JP2012142250A - Microbial fuel cell - Google Patents

Microbial fuel cell Download PDF

Info

Publication number
JP2012142250A
JP2012142250A JP2011001295A JP2011001295A JP2012142250A JP 2012142250 A JP2012142250 A JP 2012142250A JP 2011001295 A JP2011001295 A JP 2011001295A JP 2011001295 A JP2011001295 A JP 2011001295A JP 2012142250 A JP2012142250 A JP 2012142250A
Authority
JP
Japan
Prior art keywords
substrate
fuel cell
cathode
microbial fuel
tank
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2011001295A
Other languages
Japanese (ja)
Inventor
Kensuke Fukushi
謙介 福士
Modine Oscar
オスカー モディン
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
University of Tokyo NUC
Original Assignee
University of Tokyo NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by University of Tokyo NUC filed Critical University of Tokyo NUC
Priority to JP2011001295A priority Critical patent/JP2012142250A/en
Publication of JP2012142250A publication Critical patent/JP2012142250A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Fuel Cell (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a highly efficient microbial fuel cell which has small time degradation of power generation efficiency and small internal electrical resistance.SOLUTION: In a microbial fuel cell, a substrate tank 12 where a substrate to be decomposed by an anaerobic microorganism is stored and a reaction tank 14 to store a medium for the anaerobic microorganism are separated by a negative electrode 16, and the anaerobic microorganism which releases electron by decomposing the substrate is supported at a reaction tank side of the negative electrode 16. Also, a positive electrode 18 having gas permeability is provided in a different region of the reaction tank 14 from the negative electrode 16. The anaerobic microorganism decomposes the substrate transmitting the negative electrode 16 from the substrate tank 12 to a side of the reaction tank 14 and releases the electron to the negative electrode 16. The electron moves from the negative electrode 16 to the positive electrode 18 through an external circuit. A hydrogen ion generated through decomposition of the substrate moves to the positive electrode 18 in the medium. In the positive electrode 18, the electron is transferred to the hydrogen ion and oxygen transmitting through the positive electrode 18 is reduced with hydrogen to generate water.

Description

本発明は、微生物燃料電池の改良に関する。   The present invention relates to improvements in microbial fuel cells.

近年、微生物が有機物等の基質を分解する際に、電極(導電体)に電子を放出する性質(細胞外電子伝達能)を利用した微生物燃料電池が提案されている。ここで、細胞外電子伝達能とは、金属イオンやその酸化物を電子受容体として利用しこれらを還元する一連の流れによって、生命活動に必要なエネルギーを獲得する能力をいう。   In recent years, a microbial fuel cell utilizing the property (extracellular electron transfer ability) of emitting electrons to an electrode (conductor) when a microorganism decomposes a substrate such as an organic substance has been proposed. Here, the extracellular electron transfer ability refers to the ability to acquire energy necessary for life activity by a series of flows using metal ions or oxides thereof as electron acceptors and reducing them.

このような微生物燃料電池の例として、例えば下記特許文献1には、一対の電極と、電極を電気的に接続する外部回路と、一対の電極を分離する隔膜とを備え、陰極側に微生物を培養した培養液及び微生物に養分を供給する燃料としての有機物が注入される構成が開示されている。なお、上記隔膜は、カチオン交換膜等のプロトン(H)を選択的に透過するように構成された膜である。 As an example of such a microbial fuel cell, for example, the following Patent Document 1 includes a pair of electrodes, an external circuit that electrically connects the electrodes, and a diaphragm that separates the pair of electrodes. A configuration in which an organic substance as a fuel for supplying nutrients to a cultured culture solution and microorganisms is injected is disclosed. The diaphragm is a membrane configured to selectively transmit protons (H + ) such as a cation exchange membrane.

また、下記非特許文献1には、上記特許文献1の構成のうち隔膜を省略し、一つの槽に陽極及び陰極を配置した微生物燃料電池の構成が開示されている。この構成によれば、イオンの移動性を向上させることができる。   Non-Patent Document 1 below discloses a configuration of a microbial fuel cell in which a diaphragm is omitted from the configuration of Patent Document 1 and an anode and a cathode are arranged in one tank. According to this configuration, ion mobility can be improved.

特開2010−218690号公報JP 2010-218690 A

Electricity generation using anair-cathode single chamber microbial fuel cell in the presence and absence of aproton-exchange membrane. Liu,H.,Logan,B.E.(2004). Environmental Science &Technology,38,4040-4046Electricity generation using anair-cathode single chamber microbial fuel cell in the presence and absence of aproton-exchange membrane.Liu, H., Logan, B.E. (2004) .Environmental Science & Technology, 38,4040-4046

しかし、上記特許文献1に記載された微生物燃料電池は、陰極と陽極が隔膜により分離されているので、これらの電極間を外部回路を介して電子(電流)が流れる際に、これとは反対のイオン移動が隔膜を介して発生するが、隔膜をプロトンが透過する際の抵抗により陰極側の水素イオン濃度が上昇し、陰極側のpHが低下する。このため、微生物の活性が低下するので、微生物燃料電池の発電能力が動作時間の経過とともに低下するという問題があった。   However, in the microbial fuel cell described in Patent Document 1, since the cathode and the anode are separated by a diaphragm, when electrons (current) flow between these electrodes via an external circuit, this is the opposite. Ion migration occurs through the diaphragm, but the resistance when protons permeate the diaphragm increases the hydrogen ion concentration on the cathode side and lowers the pH on the cathode side. For this reason, since the activity of microorganisms falls, there existed a problem that the electric power generation capability of a microbial fuel cell fell with progress of operation time.

また、上記非特許文献1に記載された隔膜を省略した微生物燃料電池では、特許文献1のようなpHの変動の問題は解消できるが、陽極付近において燃料としての有機物が酸化されて消費され、燃料電池としての効率が低下するという問題があった。さらに、陽極及び陰極が配置された槽内のイオン強度が低下しやすく、内部抵抗が高くなるという問題もあった。   Further, in the microbial fuel cell in which the diaphragm described in Non-Patent Document 1 is omitted, the problem of pH fluctuation as in Patent Document 1 can be solved, but the organic matter as fuel is oxidized and consumed near the anode, There has been a problem that the efficiency of the fuel cell is lowered. Furthermore, there is a problem that the ionic strength in the tank in which the anode and the cathode are arranged is likely to be lowered and the internal resistance is increased.

本発明の目的は、発電能力の経時劣化が小さく、高効率で内部抵抗が低い微生物燃料電池を提供することにある。   An object of the present invention is to provide a microbial fuel cell in which power generation capacity is less deteriorated with time, high efficiency, and low internal resistance.

上記目的を達成するために、本発明の一実施形態は、微生物燃料電池であって、嫌気性微生物により分解される基質が収容される基質槽と、前記嫌気性微生物の培地を収容する反応槽と、前記基質槽と前記反応槽とを分離し、前記基質を分解して電子を放出する嫌気性微生物が前記反応槽側に担持された陰極と、前記反応槽の、前記陰極とは異なる領域に設けられ、酸素含有ガスの透過性を有する陽極と、を備えることを特徴とする。   In order to achieve the above object, one embodiment of the present invention is a microbial fuel cell, in which a substrate tank that contains a substrate that is decomposed by anaerobic microorganisms, and a reaction tank that contains a medium for the anaerobic microorganisms. And a cathode in which anaerobic microorganisms that decompose the substrate and release electrons by separating the substrate and the reaction vessel are supported on the reaction vessel side, and a region of the reaction vessel that is different from the cathode And an anode having permeability of oxygen-containing gas.

上記微生物燃料電池において、前記基質と酸素とは異なる方向から供給されるのが好適である。   In the microbial fuel cell, the substrate and oxygen are preferably supplied from different directions.

また、上記微生物燃料電池において、前記陰極の前記基質槽側に、前記基質の透過速度を制御する透過速度制御層が備えられていてもよい。   In the microbial fuel cell, a permeation rate control layer for controlling the permeation rate of the substrate may be provided on the substrate tank side of the cathode.

また、上記微生物燃料電池において、前記陽極には、好気性微生物が担持されていてもよい。   In the microbial fuel cell, an aerobic microorganism may be supported on the anode.

本発明によれば、発電能力の経時劣化が小さく、高効率で内部抵抗が低い微生物燃料電池を提供することができる。   According to the present invention, it is possible to provide a microbial fuel cell in which power generation capacity is less deteriorated with time, is highly efficient, and has low internal resistance.

実施形態にかかる微生物燃料電池の構成例を示す図である。It is a figure which shows the structural example of the microbial fuel cell concerning embodiment. 実施例にかかる微生物燃料電池の電圧値、電流密度及び電力密度の測定結果を示す図である。It is a figure which shows the measurement result of the voltage value of the microbial fuel cell concerning an Example, an electric current density, and an electric power density.

以下、本発明を実施するための形態(以下、実施形態という)を、図面に従って説明する。   Hereinafter, modes for carrying out the present invention (hereinafter referred to as embodiments) will be described with reference to the drawings.

図1には、本実施形態にかかる微生物燃料電池の構成例の断面図が示される。図1において、微生物燃料電池10は、基質槽12、反応槽14、陰極16、陽極18及び透過速度制御層20を含んで構成されている。   FIG. 1 shows a cross-sectional view of a configuration example of a microbial fuel cell according to the present embodiment. In FIG. 1, the microbial fuel cell 10 includes a substrate tank 12, a reaction tank 14, a cathode 16, an anode 18, and a transmission rate control layer 20.

基質槽12は、嫌気性微生物により分解される基質が収容される。この基質は、陰極16を透過して反応槽14に供給される。基質としては、微生物が分解できる物質であれば、有機物、無機物のいずれも使用することができる。また、陰極16を透過できるものであれば液体状、気体状のいずれであってもよい。有機物としては、例えばエタノール、グルコース、メタン等が挙げられ、無機物としては、例えば水素等が挙げられる。   The substrate tank 12 contains a substrate that is decomposed by anaerobic microorganisms. This substrate passes through the cathode 16 and is supplied to the reaction vessel 14. As the substrate, any organic or inorganic substance can be used as long as it can be decomposed by microorganisms. Further, it may be liquid or gaseous as long as it can pass through the cathode 16. Examples of the organic substance include ethanol, glucose, and methane, and examples of the inorganic substance include hydrogen and the like.

反応槽14は、陰極16により基質槽12と分離されており、嫌気性微生物の培地を収容している。培地としては、微生物の活動を可能とし、イオンの伝播ができる物質あれば限定されないが、以下の物を例示できる。   The reaction tank 14 is separated from the substrate tank 12 by a cathode 16, and contains a medium for anaerobic microorganisms. The medium is not limited as long as it is a substance that enables the activity of microorganisms and can transmit ions, and examples thereof include the following.

液体培地として、例えば以下の物質の全部または一部を含む混合物の水溶液があげられる。なお、括弧内に濃度をmg/l単位で示す。NHCl(200)、MgSO・7HO(200)、CaCl・2HO(150)、FeSO・7HO(10)、NaCl(2925)、KHPO(461)、NaHPO(939)、AlK(SO・12HO(0.2)、HBO(0.02)、CoCl・6HO(0.3)、CuSO・5HO(0.3)、MnCl・5HO(0.5)、NiSO・6HO(0.2)、ZnCl(0.2)、NaMoO・2HO(0.1)、NaSeO(0.1)、NaWO・2HO(0.05)。 Examples of the liquid medium include an aqueous solution of a mixture containing all or part of the following substances. The concentration is indicated in mg / l in parentheses. NH 4 Cl (200), MgSO 4 .7H 2 O (200), CaCl 2 .2H 2 O (150), FeSO 4 .7H 2 O (10), NaCl (2925), KH 2 PO 4 (461), Na 2 HPO 4 (939), AlK (SO 4 ) 2 · 12H 2 O (0.2), H 3 BO 3 (0.02), CoCl 2 · 6H 2 O (0.3), CuSO 4 · 5H 2 O (0.3), MnCl 2 .5H 2 O (0.5), NiSO 4 .6H 2 O (0.2), ZnCl 2 (0.2), Na 2 MoO 4 .2H 2 O (0 .1), Na 2 SeO 3 (0.1), NaWO 4 .2H 2 O (0.05).

半固体(ジェル状)の培地としては、上記の液体培地に寒天等を加えた物が挙げられる。なお、液体培地として海水も利用可能である。   Examples of the semi-solid (gel-like) medium include those obtained by adding agar or the like to the above liquid medium. Seawater can also be used as the liquid medium.

陰極16は、導電性を有するとともに、基質槽12と反応槽14とを分離しつつ、基質槽12から反応槽14に基質を透過する。この場合、基質の透過速度を調整するために、陰極16には適宜な大きさの孔が形成されるのが好適である。基質の透過速度を調整することにより、後述する嫌気性微生物の適度な培養を可能とし、陰極16からの嫌気性微生物層の剥離を防止できる。なお、基質の透過速度は、後述する透過速度制御層20により調整してもよい。陰極16の材料としては、例えばカーボン繊維(不織布、織布)、グラファイト薄膜、粒子状炭素、ステンレスや他の金属の網等が挙げられる。また、陰極16の反応槽14側の面には、基質を分解する嫌気性微生物22が層状に担持されている。この嫌気性微生物22により、例えば基質としての有機物が分解され、水素イオンが発生するとともに、陰極16に電子が渡される。このような嫌気性微生物22としては、上記基質を分解して電子を放出するものであれば特に限定されないが、例えば細胞膜に局在化したシトクロムを介して体外に電子を放出する能力を有するShewanella loihica及びShewanella oneidensisのようなShewanella属、Geobacter属等の微生物やそれらを含む混合微生物叢が挙げられる。   The cathode 16 has conductivity, and transmits the substrate from the substrate tank 12 to the reaction tank 14 while separating the substrate tank 12 and the reaction tank 14. In this case, in order to adjust the permeation rate of the substrate, it is preferable that holes of an appropriate size are formed in the cathode 16. By adjusting the permeation rate of the substrate, anaerobic microorganisms described later can be appropriately cultured, and the anaerobic microorganism layer can be prevented from peeling off from the cathode 16. The permeation rate of the substrate may be adjusted by a permeation rate control layer 20 described later. Examples of the material of the cathode 16 include carbon fibers (nonwoven fabrics, woven fabrics), graphite thin films, particulate carbon, stainless steel, and other metal nets. An anaerobic microorganism 22 that decomposes the substrate is supported in a layered manner on the surface of the cathode 16 on the reaction tank 14 side. By the anaerobic microorganism 22, for example, an organic substance as a substrate is decomposed to generate hydrogen ions, and electrons are transferred to the cathode 16. The anaerobic microorganism 22 is not particularly limited as long as it decomposes the substrate and emits electrons. For example, Shewanella having the ability to emit electrons outside the body via cytochrome localized in the cell membrane. Examples include microorganisms such as genus Shewanella and genus Geobacter such as loihica and Shewanella oneidensis, and mixed microbial flora containing them.

陽極18は、反応槽14の、陰極16とは異なる領域に設けられ、ガス透過性を有するガス透過性電極となっている。ここで、陰極16とは異なる領域とは、例えば微生物燃料電池10が円柱形状の場合に、その両端部に陰極16と陽極18とを設けること、微生物燃料電池10が直方体形状の場合に、異なる面(例えば対向面)に陰極16と陽極18とを設けること、等が挙げられるが、これらには限定されない。例えば、陰極16の基質の透過方向(供給方向)と陽極18のガス透過方向とが異なるように陰極16と陽極18とを配置するのが好適である。   The anode 18 is provided in a region of the reaction vessel 14 different from the cathode 16 and is a gas permeable electrode having gas permeability. Here, the region different from the cathode 16 differs when, for example, the microbial fuel cell 10 has a cylindrical shape, the cathode 16 and the anode 18 are provided at both ends thereof, and the microbial fuel cell 10 has a rectangular parallelepiped shape. Examples include, but are not limited to, providing a cathode 16 and an anode 18 on a surface (for example, an opposing surface). For example, it is preferable to dispose the cathode 16 and the anode 18 so that the transmission direction (supply direction) of the substrate of the cathode 16 and the gas transmission direction of the anode 18 are different.

また、本実施形態では、陽極18を空気または酸素濃度を高めた空気が反応槽14内に透過するように構成されている。陽極18を透過した空気中の酸素は、陽極18から電子を受け取った水素イオンと反応して、水に還元される。陽極18の材料としては、例えば水密性のある薄膜状(織布等)カーボン、水に接する面にナノカーボン粒子を塗布した織布や紙や薄膜、水に接する面に金属触媒を塗布した織布や紙や薄膜、気体に接する部分に金属網等を付着させた織布や紙や薄膜等が挙げられる。また、陽極18の反応槽14側の面には、好気性の微生物を担持してもよい。好気性の微生物(好気性微生物24)が、酸素の陽極還元の触媒となり、酸素還元の効率を向上させるからである。このような好気性微生物24としては、例えばSphingobacterium, Acinetobacterium sp.、Acinetobacter sp.等が挙げられる。   Further, in the present embodiment, the anode 18 is configured such that air or air with an increased oxygen concentration passes through the reaction tank 14. The oxygen in the air that has passed through the anode 18 reacts with hydrogen ions that have received electrons from the anode 18 and is reduced to water. Examples of the material of the anode 18 include a watertight thin film (woven fabric or the like) carbon, a woven fabric or paper or thin film coated with nanocarbon particles on the surface in contact with water, or a woven fabric coated with a metal catalyst on the surface in contact with water. Examples thereof include cloth, paper, thin film, and woven cloth, paper, thin film, or the like in which a metal net or the like is attached to a portion in contact with gas. Further, an aerobic microorganism may be supported on the surface of the anode 18 on the reaction tank 14 side. This is because the aerobic microorganism (aerobic microorganism 24) serves as a catalyst for anodic reduction of oxygen and improves the efficiency of oxygen reduction. Examples of such aerobic microorganism 24 include Sphingobacterium, Acinetobacterium sp., Acinetobacter sp.

透過速度制御層20は、陰極16の基質槽12側に設けられ、陰極16を透過する基質の透過速度を調整する。透過速度制御層20は、陰極16の面に接していてもよいし、陰極16と適宜な間隔を空けて配置されていてもよい。透過速度制御層20の材料としては、例えばシリコン、ナイロン、ポリエチレン等の網状膜を挙げることができる。また、透過速度制御層20の厚さは、気体状基質の場合例えば1mm程度、液体状基質の場合例えば0.5mm程度であるが、必要な透過速度、基質の種類等により適宜調整する。   The transmission rate control layer 20 is provided on the substrate tank 12 side of the cathode 16 and adjusts the transmission rate of the substrate that passes through the cathode 16. The permeation speed control layer 20 may be in contact with the surface of the cathode 16 or may be disposed at an appropriate interval from the cathode 16. Examples of the material of the permeation speed control layer 20 include a network film such as silicon, nylon, and polyethylene. The thickness of the permeation rate control layer 20 is about 1 mm in the case of a gaseous substrate and about 0.5 mm in the case of a liquid substrate, for example.

なお、図1において、基質槽12の陰極16とは反対側の端部から透過速度制御層20までの長さをL1とし、陽極18から透過速度制御層20までの長さをL2としているが、これらの長さL1、L2については実施例で説明する。   In FIG. 1, the length from the end of the substrate tank 12 opposite to the cathode 16 to the transmission rate control layer 20 is L1, and the length from the anode 18 to the transmission rate control layer 20 is L2. These lengths L1 and L2 will be described in Examples.

次に、図1に示された微生物燃料電池10の動作を説明する。反応槽14に上記培地を収容し、陰極16の反応槽14側の面に上記嫌気性微生物22を培養する。この状態で、基質槽12から液体状または気体状の基質を陰極16を介して反応槽14側に透過させる。この場合、上記透過速度制御層20により基質の透過速度を制御してもよい。また、陽極18からは、反応槽14側に空気を透過させる。   Next, the operation of the microbial fuel cell 10 shown in FIG. 1 will be described. The culture medium is accommodated in the reaction tank 14, and the anaerobic microorganism 22 is cultured on the surface of the cathode 16 on the reaction tank 14 side. In this state, a liquid or gaseous substrate is transmitted from the substrate tank 12 through the cathode 16 to the reaction tank 14 side. In this case, the transmission rate of the substrate may be controlled by the transmission rate control layer 20. Further, air is transmitted from the anode 18 to the reaction tank 14 side.

陰極16を透過した基質は、陰極16の反応槽14側の表面に担持された嫌気性微生物22により分解される。この際に、嫌気性微生物22は陰極16に対して電子を放出する。陰極16に放出された電子は、負荷26として示される外部回路を移動し、陽極18に到達する。   The substrate that has passed through the cathode 16 is decomposed by the anaerobic microorganisms 22 supported on the surface of the cathode 16 on the reaction tank 14 side. At this time, the anaerobic microorganism 22 emits electrons to the cathode 16. Electrons emitted to the cathode 16 travel through an external circuit shown as a load 26 and reach the anode 18.

一方、陰極16において、基質が嫌気性微生物22により分解される際に発生した水素イオンは、培地中を陽極18の方向に移動する。陽極18に到達した水素イオンは、陽極18から電子を受け取り、陽極18を透過してきた空気中の酸素と反応して、酸素を水に還元する。この際に、上述した好気性微生物24を還元反応の触媒として使用してもよい。   On the other hand, hydrogen ions generated when the substrate is decomposed by the anaerobic microorganisms 22 move in the medium in the direction of the anode 18 at the cathode 16. The hydrogen ions that have reached the anode 18 receive electrons from the anode 18 and react with oxygen in the air that has passed through the anode 18 to reduce the oxygen to water. At this time, the aerobic microorganism 24 described above may be used as a catalyst for the reduction reaction.

以上の動作により、陰極16で発生した電子が負荷26を介して陽極18に流れるので、微生物燃料電池10から外部回路に電流を流すことができる。   With the above operation, electrons generated at the cathode 16 flow to the anode 18 through the load 26, so that a current can flow from the microbial fuel cell 10 to the external circuit.

本実施形態では、陰極16と陽極18とを隔てる隔膜を不要とできるので、陰極16側のpHの低下を回避できるとともに、陽極18における基質の浪費を回避できる。さらに、陰極16を介して嫌気性微生物22に常に基質を供給することができる。このため、発電能力の経時劣化が小さく、高効率で内部抵抗が低い微生物燃料電池を実現できる。   In this embodiment, since the diaphragm which separates the cathode 16 and the anode 18 can be made unnecessary, the fall of pH by the side of the cathode 16 can be avoided, and the waste of the substrate in the anode 18 can be avoided. Furthermore, the substrate can always be supplied to the anaerobic microorganism 22 through the cathode 16. Therefore, it is possible to realize a microbial fuel cell with little deterioration with time in power generation capacity, high efficiency and low internal resistance.

以下、本発明の具体例を実施例として説明する。ただし、本発明は、以下に述べる実施例に限定されるものではない。   Hereinafter, specific examples of the present invention will be described as examples. However, the present invention is not limited to the examples described below.

図1に示された構成の微生物燃料電池10を形成するために、内径D=20mm、長さ30mmの2つの円筒容器の間に透過速度制御層20を挟み込み、図1のL1=L2=30mmとした。また、透過速度制御層20の反応槽14側の近傍に陰極16を配置して基質槽12と反応槽14とに分離し、反応槽14の陰極16に対向する端部に陽極18を配置した。陰極16及び陽極18の面積は3.14cmである。なお、上記円筒容器の内、少なくとも基質槽12となる側は有底円筒容器であり、底部が透過速度制御層20とは反対の側となるように配置する。 In order to form the microbial fuel cell 10 having the configuration shown in FIG. 1, the permeation rate control layer 20 is sandwiched between two cylindrical containers having an inner diameter D = 20 mm and a length of 30 mm, and L1 = L2 = 30 mm in FIG. It was. Further, a cathode 16 is arranged in the vicinity of the reaction rate 14 side of the permeation rate control layer 20 to separate the substrate vessel 12 and the reaction vessel 14, and an anode 18 is arranged at the end of the reaction vessel 14 facing the cathode 16. . The area of the cathode 16 and the anode 18 is 3.14 cm 2 . Of the cylindrical containers, at least the side that is to be the substrate tank 12 is a bottomed cylindrical container, and the bottom part is arranged to be the side opposite to the permeation rate control layer 20.

反応槽14内には、培地として、AlK(SO・12HO(0.2)、HBO(0.02)、CoCl・6HO(0.3)、CuSO・5HO(0.3)、MnCl・5HO(0.5)、NiSO・6HO(0.2)、ZnCl(0.2)、NaMoO・2HO(0.1)、NaSeO(0.1)、NaWO・2HO(0.05)、NaOH(0.4)及び36%HCl水溶液0.86ml/lの混合物(括弧内の数値はmg/l単位の濃度)の水溶液を充填し、微量の栄養塩類を添加した。なお、水溶液に使用した水は、通常の水道水である。水道水を使用しない場合には、適宜極微量の金属イオンを添加する。また、陰極16の透過速度制御層20とは反対側の面に嫌気性微生物22を培養した。嫌気性微生物22としては、東京都の下水から採取したものを使用した。基質槽12には、基質として0.5質量%のエチルアルコールを充填した。 The reaction vessel 14, as medium, AlK (SO 4) 2 · 12H 2 O (0.2), H 3 BO 3 (0.02), CoCl 2 · 6H 2 O (0.3), CuSO 4 5H 2 O (0.3), MnCl 2 .5H 2 O (0.5), NiSO 4 .6H 2 O (0.2), ZnCl 2 (0.2), Na 2 MoO 4 .2H 2 O (0.1), Na 2 SeO 3 (0.1), NaWO 4 · 2H 2 O (0.05), NaOH (0.4) and 36% HCl aqueous solution 0.86 ml / l (in parentheses) (Numerical value is a concentration of mg / l unit) and a small amount of nutrients was added. In addition, the water used for the aqueous solution is normal tap water. When tap water is not used, an extremely small amount of metal ions is added as appropriate. An anaerobic microorganism 22 was cultured on the surface of the cathode 16 opposite to the transmission rate control layer 20. As the anaerobic microorganism 22, one collected from sewage in Tokyo was used. The substrate tank 12 was filled with 0.5% by mass of ethyl alcohol as a substrate.

陰極16には、5ミリ厚炭素繊維フェルト(トラスコ中山株式会社製カーボンフェルト 厚さ5.0mmタイプ 50CF−15)をステンレス網に貼り付けた複合電極を使用した。また、陽極18には、カーボン繊維紙(Ballard Material Products(BMP)社製AV Carb P75T)にカーボンナノ粒子(Cabot社製 Black Pearls 2000)70%とPTFE30%を混合したものを塗布したものを使用した。また、透過速度制御層20には、厚さ0.5mmのシリコーン膜を使用した。   As the cathode 16, a composite electrode in which a 5 mm thick carbon fiber felt (carbon felt, 5.0 mm thick type 50CF-15, manufactured by Trusco Nakayama Co., Ltd.) was attached to a stainless steel mesh was used. The anode 18 is made of carbon fiber paper (AV Carb P75T manufactured by Ballard Material Products (BMP)) coated with 70% carbon nanoparticles (Black Pearls 2000 manufactured by Cabot) and 30% PTFE. did. Further, a silicone film having a thickness of 0.5 mm was used for the permeation rate control layer 20.

以上のようにして形成した微生物燃料電池10を使用し、基質である0.5質量%のエチルアルコールを、透過速度制御層20(シリコーン膜)に38+/−8×10−6m/時間の透過速度で透過させた。また、陽極18を介して反応槽14内に空気を透過させるが、透過速度は成りゆきとした。 Using the microbial fuel cell 10 formed as described above, 0.5% by mass of ethyl alcohol as a substrate was applied to the permeation rate control layer 20 (silicone film) at 38 +/− 8 × 10 −6 m / hour. Permeation was performed at a permeation rate. In addition, air was allowed to permeate into the reaction vessel 14 through the anode 18, but the permeation rate was not satisfactory.

この状態で46日間稼働させ、負荷26である抵抗器の両端の電圧値(電池の起電力:V)と電流密度(mA/cm)とを測定した。なお、電流密度は、負荷26に流れる電流値を電極の面積(3.14cm)で除した値である。電圧値及び電流値の測定は、ナショナルインスツルメンツ(National Instruments)社製 NI USB−6008 data acquisition deviceにより行った。なお、引き続いて100日経過するまで連続して稼働させたが、ほぼ上記動作状態を維持することができた。 It was made to operate for 46 days in this state, and the voltage value (battery electromotive force: V) and current density (mA / cm 2 ) across the resistor as the load 26 were measured. The current density is a value obtained by dividing the value of the current flowing through the load 26 by the area of the electrode (3.14 cm 2 ). The measurement of the voltage value and the current value was performed by NI USB-6008 data acquisition device manufactured by National Instruments. In addition, although it was continuously operated until 100 days passed, it was possible to maintain the above operation state.

図2(a)、(b)には、上記測定結果が示される。図2(a)は、負荷26の抵抗値を1000Ωに一定とした場合の電圧値、電流密度及び電力密度(負荷26で消費された電力を電極の面積で除した値:μW/cm)の関係が示される。また、図2(b)には、負荷26の抵抗値を変化させた場合の、電圧値と電流密度との関係が示される。 2A and 2B show the measurement results. FIG. 2A shows the voltage value, current density, and power density when the resistance value of the load 26 is kept constant at 1000Ω (value obtained by dividing the power consumed by the load 26 by the area of the electrode: μW / cm 2 ). The relationship is shown. FIG. 2B shows the relationship between the voltage value and the current density when the resistance value of the load 26 is changed.

図2(a)、(b)に示されるように、本実施例の微生物燃料電池10は、連続稼働46日目において、実用上問題ない起電力を発生しており、経時劣化が小さいことがわかる。また、使用した基質は、0.5質量%のエチルアルコールであり、発電効率が高いことがわかる。さらに、本実施例の微生物燃料電池の内部抵抗は872Ωと計算でき、低い値となっていた。   As shown in FIGS. 2 (a) and 2 (b), the microbial fuel cell 10 of this example generates an electromotive force having no practical problem on the 46th day of continuous operation, and the deterioration with time is small. Recognize. Moreover, the used substrate is 0.5 mass% ethyl alcohol, and it turns out that power generation efficiency is high. Furthermore, the internal resistance of the microbial fuel cell of this example was calculated as 872Ω, which was a low value.

10 微生物燃料電池、12 基質槽、14 反応槽、16 陰極、18 陽極、20 透過速度制御層、22 嫌気性微生物、24 好気性微生物、26 負荷。   10 microbial fuel cell, 12 substrate tank, 14 reaction tank, 16 cathode, 18 anode, 20 permeation rate control layer, 22 anaerobic microorganism, 24 aerobic microorganism, 26 load.

Claims (4)

嫌気性微生物により分解される基質が収容される基質槽と、
前記嫌気性微生物の培地を収容する反応槽と、
前記基質槽と前記反応槽とを分離し、前記基質を分解して電子を放出する嫌気性微生物が前記反応槽側に担持された陰極と、
前記反応槽の、前記陰極とは異なる領域に設けられ、酸素含有ガスの透過性を有する陽極と、
を備えることを特徴とする微生物燃料電池。
A substrate tank containing a substrate to be decomposed by anaerobic microorganisms;
A reaction vessel containing the anaerobic microorganism medium;
Separating the substrate tank and the reaction tank, a cathode on which the anaerobic microorganisms that decompose the substrate and release electrons are supported on the reaction tank side;
An anode provided in a region different from the cathode of the reaction vessel and having permeability of an oxygen-containing gas;
A microbial fuel cell comprising:
請求項1に記載の微生物燃料電池において、前記基質と酸素とが異なる方向から供給されることを特徴とする微生物燃料電池。   The microbial fuel cell according to claim 1, wherein the substrate and oxygen are supplied from different directions. 請求項1または請求項2に記載の微生物燃料電池において、前記陰極の前記基質槽側に、前記基質の透過速度を制御する透過速度制御層が備えられたことを特徴とする微生物燃料電池。   The microbial fuel cell according to claim 1 or 2, wherein a permeation rate control layer for controlling a permeation rate of the substrate is provided on the substrate tank side of the cathode. 請求項1から請求項3のいずれか一項に記載の微生物燃料電池において、前記陽極には、好気性微生物が担持されていることを特徴とする微生物燃料電池。   The microbial fuel cell according to any one of claims 1 to 3, wherein an aerobic microorganism is supported on the anode.
JP2011001295A 2011-01-06 2011-01-06 Microbial fuel cell Pending JP2012142250A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011001295A JP2012142250A (en) 2011-01-06 2011-01-06 Microbial fuel cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011001295A JP2012142250A (en) 2011-01-06 2011-01-06 Microbial fuel cell

Publications (1)

Publication Number Publication Date
JP2012142250A true JP2012142250A (en) 2012-07-26

Family

ID=46678304

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011001295A Pending JP2012142250A (en) 2011-01-06 2011-01-06 Microbial fuel cell

Country Status (1)

Country Link
JP (1) JP2012142250A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109292996A (en) * 2018-11-27 2019-02-01 中国计量大学 A kind of wetland type plant microbiological fuel cell

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109292996A (en) * 2018-11-27 2019-02-01 中国计量大学 A kind of wetland type plant microbiological fuel cell
CN109292996B (en) * 2018-11-27 2023-10-31 中国计量大学 Microbial fuel cell for wetland type plants

Similar Documents

Publication Publication Date Title
Rahimnejad et al. Microbial fuel cell as new technology for bioelectricity generation: A review
US7709113B2 (en) Bio-electrochemically assisted microbial reactor that generates hydrogen gas and methods of generating hydrogen gas
Pandit et al. Basic principles of microbial fuel cell: technical challenges and economic feasibility
US20150104670A1 (en) Materials and configurations for scalable microbial fuel cells
US20080292912A1 (en) Electrodes and methods for microbial fuel cells
JP6547998B2 (en) Microbial fuel cell and power generation method in wet mud including mud sand
Ozkaya et al. Bioelectricity production using a new electrode in a microbial fuel cell
Park et al. Direct electron transfer in E. coli catalyzed MFC with a magnetite/MWCNT modified anode
Jiang et al. Novel electrode materials to enhance the bacterial adhesion and increase the power generation in microbial fuel cells (MFCs)
JP2015041477A (en) Air cathode for microbial fuel cell, and microbial fuel cell
JP2014093199A (en) Microbial fuel cell
JP6376694B2 (en) Microbial fuel cell
Kim et al. Multiwalled carbon nanotube/polyarcylonitrile composite as anode material for microbial fuel cells application
US20180138537A1 (en) Microbial fuel cells and methods for generating an electric current
JP2012142250A (en) Microbial fuel cell
Shahane et al. Exoelectrogenic bacteria: a candidate for sustainable bio-electricity generation in microbial fuel cells
Singh et al. Electricity generation in membrane-less single chambered microbial fuel cell
Radha et al. Performance of cathode catalysts for bio-electricity from paper recycling, wastewater-fed, microbial fuel cells
Prasad et al. Energy harvesting from sediment microbial fuel cell using different electrodes
WO2016067608A1 (en) Electrode, and microbial fuel cell and water treatment apparatus each of which uses same
Rahimnejad et al. Microbial fuel cells: a new source of power
Akay Components Used in Microbial Fuel Cells for Renewable Energy Generation: A Review of Their Historical and Ecological Development
Patel1a et al. Microbial Fuel Cell Operating Conditions
Khodary et al. Wastewater treatment and electricity generation via microbial fuel cell using ZnO supported on activated carbon cathode electrocatalyst
Pramanik et al. Bioelectricity generation using carbon felt electrode in microbial fuel cell (MFC) inoculated with mixed cultures