JP2012143427A - Dehumidifying and heating apparatus and clothes dryer using the same - Google Patents
Dehumidifying and heating apparatus and clothes dryer using the same Download PDFInfo
- Publication number
- JP2012143427A JP2012143427A JP2011004680A JP2011004680A JP2012143427A JP 2012143427 A JP2012143427 A JP 2012143427A JP 2011004680 A JP2011004680 A JP 2011004680A JP 2011004680 A JP2011004680 A JP 2011004680A JP 2012143427 A JP2012143427 A JP 2012143427A
- Authority
- JP
- Japan
- Prior art keywords
- temperature
- compressor
- refrigerant
- temperature measuring
- measuring device
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Classifications
-
- Y02B40/72—
Landscapes
- Detail Structures Of Washing Machines And Dryers (AREA)
- Control Of Washing Machine And Dryer (AREA)
Abstract
Description
本発明は、ヒートポンプ装置を用いた除湿加温装置と、それを用いた衣類の乾燥を行う衣類乾燥機に関するものである。 The present invention relates to a dehumidifying and warming device using a heat pump device and a clothes dryer for drying clothes using the same.
従来、この種の除湿加温装置51は、図7〜図9に示すように、筐体52内に圧縮機53、放熱器54、吸熱器55および絞り手段56とからなるヒートポンプ装置57を備えている。圧縮機53と放熱器54とを繋ぐ配管58に、圧縮機53から吐出する冷媒の温度を測定するための温度測定部59を設置している。吸熱器55の下方には、吸熱器55で除湿された除湿水を受けるドレンパン60が設けてあり、このドレンパン60に集められた除湿水を排水する排水口61と、除湿水を検知する水位センサー62が設けられている。 Conventionally, this type of dehumidifying and warming device 51 includes a heat pump device 57 including a compressor 53, a radiator 54, a heat absorber 55, and a throttle means 56 in a housing 52, as shown in FIGS. 7 to 9. ing. A temperature measuring unit 59 for measuring the temperature of the refrigerant discharged from the compressor 53 is installed in a pipe 58 that connects the compressor 53 and the radiator 54. A drain pan 60 that receives dehumidified water dehumidified by the heat absorber 55 is provided below the heat absorber 55, a drain outlet 61 that drains the dehumidified water collected in the drain pan 60, and a water level sensor that detects the dehumidified water. 62 is provided.
ヒートポンプ装置57の動作は、圧縮機53で高温高圧に圧縮された冷媒が配管58を通って放熱器54に入り、送風機(図示せず)で送風された空気と熱交換して空気が加温され、冷媒は冷却されて液化する。液化した高圧冷媒は絞り手段56に入り減圧されて、低温低圧の液冷媒となり吸熱器55に入る。送風機で送風された空気と熱交換して空気は冷却除湿され、冷媒は加熱され、蒸気冷媒となって圧縮機53に戻る。 The operation of the heat pump device 57 is as follows. The refrigerant compressed to a high temperature and high pressure by the compressor 53 enters the radiator 54 through the pipe 58 and exchanges heat with the air blown by a blower (not shown) to heat the air. The refrigerant is cooled and liquefied. The liquefied high-pressure refrigerant enters the throttle means 56 and is depressurized to become a low-temperature and low-pressure liquid refrigerant and enters the heat absorber 55. The air is cooled and dehumidified by exchanging heat with the air blown by the blower, and the refrigerant is heated to return to the compressor 53 as a vapor refrigerant.
圧縮機53の冷媒吐出温度が規定値を超えると、圧縮機53内にある潤滑油の劣化が激しくなるため、圧縮機53から吐出される冷媒の温度を温度測定部59により測定し、冷媒吐出温度が規定値以上になると圧縮機53を停止する安全対策が施されている。 When the refrigerant discharge temperature of the compressor 53 exceeds a specified value, the lubricant in the compressor 53 deteriorates severely. Therefore, the temperature of the refrigerant discharged from the compressor 53 is measured by the temperature measuring unit 59, and the refrigerant discharge A safety measure is taken to stop the compressor 53 when the temperature exceeds a specified value.
また、吸熱器55で除湿された除湿水は、重力によって吸熱器55の下方に設けたドレンパン60に滴下し、排水口61から除湿加温装置51外に排出される。ドレンパン60には、排水口61が異物によって目詰まりしたとき等、ドレンパン60に溜まる除湿水の水位の上昇を検知する水位センサー62が設けてあり、除湿水がドレンパン60から溢れるのを防止している。 Further, the dehumidified water dehumidified by the heat absorber 55 is dropped onto the drain pan 60 provided below the heat absorber 55 by gravity, and is discharged out of the dehumidifying and heating device 51 from the drain port 61. The drain pan 60 is provided with a water level sensor 62 that detects an increase in the water level of the dehumidified water accumulated in the drain pan 60 when the drain outlet 61 is clogged with foreign matter, and prevents the dehumidified water from overflowing the drain pan 60. Yes.
一方、空気の流れについて説明すると、送風機によって空気口63から除湿加温装置51に送り込まれた空気は、まず、吸熱器55に入って冷却され、吸熱器55の温度が空気の飽和温度以下になると吸熱器55の表面に結露し、除湿される。その後、放熱器54に入って加熱され、高温低湿の空気となって排気口64から除湿加温装置51を出る。 On the other hand, the flow of air will be described. The air sent from the air port 63 to the dehumidifying and warming device 51 by the blower first enters the heat absorber 55 and is cooled, and the temperature of the heat absorber 55 is below the saturation temperature of the air. Then, dew condensation occurs on the surface of the heat absorber 55 and is dehumidified. Then, it enters the heat radiator 54 and is heated to become high-temperature and low-humidity air, and exits the dehumidifying and heating device 51 from the exhaust port 64.
近年、省エネルギの観点から、衣類乾燥機にヒータに代えて、このようなヒートポンプ装置を用いた除湿加温装置が用いられるようになっている(例えば、特許文献1参照)。 In recent years, from the viewpoint of energy saving, a dehumidifying and warming device using such a heat pump device is used instead of a heater in a clothes dryer (see, for example, Patent Document 1).
また、ヒートポンプ装置を用いた洗濯乾燥機において、除湿により発生した結露水の水位をサーミスタで検知するとともに、結露水の水位の異常上昇を検知すると圧縮機の運転を停止することが考えられている(例えば、特許文献2参照)。 Further, in a washing / drying machine using a heat pump device, it is considered that the temperature of condensed water generated by dehumidification is detected by a thermistor and the compressor operation is stopped when an abnormal increase in the level of condensed water is detected. (For example, refer to Patent Document 2).
しかしながら、前記従来の構成では、ドレンパン60の除湿水を検知するために水位センサー62を設けているため、水位センサー62を設置するためのスペースが必要で装置が大型化するとともに、構成が複雑で高価になるという課題があった。 However, in the conventional configuration, since the water level sensor 62 is provided to detect the dehumidified water of the drain pan 60, a space for installing the water level sensor 62 is required, the apparatus is enlarged, and the configuration is complicated. There was a problem of becoming expensive.
本発明は、前記従来の課題を解決するもので、簡単な構成で除湿水の排水異常を検知する感度を高めて的確に検知することができる除湿加温装置を提供することを目的とする。 The present invention solves the above-described conventional problems, and an object thereof is to provide a dehumidifying and warming device that can accurately detect the abnormality of drainage of dehumidified water with a simple configuration and increase the sensitivity.
前記従来の課題を解決するために、本発明の除湿加温装置は、ヒートポンプ装置の吸熱器で空気と熱交換して生じる結露水を受けるドレンパンと、圧縮機と放熱器を連結する配管に設けた第1の温度測定部によって冷媒の温度を測定する第1の冷媒温度測定装置と、前記放熱器内の凝縮温度を第2の温度測定部によって測定する第2の冷媒温度測定装置と、前記第1および第2の冷媒温度測定装置により測定した温度情報によって前記圧縮機の運転を制御する制御装置とを備え、前記第1の温度測定部を前記ドレンパン内に設置するとともに、前記制御装置は、前記圧縮機の回転数を間欠的に低下させるようにしたものである。 In order to solve the above-described conventional problems, the dehumidifying and heating device of the present invention is provided in a drain pan that receives condensed water generated by heat exchange with air in a heat absorber of a heat pump device, and a pipe that connects a compressor and a radiator. A first refrigerant temperature measuring device for measuring the temperature of the refrigerant by the first temperature measuring unit, a second refrigerant temperature measuring device for measuring the condensation temperature in the radiator by the second temperature measuring unit, A control device that controls the operation of the compressor based on temperature information measured by the first and second refrigerant temperature measurement devices, and the first temperature measurement unit is installed in the drain pan, and the control device includes: The rotation speed of the compressor is intermittently reduced.
これによって、排水不良等により結露水がドレンパン内に溜まり、圧縮機からの吐出冷媒温度を測定する第1の冷媒温度測定装置の第1の温度測定部が結露水と接触すると、結露水の温度は冷媒の温度より低いため、測定温度が低下する。圧縮機の回転数が低下すると、冷媒の循環量が低下し熱容量流量が小さくなるため、第1の温度測定部が結露水と接触していると、測定温度を大きく低下させることができる。したがって、運転中に圧縮機の回転数を間欠的に低下させて感度を高めることによって、所定の間隔で検知精度を高めることができ、ドレンパン内の水位異常を的確に精度よく検知することができる。 As a result, when condensed water accumulates in the drain pan due to defective drainage or the like, and the first temperature measurement unit of the first refrigerant temperature measuring device that measures the refrigerant temperature discharged from the compressor comes into contact with the condensed water, the temperature of the condensed water Since the temperature is lower than the temperature of the refrigerant, the measured temperature decreases. When the rotation speed of the compressor is decreased, the circulation amount of the refrigerant is decreased and the heat capacity flow rate is decreased. Therefore, when the first temperature measurement unit is in contact with the dew condensation water, the measurement temperature can be greatly decreased. Therefore, by increasing the sensitivity by intermittently reducing the rotation speed of the compressor during operation, the detection accuracy can be increased at predetermined intervals, and the water level abnormality in the drain pan can be detected accurately and accurately. .
また、本発明の除湿加温装置は、ヒートポンプ装置の吸熱器で空気と熱交換して生じる結露水を受けるドレンパンと、圧縮機と放熱器を連結する配管に設けた第1の温度測定部によって冷媒の温度を測定する第1の冷媒温度測定装置と、前記放熱器内の凝縮温度を第2の温度測定部によって測定する第2の冷媒温度測定装置と、前記第1および第2の冷媒温度測定装置により測定した温度情報によって前記圧縮機の運転を制御する制御装置とを備え、前記第1の温度測定部を前記ドレンパン内に設置するとともに、前記制御装置は、前記第1の冷媒温度測定装置で測定した温度が所定の温度に低下すると、圧縮機の回転数を所定時間低下させるようにしたものである。 Further, the dehumidifying and warming device of the present invention includes a drain pan that receives condensed water generated by heat exchange with air in the heat absorber of the heat pump device, and a first temperature measurement unit provided in a pipe that connects the compressor and the radiator. A first refrigerant temperature measuring device for measuring the temperature of the refrigerant; a second refrigerant temperature measuring device for measuring the condensation temperature in the radiator by a second temperature measuring unit; and the first and second refrigerant temperatures. And a control device that controls the operation of the compressor based on temperature information measured by the measurement device, the first temperature measurement unit is installed in the drain pan, and the control device measures the first refrigerant temperature. When the temperature measured by the apparatus decreases to a predetermined temperature, the rotational speed of the compressor is decreased for a predetermined time.
これによって、排水不良等により結露水がドレンパン内に溜まり、圧縮機からの吐出冷媒温度を測定する第1の冷媒温度測定装置の第1の温度測定部が結露水と接触すると、結露水の温度は冷媒の温度より低いため、測定温度が低下する。圧縮機の回転数が低下すると、冷媒の循環量が低下し熱容量流量が小さくなるため、第1の温度測定部が結露水と接触していると、測定温度を大きく低下させることができる。したがって、運転中に第1の冷媒温度測定装置で測定した温度が所定の温度に低下すると、圧縮機の回転数を所定時間低下させて感度を高めることによって、測定温度を大きく低下させることができ、ドレンパン内の水位異常を的確に精度よく検知することができるとともに、圧縮機の回転数を低下させる動作を少なくして圧縮機の動作を安定させることができる。 As a result, when condensed water accumulates in the drain pan due to defective drainage or the like, and the first temperature measurement unit of the first refrigerant temperature measuring device that measures the refrigerant temperature discharged from the compressor comes into contact with the condensed water, the temperature of the condensed water Since the temperature is lower than the temperature of the refrigerant, the measured temperature decreases. When the rotation speed of the compressor is decreased, the circulation amount of the refrigerant is decreased and the heat capacity flow rate is decreased. Therefore, when the first temperature measurement unit is in contact with the dew condensation water, the measurement temperature can be greatly decreased. Therefore, when the temperature measured by the first refrigerant temperature measuring device during operation is reduced to a predetermined temperature, the measured temperature can be greatly reduced by increasing the sensitivity by reducing the rotational speed of the compressor for a predetermined time. The water level abnormality in the drain pan can be detected accurately and accurately, and the operation of lowering the rotational speed of the compressor can be reduced to stabilize the operation of the compressor.
本発明の除湿加温装置は、簡単な構成で除湿水の排水異常を検知する感度を高めて的確に精度よく検知することができる。 The dehumidifying and warming device of the present invention can accurately detect the dehumidified water drainage abnormality with a simple configuration with high sensitivity.
第1の発明は、圧縮機、放熱器、絞り手段、および吸熱器を冷媒が循環する配管により連結したヒートポンプ装置と、空気流入口から前記吸熱器および前記放熱器を通って空気流出口へ流れる風回路と、前記吸熱器で空気と熱交換して生じる結露水を受けるドレンパンと、前記圧縮機と前記放熱器を連結する配管に設けた第1の温度測定部によって冷媒の温度を測定する第1の冷媒温度測定装置と、前記放熱器内の凝縮温度を第2の温度測定部によって測定する第2の冷媒温度測定装置と、前記第1および第2の冷媒温度測定装置により測定した温度情報によって前記圧縮機の運転を制御する制御装置とを備え、前記第1の温度測定部を前記ドレンパン内に設置するとともに、前記制御装置は、前記圧縮機の回転数を間欠的に低下させるようにしたことにより、排水不良等により結露水がドレンパン内に溜まり、圧縮機からの吐出冷媒温度を測定する第1の冷媒温度測定装置の第1の温度測定部が結露水と接触すると、結露水の温度は冷媒の温度より低いため、測定温度が低下する。圧縮機の回転数が低下すると、冷媒の循環量が低下し熱容量流量が小さくなるため、第1の温度測定部が結露水と接触していると、測定温度を大きく低下させることができる。したがって、運転中に圧縮機の回転数を間欠的に低下させて感度を高めることによって、所定の間隔で検知精度を高めることができ、専用の水位センサーを設けることなく、ヒートボンプサイクルの動作変動と区別してドレンパン内の水位異常を的確に精度よく検知することができる。 A first invention is a heat pump device in which a compressor, a radiator, a throttle means, and a heat absorber are connected by a pipe through which a refrigerant circulates, and flows from an air inlet to the air outlet through the heat absorber and the radiator. The temperature of the refrigerant is measured by a wind circuit, a drain pan that receives condensed water generated by heat exchange with the air at the heat absorber, and a first temperature measurement unit provided in a pipe that connects the compressor and the radiator. Temperature information measured by the first refrigerant temperature measuring device, the second refrigerant temperature measuring device that measures the condensation temperature in the radiator by a second temperature measuring unit, and the first and second refrigerant temperature measuring devices. And a control device for controlling the operation of the compressor, the first temperature measurement unit is installed in the drain pan, and the control device intermittently reduces the rotational speed of the compressor. As a result, the condensed water accumulates in the drain pan due to defective drainage or the like, and the first temperature measuring unit of the first refrigerant temperature measuring device that measures the refrigerant temperature discharged from the compressor comes into contact with the condensed water. Since the temperature is lower than the temperature of the refrigerant, the measured temperature decreases. When the rotation speed of the compressor is decreased, the circulation amount of the refrigerant is decreased and the heat capacity flow rate is decreased. Therefore, when the first temperature measurement unit is in contact with the dew condensation water, the measurement temperature can be greatly decreased. Therefore, by increasing the sensitivity by intermittently reducing the rotational speed of the compressor during operation, the detection accuracy can be increased at predetermined intervals, and the operation fluctuation of the heat bump cycle can be achieved without providing a dedicated water level sensor. It is possible to accurately and accurately detect the water level abnormality in the drain pan.
第2の発明は、特に、第1の発明の制御装置は、第1の冷媒温度測定装置で測定した温度が所定の温度に低下すると、圧縮機の運転を停止するようにしたことにより、結露水の排水異常を的確に検知して除湿の進行を停止することができ、結露水の溢水を防止することができる。 In the second invention, in particular, the control device according to the first invention stops the operation of the compressor when the temperature measured by the first refrigerant temperature measuring device decreases to a predetermined temperature. Abnormal water drainage can be accurately detected and the progress of dehumidification can be stopped, and overflow of condensed water can be prevented.
第3の発明は、圧縮機、放熱器、絞り手段、および吸熱器を冷媒が循環する配管により連結したヒートポンプ装置と、空気流入口から前記吸熱器および前記放熱器を通って空気流出口へ流れる風回路と、前記吸熱器で空気と熱交換して生じる結露水を受けるドレンパンと、前記圧縮機と前記放熱器を連結する配管に設けた第1の温度測定部によって冷媒の温度を測定する第1の冷媒温度測定装置と、前記放熱器内の凝縮温度を第2の温度測定部によって測定する第2の冷媒温度測定装置と、前記第1および第2の冷媒温度測定装置により測定した温度情報によって前記圧縮機の運転を制御する制御装置とを備え、前記第1の温度測定部を前記ドレンパン内に設置するとともに、前記制御装置は、前記第1の冷媒温度測定装置で測定した温度が所定の温度に低下すると、圧縮機の回転数を所定時間低下させるようにしたことにより、排水不良等により結露水がドレンパン内に溜まり、圧縮機からの吐出冷媒温度を測定する第1の冷媒温度測定装置の第1の温度測定部が結露水と接触すると、結露水の温度は冷媒の温度より低いため、測定温度が低下する。圧縮機の回転数が低下すると、冷媒の循環量が低下し熱容量流量が小さくなるため、第1の温度測定部が結露水と接触していると、測定温度を大きく低下させることができる。したがって、運転中に第1の冷媒温度測定装置で測定した温度が所定の温度に低下すると、圧縮機の回転
数を所定時間低下させて感度を高めることによって、検知精度を高めて測定温度を大きく低下させることができ、専用の水位センサーを設けることなく、ヒートボンプサイクルの動作変動と区別してドレンパン内の水位異常を的確に精度よく検知することができるとともに、圧縮機の回転数を低下させる動作を少なくして圧縮機の動作を安定させることができる。
According to a third aspect of the present invention, there is provided a heat pump device in which a compressor, a radiator, a throttle means, and a heat absorber are connected by a pipe through which a refrigerant circulates, and the air flows from the air inlet to the air outlet through the heat absorber and the radiator. The temperature of the refrigerant is measured by a wind circuit, a drain pan that receives condensed water generated by heat exchange with the air at the heat absorber, and a first temperature measurement unit provided in a pipe that connects the compressor and the radiator. Temperature information measured by the first refrigerant temperature measuring device, the second refrigerant temperature measuring device that measures the condensation temperature in the radiator by a second temperature measuring unit, and the first and second refrigerant temperature measuring devices. And a control device for controlling the operation of the compressor, the first temperature measurement unit is installed in the drain pan, and the control device has a temperature measured by the first refrigerant temperature measurement device. When the temperature decreases to a certain temperature, the rotation speed of the compressor is decreased for a predetermined time, so that condensed water accumulates in the drain pan due to defective drainage or the like, and the first refrigerant temperature for measuring the refrigerant temperature discharged from the compressor When the first temperature measurement unit of the measuring device comes into contact with the dew condensation water, the temperature of the dew condensation water is lower than the temperature of the refrigerant, so that the measurement temperature decreases. When the rotation speed of the compressor is decreased, the circulation amount of the refrigerant is decreased and the heat capacity flow rate is decreased. Therefore, when the first temperature measurement unit is in contact with the dew condensation water, the measurement temperature can be greatly decreased. Therefore, when the temperature measured by the first refrigerant temperature measuring device during operation is lowered to a predetermined temperature, the detection speed is increased and the measured temperature is increased by increasing the sensitivity by decreasing the rotational speed of the compressor for a predetermined time. It is possible to detect the water level abnormality in the drain pan accurately and accurately, distinguishing it from the fluctuations in the operation of the heat-bump cycle, and to reduce the rotation speed of the compressor without providing a dedicated water level sensor. The operation of the compressor can be stabilized by reducing the number of the compressors.
第4の発明は、特に、第3の発明の制御装置は、第1の冷媒温度測定装置で測定した温度が、圧縮機の回転数を低下させる温度より低い所定の温度に低下すると、圧縮機の運転を停止するようにしたことにより、結露水の排水異常を的確に検知して除湿の進行を停止することができ、結露水の溢水を防止することができる。 According to a fourth aspect of the present invention, in particular, when the temperature measured by the first refrigerant temperature measuring device drops to a predetermined temperature lower than the temperature at which the rotation speed of the compressor is lowered, the control device of the third aspect of the invention By stopping the operation, it is possible to accurately detect the drainage abnormality of the condensed water and stop the progress of the dehumidification, and to prevent the overflow of the condensed water.
第5の発明は、特に、第1〜第4のいずれか1つの発明の制御装置は、第1の冷媒温度測定装置で測定した温度が第2の冷媒温度測定装置により測定した温度に低下すると、圧縮機の運転を停止するようにしたことにより、第1の冷媒温度測定装置の温度測定部が結露水に接触すると、第2の冷媒温度測定装置で測定した冷媒凝縮温度より低くなり、圧縮機の運転を停止する温度を第2の冷媒温度測定装置によって測定された温度とすることにより、結露水の排水異常を確実に検知して除湿の進行を停止することができる。 In the fifth aspect of the invention, in particular, in the control device of any one of the first to fourth aspects of the invention, when the temperature measured by the first refrigerant temperature measuring device decreases to the temperature measured by the second refrigerant temperature measuring device. When the temperature measurement unit of the first refrigerant temperature measurement device comes into contact with the dew condensation water by stopping the operation of the compressor, it becomes lower than the refrigerant condensation temperature measured by the second refrigerant temperature measurement device. By setting the temperature at which the operation of the machine is stopped to the temperature measured by the second refrigerant temperature measuring device, it is possible to reliably detect the drainage abnormality of the condensed water and stop the progress of dehumidification.
第6の発明は、第1〜第5のいずれか1つの発明の除湿加温装置を搭載した衣類乾燥機であり、水位センサーを設けることなく、簡単な構成で排水異常を的確に精度よく検知することができる衣類乾燥機を提供することができる。 A sixth invention is a clothes dryer equipped with the dehumidifying and heating device of any one of the first to fifth inventions, and accurately detects a drainage abnormality with a simple configuration without providing a water level sensor. The clothes dryer which can be provided can be provided.
第7の発明は、特に、第6の発明の衣類乾燥機にスピード乾燥コースを設け、制御装置は、前記スピード乾燥コースの設定時に圧縮機の回転数を間欠的に低下させ、第1の冷媒温度測定装置で測定した温度が所定の温度に低下すると、前記圧縮機の運転を停止するようにしたことにより、特に、スピード乾燥コースでは圧縮機を高速回転で運転させるため、冷媒の熱容量流量が大きくなり、結露水と接触したときの温度低下が少なくなることから、圧縮機の回転数を低下させて感度を高めることによって、排水異常を的確に精度よく検知することができる。 In the seventh aspect of the invention, in particular, the clothes dryer of the sixth aspect of the invention is provided with a speed drying course, and the control device intermittently reduces the rotational speed of the compressor when setting the speed drying course, and the first refrigerant When the temperature measured by the temperature measuring device decreases to a predetermined temperature, the operation of the compressor is stopped. Especially, in the speed drying course, the compressor is operated at a high speed, so that the heat capacity flow rate of the refrigerant is reduced. Since the temperature increases when it comes into contact with the condensed water, the drainage abnormality can be accurately and accurately detected by increasing the sensitivity by reducing the rotational speed of the compressor.
第8の発明は、特に、第6の発明の衣類乾燥機にスピード乾燥コースを設け、制御装置は、前記スピード乾燥コースの設定時に第1の冷媒温度測定装置で測定した温度が所定の温度に低下すると、圧縮機の回転数を所定時間低下させるとともに、前記圧縮機の回転数の低下により、前記圧縮機の回転数を低下させる温度より低い所定の温度に低下すると、前記圧縮機の運転を停止するようにしたことにより、特に、スピード乾燥コースでは圧縮機を高速回転で運転させるため、冷媒の熱容量流量が大きくなり、結露水と接触したときの温度低下が少なくなることから、圧縮機の回転数を低下させて感度を高めることによって、排水異常を的確に精度よく検知することができるとともに、圧縮機の回転数を低下させる動作を少なくして圧縮機の動作を安定させることができ、乾燥運転を効率よくおこなうことができる。 In the eighth invention, in particular, the clothes dryer of the sixth invention is provided with a speed drying course, and the control device sets the temperature measured by the first refrigerant temperature measuring device to a predetermined temperature when the speed drying course is set. When the pressure decreases, the rotation speed of the compressor is decreased for a predetermined time, and when the rotation speed of the compressor is decreased to a predetermined temperature lower than the temperature at which the rotation speed of the compressor is decreased, the operation of the compressor is reduced. Since the compressor is operated at a high speed rotation especially in the speed drying course, the heat capacity flow rate of the refrigerant increases and the temperature drop when contacting with condensed water is reduced. By increasing the sensitivity by lowering the rotational speed, it is possible to accurately detect drainage abnormalities and reduce the operation of reducing the rotational speed of the compressor. Create can be stabilized, it is possible to carry out the drying operation efficiently.
以下、本発明の実施の形態について、図面を参照しながら説明する。なお、この実施の形態によって本発明が限定されるものではない。 Hereinafter, embodiments of the present invention will be described with reference to the drawings. Note that the present invention is not limited to the embodiments.
(実施の形態1)
図1は、本発明の第1の実施の形態における除湿加温装置の上面図、図2は、同除湿加温装置のブロック図、図3は、図1のB−B断面図、図4は、同除湿加温装置の動作を示すタイムチャートである。
(Embodiment 1)
1 is a top view of a dehumidifying and warming device according to a first embodiment of the present invention, FIG. 2 is a block diagram of the dehumidifying and warming device, FIG. 3 is a cross-sectional view taken along line BB in FIG. These are time charts which show operation | movement of the dehumidification warming apparatus.
図1〜図4において、筐体1内に圧縮機2、放熱器3、絞り手段4および吸熱器5と、
これらを冷媒が循環する配管6で繋いだヒートポンプ装置7が設置されている。圧縮機2はインバーター等の回転数を可変できるものである。圧縮機2と放熱器3とを繋ぐ配管6に、圧縮機2から吐出する冷媒の温度を測定する第1の温度測定部8を設けてあり、この第1の温度測定部8で測定した冷媒の温度は、圧縮機2の動作を制御する制御装置9の第1の冷媒温度測定装置10に入力される。
1 to 4, a compressor 2, a radiator 3, a throttle means 4 and a heat absorber 5 in a housing 1,
A heat pump device 7 is provided in which these are connected by a pipe 6 through which a refrigerant circulates. The compressor 2 can change the rotation speed of an inverter or the like. A pipe 6 that connects the compressor 2 and the radiator 3 is provided with a first temperature measuring unit 8 that measures the temperature of the refrigerant discharged from the compressor 2, and the refrigerant measured by the first temperature measuring unit 8. Is input to the first refrigerant temperature measuring device 10 of the control device 9 that controls the operation of the compressor 2.
また、放熱器3内に冷媒の凝縮温度を測定する第2の温度測定部11を設けてあり、この第2の温度測定部11で測定した冷媒の温度は、制御装置9の第2の冷媒温度測定装置12に入力される。第1の温度測定部8および第2の温度測定部11は、サーミスタ等で構成している。 Further, a second temperature measuring unit 11 that measures the condensation temperature of the refrigerant is provided in the radiator 3, and the temperature of the refrigerant measured by the second temperature measuring unit 11 is the second refrigerant of the control device 9. Input to the temperature measuring device 12. The first temperature measuring unit 8 and the second temperature measuring unit 11 are composed of a thermistor or the like.
吸熱器5の下方には、吸熱器5で除湿された除湿水を受けるドレンパン13が設けてあり、このドレンパン13に集められた除湿水を排水する排水口14を設けている。配管6は、圧縮機2と放熱器3とを繋ぐ部分の一部をドレンパン13内の底部に近接配置し、サーミスタ等で構成した第1の温度測定部8は、ドレンパン13から除湿水が溢れないように設定された溢水線Wより重力方向下側に、少なくともその一部または全部が位置するように配管6に取り付けられている。 Below the heat absorber 5, a drain pan 13 that receives the dehumidified water dehumidified by the heat absorber 5 is provided, and a drain port 14 that drains the dehumidified water collected in the drain pan 13 is provided. The pipe 6 has a part of the portion connecting the compressor 2 and the radiator 3 disposed close to the bottom of the drain pan 13, and the first temperature measuring unit 8 constituted by a thermistor overflows the dehumidified water from the drain pan 13. It is attached to the pipe 6 so that at least a part or all of it is positioned below the overflow line W set so as not to fall in the direction of gravity.
ヒートポンプ装置7の基本的な動作は従来と同様であり、説明は簡略におこなう。圧縮機2で高温高圧に圧縮された冷媒は、配管6を通り第1の温度測定部8が取り付けられている部分を通って放熱器3に入る。放熱器3で送風機(図示せず)で送風された空気と熱交換して空気が加温され、冷媒は冷却されて液化する。液化した高圧冷媒は絞り手段4に入り、減圧されて低温低圧の液冷媒となり吸熱器5に入る。吸熱器5で送風機によって送風された空気と熱交換して空気は冷却除湿され、冷媒は加熱されて蒸気冷媒となり圧縮機2に戻る。 The basic operation of the heat pump device 7 is the same as the conventional one, and the description will be simplified. The refrigerant compressed to a high temperature and high pressure by the compressor 2 passes through the pipe 6 and enters the radiator 3 through a portion where the first temperature measuring unit 8 is attached. Heat is exchanged with the air blown by a blower (not shown) in the radiator 3 to heat the air, and the refrigerant is cooled and liquefied. The liquefied high-pressure refrigerant enters the throttle means 4 and is decompressed to become a low-temperature and low-pressure liquid refrigerant and enters the heat absorber 5. The heat absorber 5 exchanges heat with the air blown by the blower, and the air is cooled and dehumidified, and the refrigerant is heated to become vapor refrigerant and returns to the compressor 2.
圧縮機2の冷媒吐出温度が規定値を超えると、圧縮機2内にある潤滑油の劣化が激しくなるため、圧縮機2から吐出される冷媒温度を第1の温度測定部8により測定し、冷媒吐出温度が規定値以上になると制御装置9によって圧縮機2の動作を停止するようにしている。 When the refrigerant discharge temperature of the compressor 2 exceeds a specified value, the deterioration of the lubricating oil in the compressor 2 becomes severe. Therefore, the refrigerant temperature discharged from the compressor 2 is measured by the first temperature measuring unit 8, When the refrigerant discharge temperature becomes equal to or higher than a specified value, the control device 9 stops the operation of the compressor 2.
ヒートポンプサイクルでは、圧縮機2から吐出される冷媒の吐出温度は、凝縮温度より高い関係にあり、冷媒の吐出温度(例えば、80℃〜100℃)は第1の温度測定部8で測定し、凝縮温度(例えば、60℃〜70℃)は第2の温度測定部11で測定している。冷媒の吐出温度は、圧縮機2の動作に連動して所定の範囲内で制御され、圧縮機2の回転数が一定に保たれていると、上下の変動幅は小さく各々1deg程度である。 In the heat pump cycle, the discharge temperature of the refrigerant discharged from the compressor 2 is higher than the condensation temperature, and the discharge temperature of the refrigerant (for example, 80 ° C. to 100 ° C.) is measured by the first temperature measurement unit 8. The condensation temperature (for example, 60 ° C. to 70 ° C.) is measured by the second temperature measuring unit 11. The discharge temperature of the refrigerant is controlled within a predetermined range in conjunction with the operation of the compressor 2, and when the rotation speed of the compressor 2 is kept constant, the vertical fluctuation range is small and about 1 deg.
一方、除湿加温装置によって除湿加温される空気の流れを説明すると、図示しない送風機によって筐体1に設けた空気流入口15から除湿加温装置に送り込まれた空気は、まず、吸熱器5に入って冷却され、吸熱器5の温度が空気の飽和温度以下になると吸熱器5の表面に結露し、除湿される。その後、放熱器3に入って加熱され、高温低湿の空気となって空気流出口16から除湿加温装置を出る風回路17が構成されている。 On the other hand, the flow of air dehumidified and warmed by the dehumidifying and warming device will be described. First, the air sent to the dehumidifying and warming device from the air inlet 15 provided in the housing 1 by a blower (not shown) is first the heat absorber 5. Then, when the temperature of the heat absorber 5 becomes equal to or lower than the saturation temperature of the air, dew condensation occurs on the surface of the heat absorber 5 and is dehumidified. After that, the wind circuit 17 is configured to enter the heat radiator 3 and be heated to become high-temperature and low-humidity air and to exit the dehumidifying and warming device from the air outlet 16.
ヒートポンプ装置7の動作により、吸熱器5で結露した除湿水はドレンパン13に落下して集められ、最下部にある排水口14から筐体1外に排出される。送風機で送風される空気にリント等の異物が含まれていると、吸熱器5で結露した除湿水に付着しドレンパン13に溜まる。 Due to the operation of the heat pump device 7, the dehumidified water dewed by the heat absorber 5 is collected by dropping into the drain pan 13 and discharged out of the housing 1 through the drain port 14 at the bottom. If foreign matter such as lint is contained in the air blown by the blower, it adheres to the dehumidified water condensed by the heat absorber 5 and accumulates in the drain pan 13.
排水口14がリント等の異物によって目詰まりする等の排水不良が起きた場合、除湿水は排水口14から排水されずにドレンパン13に溜まる。ヒートポンプ装置7の動作によ
り吸熱器5で結露した除湿水で水位が上昇し、やがて溢水線Wを超えるとドレンパン13から除湿水が溢れて水漏れが生じる。圧縮機2と放熱器3とを繋ぐ配管6の一部をドレンパン13内の底部に近接配置しているので、ドレンパン13内の水位が上昇すると、その底部に配設された配管6の一部が結露水と接触し、溢水線Wを超える前に第1の温度測定部8とともに配管6の一部が結露水と接触する。
When a drainage failure such as the drainage port 14 being clogged with foreign matter such as lint occurs, the dehumidified water is not drained from the drainage port 14 and is collected in the drain pan 13. Due to the operation of the heat pump device 7, the water level rises with the dehumidified water condensed by the heat absorber 5, and when it eventually exceeds the overflow line W, the dehumidified water overflows from the drain pan 13 and water leaks. Since a part of the pipe 6 connecting the compressor 2 and the radiator 3 is arranged close to the bottom part in the drain pan 13, when the water level in the drain pan 13 rises, a part of the pipe 6 arranged at the bottom part Comes into contact with the dew condensation water, and before the overflow line W is exceeded, a part of the pipe 6 together with the first temperature measurement unit 8 comes into contact with the dew condensation water.
このとき、圧縮機2から吐出された冷媒は高温であるため、結露水と接触することにより、第1の温度測定部8が冷却されて測定温度が低下する。このとき、第2の冷媒温度測定装置12の第2の温度測定部11で測定した冷媒凝縮温度が、第2の所定範囲内での変化であれば、圧縮機2の回転数変化等のヒートポンプサイクルの変動による温度低下ではなく、排水不良によるものであると判断することができ、圧縮機2の運転を制御する制御装置9により、圧縮機2の運転を停止させ、除湿の進行を停止して結露水の溢水による水漏れを防止することができる。 At this time, since the refrigerant discharged from the compressor 2 is at a high temperature, the first temperature measurement unit 8 is cooled and the measurement temperature is lowered by contacting the condensed water. At this time, if the refrigerant condensing temperature measured by the second temperature measuring unit 11 of the second refrigerant temperature measuring device 12 is a change within the second predetermined range, a heat pump such as a change in the rotational speed of the compressor 2 or the like. It can be determined that it is not due to a temperature drop due to cycle fluctuations but due to poor drainage, and the controller 9 that controls the operation of the compressor 2 stops the operation of the compressor 2 and stops the progress of dehumidification. Therefore, it is possible to prevent water leakage due to overflow of condensed water.
つまり、第1の温度測定部8によって、冷媒の吐出温度と結露水の排水異常を監視するとともに、冷媒の吐出温度と凝縮温度の両方の変化を監視することにより、排水異常を精度よく検知することができる。 That is, the first temperature measurement unit 8 monitors the discharge temperature of the refrigerant and the drainage abnormality of the condensed water, and also monitors the change in both the discharge temperature of the refrigerant and the condensation temperature, thereby accurately detecting the drainage abnormality. be able to.
図4は、第1の温度測定部8および第2の温度測定部11で測定した冷媒の温度と、圧縮機2の回転数の変化を示している。運転の開始により第1の冷媒温度測定装置10で測定した冷媒吐出温度と、第2の冷媒温度測定装置12で測定した冷媒凝縮温度はともに徐々に上昇する。 FIG. 4 shows changes in the refrigerant temperature measured by the first temperature measurement unit 8 and the second temperature measurement unit 11 and the rotational speed of the compressor 2. As the operation starts, both the refrigerant discharge temperature measured by the first refrigerant temperature measuring device 10 and the refrigerant condensing temperature measured by the second refrigerant temperature measuring device 12 rise gradually.
圧縮機2は、比較的高回転域で設定された第1の所定の回転数r1(例えば、90rps)で運転する。第1の冷媒温度測定装置10で測定した冷媒吐出温度は、t1(例えば、110℃)に設定され、圧縮機2の動作に連動して所定の範囲内で制御され、圧縮機2の回転数が一定に保たれていると、上下の変動幅は小さく各々1deg程度である。第2の冷媒温度測定装置12で測定した冷媒凝縮温度は、t3(例えば、70℃)である。 The compressor 2 operates at a first predetermined rotation speed r1 (for example, 90 rps) set in a relatively high rotation range. The refrigerant discharge temperature measured by the first refrigerant temperature measuring device 10 is set to t1 (for example, 110 ° C.), controlled within a predetermined range in conjunction with the operation of the compressor 2, and the rotation speed of the compressor 2 Is kept constant, the vertical fluctuation range is small and about 1 deg. The refrigerant condensing temperature measured by the second refrigerant temperature measuring device 12 is t3 (for example, 70 ° C.).
制御装置9は、運転開始後に圧縮機2の回転数を間欠的に第2の所定の回転数r2(例えば、45rps)に低下させるように圧縮機2の動作を制御する。これにより、冷媒吐出温度は、t1からt2に低下し、冷媒凝縮温度は、t3からt4に低下する。 The control device 9 controls the operation of the compressor 2 so as to intermittently lower the rotational speed of the compressor 2 to a second predetermined rotational speed r2 (for example, 45 rps) after the operation is started. As a result, the refrigerant discharge temperature decreases from t1 to t2, and the refrigerant condensing temperature decreases from t3 to t4.
この際、区間aでは第1の冷媒温度測定装置10で測定した冷媒吐出温度は、結露水と接触していないため所定温度t4より高く、排水不良が生じていないと判断することができる。そして、圧縮機2は元の第1の所定の回転数r1で運転される。 At this time, in the section a, the refrigerant discharge temperature measured by the first refrigerant temperature measuring device 10 is higher than the predetermined temperature t4 because it is not in contact with the condensed water, and it can be determined that no drainage failure has occurred. The compressor 2 is operated at the original first predetermined rotation speed r1.
圧縮機2の回転数は、間欠的に第1の所定の回転数r1から第2の所定の回転数r2に低下させる。圧縮機2の回転数が低下すると、冷媒の循環量が低下し熱容量流量が小さくなるため、第1の温度測定部8が結露水と接触していると、測定温度を大きく低下させることができる。 The rotational speed of the compressor 2 is intermittently decreased from the first predetermined rotational speed r1 to the second predetermined rotational speed r2. When the rotation speed of the compressor 2 is decreased, the circulation amount of the refrigerant is decreased and the heat capacity flow rate is decreased. Therefore, when the first temperature measuring unit 8 is in contact with the condensed water, the measured temperature can be greatly decreased. .
したがって、運転中に圧縮機2の回転数を間欠的に低下させることによって、間欠的に感度を高めることができる。第1の所定の回転数r1での運転時間T1は、例えば、数十分(好ましくは20〜30分)、第2の所定の回転数r2での運転時間T2は、例えば、数十秒(好ましくは20〜30秒)である。 Therefore, the sensitivity can be intermittently increased by intermittently reducing the rotational speed of the compressor 2 during operation. The operation time T1 at the first predetermined rotation speed r1 is, for example, several tens of minutes (preferably 20 to 30 minutes), and the operation time T2 at the second predetermined rotation speed r2 is, for example, several tens of seconds ( Preferably it is 20-30 seconds.
次に、区間bでは第1の冷媒温度測定装置10で測定した冷媒吐出温度は、所定温度t4より低くなる。これは、第1の温度測定部8がドレンパン13に溜まった結露水と接触し、結露水に熱量を奪われて温度が低下したためで、排水不良が発生したと判断でき、圧
縮機2の運転を停止する。
Next, in the section b, the refrigerant discharge temperature measured by the first refrigerant temperature measuring device 10 is lower than the predetermined temperature t4. This is because the first temperature measuring unit 8 is in contact with the condensed water accumulated in the drain pan 13, and the amount of heat is deprived by the condensed water, so that the temperature is lowered. To stop.
圧縮機2が第1の所定の回転数r1で運転中は冷媒の循環による熱容量流量が大きく、冷媒吐出温度は、結露水との接触により所定温度t1からt5に低下しているが、温度の低下量が少なく、圧縮機2の回転数を間欠的にr1からr2に低下させることによって、検知精度を高めて測定温度をt5から大きく低下させることができ、排水不良の発生を的確に精度よく検知することができる。 While the compressor 2 is operating at the first predetermined rotational speed r1, the heat capacity flow rate due to the circulation of the refrigerant is large, and the refrigerant discharge temperature decreases from the predetermined temperature t1 to t5 due to contact with the condensed water. The amount of decrease is small, and the rotational speed of the compressor 2 is intermittently decreased from r1 to r2, so that the detection accuracy can be increased and the measured temperature can be greatly decreased from t5. Can be detected.
以上のように、本実施の形態においては、圧縮機2と放熱器3を連結する配管6に設けた第1の温度測定部8をドレンパン13内に設置するとともに、制御装置9は、圧縮機2の回転数を間欠的に低下させるようにしたものであり、運転中に圧縮機2の回転数を間欠的に低下させて感度を高めることによって、所定の間隔で検知精度を高めることができ、ドレンパン13内の水位異常を的確に精度よく検知することができる。 As described above, in the present embodiment, the first temperature measuring unit 8 provided in the pipe 6 that connects the compressor 2 and the radiator 3 is installed in the drain pan 13, and the control device 9 includes the compressor 2 is intermittently reduced, and by increasing the sensitivity by intermittently reducing the rotational speed of the compressor 2 during operation, the detection accuracy can be increased at predetermined intervals. The water level abnormality in the drain pan 13 can be accurately and accurately detected.
なお、本実施の形態では、圧縮機2の運転を停止する温度を第2の冷媒温度測定装置によって測定された温度(所定温度t4)としている。ヒートポンプサイクルでは、第1の冷媒温度測定装置10で測定した冷媒吐出温度は、常に第2の冷媒温度測定装置12で測定した冷媒凝縮温度より常に高温であり、排水異常がなければ圧縮機2の回転数を低下させてもこの関係は変わらない。しかしながら、排水異常で第1の冷媒温度測定装置10の第1の温度測定部8が結露水に接触すると、結露水は低温の吸熱器5で結露しているため冷媒凝縮温度より低くい。 In the present embodiment, the temperature at which the operation of the compressor 2 is stopped is the temperature (predetermined temperature t4) measured by the second refrigerant temperature measuring device. In the heat pump cycle, the refrigerant discharge temperature measured by the first refrigerant temperature measuring device 10 is always higher than the refrigerant condensing temperature measured by the second refrigerant temperature measuring device 12, and if there is no drainage abnormality, This relationship does not change even if the rotational speed is lowered. However, when the first temperature measuring unit 8 of the first refrigerant temperature measuring device 10 comes into contact with condensed water due to abnormal drainage, the condensed water is condensed by the low-temperature heat absorber 5 and thus is lower than the refrigerant condensation temperature.
したがって、第1の冷媒温度測定装置10で測定した温度が、第2の冷媒温度測定装置12で測定した温度より低くなり、圧縮機2の運転を停止する温度を第2の冷媒温度測定装置12によって測定された温度とすることにより、確実に排水不良を検知して除湿の進行を停止することができる。 Therefore, the temperature measured by the first refrigerant temperature measuring device 10 becomes lower than the temperature measured by the second refrigerant temperature measuring device 12, and the temperature at which the operation of the compressor 2 is stopped is set to the second refrigerant temperature measuring device 12. By using the temperature measured by the above, it is possible to reliably detect a drainage failure and stop the progress of dehumidification.
また、圧縮機2の運転を停止する温度は、負荷と圧縮機2の回転数との関係で所定温度を決めてもよい。例えば、予め運転をおこない、第1の冷媒温度測定装置10で測定した冷媒吐出温度の最低値より低く、冷媒凝縮温度より高い値を所定温度とすることにより、より早く排水異常の判定をおこなうことができる。 Further, the temperature at which the operation of the compressor 2 is stopped may be set to a predetermined temperature in accordance with the relationship between the load and the rotation speed of the compressor 2. For example, the drainage abnormality is determined earlier by operating in advance and setting a value lower than the lowest refrigerant discharge temperature measured by the first refrigerant temperature measuring device 10 and higher than the refrigerant condensing temperature as a predetermined temperature. Can do.
(実施の形態2)
図5は、本発明の第2の実施の形態における除湿加温装置の動作を示すタイムチャートである。本実施の形態の特徴は、第1の冷媒温度測定装置10で測定した冷媒吐出温度が所定の温度に低下すると、圧縮機2の回転数を所定時間低下させるようにしたものである。他の構成は実施の形態1と同じであり、同一の構成に同一の符号を付して、詳細な説明は実施の形態1のものを援用する。
(Embodiment 2)
FIG. 5 is a time chart showing the operation of the dehumidifying and warming device according to the second embodiment of the present invention. The feature of the present embodiment is that when the refrigerant discharge temperature measured by the first refrigerant temperature measuring device 10 is lowered to a predetermined temperature, the rotational speed of the compressor 2 is lowered for a predetermined time. Other configurations are the same as those of the first embodiment, the same reference numerals are given to the same configurations, and the detailed description of the first embodiment is used.
圧縮機2は、比較的高回転域で設定された第1の所定の回転数r1(例えば、90rps)で運転する。第1の冷媒温度測定装置10で測定した冷媒吐出温度は、t1(例えば、110℃)に設定され、圧縮機2の動作に連動して所定の範囲内で制御され、圧縮機2の回転数が一定に保たれていると、上下の変動幅は小さく各々1deg程度である。第2の冷媒温度測定装置12で測定した冷媒凝縮温度は、t3(例えば、70℃)である。 The compressor 2 operates at a first predetermined rotation speed r1 (for example, 90 rps) set in a relatively high rotation range. The refrigerant discharge temperature measured by the first refrigerant temperature measuring device 10 is set to t1 (for example, 110 ° C.), controlled within a predetermined range in conjunction with the operation of the compressor 2, and the rotation speed of the compressor 2 Is kept constant, the vertical fluctuation range is small and about 1 deg. The refrigerant condensing temperature measured by the second refrigerant temperature measuring device 12 is t3 (for example, 70 ° C.).
運転中の区間cでは、第1の冷媒温度測定装置10で測定した冷媒吐出温度t1からt5に若干低下している。しかしこの段階では、第1の温度測定部8がドレンパン13に溜まった結露水と接触したことによる低下なのか、ヒートポンプサイクルの変化によるものなのか判断できない。 In the operating section c, the refrigerant discharge temperature t1 measured by the first refrigerant temperature measuring device 10 is slightly lowered from t1 to t5. However, at this stage, it cannot be determined whether the first temperature measuring unit 8 is caused by contact with the condensed water accumulated in the drain pan 13 or due to a change in the heat pump cycle.
そこで、冷媒吐出温度が所定温度(例えば、t5)に低下すると、区間dで圧縮機2の回転数を第1の所定の回転数r1から第2の所定の回転数r2に所定時間低下させる。このとき、第1の冷媒温度測定装置10で測定した冷媒吐出温度が所定温度(本実施の形態では第2の冷媒温度測定装置12で測定した冷媒凝縮温度t4)より低くなれば、第1の温度測定部8がドレンパン13に溜まった結露水との接触により温度が低下したものと判断することができ、圧縮機2の運転を停止する。 Therefore, when the refrigerant discharge temperature decreases to a predetermined temperature (for example, t5), the rotation speed of the compressor 2 is decreased from the first predetermined rotation speed r1 to the second predetermined rotation speed r2 for a predetermined time in the section d. At this time, if the refrigerant discharge temperature measured by the first refrigerant temperature measuring device 10 becomes lower than a predetermined temperature (the refrigerant condensing temperature t4 measured by the second refrigerant temperature measuring device 12 in the present embodiment), the first The temperature measuring unit 8 can determine that the temperature has decreased due to contact with the condensed water accumulated in the drain pan 13, and the operation of the compressor 2 is stopped.
圧縮機2が第1の所定の回転数r1で運転中は冷媒の循環による熱容量流量が大きく、冷媒吐出温度は、結露水との接触により所定温度t1からt5に低下しているが、温度の低下量が少なく、圧縮機2の回転数を第1の所定の回転数r1から第2の所定の回転数r2に低下させることによって、検知精度を高めて測定温度を大きく低下させることができ、排水不良の発生を的確に精度よく検知することができる。 While the compressor 2 is operating at the first predetermined rotational speed r1, the heat capacity flow rate due to the circulation of the refrigerant is large, and the refrigerant discharge temperature decreases from the predetermined temperature t1 to t5 due to contact with the condensed water. By reducing the rotation speed of the compressor 2 from the first predetermined rotation speed r1 to the second predetermined rotation speed r2, the detection accuracy can be increased and the measurement temperature can be greatly decreased. The occurrence of poor drainage can be accurately and accurately detected.
以上のように、本実施の形態においては、第1の冷媒温度測定装置10で測定した温度が所定の温度に低下すると、圧縮機2の回転数を所定時間低下させるようにしたものであり、運転中に第1の冷媒温度測定装置10で測定した温度が所定の温度に低下すると、圧縮機2の回転数を所定時間低下させて感度を高めることによって、測定温度を大きく低下させることができ、ドレンパン13内の水位異常を的確に精度よく検知することができるとともに、圧縮機2の回転数を低下させる動作を少なくして圧縮機2の動作を安定させることができる。 As described above, in the present embodiment, when the temperature measured by the first refrigerant temperature measuring device 10 decreases to a predetermined temperature, the rotational speed of the compressor 2 is decreased for a predetermined time. When the temperature measured by the first refrigerant temperature measuring device 10 during operation is decreased to a predetermined temperature, the measured temperature can be greatly decreased by increasing the sensitivity by decreasing the rotational speed of the compressor 2 for a predetermined time. In addition, the water level abnormality in the drain pan 13 can be detected accurately and accurately, and the operation of reducing the rotational speed of the compressor 2 can be reduced to stabilize the operation of the compressor 2.
また、第1の冷媒温度測定装置10で測定した冷媒吐出温度が、圧縮機2の回転数を低下させる温度(例えば、t5)より低い所定温度(例えば、t4)に低下すると、圧縮機2の運転を停止するようにしたものであり、結露水の排水異常を的確に検知して除湿の進行を停止することができ、結露水の溢水を防止することができる。 Further, when the refrigerant discharge temperature measured by the first refrigerant temperature measuring device 10 decreases to a predetermined temperature (for example, t4) lower than the temperature (for example, t5) for decreasing the rotation speed of the compressor 2, the compressor 2 The operation is stopped, the drainage abnormality of the condensed water is accurately detected, the progress of dehumidification can be stopped, and the overflow of the condensed water can be prevented.
(実施の形態3)
図6は、本発明の第3の実施の形態における除湿加温装置を備えた衣類乾燥機の要部断面図である。除湿加温装置の構成は、実施の形態1のものと同じであり、同一の符号を付して詳細な説明は実施の形態1のものを援用する。
(Embodiment 3)
FIG. 6: is principal part sectional drawing of the clothes dryer provided with the dehumidification warming apparatus in the 3rd Embodiment of this invention. The configuration of the dehumidifying and warming device is the same as that of the first embodiment, and the same reference numerals are given, and the detailed description uses that of the first embodiment.
本実施の形態の衣類乾燥機は、洗濯機能を備えた洗濯乾燥機であり、洗濯、すすぎ、脱水に続いて乾燥までおこなうことができる。洗濯乾燥機の筐体21内に洗濯水を溜める水槽22が弾性支持され、この水槽22内にドラム23が回転可能に配設されている。ドラム23は、洗濯槽、脱水槽、乾燥槽として機能する。ドラム23の前面側には、衣類等の洗濯物をドラム23内に出し入れする開口部24が設けてあり、扉25によって開閉することができる。ドラム23の回転軸は前上がりに傾斜している。 The clothes dryer of the present embodiment is a laundry dryer having a washing function, and can perform washing, rinsing, dehydration, and subsequent drying. A water tank 22 for storing washing water is elastically supported in a casing 21 of the washing / drying machine, and a drum 23 is rotatably disposed in the water tank 22. The drum 23 functions as a washing tub, a dewatering tub, and a drying tub. On the front side of the drum 23, an opening 24 through which clothes such as clothes are taken in and out of the drum 23 is provided and can be opened and closed by a door 25. The rotation shaft of the drum 23 is inclined upward.
ドラム23は、水槽22の背面側に取り付けたモータ26によって正逆回転駆動され、洗濯およびすすぎ時は、投入された洗濯物の量に応じて設定された所定量の洗濯水を給水し、ドラム23内の洗濯物を撹拌し、ドラム23内で落下するたたき洗いの作用が洗濯物に及ぶ速度で、所定時間回転動作する。脱水時は、洗濯物に遠心力が作用しドラム23の内周側面に張り付く高速で回転動作し、洗濯物から脱水された洗濯水は水槽22から筐体21外へ排出される。 The drum 23 is driven to rotate in the forward and reverse directions by a motor 26 attached to the back side of the water tank 22, and at the time of washing and rinsing, a predetermined amount of washing water set according to the amount of laundry loaded is supplied. The laundry in the drum 23 is agitated, and the washing action that falls in the drum 23 rotates at a speed that reaches the laundry for a predetermined time. At the time of dehydration, centrifugal force acts on the laundry and rotates at a high speed sticking to the inner peripheral side surface of the drum 23, and the wash water dehydrated from the laundry is discharged from the water tank 22 to the outside of the casing 21.
さらに、乾燥時は、脱水時にドラム23の内周側面に張り付いた洗濯物をほぐす動作に続いて、ドラム23内で洗濯物を撹拌する動作をおこなう。このとき、除湿加温装置で除湿加温された乾燥用空気がドラム23内に導入される。除湿加温装置の空気流出口16から出た乾いた高温の乾燥用空気は、送風機29によって水槽22の背面側の上部に設けた導入口27から水槽22内に導入される。 Further, at the time of drying, the operation of stirring the laundry in the drum 23 is performed following the operation of loosening the laundry stuck to the inner peripheral side surface of the drum 23 at the time of dehydration. At this time, the drying air dehumidified and warmed by the dehumidifying and warming device is introduced into the drum 23. Dry, high-temperature drying air that has exited from the air outlet 16 of the dehumidifying and warming device is introduced into the water tank 22 from the inlet 27 provided at the upper part on the back side of the water tank 22 by the blower 29.
ドラム23の内周側面には多数の孔(図示せず)が設けてあり、この孔から水槽22内に導入された乾燥用空気がドラム23内に入り、ドラム23内で撹拌されている洗濯物と接触する。洗濯物から水分を奪って多湿となった乾燥用空気は、ドラム23の周側面に設けた多数の孔から出て水槽22内に入り、水槽22の前面側の上部に設けた導出口28から空気流入口15を通り、除湿加温装置の風回路17を流れる。 A large number of holes (not shown) are provided on the inner peripheral side surface of the drum 23, and the drying air introduced into the water tank 22 from the holes enters the drum 23 and is stirred in the drum 23. Contact with objects. The drying air that has become moist after removing moisture from the laundry enters the water tank 22 through a large number of holes provided on the peripheral side surface of the drum 23, and from the outlet 28 provided at the upper part on the front side of the water tank 22. It passes through the air inlet 15 and flows through the wind circuit 17 of the dehumidifying and warming device.
空気流入口15から除湿加温装置に送り込まれた空気は、吸熱器5で冷却除湿された後、放熱器3に入って加熱され、高温低湿の空気となって空気流出口16から導入口27へ導かれる。このように、除湿加温装置で除湿加温された乾燥用空気は、矢印イのように、導入口27からドラム23内に入り、導出口28から除湿加温装置に戻る循環風路30を循環し、ドラム23内の洗濯物の乾燥を進行させる。 The air sent from the air inlet 15 to the dehumidifying and warming device is cooled and dehumidified by the heat absorber 5, then enters the radiator 3 and is heated to become high-temperature and low-humidity air from the air outlet 16 to the inlet 27. Led to. Thus, the drying air dehumidified and warmed by the dehumidifying and warming device enters the drum 23 from the inlet 27 and returns to the dehumidifying and warming device 30 from the outlet 28 as indicated by the arrow a. It circulates and advances the drying of the laundry in the drum 23.
(実施の形態4)
本発明の第4の実施の形態は、衣類乾燥機にスピード乾燥コースを設け、制御装置9は、スピード乾燥コースの設定時に圧縮機2の回転数を間欠的に低下させ、第1の冷媒温度測定装置10で測定した温度が所定の温度に低下すると、圧縮機2の運転を停止するようにしたものである。他の構成は実施の形態1と同じであり、同一の構成に同一の符号を付して、詳細な説明は実施の形態1のものを援用する。
(Embodiment 4)
In the fourth embodiment of the present invention, a clothes dryer is provided with a speed drying course, and the control device 9 intermittently reduces the rotation speed of the compressor 2 when setting the speed drying course, and the first refrigerant temperature When the temperature measured by the measuring device 10 decreases to a predetermined temperature, the operation of the compressor 2 is stopped. Other configurations are the same as those of the first embodiment, the same reference numerals are given to the same configurations, and the detailed description of the first embodiment is used.
スピード乾燥コースは、通常の乾燥コース設定時より短時間で乾燥させるときに使用されるものであり、圧縮機2を100rps等の高回転数で運転する。冷媒にR134aを用いた場合、通常の乾燥コースと比較して放熱器3内の冷媒凝縮温度は高く70℃に達する。 The speed drying course is used when drying in a shorter time than when a normal drying course is set, and the compressor 2 is operated at a high rotational speed such as 100 rps. When R134a is used as the refrigerant, the refrigerant condensing temperature in the radiator 3 is higher than the normal drying course and reaches 70 ° C.
一方、吸熱器5内の冷媒蒸発温度は通常の乾燥コースよりも低くなり15℃となる。この際、蒸発温度が低いため、吸熱器5に設けられているフィンの表面温度も低くなり、結露水の量が多くなる。したがって、スピード乾燥コースの設定時は、圧縮機2の回転数を通常の乾燥コースよりも頻繁に、例えば、10分に1回程度低下させる。 On the other hand, the refrigerant evaporation temperature in the heat absorber 5 is lower than the normal drying course and becomes 15 ° C. At this time, since the evaporation temperature is low, the surface temperature of the fins provided in the heat absorber 5 is also reduced, and the amount of condensed water is increased. Therefore, at the time of setting the speed drying course, the rotation speed of the compressor 2 is decreased more frequently than the normal drying course, for example, about once every 10 minutes.
上記の構成により、スピード乾燥コースでは圧縮機2を高速回転で運転させるため、冷媒の熱容量流量が大きくなり、結露水と接触したときの温度低下が少なくなることから、圧縮機2の回転数を間欠的に低下させることによって、排水異常を的確に精度よく検知することができる。これにより、第1の冷媒温度測定装置10で測定した温度が所定の温度に低下すると排水不良が起こったと判断でき、圧縮機2を停止することにより、溢水を防ぐことができる。 With the above configuration, since the compressor 2 is operated at a high speed rotation in the speed drying course, the heat capacity flow rate of the refrigerant is increased, and the temperature drop when contacting the condensed water is reduced. By intermittently reducing it, it is possible to accurately detect a drainage abnormality with high accuracy. Thereby, when the temperature measured with the 1st refrigerant | coolant temperature measuring apparatus 10 falls to predetermined | prescribed temperature, it can be judged that the waste_water | drain defect has occurred, and overflow can be prevented by stopping the compressor 2. FIG.
また、衣類乾燥機にスピード乾燥コースを設けた他の例として、スピード乾燥コースの設定時に第1の冷媒温度測定装置10で測定した温度が所定の温度に低下すると、圧縮機2の回転数を所定時間低下させるとともに、圧縮機2の回転数の低下により、圧縮機2の回転数を低下させる温度より低い所定の温度に低下すると、圧縮機2の運転を停止するようにしたものである。 As another example in which a speed drying course is provided in the clothes dryer, when the temperature measured by the first refrigerant temperature measuring device 10 at the time of setting the speed drying course decreases to a predetermined temperature, the rotation speed of the compressor 2 is changed. The operation of the compressor 2 is stopped when the temperature is lowered for a predetermined time and when the rotational speed of the compressor 2 is lowered to a predetermined temperature lower than the temperature at which the rotational speed of the compressor 2 is lowered.
これにより、感度を高めて排水異常を的確に精度よく検知することができるとともに、圧縮機2の回転数を低下させる動作を少なくして圧縮機2の動作を安定させることができ、乾燥運転を効率よくおこなうことができる。 As a result, it is possible to detect the abnormality of drainage accurately and accurately by increasing the sensitivity, and to reduce the operation of reducing the rotational speed of the compressor 2 to stabilize the operation of the compressor 2 and to perform the drying operation. It can be done efficiently.
なお、本実施の形態では、洗濯機能を備えた洗濯乾燥機について説明したが、洗濯機能がなく、衣類の乾燥のみをおこなう衣類乾燥機でも同様である。 In the present embodiment, a washing / drying machine having a washing function has been described, but the same applies to a clothes drying machine that does not have a washing function and only dries clothes.
以上のように、本発明にかかる除湿加温装置は、簡単な構成で除湿水の排水異常を検知する感度を高めて的確に精度よく検知することができるので、除湿加温装置および衣類乾燥機として有用である。 As described above, the dehumidifying and warming device according to the present invention can accurately detect the dehumidifying water drainage abnormality with a simple configuration and can accurately detect the dehumidifying and warming device and the clothes dryer. Useful as.
2 圧縮機
3 放熱器
4 絞り手段
5 吸熱器
6 配管
7 ヒートポンプ装置
8 第1の温度測定部
9 制御装置
10 第1の冷媒温度測定装置
11 第2の温度測定部
12 第2の冷媒温度測定装置
13 ドレンパン
15 空気流入口
16 空気流出口
DESCRIPTION OF SYMBOLS 2 Compressor 3 Radiator 4 Throttling means 5 Heat absorber 6 Piping 7 Heat pump apparatus 8 1st temperature measurement part 9 Control apparatus 10 1st refrigerant | coolant temperature measurement apparatus 11 2nd temperature measurement part 12 2nd refrigerant | coolant temperature measurement apparatus 13 Drain pan 15 Air inlet 16 Air outlet
Claims (8)
Priority Applications (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2011004680A JP2012143427A (en) | 2011-01-13 | 2011-01-13 | Dehumidifying and heating apparatus and clothes dryer using the same |
EP11176217.5A EP2415928A3 (en) | 2010-08-06 | 2011-08-02 | Dehumidifying-warming apparatus and clothes dryer using the same |
EP11176216.7A EP2415927B1 (en) | 2010-08-06 | 2011-08-02 | Dehumidifying-warming apparatus and clothes drier |
CN201110225128.4A CN102374700B (en) | 2010-08-06 | 2011-08-05 | Dehumidifying-warming apparatus and clothes drier using same |
CN201110225142.4A CN102374699B (en) | 2010-08-06 | 2011-08-05 | Dehumidifying-warming apparatus and clothes drier |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2011004680A JP2012143427A (en) | 2011-01-13 | 2011-01-13 | Dehumidifying and heating apparatus and clothes dryer using the same |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2012143427A true JP2012143427A (en) | 2012-08-02 |
Family
ID=46787635
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2011004680A Pending JP2012143427A (en) | 2010-08-06 | 2011-01-13 | Dehumidifying and heating apparatus and clothes dryer using the same |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2012143427A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN111434842A (en) * | 2018-12-26 | 2020-07-21 | 青岛海尔滚筒洗衣机有限公司 | Water storage box of clothes drying/nursing equipment, equipment and control method |
-
2011
- 2011-01-13 JP JP2011004680A patent/JP2012143427A/en active Pending
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN111434842A (en) * | 2018-12-26 | 2020-07-21 | 青岛海尔滚筒洗衣机有限公司 | Water storage box of clothes drying/nursing equipment, equipment and control method |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP2415927B1 (en) | Dehumidifying-warming apparatus and clothes drier | |
KR20140010585A (en) | Clothing dryer | |
JP4687555B2 (en) | Clothes dryer | |
JP4692178B2 (en) | Clothes dryer | |
JP2011194035A (en) | Washing and drying machine | |
JP2010012073A (en) | Clothes dryer | |
JP4779731B2 (en) | Clothes dryer | |
JP2012034815A (en) | Dehumidifying and heating apparatus and clothes dryer using the same | |
JP2012143427A (en) | Dehumidifying and heating apparatus and clothes dryer using the same | |
JP5402836B2 (en) | Dehumidifying and heating device and clothes dryer using the same | |
JP2012245112A (en) | Dehumidifying and heating device, and clothing dryer and washing and drying machine using the dehumidifying and heating device | |
JP4352803B2 (en) | Washing and drying machine | |
KR100606720B1 (en) | Drying Machine and Method for Controlling Drying Process of the Same | |
US11603624B2 (en) | Lint filter clogging detection in a dryer appliance based on airflow | |
JP5056821B2 (en) | Drum type washer / dryer | |
CN113265862B (en) | Clothes dryer control method and clothes dryer | |
JP4779723B2 (en) | Clothes dryer | |
JP2012034814A (en) | Dehumidifying and heating apparatus and clothes dryer using the same | |
JP5397035B2 (en) | Clothes dryer | |
JP2012034816A (en) | Dehumidifying and heating apparatus and clothes dryer using the same | |
JP2015123348A (en) | Dryer | |
KR20200125565A (en) | Clothing Dryer | |
JP4839748B2 (en) | Clothes dryer | |
JP2015042208A (en) | Clothes dryer | |
US11846064B2 (en) | Lint filter clogging detection in a dryer appliance using compressor temperature and referigerant mass flow |