2 is structurally changed to the complete reduction type. It is preferable to reverse the polarity by recovering the polyaniline to the oxidized side. Alternatively, it is preferable to connect a base material having a higher oxidation-reduction potential than the base material of the cathode 2 carrying polyaniline, and to recover the polyaniline to the oxidation type side when the voltage application means 6 is not operating.

なお、上記切換手段は、通電方向を切り換えるための手段であり、電気回路のプラス線とマイナス線とを瞬間的に入れ換えるものによって構成される。極性を反転させる方法には、例えば、押しボタン式、スライド式、ロータリー式等がある。   The switching means is means for switching the energization direction, and is configured by instantaneously replacing the plus line and the minus line of the electric circuit. Examples of the method of inverting the polarity include a push button type, a slide type, and a rotary type.

また、レドックスポリマーの基材への密着性を向上させる手段として、基材の表面を粗面化することが有効である。
具体的には、陰極2の表面に0.1μm以上の表面粗度を設けることにより、レドックスポリマー膜として、鉛筆ひっかき試験に準じた鉛筆硬度HB以上の強度を得ることができ、レドックスポリマー膜の密着強度を向上させることができる。また、基材表面を微細な凹凸形状にすることによって表面積が増加するため、活性酸素種生成能が向上するといった効果も期待できる。
Further, as a means for improving the adhesion of the redox polymer to the base material, it is effective to roughen the surface of the base material.
Specifically, by providing a surface roughness of 0.1 μm or more on the surface of the cathode 2, a redox polymer film having a pencil hardness HB or higher according to the pencil scratch test can be obtained. The adhesion strength can be improved. In addition, since the surface area is increased by making the substrate surface have a fine uneven shape, the effect of improving the ability to generate active oxygen species can be expected.

また、陰極2の表面粗度は、粗ければ粗いほど良いというものではなく、10μm以下であることが好ましい。これは、担持するレドックスポリマー膜が厚すぎると抵抗となり、却って活性酸素種生成能が低下してしまうためである。レドックスポリマーを1μm以下の薄層状に担持する場合、陰極2の基材の表面粗度が大きすぎると、レドックスポリマー膜を均一に形成することが難しくなり、陰極2の基材が露出するといった塗布ムラの原因となってしまう。   Further, the rougher the surface roughness of the cathode 2 is, the better it is, and it is preferable that it is 10 μm or less. This is because if the supported redox polymer film is too thick, it becomes resistance, and on the contrary, the ability to generate active oxygen species decreases. When the redox polymer is supported in a thin layer of 1 μm or less, if the surface roughness of the base material of the cathode 2 is too large, it becomes difficult to form a redox polymer film uniformly, and the base material of the cathode 2 is exposed. It will cause unevenness.

一方、陽極3の基材としては、白金チタンやカーボンといった陽極酸化反応に耐性を有する極限られたものが汎用的に使用できる。陰極2にレドックスポリマーを担持させた場合は低電圧域でも活性酸素種を効率的に生成することができるため、陽極3の基材として、上記二基材よりも耐性が劣るもの、例えば、チタン、タンタル、イリジウム等でも使用することができる。なお、陽極3の基材としてチタン等を使用する場合は、白金チタンを使用する場合と比較して活性酸素種の消失反応を抑制することができる。これは、陽極3の基材として白金チタンを使用すると、白金チタン表面の白金の触媒作用により、活性酸素種が反応して分解されてしまうためである。   On the other hand, as the base material of the anode 3, a limited material having resistance to an anodic oxidation reaction such as platinum titanium or carbon can be used for general purposes. When the redox polymer is supported on the cathode 2, active oxygen species can be generated efficiently even in a low voltage range. Also, tantalum, iridium and the like can be used. In addition, when using titanium etc. as a base material of the anode 3, the loss | disappearance reaction of an active oxygen species can be suppressed compared with the case where platinum titanium is used. This is because, when platinum titanium is used as the base material of the anode 3, the active oxygen species react and decompose due to the catalytic action of platinum on the surface of the platinum titanium.

本構成を有する活性酸素種生成装置であれば、陰極2で生成される活性酸素種の量を増やすことができるとともに、陽極3での消失反応を抑制することができ、活性酸素種の見かけの生成効率を大幅に改善することができる。即ち、陰極2では、陽極3に対向しない面で生成された活性酸素種の多くが、陽極3で消失することなく処理水5中に供給される。このため、陰極2の単位面積当たりで生成される見かけ上の活性酸素種量を大幅に向上させることができる。   If it is an active oxygen species production | generation apparatus which has this structure, while being able to increase the quantity of the active oxygen species produced | generated by the cathode 2, the loss | disappearance reaction in the anode 3 can be suppressed, and the appearance of an active oxygen species is apparent. The production efficiency can be greatly improved. That is, in the cathode 2, most of the active oxygen species generated on the surface not facing the anode 3 is supplied into the treated water 5 without disappearing at the anode 3. For this reason, the apparent amount of active oxygen species generated per unit area of the cathode 2 can be greatly improved.

なお、陽極3側では、活性酸素種の消失反応が起こる際に酸素が生成される。そのため、隣接する陰極2と陽極3との間においては、上記現象が、溶存酸素濃度を一定量に維持するための酸素供給源となる。一方、陰極2が連続配置(隣接して配置)された部分では、上記現象が起こらず、溶存酸素濃度が減少してしまう。しかし、本装置であれば、隣接して配置された陰極2間に遮蔽体4を配置しているため、かかる部分で溶存酸素が不足して活性酸素種生成効率が低下してしまうことを抑制することが可能となる。   On the anode 3 side, oxygen is generated when the disappearance reaction of the active oxygen species occurs. Therefore, between the adjacent cathode 2 and anode 3, the above phenomenon becomes an oxygen supply source for maintaining the dissolved oxygen concentration at a constant amount. On the other hand, in the portion where the cathodes 2 are continuously arranged (adjacently arranged), the above phenomenon does not occur, and the dissolved oxygen concentration decreases. However, in this apparatus, since the shield 4 is arranged between the cathodes 2 arranged adjacent to each other, it is suppressed that the dissolved oxygen is insufficient in such a portion and the generation efficiency of the active oxygen species is reduced. It becomes possible to do.

また、本装置であれば、陰極及び陽極を1:1の比率で配置した従来のものと比較して陽極の設置枚数を減らすことができ、装置の小型化、及びエネルギー消費量の削減が可能となる。   In addition, with this device, the number of anodes installed can be reduced compared to a conventional device in which the cathode and anode are arranged at a ratio of 1: 1, and the device can be reduced in size and energy consumption can be reduced. It becomes.

本装置で生成された活性酸素種水は強い酸化力を持つため、この水と接触させた物質の抗菌、抗ウィルス、防カビ、脱臭を行うことができる。
なお、上記抗菌とは、滅菌、消毒、殺菌、除菌、抗菌を含む概念であり、微生物やある物質の発生、生育、増殖を抑制或いは死滅させることをいう。
また、上記抗ウィルスとは、ウィルスの活動を抑制するこという。
また、上記防カビとは、カビの発生、生育、増殖を抑制することをいう。
また、上記脱臭とは、臭いを発生する化学物質を吸着、洗浄、化学的に分解することであり、空間から除去することをいう。
Since the active oxygen species water generated by this apparatus has a strong oxidizing power, it is possible to carry out antibacterial, antiviral, antifungal, and deodorization of substances brought into contact with this water.
The antibacterial is a concept including sterilization, disinfection, sterilization, sterilization, and antibacterial, and refers to suppressing or killing generation, growth, and proliferation of microorganisms and certain substances.
Moreover, the said anti-virus means suppressing the activity of a virus.
Moreover, the said mold prevention means suppressing generation | occurrence | production, growth, and proliferation of mold.
The deodorization means adsorption of chemical substances that generate odors, washing, and chemical decomposition, and removal from space.

また、本願において、活性酸素種とは、スーパーオキシド(O)、ヒドロキシラジカル(・OH)、過酸化水素(H)、一重項酸素()、オゾン(O)等、分子状酸素である三重項酸素(O)より活性化された酸素、及びその関連分子のことをいう。 Further, in the present application, the active oxygen species superoxide (O 2 · -), hydroxy radicals (· OH), hydrogen peroxide (H 2 O 2), singlet oxygen (1 O 2), ozone (O 3 ) And the like, and oxygen related to triplet oxygen (O 2 ), which is molecular oxygen, and related molecules.

また、本活性酸素種生成装置によって抗菌等が行われる被処理水として、水道水、地下水、工業用水等がある。即ち、上記被処理水には、飲料水、プール、浴場、海水、種々の施設に供される水が含まれる。   In addition, water to be treated for which antibacterial and the like are performed by the active oxygen species generator includes tap water, groundwater, industrial water, and the like. That is, the water to be treated includes drinking water, a pool, a bathhouse, seawater, and water used for various facilities.

実施の形態2.
実施の形態1では、活性酸素種生成槽1内の処理水5が静置されている場合について説明した。本実施の形態では、処理水5を活性酸素種生成槽1内で対流させる場合について説明する。
Embodiment 2. FIG.
In the first embodiment, the case where the treated water 5 in the active oxygen species generating tank 1 is left stationary has been described. In the present embodiment, a case where the treated water 5 is convected in the active oxygen species generation tank 1 will be described.

図5はこの発明の実施の形態2における活性酸素種生成装置の要部の構成を示す概略図である。図5には、(a)乃至(d)に示す4つの構成例を示している。
活性酸素種生成槽1には、処理水5を活性酸素種生成槽1内に流入させる流入口7と、処理水5を活性酸素種生成槽1から排出する排出口8が設けられている。そして、図示されていないが、排出口8及び流入口7は配管で接続されており、排出口8から排出された処理水5が、この配管を通って流入口7から再び活性酸素種生成槽1内に戻る(循環する)ように構成されている。上記循環システムにより、活性酸素種生成槽1内の処理水5に対流が発生する。
FIG. 5 is a schematic diagram showing the configuration of the main part of the active oxygen species generating apparatus according to Embodiment 2 of the present invention. FIG. 5 shows four configuration examples shown in (a) to (d).
The active oxygen species generating tank 1 is provided with an inlet 7 for allowing the treated water 5 to flow into the active oxygen species generating tank 1 and an outlet 8 for discharging the treated water 5 from the active oxygen species generating tank 1. And although not shown in figure, the discharge port 8 and the inflow port 7 are connected by piping, and the treated water 5 discharged | emitted from the discharge port 8 passes through this piping from the inflow port 7 again, and an active oxygen seed production tank It is configured to return (circulate) within 1. Due to the circulation system, convection is generated in the treated water 5 in the active oxygen species generation tank 1.

その他は、実施の形態1と同様の構成を有している。   The rest of the configuration is the same as that of the first embodiment.

上記構成を有する活性酸素種生成装置では、陰極2及び陽極3の電極反応により、活性酸素種生成槽1内に貯留された処理水5中に、所定の活性酸素種が生成される。また、上記電極反応が行われている間も、活性酸素種生成槽1内の活性酸素種を含む処理水5は、排出口8から活性酸素種生成槽1の外に排出される。そして、排出口8から排出された上記処理水5は、例えば、給湯装置の配管を通過した後、流入口7から活性酸素種生成槽1内に戻される。
その他の動作は、実施の形態1と同様である。
In the active oxygen species generating apparatus having the above configuration, a predetermined active oxygen species is generated in the treated water 5 stored in the active oxygen species generating tank 1 by the electrode reaction of the cathode 2 and the anode 3. Further, while the electrode reaction is being performed, the treated water 5 containing the active oxygen species in the active oxygen species generating tank 1 is discharged out of the active oxygen species generating tank 1 from the discharge port 8. And the said treated water 5 discharged | emitted from the discharge port 8 is returned in the active oxygen seed production | generation tank 1 from the inflow port 7, after passing through piping of a hot water supply apparatus, for example.
Other operations are the same as those in the first embodiment.

本構成においても、実施の形態1と同様の効果を奏することができる。
また、処理水5の循環によって活性酸素種生成槽1内に対流が発生するため、空気と接する処理水5の界面においてより多くの酸素を水中に取り込むことができ、溶存酸素濃度の不足を抑制することが可能となる。このため、電極の設置組数を増加させた場合であっても、過酸化水素生成能の低下を抑制できる。
更に、処理水5の対流によって、陰極2で生成された活性酸素種の拡散速度が速くなるため、電極反応が促進され、活性酸素種の生成効率が向上するといった効果も期待できる。
Also in this configuration, the same effect as in the first embodiment can be obtained.
Further, since convection is generated in the active oxygen species generation tank 1 by circulation of the treated water 5, more oxygen can be taken into the water at the interface of the treated water 5 in contact with the air, and the lack of dissolved oxygen concentration is suppressed. It becomes possible to do. For this reason, even if it is a case where the installation group number of an electrode is increased, the fall of hydrogen peroxide production ability can be suppressed.
Furthermore, since the diffusion rate of the active oxygen species generated at the cathode 2 is increased by the convection of the treated water 5, the electrode reaction is promoted, and the effect of improving the generation efficiency of the active oxygen species can be expected.

なお、処理水5に対流を発生させた場合であっても、一定以上の流量でなければ、隣接して配置された陰極2間では溶存酸素の不足は発生するため、電極を三組以上並べて配置した場合は、ある程度の過酸化水素生成能の低下は避けられない。このため、本実施の形態においても遮蔽体4を陰極2間に配置し、各生成領域に、二組以下の電極を配置することが好適である。   Even when convection is generated in the treated water 5, if the flow rate is not a certain level or more, a shortage of dissolved oxygen occurs between the adjacent cathodes 2. When arranged, a certain degree of reduction in hydrogen peroxide production capacity is inevitable. For this reason, also in this Embodiment, it is suitable to arrange | position the shield 4 between the cathodes 2, and arrange | position two or less sets of electrodes in each production | generation area | region.

実施の形態1及び2において具体的な説明を行った活性酸素種生成装置は、例えば、エアコン、加湿機、空清機、除湿機、加湿空清機等の各種空調機器、下水や汚水の水処理機器、風呂給湯装置の配管や貯水部、水分含有物を保持する部位を備えた水周り機器に接続、或いはこれらの機器の内部に設置することができる。そして、本活性酸素種生成装置を備えることにより、これらの機器において、抗菌、抗ウィルス、防カビ、脱臭を行うことができる。   Examples of the active oxygen species generating apparatus specifically described in the first and second embodiments include various air conditioners such as an air conditioner, a humidifier, an air cleaner, a dehumidifier, and a humidified air cleaner, and a water treatment device for sewage and sewage. It can be connected to a water supply device having a pipe or a water storage unit of a bath hot water supply device or a portion for holding a moisture-containing material, or can be installed inside these devices. And by providing this reactive oxygen species production | generation apparatus, antibacterial, antiviral, antifungal, and deodorizing can be performed in these apparatuses.

1 活性酸素種生成槽
2 陰極
3 陽極
4 遮蔽体
5 処理水
6 電圧印加手段
7 流入口
8 排出口
DESCRIPTION OF SYMBOLS 1 Active oxygen seed production | generation tank 2 Cathode 3 Anode 4 Shield 5 Processed water 6 Voltage application means 7 Inflow port 8 Outlet port

Claims (10)

所定の電圧印加手段に接続された複数の陰極及び複数の陽極と、
処理水が溜められ、前記陰極及び前記陽極が前記処理水に浸された活性酸素種生成槽と、
前記活性酸素種生成槽の内部を仕切るための遮蔽物と、
を備え、
前記各陽極は、一面が前記陰極に対向し、
前記各陰極は、一面が前記陽極に対向し、
前記遮蔽物は、隣接する前記陰極の各他面間に配置された
活性酸素種生成装置。
A plurality of cathodes and a plurality of anodes connected to a predetermined voltage applying means;
An active oxygen species generation tank in which treated water is stored, and the cathode and the anode are immersed in the treated water;
A shield for partitioning the inside of the active oxygen species generation tank;
With
Each of the anodes has one surface facing the cathode,
Each of the cathodes has one surface facing the anode,
The shield is an active oxygen species generator arranged between the other surfaces of the adjacent cathodes.
1つの前記陽極とその陽極の両側に配置された2つの前記陰極とによって一組の電極を構成し、前記活性酸素種生成槽に、複数組の前記電極が並べて配置された請求項1に記載の活性酸素種生成装置。   2. The set of electrodes according to claim 1, wherein one set of electrodes is constituted by the one anode and the two cathodes arranged on both sides of the anode, and a plurality of sets of the electrodes are arranged in the active oxygen species generation tank. Active oxygen species generator. 所定の電圧印加手段に接続された複数の陰極及び複数の陽極と、
処理水が溜められ、前記陰極及び前記陽極が前記処理水に浸された活性酸素種生成槽と、
を備え、
1つの前記陽極とその陽極の両側に配置された2つの前記陰極とによって一組の電極を構成し、前記活性酸素種生成槽に、複数組の前記電極が並べて配置された活性酸素種生成装置。
A plurality of cathodes and a plurality of anodes connected to a predetermined voltage applying means;
An active oxygen species generation tank in which treated water is stored, and the cathode and the anode are immersed in the treated water;
With
An active oxygen species generating apparatus in which one set of electrodes is constituted by one anode and two cathodes arranged on both sides of the anode, and a plurality of sets of electrodes are arranged in the active oxygen species generating tank. .
前記活性酸素種生成槽の内部を仕切るための遮蔽物と、
を更に備え、
前記遮蔽物は、隣接する前記電極間に配置された請求項3に記載の活性酸素種生成装置。
A shield for partitioning the inside of the active oxygen species generation tank;
Further comprising
The reactive oxygen species generating apparatus according to claim 3, wherein the shield is disposed between the adjacent electrodes.
前記遮蔽物により、活性酸素種を生成するための生成領域が複数形成され、
前記各生成領域に、前記電極が二組以下のみ配置された
請求項2又は請求項4に記載の活性酸素種生成装置。
A plurality of generation regions for generating active oxygen species are formed by the shield,
The active oxygen species generation device according to claim 2 or 4, wherein only two or less sets of the electrodes are arranged in each generation region.
前記陰極及び前記陽極の少なくとも一方に、所定のレドックスポリマーが担持された請求項1又は請求項3に記載の活性酸素種生成装置。   The active oxygen species generating device according to claim 1 or 3, wherein a predetermined redox polymer is supported on at least one of the cathode and the anode. 前記レドックスポリマーを担持する前記陰極又は前記陽極の表面が、0.1乃至10μmの凹凸形状を呈する請求項6に記載の活性酸素種生成装置。   The active oxygen species generating device according to claim 6, wherein a surface of the cathode or the anode carrying the redox polymer has an uneven shape of 0.1 to 10 µm. 前記陽極は、その基材が、チタン、タンタル、イリジウムの何れか一つの部材からなる請求項6に記載の活性酸素種生成装置。   The active oxygen species generating device according to claim 6, wherein the base material of the anode is any one member of titanium, tantalum, and iridium. 前記活性酸素種生成槽に、排出口と流入口とが形成され、
前記処理水は、前記排出口から前記活性酸素種生成槽の外に排出され、所定の配管を通過した後、前記流入口から前記活性酸素種生成槽に戻る
請求項1又は請求項3に記載の活性酸素種生成装置。
In the active oxygen species generation tank, an outlet and an inlet are formed,
The said treated water is discharged | emitted out of the said active oxygen species production | generation tank from the said discharge port, and returns to the said reactive oxygen species production | generation tank from the said inflow port after passing through predetermined piping. Active oxygen species generator.
前記活性酸素種生成槽は、前記排出口及び前記流入口が給湯装置の配管に接続された請求項9に記載の活性酸素種生成装置。   The active oxygen species generating device according to claim 9, wherein the discharge port and the inflow port of the active oxygen species generating tank are connected to a pipe of a hot water supply device.
JP2011004793A 2011-01-13 2011-01-13 Reactive oxygen species generator Active JP5212486B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011004793A JP5212486B2 (en) 2011-01-13 2011-01-13 Reactive oxygen species generator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011004793A JP5212486B2 (en) 2011-01-13 2011-01-13 Reactive oxygen species generator

Publications (2)

Publication Number Publication Date
JP2012143718A true JP2012143718A (en) 2012-08-02
JP5212486B2 JP5212486B2 (en) 2013-06-19

Family

ID=46787854

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011004793A Active JP5212486B2 (en) 2011-01-13 2011-01-13 Reactive oxygen species generator

Country Status (1)

Country Link
JP (1) JP5212486B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115520943A (en) * 2022-09-29 2022-12-27 四川大学 Method for electrocatalytic ozone treatment of hospital sewage by using ozone diffusion electrode as anode

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09239364A (en) * 1996-03-05 1997-09-16 Matsushita Electric Ind Co Ltd Electrolyzer and ionic water producing device
JPH1099863A (en) * 1996-08-07 1998-04-21 Kenichi Morita Method for sterilizing water and water-treating apparatus used therein
JPH1179708A (en) * 1997-09-02 1999-03-23 Touin Gakuen Active oxygen generating device
JP3492327B2 (en) * 2001-03-15 2004-02-03 学校法人桐蔭学園 Method and apparatus for generating active oxygen
JP2005081315A (en) * 2003-09-11 2005-03-31 Sanyo Electric Co Ltd Water treatment method and water treatment apparatus
JP2008096032A (en) * 2006-10-12 2008-04-24 Chugoku Electric Power Co Inc:The Hot water circulation type hot water supply system
WO2010119529A1 (en) * 2009-04-15 2010-10-21 三菱電機株式会社 Active oxygen generator

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09239364A (en) * 1996-03-05 1997-09-16 Matsushita Electric Ind Co Ltd Electrolyzer and ionic water producing device
JPH1099863A (en) * 1996-08-07 1998-04-21 Kenichi Morita Method for sterilizing water and water-treating apparatus used therein
JPH1179708A (en) * 1997-09-02 1999-03-23 Touin Gakuen Active oxygen generating device
JP3492327B2 (en) * 2001-03-15 2004-02-03 学校法人桐蔭学園 Method and apparatus for generating active oxygen
JP2005081315A (en) * 2003-09-11 2005-03-31 Sanyo Electric Co Ltd Water treatment method and water treatment apparatus
JP2008096032A (en) * 2006-10-12 2008-04-24 Chugoku Electric Power Co Inc:The Hot water circulation type hot water supply system
WO2010119529A1 (en) * 2009-04-15 2010-10-21 三菱電機株式会社 Active oxygen generator

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115520943A (en) * 2022-09-29 2022-12-27 四川大学 Method for electrocatalytic ozone treatment of hospital sewage by using ozone diffusion electrode as anode
CN115520943B (en) * 2022-09-29 2024-03-01 四川大学 Method for treating hospital sewage by using ozone diffusion electrode as anode through electrocatalytic ozone

Also Published As

Publication number Publication date
JP5212486B2 (en) 2013-06-19

Similar Documents

Publication Publication Date Title
JP4392354B2 (en) High electrolysis cell
Xu et al. Electrogeneration of hydrogen peroxide using Ti/IrO2–Ta2O5 anode in dual tubular membranes Electro-Fenton reactor for the degradation of tricyclazole without aeration
JP5913693B1 (en) Electrolytic device and electrolytic ozone water production device
US6814840B2 (en) Flow-through electrochemical reactor for wastewater treatment
US9944544B2 (en) 3-dimensional porous mono-polar electrode body, electric sterilization filter including 3-dimensional porous mono-polar electrode body, and water treatment method using 3-dimensional porous mono-polar electrode body
CN110759437B (en) Method for electrochemical-UV composite treatment of refractory organic matters
JP6065321B2 (en) Liquid processing equipment
CN105084648A (en) Treatment method for hardly biodegraded sewage
JP2009190016A (en) Method for preventing and removing biofilm in electrolytic capacitor for water purification
JPS6097089A (en) Method of electrochemically removing contamination of water
Yang et al. Electrocatalytic cogeneration of reactive oxygen species for synergistic water treatment
JP4782793B2 (en) Improved COD removal method for electrochemical oxidation
JP5212486B2 (en) Reactive oxygen species generator
KR20060007369A (en) High electric field electrolysis cell
CN105198049A (en) Method of sewage treatment
CN108217861B (en) Internal circulation type electrocatalytic oxidation reactor and sewage purification treatment method
JP2002346566A (en) Apparatus and method for water treatment
JP2011162838A (en) Active oxygen species generator
JP2007070701A (en) Solid polymer electrolyte type ozone generation apparatus
KR20070117523A (en) Electrolysis cell for ozone water and hypo-chlorite water generation by top water electrolysis and mixed oxidant electrode
JP2009034625A (en) Wastewater treatment apparatus and method
JP5310772B2 (en) Air conditioning equipment
JP5796986B2 (en) Water treatment apparatus, water treatment method and water treatment system
JP5116793B2 (en) Reactive oxygen species generator
KR20120016165A (en) The unit for generating the disinfectants

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20121108

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121113

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130109

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130129

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130211

R150 Certificate of patent or registration of utility model

Ref document number: 5212486

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160308

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250