JP2012142413A - Electrostatic chuck device - Google Patents

Electrostatic chuck device Download PDF

Info

Publication number
JP2012142413A
JP2012142413A JP2010293764A JP2010293764A JP2012142413A JP 2012142413 A JP2012142413 A JP 2012142413A JP 2010293764 A JP2010293764 A JP 2010293764A JP 2010293764 A JP2010293764 A JP 2010293764A JP 2012142413 A JP2012142413 A JP 2012142413A
Authority
JP
Japan
Prior art keywords
electrostatic chuck
temperature
sintered body
temperature adjusting
electrostatic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2010293764A
Other languages
Japanese (ja)
Other versions
JP6176771B2 (en
Inventor
Yoshiaki Moriya
義明 森谷
Kei Furuuchi
圭 古内
Tadahiro Omi
忠弘 大見
Tetsuya Goto
哲也 後藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tohoku University NUC
Sumitomo Osaka Cement Co Ltd
Original Assignee
Tohoku University NUC
Sumitomo Osaka Cement Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tohoku University NUC, Sumitomo Osaka Cement Co Ltd filed Critical Tohoku University NUC
Priority to JP2010293764A priority Critical patent/JP6176771B2/en
Priority to PCT/JP2011/079814 priority patent/WO2012090858A1/en
Publication of JP2012142413A publication Critical patent/JP2012142413A/en
Application granted granted Critical
Publication of JP6176771B2 publication Critical patent/JP6176771B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67011Apparatus for manufacture or treatment
    • H01L21/67098Apparatus for thermal treatment
    • H01L21/67109Apparatus for thermal treatment mainly by convection
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/683Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping
    • H01L21/6831Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping using electrostatic chucks

Abstract

PROBLEM TO BE SOLVED: To provide an electrostatic chuck device which suppresses damage to a plate like sample such as a silicon wafer during ion implantation, uniformly makes the plate sample amorphous without causing damage, and prevents moisture condensation even when a back surface is exposed to the atmosphere.SOLUTION: An electrostatic chuck device includes: an electrostatic chuck part 2 having a surface serving as a placement surface 11a on which a plate like sample W is placed and incorporating an internal electrode 13 for electrostatic attraction; and a temperature adjustment base part 3 adjusting the electrostatic chuck part 2 to a desired temperature. A temperature adjustment base material 4 is provided between the electrostatic chuck part 2 and the temperature adjustment base part 3. A recessed part 31 is formed on the electrostatic chuck part 2 side of the temperature adjustment base material 4, and grooves 32 in which a cooling medium flows are formed in the recessed part 31.

Description

本発明は、静電チャック装置に関し、さらに詳しくは、半導体ウエハ等の板状試料を静電気力により吸着固定して行う半導体製造プロセス技術、特に、単結晶シリコンウエハ等の板状試料にイオンを注入するイオン注入プロセスに用いて好適な静電チャック装置に関するものである。   The present invention relates to an electrostatic chuck device, and more specifically, a semiconductor manufacturing process technique in which a plate-like sample such as a semiconductor wafer is adsorbed and fixed by electrostatic force, in particular, ions are implanted into a plate-like sample such as a single crystal silicon wafer. The present invention relates to an electrostatic chuck device suitable for use in an ion implantation process.

近年、LSI、VLSI等の半導体製造プロセス技術においては、単結晶のシリコンウエハ中に不純物を導入する方法としてイオン注入法が用いられている。
このイオン注入法は、シリコンウエハ中における不純物濃度及び不純物分布を制御することができるために、特にVLSI等の半導体製造プロセスにおいては、イオン注入法が主として用いられている。
このイオン注入法においては、イオン注入時にシリコンウエハを冷却することのできる冷却機構を備えたイオン注入装置が用いられている(例えば、特許文献1等参照)。
In recent years, in semiconductor manufacturing process technologies such as LSI and VLSI, an ion implantation method is used as a method for introducing impurities into a single crystal silicon wafer.
Since this ion implantation method can control the impurity concentration and impurity distribution in the silicon wafer, the ion implantation method is mainly used particularly in a semiconductor manufacturing process such as VLSI.
In this ion implantation method, an ion implantation apparatus having a cooling mechanism capable of cooling a silicon wafer at the time of ion implantation is used (for example, see Patent Document 1).

特開平5−28951号公報Japanese Patent Laid-Open No. 5-28951

ところで、上述した従来のイオン注入装置においては、高エネルギーの不純物イオンを単結晶のシリコンウエハ中にイオン注入するために、シリコンウエハ中に不純物を制御良くドープするという利点はあるものの、イオン注入の際に単結晶シリコンを非晶質化(アモルファス化)し、結晶格子が歪む等の問題が生じる虞がある。   By the way, in the conventional ion implantation apparatus described above, in order to ion-implant high-energy impurity ions into a single crystal silicon wafer, there is an advantage of doping impurities in the silicon wafer with good control. At this time, the single crystal silicon may be made amorphous (amorphized) and the crystal lattice may be distorted.

このシリコンウエハの非晶質化は不均一に進行するために、イオン注入後の半導体製造プロセスにおいては、不均一に進行した非晶質化により、活性化のためのアニールを施した後も、シリコンウエハ中に結晶格子が歪んだり、あるいは格子欠陥が生じたり等、格子レベルでのダメージが生じ、この格子レベルでのダメージが最終製品時における異常な漏れ電流(リーク電流)等の原因となるという問題点があった。   Since this silicon wafer amorphization proceeds non-uniformly, in the semiconductor manufacturing process after ion implantation, even after annealing for activation due to non-uniform amorphization, Damage at the lattice level such as crystal lattice distortion or lattice defects in the silicon wafer occurs, and this damage at the lattice level causes abnormal leakage current (leakage current) in the final product. There was a problem.

一方、このシリコンウエハの非晶質化の不均一な進行を防止し、イオン注入時の格子レベルでのダメージを抑制するする方法として、イオン注入装置を液体窒素により冷却した状態でイオン注入プロセスを行う低温域イオン注入プロセスがある。
しかしながら、この方法は、確かに、イオン注入時のシリコンウエハにおけるダメージを抑制することができ、かつ、シリコンウエハの非晶質化をダメージ無く均一に進行させることにより、注入されたイオンの活性化と共にシリコンウエハの再結晶化を行うアニールの低温化が可能になるものの、イオン注入時にシリコンウエハを固定する静電チャック装置も液体窒素により冷却されることとなり、その結果、静電チャック装置の裏面を大気中に曝露した場合に、この裏面に結露が生じ、この結露を防止するために裏面側に大掛かりな結露対策を施す必要があるという問題点があった。
On the other hand, as a method of preventing the non-uniform progression of the amorphization of the silicon wafer and suppressing damage at the lattice level during ion implantation, the ion implantation process is performed while the ion implantation apparatus is cooled with liquid nitrogen. There are low temperature ion implantation processes to be performed.
However, this method can surely suppress damage in the silicon wafer during ion implantation, and can activate the implanted ions by making the silicon wafer amorphous evenly without damage. At the same time, the annealing temperature for recrystallization of the silicon wafer can be lowered, but the electrostatic chuck device for fixing the silicon wafer during ion implantation is also cooled by liquid nitrogen. As a result, the back surface of the electrostatic chuck device When this is exposed to the atmosphere, condensation occurs on the back surface, and in order to prevent this condensation, there is a problem in that it is necessary to take a large measure of condensation on the back surface side.

このように、低温域イオン注入プロセスによりイオン注入を実施すると有効な効果が得られるにも係わらず、未だに低温域イオン注入プロセスを実施することができる装置が提案されていないのが現状である。   As described above, although an effective effect can be obtained by performing ion implantation by the low temperature region ion implantation process, an apparatus capable of performing the low temperature region ion implantation process has not yet been proposed.

本発明は、上記の事情に鑑みてなされたものであって、低温域イオン注入プロセスを行うにあたって、イオン注入時のシリコンウエハ等の板状試料におけるダメージを抑制することができ、かつ、板状試料の非晶質化をダメージ無く均一に進行させることができ、しかも、裏面を大気中に曝露した場合においても結露が生じる虞が無い静電チャック装置を提供することを目的とする。   The present invention has been made in view of the above circumstances, and in performing a low temperature region ion implantation process, it is possible to suppress damage in a plate sample such as a silicon wafer during ion implantation, and It is an object of the present invention to provide an electrostatic chuck device that can make amorphization of a sample uniformly without damage, and that does not cause condensation even when the back surface is exposed to the atmosphere.

本発明者等は、上記の課題を解決するべく鋭意検討を行った結果、板状試料を載置する静電チャック部と、この静電チャック部の温度を調整する温度調整用ベース部との間に温度調整用基材を設け、この温度調整用基材に、冷却媒体を流動させる流路を形成したこととすれば、低温域イオン注入プロセスを行う場合に、イオン注入時のシリコンウエハ等の板状試料におけるダメージを抑制し、かつ、板状試料の非晶質化をダメージ無く均一に進行させることが可能であり、しかも、裏面を大気中に曝露した場合においても結露が生じる虞が無いことを知見し、本発明を完成するに到った。   As a result of intensive studies to solve the above-described problems, the present inventors have found that an electrostatic chuck portion on which a plate-like sample is placed and a temperature adjustment base portion that adjusts the temperature of the electrostatic chuck portion. If a temperature adjusting base material is provided in between, and a flow path for flowing a cooling medium is formed in the temperature adjusting base material, when performing a low temperature region ion implantation process, a silicon wafer at the time of ion implantation, etc. It is possible to suppress the damage in the plate-like sample and to allow the amorphization of the plate-like sample to proceed uniformly without damage, and there is a possibility that condensation occurs even when the back surface is exposed to the atmosphere. The present inventors have found that there is not, and have completed the present invention.

すなわち、本発明の静電チャック装置は、一主面を板状試料を載置する載置面とするとともに静電吸着用内部電極を内蔵した静電チャック部と、この静電チャック部の他の主面側に設けられて前記静電チャック部を所望の温度に調整する温度調整用ベース部とを備え、前記静電チャック部と前記温度調整用ベース部との間に温度調整用基材を設け、この温度調整用基材に、冷却媒体を流動させる流路を形成してなることを特徴とする。   In other words, the electrostatic chuck device of the present invention has an electrostatic chuck portion in which one main surface is a mounting surface on which a plate-like sample is placed and an internal electrode for electrostatic attraction is built in, and other electrostatic chuck portions. And a temperature adjusting base portion that adjusts the electrostatic chuck portion to a desired temperature, and a temperature adjusting base material between the electrostatic chuck portion and the temperature adjusting base portion. And a flow path for allowing the cooling medium to flow is formed in the temperature adjusting base material.

この静電チャック装置では、静電チャック部と温度調整用ベース部との間に、冷却媒体を流動させる流路が形成された温度調整用基材を設けたことにより、静電チャック部は、温度調整用基材により冷却媒体の温度まで冷却されることとなり、また、温度調整用ベース部は、温度調整用基材を介して静電チャック部に接着、固定されていることにより、静電チャック部から断熱され、その裏面の温度は室温(25℃〜20℃)程度に保持されることとなる。
これにより、静電チャック部が温度調整用基材により冷却媒体の温度まで冷却された場合においても、この静電チャック装置の裏面の温度は、温度調整用ベース部により室温(25℃〜20℃)程度の温度に保持される。よって、大気中に曝露した場合においても、この裏面に結露が生じる虞は無い。
In this electrostatic chuck device, by providing a temperature adjusting base material in which a flow path for flowing a cooling medium is provided between the electrostatic chuck portion and the temperature adjusting base portion, the electrostatic chuck portion is The temperature adjustment substrate is cooled to the temperature of the cooling medium, and the temperature adjustment base portion is bonded and fixed to the electrostatic chuck portion via the temperature adjustment substrate. It is insulated from the chuck part, and the temperature of the back surface thereof is maintained at about room temperature (25 ° C. to 20 ° C.).
Thereby, even when the electrostatic chuck portion is cooled to the temperature of the cooling medium by the temperature adjusting base material, the temperature of the back surface of the electrostatic chuck device is set to room temperature (25 ° C. to 20 ° C.) by the temperature adjusting base portion. ) Is kept at a temperature of about. Therefore, even when exposed to the atmosphere, there is no risk of condensation on the back surface.

本発明の静電チャック装置において、前記流路は、前記温度調整用基材の前記静電チャック部側の主面に形成された溝であることを特徴とする。
この静電チャック装置では、冷却媒体を流動させる流路を、温度調整用基材の静電チャック部側の主面に形成された溝としたことにより、静電チャック部は、温度調整用基材の主面に形成された溝を流動する冷却媒体により効率よく冷却されることとなる。
In the electrostatic chuck device of the present invention, the flow path is a groove formed on a main surface of the temperature adjusting base material on the electrostatic chuck portion side.
In this electrostatic chuck device, the flow path through which the cooling medium flows is a groove formed in the main surface of the temperature adjustment base material on the electrostatic chuck portion side, so that the electrostatic chuck portion It is efficiently cooled by the cooling medium that flows in the grooves formed in the main surface of the material.

本発明の静電チャック装置において、前記静電チャック部と前記温度調整用基材とを、低温対応有機系接着剤を介して接着、固定してなることを特徴とする。
この静電チャック装置では、静電チャック部と温度調整用基材とを、低温対応有機系接着剤を介して接着、固定したことにより、静電チャック部を温度調整用基材により冷却媒体の温度まで冷却した場合においても、静電チャック部と温度調整用基材との間の接着強度が保持され、剥離等の虞が無い。
In the electrostatic chuck device of the present invention, the electrostatic chuck portion and the temperature adjusting base material are bonded and fixed via a low temperature compatible organic adhesive.
In this electrostatic chuck device, the electrostatic chuck portion and the temperature adjustment base material are bonded and fixed via a low temperature compatible organic adhesive, whereby the electrostatic chuck portion is cooled by the temperature adjustment base material. Even when it is cooled to the temperature, the adhesive strength between the electrostatic chuck portion and the temperature adjusting substrate is maintained, and there is no possibility of peeling or the like.

本発明の静電チャック装置において、前記低温対応有機系接着剤は、エポキシ系接着剤であることを特徴とする。
この静電チャック装置では、低温対応有機系接着剤をエポキシ系接着剤としたことにより、静電チャック部を温度調整用基材により冷却媒体の温度まで冷却した場合においても、静電チャック部と温度調整用基材との間の接着強度が充分に保持され、剥離等が無い。
In the electrostatic chuck device of the present invention, the low-temperature-compatible organic adhesive is an epoxy adhesive.
In this electrostatic chuck device, since the low temperature compatible organic adhesive is an epoxy adhesive, even when the electrostatic chuck portion is cooled down to the temperature of the cooling medium by the temperature adjusting base material, Adhesive strength with the temperature adjusting substrate is sufficiently maintained, and there is no peeling or the like.

本発明の静電チャック装置において、前記静電チャック部は、酸化アルミニウム−炭化ケイ素複合焼結体、酸化アルミニウム焼結体、窒化アルミニウム焼結体、酸化イットリウム焼結体のいずれか1つ以上からなり、前記温度調整用基材は、酸化アルミニウム焼結体、窒化アルミニウム焼結体、酸化イットリウム焼結体のいずれか1つからなることを特徴とする。   In the electrostatic chuck device of the present invention, the electrostatic chuck portion is made of any one or more of an aluminum oxide-silicon carbide composite sintered body, an aluminum oxide sintered body, an aluminum nitride sintered body, and an yttrium oxide sintered body. The temperature adjusting base material is formed of any one of an aluminum oxide sintered body, an aluminum nitride sintered body, and an yttrium oxide sintered body.

この静電チャック装置では、静電チャック部を、酸化アルミニウム−炭化ケイ素複合焼結体、酸化アルミニウム焼結体、窒化アルミニウム焼結体、酸化イットリウム焼結体のいずれか1つ以上からなることとし、温度調整用基材を、酸化アルミニウム焼結体、窒化アルミニウム焼結体、酸化イットリウム焼結体のいずれか1つからなることとしたことにより、イオン注入等の半導体製造プロセスにおける耐久性が向上し、機械的強度も保持される。   In this electrostatic chuck device, the electrostatic chuck portion is made of one or more of an aluminum oxide-silicon carbide composite sintered body, an aluminum oxide sintered body, an aluminum nitride sintered body, and an yttrium oxide sintered body. The temperature adjustment base material is made of any one of an aluminum oxide sintered body, an aluminum nitride sintered body, and an yttrium oxide sintered body, thereby improving durability in a semiconductor manufacturing process such as ion implantation. In addition, the mechanical strength is also maintained.

本発明の静電チャック装置によれば、静電チャック部と温度調整用ベース部との間に、冷却媒体を流動させる流路が形成された温度調整用基材を設けたので、静電チャック部を冷却媒体の温度まで冷却した場合においても、温度調整用ベース部を温度調整用基材により静電チャック部から断熱することで、温度調整用ベース部の裏面の温度を室温(25℃〜20℃)程度に保持することができる。
したがって、静電チャック部が温度調整用基材により冷却媒体の温度まで冷却された場合においても、この静電チャック装置の裏面の温度を、温度調整用ベース部により室温(25℃〜20℃)程度の温度に保持することができ、大気中に曝露した場合においても、この裏面に結露が生じる虞は無い。
According to the electrostatic chuck device of the present invention, since the temperature adjustment base material in which the flow path for flowing the cooling medium is provided between the electrostatic chuck portion and the temperature adjustment base portion, the electrostatic chuck Even when the part is cooled to the temperature of the cooling medium, the temperature adjustment base is thermally insulated from the electrostatic chuck part by the temperature adjustment base material, so that the temperature of the back surface of the temperature adjustment base part is room temperature (25 ° C. to 25 ° C. 20 ° C.).
Therefore, even when the electrostatic chuck portion is cooled to the temperature of the cooling medium by the temperature adjusting base material, the temperature of the back surface of the electrostatic chuck device is set to room temperature (25 ° C. to 20 ° C.) by the temperature adjusting base portion. Even when exposed to the atmosphere, there is no possibility that condensation occurs on the back surface.

また、温度調整用基材の静電チャック部側の主面に形成された溝を冷却媒体を流動させる流路としたので、この溝に冷却媒体を流動させることにより、静電チャック部を冷却媒体により効率よく冷却することができる。   In addition, since the groove formed on the main surface of the temperature adjusting base material on the electrostatic chuck portion side is used as a flow path for flowing the cooling medium, the electrostatic chuck portion is cooled by flowing the cooling medium in the groove. It can be cooled efficiently by the medium.

また、静電チャック部と温度調整用基材とを、低温対応有機系接着剤を介して接着、固定したので、静電チャック部を温度調整用基材により冷却媒体の温度まで冷却した場合においても、静電チャック部と温度調整用基材との間の接着強度を保持することができ、剥離等の虞も無い。   In addition, since the electrostatic chuck and the temperature adjustment substrate are bonded and fixed via a low temperature compatible organic adhesive, the electrostatic chuck is cooled to the temperature of the cooling medium by the temperature adjustment substrate. In addition, the adhesive strength between the electrostatic chuck portion and the temperature adjusting substrate can be maintained, and there is no possibility of peeling or the like.

また、低温対応有機系接着剤をエポキシ系接着剤としたので、静電チャック部を温度調整用基材により冷却媒体の温度まで冷却した場合においても、静電チャック部と温度調整用基材との間の接着強度を充分に保持することができ、剥離等の虞も無い。   In addition, since the low temperature compatible organic adhesive is an epoxy adhesive, even when the electrostatic chuck portion is cooled to the temperature of the cooling medium by the temperature adjusting substrate, the electrostatic chuck portion and the temperature adjusting substrate The adhesive strength between the two can be sufficiently maintained, and there is no possibility of peeling.

また、静電チャック部を、酸化アルミニウム−炭化ケイ素複合焼結体、酸化アルミニウム焼結体、窒化アルミニウム焼結体、酸化イットリウム焼結体のいずれか1つ以上とし、温度調整用基材を、酸化アルミニウム焼結体、窒化アルミニウム焼結体、酸化イットリウム焼結体のいずれか1つとしたので、イオン注入等の半導体製造プロセスにおける耐久性を向上させることができ、機械的強度も保持することができる。   Further, the electrostatic chuck portion is one or more of an aluminum oxide-silicon carbide composite sintered body, an aluminum oxide sintered body, an aluminum nitride sintered body, and an yttrium oxide sintered body, Since any one of the aluminum oxide sintered body, the aluminum nitride sintered body, and the yttrium oxide sintered body is used, the durability in the semiconductor manufacturing process such as ion implantation can be improved and the mechanical strength can be maintained. it can.

本発明の第1の実施形態の静電チャック装置を示す断面図である。It is sectional drawing which shows the electrostatic chuck apparatus of the 1st Embodiment of this invention. 本発明の第2の実施形態の静電チャック装置を示す断面図である。It is sectional drawing which shows the electrostatic chuck apparatus of the 2nd Embodiment of this invention.

本発明の静電チャック装置を実施するための形態について、図面に基づき説明する。
なお、この形態は、発明の趣旨をより良く理解させるために具体的に説明するものであり、特に指定のない限り、本発明を限定するものではない。
The form for implementing the electrostatic chuck apparatus of this invention is demonstrated based on drawing.
This embodiment is specifically described for better understanding of the gist of the invention, and does not limit the present invention unless otherwise specified.

[第1の実施形態]
図1は、本発明の第1の実施形態の静電チャック装置を示す断面図であり、この静電チャック装置1は、円板状の静電チャック部2と、この静電チャック部2を所望の温度に調整する厚みのある円板状の温度調整用ベース部3と、静電チャック部2と温度調整用ベース部3との間に設けられた温度調整用基材4と、静電チャック部2と温度調整用基材4とを接着固定する低温対応有機系接着剤層5と、温度調整用ベース部3と温度調整用基材4とを接着固定する接着剤層6とにより主として構成されている。
[First Embodiment]
FIG. 1 is a cross-sectional view showing an electrostatic chuck device according to a first embodiment of the present invention. The electrostatic chuck device 1 includes a disk-shaped electrostatic chuck portion 2 and an electrostatic chuck portion 2. A disk-shaped temperature adjustment base portion 3 having a thickness to be adjusted to a desired temperature, a temperature adjustment substrate 4 provided between the electrostatic chuck portion 2 and the temperature adjustment base portion 3, and an electrostatic A low temperature compatible organic adhesive layer 5 for bonding and fixing the chuck portion 2 and the temperature adjusting base material 4 and an adhesive layer 6 for bonding and fixing the temperature adjusting base portion 3 and the temperature adjusting base material 4 mainly. It is configured.

静電チャック部2は、上面が半導体ウエハ等の板状試料Wを載置する載置面11aとされた載置板11と、この載置板11と一体化され該載置板11を支持する支持板12と、これら載置板11と支持板12との間に設けられた静電吸着用内部電極13及び静電吸着用内部電極13の周囲を絶縁する絶縁材層14と、支持板12を貫通するようにして設けられ静電吸着用内部電極13に直流電圧を印加する給電用端子15とにより構成されている。
この載置板11の載置面には多数の突起部16が形成され、これらの突起部16が板状試料Wを支える構成になっている。
The electrostatic chuck unit 2 has a mounting plate 11 whose upper surface is a mounting surface 11a on which a plate-like sample W such as a semiconductor wafer is mounted, and is integrated with the mounting plate 11 to support the mounting plate 11. A supporting plate 12, an internal electrode 13 for electrostatic adsorption provided between the mounting plate 11 and the supporting plate 12, an insulating material layer 14 for insulating the periphery of the internal electrode 13 for electrostatic adsorption, and a supporting plate 12 and a power supply terminal 15 that applies a DC voltage to the electrostatic adsorption internal electrode 13.
A large number of protrusions 16 are formed on the mounting surface of the mounting plate 11, and these protrusions 16 are configured to support the plate-like sample W.

これら載置板11および支持板12は、重ね合わせた面の形状を同じくする円板状のもので、酸化アルミニウム−炭化ケイ素(Al−SiC)複合焼結体、酸化アルミニウム(Al)焼結体、窒化アルミニウム(AlN)焼結体、酸化イットリウム(Y)焼結体等の機械的な強度を有し、かつイオン注入プロセス等の半導体製造プロセスにおける耐久性を有する絶縁性のセラミックス焼結体からなるものである。
載置板11および支持板12の材料としては、各々の機能が充分に発揮できるものであればよく、特には制限しないが、例えば、載置板11を酸化アルミニウム−炭化ケイ素(Al−SiC)複合焼結体、支持板12を酸化アルミニウム(Al)焼結体とした組み合わせ等が好適である。
The mounting plate 11 and the support plate 12 have a disk shape with the same shape of the stacked surfaces, and are an aluminum oxide-silicon carbide (Al 2 O 3 —SiC) composite sintered body, aluminum oxide (Al 2). It has mechanical strength such as O 3 ) sintered body, aluminum nitride (AlN) sintered body, yttrium oxide (Y 2 O 3 ) sintered body, and durability in semiconductor manufacturing processes such as ion implantation process. It has an insulating ceramic sintered body.
The material of the mounting plate 11 and the support plate 12 is not particularly limited as long as each function can be sufficiently exhibited. For example, the mounting plate 11 is made of aluminum oxide-silicon carbide (Al 2 O 3). -SiC) A composite sintered body, a combination in which the support plate 12 is an aluminum oxide (Al 2 O 3 ) sintered body, and the like are preferable.

これら載置板11、支持板12、静電吸着用内部電極13及び絶縁材層14の合計の厚み、即ち、静電チャック部2の厚みは1.0mm以上かつ10mm以下が好ましく、3.0mm以上かつ4.0mm以下がより好ましい。
その理由は、静電チャック部2の厚みが1.0mmを下回ると、静電チャック部2の機械的強度を確保することができず、一方、静電チャック部2の厚みが10mmを上回ると、静電チャック部2の熱容量が大きくなり過ぎて、載置される板状試料Wの熱応答性が劣化し、さらには、静電チャック部の横方向の熱伝達の増加により、板状試料Wの面内温度を所望の温度パターンに維持することが困難になるからである。
The total thickness of the mounting plate 11, the support plate 12, the electrostatic adsorption internal electrode 13 and the insulating material layer 14, that is, the thickness of the electrostatic chuck portion 2 is preferably 1.0 mm or more and 10 mm or less, and 3.0 mm. More preferably, it is 4.0 mm or less.
The reason is that if the thickness of the electrostatic chuck portion 2 is less than 1.0 mm, the mechanical strength of the electrostatic chuck portion 2 cannot be ensured, while the thickness of the electrostatic chuck portion 2 exceeds 10 mm. Further, the heat capacity of the electrostatic chuck portion 2 becomes too large, the thermal responsiveness of the plate-like sample W to be mounted deteriorates, and further, the plate-like sample is increased due to an increase in the lateral heat transfer of the electrostatic chuck portion. This is because it becomes difficult to maintain the in-plane temperature of W in a desired temperature pattern.

特に、載置板11の厚みは、1.0mm以上かつ4.0mm以下が好ましい。その理由は、載置板11の厚みが1.0mmを下回ると、静電吸着用内部電極13に印加された電圧により放電する危険性が高まり、一方、4.0mmを超えると、板状試料Wを十分に吸着固定することができないからである。   In particular, the thickness of the mounting plate 11 is preferably 1.0 mm or more and 4.0 mm or less. The reason is that if the thickness of the mounting plate 11 is less than 1.0 mm, the risk of discharge is increased by the voltage applied to the internal electrode 13 for electrostatic attraction, while if it exceeds 4.0 mm, the plate-like sample is increased. This is because W cannot be sufficiently adsorbed and fixed.

静電吸着用内部電極13は、電荷を発生させて静電吸着力で板状試料Wを固定するための静電チャック用電極として用いられるもので、その用途によって、その形状や、大きさが適宜調整される。
この静電吸着用内部電極13は、酸化アルミニウム−炭化タンタル(Al−Ta)導電性複合焼結体、酸化アルミニウム−タングステン(Al−W)導電性複合焼結体、酸化アルミニウム−炭化ケイ素(Al−SiC)導電性複合焼結体、窒化アルミニウム−タングステン(AlN−W)導電性複合焼結体、窒化アルミニウム−タンタル(AlN−Ta)導電性複合焼結体、酸化イットリウム−モリブデン(Y−Mo)導電性複合焼結体等の導電性セラミックス、あるいは、タングステン(W)、タンタル(Ta)、モリブデン(Mo)等の高融点金属により形成されている。
The internal electrode 13 for electrostatic adsorption is used as an electrode for an electrostatic chuck for generating a charge and fixing the plate-like sample W with an electrostatic adsorption force. Adjust as appropriate.
The internal electrode 13 for electrostatic adsorption is composed of an aluminum oxide-tantalum carbide (Al 2 O 3 —Ta 4 C 5 ) conductive composite sintered body, an aluminum oxide-tungsten (Al 2 O 3 —W) conductive composite sintered body. body, aluminum oxide - silicon carbide (Al 2 O 3 -SiC) conductive composite sintered body, an aluminum nitride - tungsten (AlN-W) conductive composite sintered body, an aluminum nitride - tantalum (AlN-Ta) conductive composite With sintered ceramics, conductive ceramics such as yttrium oxide-molybdenum (Y 2 O 3 -Mo) conductive composite sintered bodies, or high melting point metals such as tungsten (W), tantalum (Ta), and molybdenum (Mo) Is formed.

この静電吸着用内部電極13の厚みは、特に限定されるものではないが、5μm以上かつ50μm以下が好ましく、特に好ましくは20μm以上かつ40μm以下である。その理由は、厚みが5μmを下回ると、充分な導電性を確保することができず、一方、厚みが50μmを越えると、この静電吸着用内部電極13と載置板11及び支持板12との間の熱膨張率差に起因して、この静電吸着用内部電極13と載置板11及び支持板12との接合界面にクラックが入り易くなるからである。
このような厚みの静電吸着用内部電極13は、スパッタ法や蒸着法等の成膜法、あるいはスクリーン印刷法等の塗工法により容易に形成することができる。
The thickness of the internal electrode 13 for electrostatic adsorption is not particularly limited, but is preferably 5 μm or more and 50 μm or less, and particularly preferably 20 μm or more and 40 μm or less. The reason is that if the thickness is less than 5 μm, sufficient conductivity cannot be ensured. On the other hand, if the thickness exceeds 50 μm, the electrostatic adsorption internal electrode 13, the mounting plate 11, and the support plate 12 This is because cracks are likely to occur at the joint interface between the electrostatic attraction internal electrode 13 and the mounting plate 11 and the support plate 12 due to the difference in thermal expansion coefficient between them.
The electrostatic adsorption internal electrode 13 having such a thickness can be easily formed by a film forming method such as a sputtering method or a vapor deposition method, or a coating method such as a screen printing method.

絶縁材層14は、静電吸着用内部電極13を囲繞してイオン注入等の際の雰囲気から静電吸着用内部電極13を保護するとともに、載置板11と支持板12との境界部、すなわち静電吸着用内部電極13以外の外周部領域を接合一体化するものであり、載置板11及び支持板12を構成する材料と同一組成または主成分が同一の絶縁材料により構成されている。   The insulating material layer 14 surrounds the internal electrode 13 for electrostatic adsorption and protects the internal electrode 13 for electrostatic adsorption from the atmosphere during ion implantation or the like, and a boundary portion between the mounting plate 11 and the support plate 12, In other words, the outer peripheral region other than the internal electrode 13 for electrostatic adsorption is joined and integrated, and the same composition or the main component of the material constituting the mounting plate 11 and the support plate 12 is made of the same insulating material. .

給電用端子15は、静電吸着用内部電極13に直流電圧を印加するために設けられた棒状のもので、この給電用端子15の材料としては、耐熱性に優れた導電性材料であれば特に制限されるものではないが、熱膨張係数が静電吸着用内部電極13及び支持板12の熱膨張係数に近似したものが好ましく、例えば、静電吸着用内部電極13を構成している導電性セラミックス、あるいは、タングステン(W)、タンタル(Ta)、モリブデン(Mo)、ニオブ(Nb)、コバール合金等の金属材料が好適に用いられる。   The power feeding terminal 15 is a rod-shaped one provided to apply a DC voltage to the electrostatic adsorption internal electrode 13. The material of the power feeding terminal 15 is a conductive material having excellent heat resistance. Although not particularly limited, it is preferable that the coefficient of thermal expansion approximates the coefficient of thermal expansion of the electrostatic adsorption internal electrode 13 and the support plate 12, for example, the conductive material constituting the electrostatic adsorption internal electrode 13. Or metal materials such as tungsten (W), tantalum (Ta), molybdenum (Mo), niobium (Nb), and Kovar alloy are preferably used.

この給電用端子15は、絶縁性を有する碍子17により温度調整用ベース部3及び温度調整用基材4に対して絶縁されている。
そして、この給電用端子15は支持板12に接合一体化され、さらに、載置板11と支持板12とは、静電吸着用内部電極13及び絶縁材層14により接合一体化されて静電チャック部2を構成している。
The power feeding terminal 15 is insulated from the temperature adjusting base portion 3 and the temperature adjusting base material 4 by an insulator 17 having insulating properties.
The power supply terminal 15 is joined and integrated with the support plate 12, and the mounting plate 11 and the support plate 12 are joined and integrated by the electrostatic adsorption internal electrode 13 and the insulating material layer 14. The chuck part 2 is configured.

温度調整用ベース部3は、静電チャック部2を所望の温度に調整するためのもので、厚みのある円板状のものである。
この温度調整用ベース部3としては、例えば、その内部に水を循環させる流路21が形成された水冷ベース等が好適である。
この温度調整用ベース部3の上面には、温度調整用基材4を嵌め込むための凹部22が形成されている。
The temperature adjusting base portion 3 is for adjusting the electrostatic chuck portion 2 to a desired temperature, and has a thick disk shape.
As this temperature adjustment base part 3, for example, a water-cooled base in which a flow path 21 for circulating water is formed is suitable.
A concave portion 22 for fitting the temperature adjusting base material 4 is formed on the upper surface of the temperature adjusting base portion 3.

この温度調整用ベース部3を構成する材料としては、熱伝導性、導電性、加工性に優れた金属、またはこれらの金属を含む複合材であれば特に制限はなく、例えば、アルミニウム(Al)、アルミニウム合金、銅(Cu)、銅合金、ステンレス鋼(SUS) 等が好適に用いられる。この温度調整用ベース部3の少なくともイオン注入等の際の雰囲気に曝される面は、アルマイト処理が施されているか、あるいはアルミナ等の絶縁膜が成膜されていることが好ましい。   The material constituting the temperature adjusting base 3 is not particularly limited as long as it is a metal excellent in thermal conductivity, conductivity, and workability, or a composite material containing these metals. For example, aluminum (Al) Aluminum alloy, copper (Cu), copper alloy, stainless steel (SUS) and the like are preferably used. It is preferable that at least the surface of the temperature adjusting base portion 3 exposed to the atmosphere during ion implantation or the like is subjected to an alumite treatment or an insulating film such as alumina is formed.

温度調整用基材4は、静電チャック部2を液体窒素等の冷却媒体を用いて所望の温度に冷却するもので、静電チャック部2より大径の円板状のもので、酸化アルミニウム(Al)焼結体、窒化アルミニウム(AlN)焼結体、酸化イットリウム(Y)焼結体等の機械的な強度を有し、かつイオン注入プロセス等の半導体製造プロセスにおける耐久性を有する絶縁性のセラミックス焼結体からなるものである。 The temperature adjusting base material 4 is for cooling the electrostatic chuck portion 2 to a desired temperature using a cooling medium such as liquid nitrogen, and is a disk-shaped member having a diameter larger than that of the electrostatic chuck portion 2. (Al 2 O 3 ) sintered body, aluminum nitride (AlN) sintered body, yttrium oxide (Y 2 O 3 ) sintered body, etc. have mechanical strength and in semiconductor manufacturing processes such as ion implantation process It is made of an insulating ceramic sintered body having durability.

この温度調整用基材4の上面(主面)には、静電チャック部2を嵌め込むための凹部31が形成され、この凹部31の底面には液体窒素等の冷却媒体を流動させる溝32が形成されている。
この溝32のパターン形状は、静電チャック部2を液体窒素等の冷却媒体を用いて所望の温度に冷却することができればよく、特に制限はないが、静電チャック部2の下面を均一に冷却することができる点で、渦巻き状または蛇行状が好ましい。
A concave portion 31 for fitting the electrostatic chuck portion 2 is formed on the upper surface (main surface) of the temperature adjusting substrate 4, and a groove 32 for flowing a cooling medium such as liquid nitrogen is formed on the bottom surface of the concave portion 31. Is formed.
The pattern shape of the groove 32 is not particularly limited as long as the electrostatic chuck unit 2 can be cooled to a desired temperature using a cooling medium such as liquid nitrogen, but the lower surface of the electrostatic chuck unit 2 is made uniform. A spiral shape or a meandering shape is preferable in that it can be cooled.

この温度調整用基材4の厚みは5mm以上かつ30mm以下が好ましく、10mm以上かつ20mm以下がより好ましい。
その理由は、温度調整用基材4の厚みが5mmを下回ると、温度調整用基材4の機械的強度が低下するとともに、静電チャック部2と温度調整用ベース部3との間の断熱が不十分なものとなり、その結果、静電チャック部2における温度の制御性が低下し、板状試料Wの面内温度を所望の温度パターンに維持することが困難になる。
The thickness of the temperature adjusting substrate 4 is preferably 5 mm or more and 30 mm or less, and more preferably 10 mm or more and 20 mm or less.
The reason for this is that when the thickness of the temperature adjusting substrate 4 is less than 5 mm, the mechanical strength of the temperature adjusting substrate 4 is reduced and the heat insulation between the electrostatic chuck portion 2 and the temperature adjusting base portion 3 is performed. As a result, the controllability of the temperature in the electrostatic chuck portion 2 is lowered, and it becomes difficult to maintain the in-plane temperature of the plate-like sample W in a desired temperature pattern.

一方、温度調整用基材4の厚みが30mmを超えると、温度調整用基材4の機械的強度は確保されるものの、静電チャック部2と温度調整用ベース部3との間の熱伝達が不十分なものとなり、その結果、静電チャック部2における温度の制御性が低下し、板状試料Wの面内温度を所望の温度パターンに維持することが困難になる。   On the other hand, when the thickness of the temperature adjusting substrate 4 exceeds 30 mm, heat transfer between the electrostatic chuck portion 2 and the temperature adjusting base portion 3 is ensured, although the mechanical strength of the temperature adjusting substrate 4 is ensured. As a result, the controllability of the temperature in the electrostatic chuck portion 2 is lowered, and it becomes difficult to maintain the in-plane temperature of the plate-like sample W in a desired temperature pattern.

低温対応有機系接着剤層5は、液体窒素等の冷却媒体を用いて冷却される静電チャック部2と温度調整用基材4とを接着、固定する絶縁性を有するもので、耐熱温度が−270℃以上かつ120℃以下の接着剤からなるものである。この低温対応有機系接着剤層5の材質としては、上記の温度範囲で耐熱性を有するエポキシ系接着剤が好適に用いられる。   The low-temperature-compatible organic adhesive layer 5 has an insulating property for bonding and fixing the electrostatic chuck portion 2 cooled by using a cooling medium such as liquid nitrogen and the temperature adjusting substrate 4, and has a heat resistant temperature. It is made of an adhesive having a temperature of −270 ° C. or higher and 120 ° C. or lower. As a material for the low temperature compatible organic adhesive layer 5, an epoxy adhesive having heat resistance in the above temperature range is preferably used.

この低温対応有機系接着剤層5の厚みは、静電チャック部2と温度調整用基材4との間の熱伝達の迅速性を考慮すると、50μm以上かつ300μm以下が好ましく、より好ましくは75μm以上かつ125μm以下である。
この低温対応有機系接着剤層5の面内の厚みのバラツキは10μm以内が好ましい。
ここで、低温対応有機系接着剤層5の面内の厚みのバラツキが10μmを超えると、静電チャック部2と温度調整用基材4との面内間隔に10μmを超えるバラツキが生じ、その結果、温度調整用基材4から静電チャック部2に伝達される冷熱の面内均一性が低下し、静電チャック部2の載置面における面内温度が不均一となるので、好ましくない。
The thickness of the low-temperature-compatible organic adhesive layer 5 is preferably 50 μm or more and 300 μm or less, more preferably 75 μm, considering the rapidity of heat transfer between the electrostatic chuck portion 2 and the temperature adjusting substrate 4. Above and below 125 μm.
The in-plane thickness variation of the low temperature compatible organic adhesive layer 5 is preferably within 10 μm.
Here, if the in-plane thickness variation of the low-temperature-compatible organic adhesive layer 5 exceeds 10 μm, the in-plane spacing between the electrostatic chuck portion 2 and the temperature adjustment substrate 4 exceeds 10 μm. As a result, the in-plane uniformity of the cold transmitted from the temperature adjusting substrate 4 to the electrostatic chuck unit 2 is reduced, and the in-plane temperature on the mounting surface of the electrostatic chuck unit 2 becomes non-uniform. .

接着剤層6は、温度調整用基材4と温度調整用ベース部3とを接着固定する絶縁性を有するもので、耐熱温度が−100℃以上かつ120℃以下の接着剤からなるものである。
この接着剤層6の材質としては、上記の温度範囲で耐熱性を有するシリコーン系接着剤、ポリイミド系接着剤、エポキシ系接着剤等が好適であり、中でもシロキサン結合(Si−O−Si)を有する耐熱温度が−50℃以上かつ100℃以下のシリコーン系接着剤が好ましい。
The adhesive layer 6 has an insulating property for bonding and fixing the temperature adjusting substrate 4 and the temperature adjusting base portion 3, and is made of an adhesive having a heat resistant temperature of −100 ° C. or higher and 120 ° C. or lower. .
As the material of the adhesive layer 6, a silicone adhesive, a polyimide adhesive, an epoxy adhesive, etc. having heat resistance in the above temperature range are preferable, and among them, a siloxane bond (Si—O—Si) is used. A silicone-based adhesive having a heat resistant temperature of −50 ° C. or higher and 100 ° C. or lower is preferable.

このシリコーン系接着剤は、耐熱性、弾性に優れた接着剤であり、例えば、下記の式(1)または式(2)の化学式で表すことができる。   This silicone-based adhesive is an adhesive excellent in heat resistance and elasticity, and can be represented by, for example, a chemical formula of the following formula (1) or formula (2).

Figure 2012142413
但し、Rは、Hまたはアルキル基(C2n+1−:nは整数)である。
Figure 2012142413
Here, R is, H or an alkyl group (C n H 2n + 1 - : n is an integer) is.

Figure 2012142413
但し、Rは、Hまたはアルキル基(C2n+1−:nは整数)である。
Figure 2012142413
Here, R is, H or an alkyl group (C n H 2n + 1 - : n is an integer) is.

このようなシリコーン系接着剤としては、硬化後のヤング率が8MPa以下の接着剤が好ましい。ここで、硬化後のヤング率が8MPaを超えると、接着剤層6に昇温、降温の熱サイクルが負荷された際に、温度調整用基材4と温度調整用ベース部3との熱膨張差を吸収することができず、接着剤層6の耐久性が低下するので、好ましくない。   As such a silicone-based adhesive, an adhesive having a Young's modulus after curing of 8 MPa or less is preferable. Here, when the Young's modulus after curing exceeds 8 MPa, the thermal expansion of the temperature adjusting base material 4 and the temperature adjusting base portion 3 occurs when the adhesive layer 6 is subjected to a heat cycle of increasing and decreasing temperatures. Since the difference cannot be absorbed and the durability of the adhesive layer 6 is lowered, it is not preferable.

この接着剤層6の厚みは、温度調整用ベース部3と温度調整用基材4との間の断熱・応力緩和を考慮すると、50μm以上かつ300μm以下が好ましく、より好ましくは100μm以上かつ200μm以下である。   The thickness of the adhesive layer 6 is preferably not less than 50 μm and not more than 300 μm, more preferably not less than 100 μm and not more than 200 μm, considering heat insulation and stress relaxation between the temperature adjusting base portion 3 and the temperature adjusting base material 4. It is.

次に、この静電チャック装置1の製造方法について説明する。
まず、酸化アルミニウム−炭化ケイ素(Al−SiC)複合焼結体、酸化アルミニウム(Al)焼結体、窒化アルミニウム(AlN)焼結体、または酸化イットリウム(Y)焼結体を用いて、所望の形状の載置板11及び支持板12を作製する。この場合、炭化ケイ素粉体及び酸化アルミニウム粉体を含む混合粉体、酸化アルミニウム粉体、窒化アルミニウム粉体、または酸化イットリウム粉体を所望の形状に成形し、その後、粉体に好ましい雰囲気下、例えば1400℃〜2000℃の温度にて所定時間、焼成することにより、載置板11及び支持板12を得ることができる。
次いで、支持板12に、給電用端子15及び碍子17を嵌め込み保持するための固定孔を複数個形成する。この固定孔は、粉体を成形する際に形成することとしてもよい。
Next, a method for manufacturing the electrostatic chuck device 1 will be described.
First, aluminum oxide-silicon carbide (Al 2 O 3 —SiC) composite sintered body, aluminum oxide (Al 2 O 3 ) sintered body, aluminum nitride (AlN) sintered body, or yttrium oxide (Y 2 O 3 ) Using the sintered body, the mounting plate 11 and the support plate 12 having a desired shape are produced. In this case, a mixed powder containing silicon carbide powder and aluminum oxide powder, aluminum oxide powder, aluminum nitride powder, or yttrium oxide powder is formed into a desired shape, and then in a preferable atmosphere for the powder, For example, the mounting plate 11 and the support plate 12 can be obtained by baking at a temperature of 1400 ° C. to 2000 ° C. for a predetermined time.
Next, a plurality of fixing holes for fitting and holding the power feeding terminal 15 and the insulator 17 are formed in the support plate 12. The fixing hole may be formed when the powder is molded.

次いで、上記の導電性セラミックス粉体等の導電材料を有機溶媒に分散した静電吸着用内部電極形成用塗布液を用意し、この静電吸着用内部電極形成用塗布液を載置板11の裏面の所定領域に塗布し、乾燥して、静電吸着用内部電極形成層とする。
この塗布法としては、均一な厚さに塗布する必要があることから、スクリーン印刷法等を用いることが望ましい。また、上記の塗布法以外の方法としては、上記の導電性セラミックスからなる薄板を配設して静電吸着用内部電極形成層とする方法等がある。
Next, a coating liquid for forming an internal electrode for electrostatic adsorption in which a conductive material such as the above conductive ceramic powder is dispersed in an organic solvent is prepared, and the coating liquid for forming an internal electrode for electrostatic adsorption is applied to the mounting plate 11. It is applied to a predetermined area on the back surface and dried to form an electrostatic adsorption internal electrode forming layer.
As this coating method, it is desirable to use a screen printing method or the like because it is necessary to apply the film to a uniform thickness. Further, as a method other than the above-described coating method, there is a method in which a thin plate made of the above-described conductive ceramics is disposed to form an internal electrode forming layer for electrostatic adsorption.

また、この静電吸着用内部電極形成層にタングステン(W)、タンタル(Ta)、モリブデン(Mo)、ニオブ(Nb)、コバール合金等の高融点金属を用いる場合には、蒸着法あるいはスパッタリング法により高融点金属の薄膜を成膜する方法、あるいは、高融点金属からなる薄板を配設して静電吸着用内部電極形成層とする方法等がある。   In addition, when a high melting point metal such as tungsten (W), tantalum (Ta), molybdenum (Mo), niobium (Nb), or Kovar alloy is used for the internal electrode forming layer for electrostatic adsorption, a vapor deposition method or a sputtering method is used. There are a method of forming a thin film of a refractory metal by a method, a method of disposing a thin plate made of a refractory metal and forming an internal electrode forming layer for electrostatic adsorption.

また、載置板11上の静電吸着用内部電極形成層を形成した領域以外の領域に、載置板11及び支持板12と同一組成または主成分が同一の粉体材料を含む絶縁材形成層を形成する。この絶縁材形成層は、例えば、載置板11及び支持板12と同一組成または主成分が同一の絶縁材料からなる粉体を有機溶媒に分散した塗布液を、上記所定領域にスクリーン印刷等で塗布し、乾燥することにより形成することができる。   In addition, an insulating material is formed on the mounting plate 11 other than the region where the internal electrode forming layer for electrostatic attraction is formed, including a powder material having the same composition or the same main component as the mounting plate 11 and the support plate 12. Form a layer. For example, the insulating material forming layer is formed by applying a coating liquid in which a powder made of an insulating material having the same composition or the same main component as the mounting plate 11 and the support plate 12 is dispersed in an organic solvent by screen printing or the like in the predetermined area. It can be formed by applying and drying.

次いで、載置板11上の静電吸着用内部電極形成層及び絶縁材形成層の上に支持板12上を重ね合わせ、次いで、これらを高温、高圧下にてホットプレスし、一体化する。このホットプレスにおける雰囲気は、真空、あるいはAr、He、N等の不活性雰囲気が好ましい。また、ホットプレスにおける一軸加圧の際の圧力は5〜10MPaが好ましく、温度は1400℃〜1850℃が好ましい。 Next, the support plate 12 is overlaid on the electrostatic adsorption internal electrode forming layer and the insulating material forming layer on the mounting plate 11, and then these are hot-pressed under high temperature and high pressure to be integrated. The atmosphere in this hot press is preferably a vacuum or an inert atmosphere such as Ar, He, N 2 or the like. Moreover, the pressure in the case of uniaxial pressurization in a hot press is preferably 5 to 10 MPa, and the temperature is preferably 1400 ° C to 1850 ° C.

このホットプレスにより、静電吸着用内部電極形成層は焼成されて導電性複合焼結体からなる静電吸着用内部電極13となる。同時に、絶縁材形成層も焼成されて絶縁材層14となり、この絶縁材層14により支持板12及び載置板11は接合一体化される。
そして、これら接合体の上下面、外周およびガス穴(図示せず)等を機械加工し、静電チャック部2とする。このガス穴は、後述するヘリウム等の冷却ガスを載置板11と板状試料Wとの間に流すために静電チャック部2に形成する穴である。
By this hot pressing, the internal electrode forming layer for electrostatic adsorption is fired to become the internal electrode 13 for electrostatic adsorption made of a conductive composite sintered body. At the same time, the insulating material forming layer is also baked to form the insulating material layer 14, and the support plate 12 and the mounting plate 11 are joined and integrated by the insulating material layer 14.
Then, the upper and lower surfaces, outer periphery, gas holes (not shown) and the like of these joined bodies are machined to form the electrostatic chuck portion 2. This gas hole is a hole formed in the electrostatic chuck portion 2 so that a cooling gas such as helium described later flows between the mounting plate 11 and the plate-like sample W.

一方、給電用端子15を、支持板12の固定孔に密着固定し得る大きさ、形状となるように作製する。この給電用端子15の作製方法としては、例えば、給電用端子15を導電性複合焼結体とした場合、導電性セラミックス粉体を所望の形状に成形して加圧焼成する方法等が挙げられる。
このとき、給電用端子15に用いられる導電性セラミックス粉体としては、静電吸着用内部電極13と同様の材質からなる導電性セラミックス粉体が好ましい。
また、給電用端子15を金属とした場合、高融点金属を用い、研削法、粉末治金等の金属加工法等により形成する方法等が挙げられる。
On the other hand, the power supply terminal 15 is manufactured so as to have a size and a shape that can be tightly fixed to the fixing hole of the support plate 12. As a method for producing the power supply terminal 15, for example, when the power supply terminal 15 is made of a conductive composite sintered body, a method of forming a conductive ceramic powder into a desired shape and pressurizing and firing can be cited. .
At this time, the conductive ceramic powder used for the power feeding terminal 15 is preferably a conductive ceramic powder made of the same material as the internal electrode 13 for electrostatic adsorption.
In addition, when the power supply terminal 15 is made of metal, a method of using a refractory metal and a metal working method such as a grinding method or powder metallurgy, or the like can be used.

一方、アルミニウム(Al)、アルミニウム合金、銅(Cu)、銅合金、ステンレス鋼(SUS) 等からなる金属材料に機械加工を施し、必要に応じて、この金属材料の内部に水を循環させる流路等を形成し、さらに、給電用端子15及び碍子17を嵌め込み保持するための固定孔を形成し、温度調整用ベース部3とする。
この温度調整用ベース部3の少なくともイオン注入時の雰囲気に曝される面には、アルマイト処理を施すか、あるいはアルミナ等の絶縁膜を成膜することが好ましい。
次いで、温度調整用ベース部3に、給電用端子15及び碍子17を嵌め込み保持するための固定孔を複数個形成する。
On the other hand, a metal material made of aluminum (Al), aluminum alloy, copper (Cu), copper alloy, stainless steel (SUS), etc. is machined, and water is circulated inside the metal material as necessary. A path or the like is formed, and further, a fixing hole for fitting and holding the power supply terminal 15 and the insulator 17 is formed, and the temperature adjusting base portion 3 is formed.
It is preferable to perform alumite treatment or form an insulating film such as alumina on at least the surface of the temperature adjusting base portion 3 exposed to the atmosphere during ion implantation.
Next, a plurality of fixing holes for fitting and holding the power supply terminal 15 and the insulator 17 are formed in the temperature adjusting base portion 3.

さらに、酸化アルミニウム(Al)焼結体、窒化アルミニウム(AlN)焼結体、または酸化イットリウム(Y)焼結体を用いて、所望の形状の温度調整用基材4を作製する。この場合、酸化アルミニウム(Al)粉体、窒化アルミニウム粉体、または酸化イットリウム粉体を所望の形状に成形し、その後、粉体に好ましい雰囲気下、例えば1400℃〜2000℃の温度にて所定時間、焼成し、温度調整用基材4とする。
次いで、この温度調整用基材4に、給電用端子15及び碍子17を嵌め込み保持するための固定孔を複数個形成する。この固定孔は、粉体を成形する際に形成することとしてもよい。
Furthermore, using the aluminum oxide (Al 2 O 3 ) sintered body, the aluminum nitride (AlN) sintered body, or the yttrium oxide (Y 2 O 3 ) sintered body, the temperature adjusting substrate 4 having a desired shape is formed. Make it. In this case, an aluminum oxide (Al 2 O 3 ) powder, an aluminum nitride powder, or an yttrium oxide powder is formed into a desired shape, and then, in an atmosphere preferable for the powder, for example, at a temperature of 1400 ° C. to 2000 ° C. The substrate is baked for a predetermined time to obtain a temperature adjusting substrate 4.
Next, a plurality of fixing holes for fitting and holding the power supply terminals 15 and the insulators 17 are formed in the temperature adjusting substrate 4. The fixing hole may be formed when the powder is molded.

次いで、静電チャック部2の支持板12の下面、すなわち温度調整用基材4を接着する面を、例えばアセトンを用いて脱脂、洗浄し、この面上の所定領域に、スクリーン印刷法等の塗布法を用いて耐熱温度が−270℃以上かつ120℃以下のエポキシ系接着剤を、100μm以上かつ200μm以下の厚みとなるように塗布する。   Next, the lower surface of the support plate 12 of the electrostatic chuck unit 2, that is, the surface to which the temperature adjustment base material 4 is bonded is degreased and washed using, for example, acetone. Using an application method, an epoxy adhesive having a heat resistant temperature of −270 ° C. or higher and 120 ° C. or lower is applied so as to have a thickness of 100 μm or more and 200 μm or less.

さらに、温度調整用基材4の下面、すなわち温度調整用ベース部3を接着する面を、例えばアセトンを用いて脱脂、洗浄し、この面上の所定領域に、スクリーン印刷法等の塗布法を用いて耐熱温度が−100℃以上かつ120℃以下のシリコーン系接着剤、ポリイミド系接着剤、またはエポキシ系接着剤を、200μm以上かつ300μm以下の厚みとなるように塗布する。   Further, the lower surface of the temperature adjusting substrate 4, that is, the surface to which the temperature adjusting base portion 3 is bonded is degreased and washed using, for example, acetone, and a coating method such as a screen printing method is applied to a predetermined region on this surface. A silicone adhesive, polyimide adhesive, or epoxy adhesive having a heat resistant temperature of −100 ° C. or higher and 120 ° C. or lower is applied so as to have a thickness of 200 μm or more and 300 μm or less.

次いで、静電チャック部2、温度調整用基材4及び温度調整用ベース部3をこの順に重ね合わせる。この際、給電用端子15及び碍子17を、温度調整用ベース部3及び温度調整用基材4中に穿孔された給電用端子収容孔(図示略)に挿入し嵌め込む。   Next, the electrostatic chuck portion 2, the temperature adjustment base material 4, and the temperature adjustment base portion 3 are overlapped in this order. At this time, the power supply terminal 15 and the insulator 17 are inserted and fitted into a power supply terminal accommodation hole (not shown) drilled in the temperature adjustment base 3 and the temperature adjustment base material 4.

次いで、これら静電チャック部2、温度調整用基材4、温度調整用ベース部3、給電用端子15及び碍子17を、大気中、80℃以上かつ100℃以下にて加圧保持し、これらを接着し、一体化する。この加圧保持により、支持板12の下面に塗布されたエポキシ系接着剤は硬化して低温対応有機系接着剤層5となり、温度調整用基材4の下面に塗布されたシリコーン系接着剤、ポリイミド系接着剤、またはエポキシ系接着剤は硬化して接着剤層6となる。   Next, the electrostatic chuck part 2, the temperature adjusting base material 4, the temperature adjusting base part 3, the power feeding terminal 15 and the insulator 17 are pressurized and held at 80 ° C. or higher and 100 ° C. or lower in the atmosphere. Are bonded and integrated. By this pressurization and holding, the epoxy adhesive applied to the lower surface of the support plate 12 is cured to become a low temperature compatible organic adhesive layer 5, and a silicone adhesive applied to the lower surface of the temperature adjusting substrate 4, The polyimide adhesive or the epoxy adhesive is cured to form the adhesive layer 6.

以上により、静電チャック部2、温度調整用基材4、温度調整用ベース部3、給電用端子15及び碍子17は、低温対応有機系接着剤層5及び接着剤層6を介して接合一体化され、本実施形態の静電チャック装置1が得られることとなる。   As described above, the electrostatic chuck portion 2, the temperature adjustment base material 4, the temperature adjustment base portion 3, the power feeding terminal 15 and the insulator 17 are joined and integrated through the low temperature compatible organic adhesive layer 5 and the adhesive layer 6. Thus, the electrostatic chuck device 1 of this embodiment is obtained.

この静電チャック装置1によれば、静電チャック部2と温度調整用ベース部3との間に、静電チャック部2側の凹部31に冷却媒体を流動させる溝32を形成した温度調整用基材4を設けたので、静電チャック部2を冷却媒体の温度まで冷却した場合においても、温度調整用ベース部3を温度調整用基材4により静電チャック部2から断熱することができ、温度調整用ベース部3の下面の温度を室温(25℃〜20℃)程度に保持することができる。
したがって、静電チャック部2が温度調整用基材4により冷却媒体の温度まで冷却された場合においても、この静電チャック装置1の裏面の温度を、温度調整用ベース部3により室温(25℃〜20℃)程度の温度に保持することができ、大気中に曝露した場合においても、この裏面に結露が生じる虞は無い。
According to the electrostatic chuck device 1, a temperature adjusting groove in which a groove 32 for allowing a cooling medium to flow is formed in the concave portion 31 on the electrostatic chuck portion 2 side between the electrostatic chuck portion 2 and the temperature adjusting base portion 3. Since the substrate 4 is provided, the temperature adjustment base 3 can be insulated from the electrostatic chuck 2 by the temperature adjustment substrate 4 even when the electrostatic chuck 2 is cooled to the temperature of the cooling medium. The temperature of the lower surface of the temperature adjusting base 3 can be maintained at about room temperature (25 ° C. to 20 ° C.).
Therefore, even when the electrostatic chuck portion 2 is cooled to the temperature of the cooling medium by the temperature adjustment base material 4, the temperature of the back surface of the electrostatic chuck device 1 is changed to the room temperature (25 ° C.) by the temperature adjustment base portion 3. It can be kept at a temperature of about 20 ° C.), and even when exposed to the atmosphere, there is no risk of condensation on the back surface.

また、静電チャック部2と温度調整用基材4とを、低温対応有機系接着剤層5を介して接着、固定したので、静電チャック部2を温度調整用基材4により冷却媒体の温度まで冷却した場合においても、静電チャック部2と温度調整用基材4との間の接着強度を保持することができ、剥離等の虞も無い。   In addition, since the electrostatic chuck portion 2 and the temperature adjustment base material 4 are bonded and fixed via the low temperature compatible organic adhesive layer 5, the electrostatic chuck portion 2 is attached to the cooling medium by the temperature adjustment base material 4. Even when cooled to the temperature, the adhesive strength between the electrostatic chuck portion 2 and the temperature adjusting substrate 4 can be maintained, and there is no possibility of peeling or the like.

[第2の実施形態]
図2は、本発明の第2の実施形態の静電チャック装置を示す断面図であり、この静電チャック装置41が、第1の実施形態の静電チャック装置1と異なる点は、第1の実施形態の静電チャック装置1では、温度調整用基材4の上面に静電チャック部2を嵌め込むための凹部31を形成し、この凹部31の底面に液体窒素等の冷却媒体を流動させる溝32を形成したのに対し、本実施形態の静電チャック装置41では、上面に静電チャック部2を嵌め込むための凹部31が形成された温度調整用基材42の内部に、液体窒素等の冷却媒体を流動させる流路43を形成した点であり、その他の点については第1の実施形態の静電チャック装置1と同様である。
[Second Embodiment]
FIG. 2 is a sectional view showing an electrostatic chuck device according to a second embodiment of the present invention. The electrostatic chuck device 41 is different from the electrostatic chuck device 1 according to the first embodiment in that In the electrostatic chuck device 1 according to the embodiment, a concave portion 31 for fitting the electrostatic chuck portion 2 is formed on the upper surface of the temperature adjusting base material 4, and a cooling medium such as liquid nitrogen flows on the bottom surface of the concave portion 31. Whereas the groove 32 to be formed is formed, in the electrostatic chuck device 41 of the present embodiment, the liquid is disposed inside the temperature adjustment base material 42 in which the concave portion 31 for fitting the electrostatic chuck portion 2 is formed on the upper surface. This is that a flow path 43 for flowing a cooling medium such as nitrogen is formed, and the other points are the same as those of the electrostatic chuck device 1 of the first embodiment.

この流路43のパターン形状は、静電チャック部2を液体窒素等の冷却媒体を用いて所望の温度に冷却することができればよく、特に制限はないが、静電チャック部2の下面を均一に冷却することができる点で、渦巻き状または蛇行状が好ましい。   The pattern shape of the flow path 43 is not particularly limited as long as the electrostatic chuck unit 2 can be cooled to a desired temperature using a cooling medium such as liquid nitrogen, but the lower surface of the electrostatic chuck unit 2 is uniform. From the viewpoint of being able to be cooled to a low temperature, a spiral shape or a meandering shape is preferable.

この静電チャック装置41においても、第1の実施形態の静電チャック装置1と同様の作用・効果を奏することができる。
しかも、上面に静電チャック部2を嵌め込むための凹部31が形成された温度調整用基材42の内部に、液体窒素等の冷却媒体を流動させる流路43を形成したので、この流路43に冷却媒体を流動させることにより、静電チャック部2を冷却媒体により効率よく冷却することができる。
This electrostatic chuck device 41 can also provide the same operations and effects as the electrostatic chuck device 1 of the first embodiment.
In addition, since the flow path 43 for flowing a cooling medium such as liquid nitrogen is formed inside the temperature adjusting base material 42 in which the recess 31 for fitting the electrostatic chuck portion 2 is formed on the upper surface, this flow path is formed. By causing the cooling medium to flow through 43, the electrostatic chuck portion 2 can be efficiently cooled by the cooling medium.

以下、実施例及び比較例により本発明を具体的に説明するが、本発明はこれらの実施例によって限定されるものではない。   EXAMPLES Hereinafter, although an Example and a comparative example demonstrate this invention concretely, this invention is not limited by these Examples.

「実施例1」
(静電チャック装置の作製)
公知の方法により、内部に厚み30μmの静電吸着用内部電極13が埋設された静電チャック部2を作製した。
この静電チャック部2の載置板11は、炭化ケイ素を8質量%含有する酸化アルミニウム−炭化ケイ素複合焼結体であり、直径は200mm、厚みは2mmの円板状であった。また、この載置板11の静電吸着面を、高さが30μmの多数の突起部16を形成することで凹凸面とし、これらの突起部16の頂面を板状試料Wの保持面とし、凹部と静電吸着された板状試料Wとの間に形成される溝に冷却ガスを流すことができるようにした。
"Example 1"
(Production of electrostatic chuck device)
An electrostatic chuck portion 2 in which an internal electrode 13 for electrostatic attraction having a thickness of 30 μm was embedded was produced by a known method.
The mounting plate 11 of the electrostatic chuck portion 2 is an aluminum oxide-silicon carbide composite sintered body containing 8% by mass of silicon carbide, and has a disk shape with a diameter of 200 mm and a thickness of 2 mm. Further, the electrostatic chucking surface of the mounting plate 11 is formed as an uneven surface by forming a large number of protrusions 16 having a height of 30 μm, and the top surface of these protrusions 16 is used as a holding surface for the plate-like sample W. The cooling gas can be made to flow in a groove formed between the recess and the electrostatically adsorbed plate-like sample W.

また、支持板12も載置板11と同様、炭化ケイ素を8質量%含有する酸化アルミニウム−炭化ケイ素複合焼結体であり、直径は200mm、厚みは2mmの円板状であった。
これら載置板11及び支持板12を接合一体化することにより、静電チャック部2の全体の厚みは4mmとなっていた。
Similarly to the mounting plate 11, the support plate 12 is an aluminum oxide-silicon carbide composite sintered body containing 8% by mass of silicon carbide, and has a disk shape with a diameter of 200 mm and a thickness of 2 mm.
By joining and integrating the mounting plate 11 and the support plate 12, the entire thickness of the electrostatic chuck portion 2 was 4 mm.

一方、直径250mm、高さ20mmのアルミニウム製の温度調整用ベース部3を、機械加工により作製した。この温度調整用ベース部3の内部には冷媒を循環させる流路(図示略)を形成した。   On the other hand, an aluminum temperature adjusting base 3 having a diameter of 250 mm and a height of 20 mm was produced by machining. A flow path (not shown) for circulating the refrigerant was formed inside the temperature adjusting base 3.

さらに、酸化アルミニウム(Al)焼結体を用いて、温度調整用基材4を作製した。この温度調整用基材4の直径は220mm、厚みは15mmの円板状であった。また、この温度調整用基材4の上面の凹部31には、深さ25mm、幅12mmの渦巻き状の溝32を形成し、液体窒素等の冷却媒体を流すことができるようにした。 Further, by using the aluminum oxide (Al 2 O 3) sintered body, to produce a temperature adjustment substrate 4. The temperature adjusting substrate 4 had a disk shape with a diameter of 220 mm and a thickness of 15 mm. Further, a spiral groove 32 having a depth of 25 mm and a width of 12 mm is formed in the concave portion 31 on the upper surface of the temperature adjusting substrate 4 so that a cooling medium such as liquid nitrogen can flow.

次いで、この静電チャック部2の支持板12の下面をアセトンを用いて脱脂、洗浄し、この下面の所定領域に、スクリーン印刷法により、低温対応有機系接着剤であるエポキシ系接着剤 SK−229(日東電工社製)を200μmの厚みとなるように塗布した。
次いで、温度調整用基材4の下面をアセトンを用いて脱脂、洗浄し、この下面の所定領域に、スクリーン印刷法により、シリコーン系接着剤 TSE3221(モメンティブ社製)を300μmの厚みとなるように塗布した。
Next, the lower surface of the support plate 12 of the electrostatic chuck portion 2 is degreased and washed with acetone, and an epoxy adhesive SK-, which is a low temperature compatible organic adhesive, is applied to a predetermined region of the lower surface by screen printing. 229 (manufactured by Nitto Denko Corporation) was applied to a thickness of 200 μm.
Next, the lower surface of the temperature adjusting substrate 4 is degreased and washed with acetone, and a silicone adhesive TSE3221 (manufactured by Momentive) is made to have a thickness of 300 μm on a predetermined region of the lower surface by screen printing. Applied.

次いで、静電チャック部2、温度調整用基材4及び温度調整用ベース部3をこの順に重ね合わせ、給電用端子15及び碍子17を、温度調整用ベース部3及び温度調整用基材4中に穿孔された給電用端子収容孔に挿入し、嵌め込んだ。
次いで、これら静電チャック部2、温度調整用基材4、温度調整用ベース部3、給電用端子15及び碍子17を、大気中、25℃にて加圧保持し、これらを接着し、一体化して、実施例1の静電チャック装置を作製した。
これにより、支持板12の下面に塗布されたエポキシ系接着剤は硬化して低温対応有機系接着剤層5となり、温度調整用基材4の下面に塗布されたシリコーン系接着剤は硬化して接着剤層6となった。
Next, the electrostatic chuck portion 2, the temperature adjustment base material 4 and the temperature adjustment base portion 3 are superposed in this order, and the power supply terminal 15 and the insulator 17 are placed in the temperature adjustment base portion 3 and the temperature adjustment base material 4. And inserted into the power supply terminal accommodating hole perforated.
Next, the electrostatic chuck part 2, the temperature adjusting base material 4, the temperature adjusting base part 3, the power feeding terminal 15 and the insulator 17 are pressurized and held at 25 ° C. in the atmosphere, and these are bonded and integrated. The electrostatic chuck device of Example 1 was manufactured.
As a result, the epoxy adhesive applied to the lower surface of the support plate 12 is cured to form a low temperature compatible organic adhesive layer 5, and the silicone adhesive applied to the lower surface of the temperature adjusting substrate 4 is cured. The adhesive layer 6 was obtained.

(評価)
この静電チャック装置の熱サイクル試験を行い、接着剤の剥離の有無について評価した。
熱サイクル試験の方法は次のとおりである。
温度調整用ベース部3の流路21に20℃の水を流しながら、温度調整用基材4の溝32に−100℃の液体窒素を流し、静電チャック部2を−100℃にまで冷却し、静電チャック部2が−100℃になった時点で液体窒素の導入を停止した。その後、静電チャック部2が20℃になるまで放置し、静電チャック部2が20℃になった時点で、再度、温度調整用ベース部3の流路21に20℃の水を流しながら、温度調整用基材4の溝32に−100℃の液体窒素を流し、静電チャック部2を−100℃にまで冷却した。
この「−100℃にまで冷却」及び「20℃にまで放置」という熱サイクルを合計10回繰り返し行った。
また、同時に、この熱サイクル中における静電チャック装置の裏面の結露の有無も確認した。
(Evaluation)
This electrostatic chuck device was subjected to a thermal cycle test and evaluated for the presence or absence of peeling of the adhesive.
The method of the thermal cycle test is as follows.
While flowing 20 ° C. water through the flow path 21 of the temperature adjusting base 3, −100 ° C. liquid nitrogen is allowed to flow through the groove 32 of the temperature adjusting substrate 4 to cool the electrostatic chuck 2 to −100 ° C. The introduction of liquid nitrogen was stopped when the electrostatic chuck portion 2 reached -100 ° C. Thereafter, the electrostatic chuck unit 2 is allowed to stand until it reaches 20 ° C., and when the electrostatic chuck unit 2 reaches 20 ° C., water of 20 ° C. is allowed to flow again through the flow path 21 of the temperature adjustment base unit 3. Then, liquid nitrogen at −100 ° C. was caused to flow through the groove 32 of the temperature adjusting substrate 4 to cool the electrostatic chuck portion 2 to −100 ° C.
This thermal cycle of “cooling to −100 ° C.” and “standing at 20 ° C.” was repeated a total of 10 times.
At the same time, the presence or absence of condensation on the back surface of the electrostatic chuck device during the thermal cycle was also confirmed.

上記の熱サイクル試験の評価結果によれば、次のことが分かった。
静電チャック部2を温度調整用基材4により液体窒素の温度まで冷却したが、静電チャック部2と温度調整用基材4との間の接着強度が高く、剥離も認められなかった。
また、この熱サイクル中、静電チャック装置の裏面には結露が認められなかった。
According to the evaluation result of the thermal cycle test, the following was found.
Although the electrostatic chuck part 2 was cooled to the temperature of liquid nitrogen by the temperature adjustment base material 4, the adhesive strength between the electrostatic chuck part 2 and the temperature adjustment base material 4 was high, and peeling was not recognized.
Also, no condensation was observed on the back surface of the electrostatic chuck device during this thermal cycle.

「実施例2」
(静電チャック装置の作製)
静電チャック部2の載置板11及び支持板12を酸化イットリウム焼結体とし、温度調整用基材4も酸化イットリウム焼結体とした他は、実施例1に準じて、実施例2の静電チャック装置を作製した。
"Example 2"
(Production of electrostatic chuck device)
Except that the mounting plate 11 and the support plate 12 of the electrostatic chuck part 2 are made of yttrium oxide sintered body and the temperature adjusting base material 4 is also made of yttrium oxide sintered body, An electrostatic chuck device was produced.

(評価)
実施例2の静電チャック装置を、実施例1に準じて評価した。その結果、次のことが分かった。
静電チャック部2を温度調整用基材4により液体窒素の温度まで冷却したが、静電チャック部2と温度調整用基材4との間の接着強度が高く、剥離も認められなかった。
また、この熱サイクル中、静電チャック装置の裏面には結露が認められなかった。
(Evaluation)
The electrostatic chuck device of Example 2 was evaluated according to Example 1. As a result, the following was found.
Although the electrostatic chuck part 2 was cooled to the temperature of liquid nitrogen by the temperature adjustment base material 4, the adhesive strength between the electrostatic chuck part 2 and the temperature adjustment base material 4 was high, and peeling was not recognized.
Also, no condensation was observed on the back surface of the electrostatic chuck device during this thermal cycle.

「比較例1」
(静電チャック装置の作製)
静電チャック部2と温度調整用基材4とを、低温対応有機系接着剤の替わりに耐熱温度が−50℃のエポキシ系接着剤を用いて接着固定した他は、実施例1に準じて、比較例1の静電チャック装置を作製した。
“Comparative Example 1”
(Production of electrostatic chuck device)
The electrostatic chuck part 2 and the temperature adjusting substrate 4 are bonded and fixed in accordance with Example 1 except that an epoxy adhesive having a heat resistant temperature of −50 ° C. is used instead of the low temperature compatible organic adhesive. The electrostatic chuck device of Comparative Example 1 was produced.

(評価)
比較例1の静電チャック装置を、実施例1に準じて評価した。その結果、次のことが分かった。
静電チャック部2を温度調整用基材4により液体窒素の温度まで冷却したところ、静電チャック部2と温度調整用基材4とが剥離してしまった。
また、大気中に暴露したところ、静電チャック装置の裏面に結露が生じていた。
(Evaluation)
The electrostatic chuck device of Comparative Example 1 was evaluated according to Example 1. As a result, the following was found.
When the electrostatic chuck part 2 was cooled to the temperature of liquid nitrogen by the temperature adjustment base material 4, the electrostatic chuck part 2 and the temperature adjustment base material 4 were peeled off.
In addition, when exposed to the atmosphere, condensation occurred on the back surface of the electrostatic chuck device.

「比較例2」
(静電チャック装置の作製)
静電チャック部2と温度調整用ベース部3とを、直接、低温対応有機系接着剤であるエポキシ系接着剤 SK−229(日東電工社製)を用いて接着固定した他は、実施例1に準じて、比較例2の静電チャック装置を作製した。
"Comparative Example 2"
(Production of electrostatic chuck device)
Example 1 except that the electrostatic chuck portion 2 and the temperature adjusting base portion 3 were directly bonded and fixed using an epoxy adhesive SK-229 (manufactured by Nitto Denko Corporation), which is a low temperature compatible organic adhesive. In accordance with the above, an electrostatic chuck device of Comparative Example 2 was produced.

(評価)
比較例2の静電チャック装置の温度調整用ベース部3の流路21に−100℃の液体窒素を流して、静電チャック装置全体を−100℃にまで冷却したところ、静電チャック部2と温度調整用ベース部3との間に剥離は認められなかった。
しかしながら、この静電チャック装置を用いてイオン注入プロセスを実施したところ、静電チャック装置の裏面に結露が生じていた。
(Evaluation)
When the entire electrostatic chuck device was cooled to −100 ° C. by flowing liquid nitrogen at −100 ° C. through the flow path 21 of the temperature adjustment base portion 3 of the electrostatic chuck device of Comparative Example 2, the electrostatic chuck portion 2 No peeling was observed between the base part 3 and the temperature adjusting base 3.
However, when the ion implantation process was performed using this electrostatic chuck device, dew condensation occurred on the back surface of the electrostatic chuck device.

1 静電チャック装置
2 静電チャック部
3 温度調整用ベース部
4 温度調整用基材
5 低温対応有機系接着剤層
6 接着剤層
11 載置板
11a 載置面
12 支持板
13 静電吸着用内部電極
14 絶縁材層
15 給電用端子
16 突起部
17 碍子
21 流路
22 凹部
31 凹部
32 溝
41 静電チャック装置
42 温度調整用基材
43 流路
W 板状試料
DESCRIPTION OF SYMBOLS 1 Electrostatic chuck apparatus 2 Electrostatic chuck part 3 Temperature adjustment base part 4 Temperature adjustment base material 5 Low-temperature-compatible organic adhesive layer 6 Adhesive layer 11 Mounting plate 11a Mounting surface 12 Support plate 13 For electrostatic adsorption Internal electrode 14 Insulating material layer 15 Power supply terminal 16 Protrusion 17 Insulator 21 Flow path 22 Recess 31 Recess 32 Groove 41 Electrostatic chuck device 42 Temperature adjusting base material 43 Flow path W Plate-like sample

Claims (5)

一主面を板状試料を載置する載置面とするとともに静電吸着用内部電極を内蔵した静電チャック部と、この静電チャック部の他の主面側に設けられて前記静電チャック部を所望の温度に調整する温度調整用ベース部とを備え、
前記静電チャック部と前記温度調整用ベース部との間に温度調整用基材を設け、
この温度調整用基材に、冷却媒体を流動させる流路を形成してなることを特徴とする静電チャック装置。
One main surface is used as a mounting surface on which a plate-like sample is placed, and an electrostatic chuck portion having a built-in electrostatic adsorption internal electrode, and the electrostatic chuck portion provided on the other main surface side of the electrostatic chuck portion is arranged on the electrostatic surface. A temperature adjusting base portion for adjusting the chuck portion to a desired temperature,
A temperature adjusting base material is provided between the electrostatic chuck portion and the temperature adjusting base portion,
An electrostatic chuck device comprising a flow path for allowing a cooling medium to flow in the temperature adjusting base material.
前記流路は、前記温度調整用基材の前記静電チャック部側の主面に形成された溝であることを特徴とする請求項1記載の静電チャック装置。   The electrostatic chuck apparatus according to claim 1, wherein the flow path is a groove formed in a main surface of the temperature adjusting base material on the electrostatic chuck portion side. 前記静電チャック部と前記温度調整用基材とを、低温対応有機系接着剤を介して接着、固定してなることを特徴とする請求項1または2記載の静電チャック装置。   The electrostatic chuck apparatus according to claim 1, wherein the electrostatic chuck unit and the temperature adjusting base material are bonded and fixed via a low temperature compatible organic adhesive. 前記低温対応有機系接着剤は、エポキシ系接着剤であることを特徴とする請求項3記載の静電チャック装置。   The electrostatic chuck apparatus according to claim 3, wherein the low temperature compatible organic adhesive is an epoxy adhesive. 前記静電チャック部は、酸化アルミニウム−炭化ケイ素複合焼結体、酸化アルミニウム焼結体、窒化アルミニウム焼結体、酸化イットリウム焼結体のいずれか1つ以上からなり、前記温度調整用基材は、酸化アルミニウム焼結体、窒化アルミニウム焼結体、酸化イットリウム焼結体のいずれか1つからなることを特徴とする請求項1ないし4のいずれか1項記載の静電チャック装置。   The electrostatic chuck portion is composed of one or more of an aluminum oxide-silicon carbide composite sintered body, an aluminum oxide sintered body, an aluminum nitride sintered body, and an yttrium oxide sintered body, 5. The electrostatic chuck device according to claim 1, comprising any one of a sintered body of aluminum oxide, a sintered body of aluminum nitride, and a sintered body of yttrium oxide.
JP2010293764A 2010-12-28 2010-12-28 Electrostatic chuck device Active JP6176771B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2010293764A JP6176771B2 (en) 2010-12-28 2010-12-28 Electrostatic chuck device
PCT/JP2011/079814 WO2012090858A1 (en) 2010-12-28 2011-12-22 Electrostatic chuck device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010293764A JP6176771B2 (en) 2010-12-28 2010-12-28 Electrostatic chuck device

Publications (2)

Publication Number Publication Date
JP2012142413A true JP2012142413A (en) 2012-07-26
JP6176771B2 JP6176771B2 (en) 2017-08-09

Family

ID=46382964

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010293764A Active JP6176771B2 (en) 2010-12-28 2010-12-28 Electrostatic chuck device

Country Status (2)

Country Link
JP (1) JP6176771B2 (en)
WO (1) WO2012090858A1 (en)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014207374A (en) * 2013-04-15 2014-10-30 日本特殊陶業株式会社 Part for semiconductor manufacturing device, and method for manufacturing the same
US9787222B2 (en) 2014-05-29 2017-10-10 Tokyo Electron Limited Electrostatic attraction apparatus, electrostatic chuck and cooling treatment apparatus
KR20200115310A (en) * 2019-03-28 2020-10-07 토토 가부시키가이샤 Electrostatic chuck
JP2020167403A (en) * 2019-03-28 2020-10-08 Toto株式会社 Electrostatic chuck
JP2020167406A (en) * 2019-03-28 2020-10-08 Toto株式会社 Electrostatic chuck
JP2020167404A (en) * 2019-03-28 2020-10-08 Toto株式会社 Electrostatic chuck
JP2020167405A (en) * 2019-03-28 2020-10-08 Toto株式会社 Electrostatic chuck
WO2021055134A1 (en) * 2019-09-16 2021-03-25 Applied Materials, Inc. Cryogenic electrostatic chuck
WO2021221728A1 (en) * 2020-04-30 2021-11-04 Applied Materials, Inc. Cooled substrate support assembly for radio frequency environments
US11241769B2 (en) 2014-10-30 2022-02-08 Applied Materials, Inc. Methods and apparatus for profile and surface preparation of retaining rings utilized in chemical mechanical polishing processes
US11784078B2 (en) 2019-03-04 2023-10-10 Ngk Insulators, Ltd. Wafer placement apparatus
JP7441046B2 (en) 2020-01-10 2024-02-29 日本特殊陶業株式会社 holding device
KR102663868B1 (en) * 2019-03-28 2024-05-08 토토 가부시키가이샤 Electrostatic chuck

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0737862A (en) * 1991-07-08 1995-02-07 Fujitsu Ltd Low temperature treatment device
JP2007110023A (en) * 2005-10-17 2007-04-26 Shinko Electric Ind Co Ltd Substrate holding apparatus
JP2008004926A (en) * 2006-05-24 2008-01-10 Sumitomo Electric Ind Ltd Wafer holder, method for producing the same, and semiconductor production apparatus
JP2008028021A (en) * 2006-07-19 2008-02-07 Disco Abrasive Syst Ltd Plasma etching device and plasma etching method
JP2008042141A (en) * 2006-08-10 2008-02-21 Sumitomo Osaka Cement Co Ltd Electrostatic chuck
JP2008042139A (en) * 2006-08-10 2008-02-21 Tokyo Electron Ltd Electrostatic chuck device
JP2010114397A (en) * 2008-11-10 2010-05-20 Canon Inc Aligner and device manufacturing method

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05315293A (en) * 1992-05-02 1993-11-26 Tokyo Electron Ltd Placing device for object to be processed
JP3188057B2 (en) * 1993-06-28 2001-07-16 東京エレクトロン株式会社 Electrostatic chuck
JP4256503B2 (en) * 1997-10-30 2009-04-22 東京エレクトロン株式会社 Vacuum processing equipment

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0737862A (en) * 1991-07-08 1995-02-07 Fujitsu Ltd Low temperature treatment device
JP2007110023A (en) * 2005-10-17 2007-04-26 Shinko Electric Ind Co Ltd Substrate holding apparatus
JP2008004926A (en) * 2006-05-24 2008-01-10 Sumitomo Electric Ind Ltd Wafer holder, method for producing the same, and semiconductor production apparatus
JP2008028021A (en) * 2006-07-19 2008-02-07 Disco Abrasive Syst Ltd Plasma etching device and plasma etching method
JP2008042141A (en) * 2006-08-10 2008-02-21 Sumitomo Osaka Cement Co Ltd Electrostatic chuck
JP2008042139A (en) * 2006-08-10 2008-02-21 Tokyo Electron Ltd Electrostatic chuck device
JP2010114397A (en) * 2008-11-10 2010-05-20 Canon Inc Aligner and device manufacturing method

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014207374A (en) * 2013-04-15 2014-10-30 日本特殊陶業株式会社 Part for semiconductor manufacturing device, and method for manufacturing the same
US9787222B2 (en) 2014-05-29 2017-10-10 Tokyo Electron Limited Electrostatic attraction apparatus, electrostatic chuck and cooling treatment apparatus
US11241769B2 (en) 2014-10-30 2022-02-08 Applied Materials, Inc. Methods and apparatus for profile and surface preparation of retaining rings utilized in chemical mechanical polishing processes
US11784078B2 (en) 2019-03-04 2023-10-10 Ngk Insulators, Ltd. Wafer placement apparatus
KR102575234B1 (en) * 2019-03-28 2023-09-06 토토 가부시키가이샤 Electrostatic chuck
JP2020167404A (en) * 2019-03-28 2020-10-08 Toto株式会社 Electrostatic chuck
JP2020167405A (en) * 2019-03-28 2020-10-08 Toto株式会社 Electrostatic chuck
JP2020167406A (en) * 2019-03-28 2020-10-08 Toto株式会社 Electrostatic chuck
JP2020167403A (en) * 2019-03-28 2020-10-08 Toto株式会社 Electrostatic chuck
KR20200115310A (en) * 2019-03-28 2020-10-07 토토 가부시키가이샤 Electrostatic chuck
KR102663868B1 (en) * 2019-03-28 2024-05-08 토토 가부시키가이샤 Electrostatic chuck
WO2021055134A1 (en) * 2019-09-16 2021-03-25 Applied Materials, Inc. Cryogenic electrostatic chuck
CN114342059A (en) * 2019-09-16 2022-04-12 应用材料公司 Low-temperature electrostatic chuck
US11373893B2 (en) 2019-09-16 2022-06-28 Applied Materials, Inc. Cryogenic electrostatic chuck
JP7441046B2 (en) 2020-01-10 2024-02-29 日本特殊陶業株式会社 holding device
WO2021221728A1 (en) * 2020-04-30 2021-11-04 Applied Materials, Inc. Cooled substrate support assembly for radio frequency environments

Also Published As

Publication number Publication date
JP6176771B2 (en) 2017-08-09
WO2012090858A1 (en) 2012-07-05

Similar Documents

Publication Publication Date Title
JP6176771B2 (en) Electrostatic chuck device
JP6119430B2 (en) Electrostatic chuck device
JP5423632B2 (en) Electrostatic chuck device
JP5018244B2 (en) Electrostatic chuck
JP5994772B2 (en) Electrostatic chuck device
US10079167B2 (en) Electrostatic chucking device
KR101769062B1 (en) Electrostatic chuck device
US10622239B2 (en) Electrostatic chuck device
JP5846186B2 (en) Electrostatic chuck device and method of manufacturing electrostatic chuck device
US20110221145A1 (en) Electrostatic chuck
JP5982887B2 (en) Electrostatic chuck device
JP5276751B2 (en) Electrostatic chuck and substrate processing apparatus including the same
JP6244804B2 (en) Electrostatic chuck device
JP5011736B2 (en) Electrostatic chuck device
JP5504924B2 (en) Electrostatic chuck device
JP5935202B2 (en) Electrostatic chuck device and manufacturing method thereof
JP5345583B2 (en) Electrostatic chuck
JP2017174987A (en) Electrostatic chuck device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20131225

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20131225

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140924

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20141125

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150519

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150715

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20151215

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160301

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20160309

A912 Re-examination (zenchi) completed and case transferred to appeal board

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20160520

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170413

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170707

R150 Certificate of patent or registration of utility model

Ref document number: 6176771

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250