JP2012140283A - Fiber-reinforced composite material - Google Patents

Fiber-reinforced composite material Download PDF

Info

Publication number
JP2012140283A
JP2012140283A JP2010293795A JP2010293795A JP2012140283A JP 2012140283 A JP2012140283 A JP 2012140283A JP 2010293795 A JP2010293795 A JP 2010293795A JP 2010293795 A JP2010293795 A JP 2010293795A JP 2012140283 A JP2012140283 A JP 2012140283A
Authority
JP
Japan
Prior art keywords
fiber
composite material
reinforced composite
fibers
long
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2010293795A
Other languages
Japanese (ja)
Other versions
JP5525436B2 (en
Inventor
Koji Enomoto
浩二 榎本
Shinichiro Aonuma
伸一朗 青沼
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Coorstek KK
Original Assignee
Covalent Materials Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Covalent Materials Corp filed Critical Covalent Materials Corp
Priority to JP2010293795A priority Critical patent/JP5525436B2/en
Publication of JP2012140283A publication Critical patent/JP2012140283A/en
Application granted granted Critical
Publication of JP5525436B2 publication Critical patent/JP5525436B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Ceramic Products (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a fiber-reinforced composite material whose mechanical characteristics are improved by suitably arranging forms of reinforcing fibers of long fibers and reinforcing fibers of short fibers.SOLUTION: In the fiber-reinforced composite material consisting of ceramic matrices composed of silicon carbide, carbon and silicon and reinforcing fibers composed of materials of any one or more sorts of carbon fibers and silicon carbide fibers. The reinforcing fiber includes both of an aggregate of short fibers and an aggregate of long fibers, the surface of the aggregate of long fibers is covered with a carbon film, the aggregate of long fibers is a layered structure arranged like a grid on a two-dimensional plane and a plurality of layered structures are laminated to each other to form a three-dimensional structure.

Description

本発明は、軽量かつ高強度であり、特にブレーキ部材用の材料として好適である、繊維強化複合材料に関する。   The present invention relates to a fiber-reinforced composite material that is lightweight and has high strength and is particularly suitable as a material for a brake member.

炭化ケイ素等のセラミックス材料は、金属材料に比べて軽量かつ高剛性、高温耐食性、耐摩耗性に優れているが、破壊靭性が十分でない。そこで、これらの特性を向上させたものとして、例えば、長繊維と呼ばれる連続した形状の繊維を用いた繊維強化複合材料がある。   Ceramic materials such as silicon carbide are lighter and have higher rigidity, high temperature corrosion resistance, and wear resistance than metal materials, but their fracture toughness is not sufficient. Thus, as an improvement in these characteristics, for example, there is a fiber reinforced composite material using continuous fibers called long fibers.

この一例として、特許文献1には、セラミックス基複合材における織物中の空隙へのマトリックスの充填の程度を改善する目的で、炭素よりなる粉末と、シリコンよりなる粉末と、有機溶媒を含む媒質と、を含む混合物を調製し、無機物の繊維よりなる織物を前記混合物に埋没し、前記混合物を前記織物に含浸せしめるべく前記混合物を加振し、含浸した前記沈殿を含む前記織物を焼成することにより、セラミックス基複合材を製造する、という技術が開示されている。   As an example of this, Patent Literature 1 discloses that a ceramic powder, a silicon powder, and a medium containing an organic solvent are used for the purpose of improving the degree of filling of the matrix into the voids in the fabric of the ceramic matrix composite material. And a fabric comprising inorganic fibers is embedded in the mixture, the mixture is vibrated to impregnate the fabric with the mixture, and the fabric including the impregnated precipitate is baked. A technique of manufacturing a ceramic matrix composite is disclosed.

さらに、機械強度をより向上させるために、長繊維と、短繊維と呼ばれる比較的短く細い形状で分散している繊維と、の両方を適用した繊維強化複合材料とその製造方法に関する技術についても、近年いくつか知られている。   Furthermore, in order to further improve the mechanical strength, also about the technology related to the fiber-reinforced composite material and its manufacturing method to which both long fibers and fibers dispersed in a relatively short and thin shape called short fibers are applied. Some have been known in recent years.

例えば、特許文献2には、最終的な輪郭に近い形状付与により優れており、かつ研磨によって後処理すればよいのみで、優れた機械的安定性、耐熱性および耐酸化性ならびに有利な摩擦特性を有するブレーキディスクの材料として、コアおよびコアと結合しており、かつ有利に摩擦学的に負荷をかけることができる少なくとも1つの外面を有する境界層からなり、コアは1つ以上の層からなり、該層のうち少なくとも1つの層は長繊維によって強化されており、かつ境界層は短繊維により強化されていることを特徴とする繊維強化セラミック体、という技術が開示されている。   For example, Patent Document 2 is superior in imparting a shape close to the final contour, and has only to be post-processed by polishing, and has excellent mechanical stability, heat resistance and oxidation resistance, and advantageous friction characteristics. A brake disc material comprising: a core and a boundary layer coupled to the core and having at least one outer surface that can be advantageously tribologically loaded, the core comprising one or more layers A technique of a fiber-reinforced ceramic body is disclosed in which at least one of the layers is reinforced with long fibers, and the boundary layer is reinforced with short fibers.

さらに、特許文献3には、回転応力、特に高速回転でのそれのもとで増強された強度を有する成形体、特に摩擦ボディーを製造することを目的として、長繊維束、長繊維トウまたは長繊維かせが短繊維強化されたマトリックスで完全に被覆されており、該長繊維が4〜12μmの平均直径および少なくとも50mmの平均長さを有し、そして短繊維が4〜12μmの平均直径および40mmよりも多くない平均長さを有する長繊維束、長繊維トウまたは長繊維かせを含む繊維強化されたセラミック複合材料、という技術が開示されている。   Further, Patent Document 3 discloses a long fiber bundle, a long fiber tow or a long fiber for the purpose of producing a molded body, particularly a friction body, having enhanced strength under rotational stress, particularly that at high speed rotation. The fiber skein is fully coated with a short fiber reinforced matrix, the long fibers have an average diameter of 4-12 μm and an average length of at least 50 mm, and the short fibers have an average diameter of 4-12 μm and 40 mm Techniques have been disclosed for long fiber bundles having a mean length not greater than, fiber reinforced ceramic composites comprising long fiber tows or long fiber skeins.

特開2008−081379号公報JP 2008-081379 A 特表2002−534352号公報Special Table 2002-534352 特開2003−201184号公報JP 2003-201184 A

特許文献1の技術は、炭素やシリコンの粉末を有機溶媒で溶かした混合物を、超音波振動にて強化繊維中の空隙へ充填しマトリックス部とすることで、空隙への充填率を向上させ、密度の高いセラミックス基複合材とする。しかし、焼成中にマトリックス体の収縮、粉末の粒成長が起こり、焼成後のマトリックス部に多数の気孔部が発生するので、セラミックス基複合材全体の密度が低下し、機械特性の低下が懸念される。   The technology of Patent Document 1 improves the filling rate into the voids by filling the voids in the reinforced fibers with a mixture obtained by dissolving carbon or silicon powder in an organic solvent into a matrix portion by ultrasonic vibration. A high-density ceramic matrix composite is used. However, shrinkage of the matrix body and grain growth of the powder occur during firing, and a large number of pores are generated in the matrix part after firing. The

特許文献2の技術による繊維強化セラミックス体は、1層以上の積層構造からなり、少なくとも1つの層は長繊維によって強化されており、かつ境界層は短繊維により強化されている。しかしながら、ブレーキディスクの制動時に、発生した熱によりブレーキディスクが熱膨張するが、例えばこの技術による材料で作製した構造では、長繊維部と短繊維部では熱膨張の度合いが異なるので、層間剥離が発生するおそれがある。   The fiber-reinforced ceramic body according to the technique of Patent Document 2 has a laminated structure of one or more layers, at least one layer is reinforced by long fibers, and the boundary layer is reinforced by short fibers. However, when braking the brake disk, the brake disk thermally expands due to the generated heat.For example, in a structure made of a material by this technology, the degree of thermal expansion differs between the long fiber part and the short fiber part. May occur.

特許文献3の技術は、長繊維の束を、短繊維を含む材料で完全に覆うことを特徴としている。しかしながら、長繊維の束に対して短繊維で完全に覆うことは、作製される複合材料の形態によっては、強度に優れたものとすることが必ずしも容易ではなかった。また、長繊維と短繊維束との具体的な接合、あるいは混合方法についての記載がなく、より強度に優れた繊維強化複合材料を得るには、この技術のみでは十分とは言えなかった。   The technique of Patent Document 3 is characterized in that a bundle of long fibers is completely covered with a material containing short fibers. However, it is not always easy to completely cover a bundle of long fibers with short fibers depending on the form of the composite material to be produced. Further, there is no description of a specific method for joining or mixing long fibers and short fiber bundles, and this technique alone has not been sufficient to obtain a fiber-reinforced composite material with higher strength.

本発明は、かかる事情に鑑みてなされたものであり、繊維強化複合材料、特に、長繊維と短繊維を共に含む繊維強化複合材料において、より機械特性に優れた構造を有する繊維強化複合材料を提供するものである。   The present invention has been made in view of such circumstances, and a fiber-reinforced composite material, particularly a fiber-reinforced composite material including both long fibers and short fibers, is a fiber-reinforced composite material having a structure with more excellent mechanical properties. It is to provide.

本発明に係る繊維強化複合材料は、炭化ケイ素、炭素、及びシリコンで構成されるセラミックスマトリックスと、炭素繊維又は炭化ケイ素繊維のいずれか1種以上の材料で構成される強化繊維と、からなる繊維強化複合材料であって、前記強化繊維が短繊維の集合体と長繊維の集合体とを共に含み、前記長繊維の集合体の表面が炭素被膜で覆れ、2次元平面上で格子状に配置された層状構造体であり、複数の前記層状構造体同士が積層されて立体構造を形成していることを特徴とする。このような構成をとることで、機械特性に優れた繊維強化複合材料を提供することができる。   A fiber reinforced composite material according to the present invention is a fiber comprising a ceramic matrix composed of silicon carbide, carbon, and silicon, and a reinforced fiber composed of at least one material of carbon fiber or silicon carbide fiber. A reinforced composite material, wherein the reinforcing fibers include both short fiber aggregates and long fiber aggregates, and a surface of the long fiber aggregates is covered with a carbon coating, and is in a lattice shape on a two-dimensional plane. The layered structure is arranged, and a plurality of the layered structures are laminated to form a three-dimensional structure. By adopting such a configuration, a fiber-reinforced composite material having excellent mechanical properties can be provided.

本発明に係る繊維強化複合材料は、炭化ケイ素、炭素、及びシリコンで構成されるセラミックスマトリックスと、炭素繊維又は炭化ケイ素繊維のいずれか1種以上の材料で構成される強化繊維と、からなる繊維強化複合材料であって、前記強化繊維が短繊維の集合体と長繊維の集合体とを共に含み、前記長繊維の集合体の表面が炭素被膜で覆われており、前記長繊維の集合体が、2次元平面上で多角形の内接円を構成するように配置された層状構造体であり、複数の前記層状構造体同士が積層されて立体構造を形成していることを特徴とする。このような構成をとることで、機械特性に優れた繊維強化複合材料を提供することができる。   A fiber reinforced composite material according to the present invention is a fiber comprising a ceramic matrix composed of silicon carbide, carbon, and silicon, and a reinforced fiber composed of at least one material of carbon fiber or silicon carbide fiber. A reinforced composite material, wherein the reinforcing fiber includes both a short-fiber aggregate and a long-fiber aggregate, and a surface of the long-fiber aggregate is covered with a carbon coating, and the long-fiber aggregate. Is a layered structure disposed so as to form a polygonal inscribed circle on a two-dimensional plane, and a plurality of the layered structures are laminated to form a three-dimensional structure . By adopting such a configuration, a fiber-reinforced composite material having excellent mechanical properties can be provided.

本発明に係る繊維強化複合材料は、前記層状構造体の格子形状は、三角形、正方形、長方形、菱形または平行四辺形のいずれかであることが好ましい。このような構成をとることで、長繊維の形態が適正化された、より機械特性に優れた構造の繊維強化複合材料とすることができる。   In the fiber reinforced composite material according to the present invention, the lattice shape of the layered structure is preferably any one of a triangle, a square, a rectangle, a rhombus, and a parallelogram. By adopting such a configuration, it is possible to obtain a fiber-reinforced composite material having a structure with more excellent mechanical properties in which the form of long fibers is optimized.

前記層状構造体の多角形は、内接円の半径が5/2mm以上5mm以下であり、複数の前記層状構造体同士が0.5mm以上3mm以下の間隔で積層されて立体構造を形成していることが好ましい。このような構成をとることで、より機械特性に優れた繊維強化複合材料を提供することができる。   The polygon of the layered structure has a radius of an inscribed circle of 5/2 mm or more and 5 mm or less, and a plurality of the layered structures are stacked at intervals of 0.5 mm or more and 3 mm or less to form a three-dimensional structure. Preferably it is. By adopting such a configuration, it is possible to provide a fiber-reinforced composite material having more excellent mechanical properties.

本発明に係る繊維強化複合材料は、前記格子形状が一辺の長さ5mm以上10mm以下であること、複数の前記層状構造体同士が0.5mm以上3mm以下の間隔で積層されて立体構造を形成していることが好ましい。このような構成をとることで、より機械特性に優れた繊維強化複合材料を提供することができる。   In the fiber-reinforced composite material according to the present invention, the lattice shape is 5 mm to 10 mm in length on one side, and a plurality of the layered structures are laminated at intervals of 0.5 mm to 3 mm to form a three-dimensional structure. It is preferable. By adopting such a configuration, it is possible to provide a fiber-reinforced composite material having more excellent mechanical properties.

また、本発明に係る繊維強化複合材料は、前記短繊維は、平均長さが0.5mm以上15mm以下であること、かつ、前記短繊維の集合体は、繊維強化複合材料全体に対して10重量%以上40重量%以下であることが好ましい。このような構成をとることで、短繊維が適正化され、より機械特性に優れた繊維強化複合材料とすることができる。   Further, in the fiber reinforced composite material according to the present invention, the short fibers have an average length of 0.5 mm or more and 15 mm or less, and the short fiber aggregate is 10 for the entire fiber reinforced composite material. It is preferable that it is not less than 40% by weight. By adopting such a configuration, a short fiber can be optimized and a fiber-reinforced composite material having more excellent mechanical properties can be obtained.

さらに、前記長繊維の集合体は、3000本以上8000本以下の長繊維を集合してなることが好ましい。このような構成をとることで、長繊維の形態が適正化された、より機械特性に優れた構造の繊維強化複合材料とすることができる。   Furthermore, the aggregate of long fibers is preferably formed by collecting 3000 to 8000 long fibers. By adopting such a configuration, it is possible to obtain a fiber-reinforced composite material having a structure with more excellent mechanical properties in which the form of long fibers is optimized.

本発明に係る繊維強化複合材料は、前記セラミックスマトリックス中にCuをさらに含むことがより好ましい。このような構成をとることで、Cuを含むことで得られる高い破壊靱性を併せ持つ、機械特性に優れた繊維強化複合材料とすることができる。   More preferably, the fiber-reinforced composite material according to the present invention further includes Cu in the ceramic matrix. By taking such a structure, it can be set as the fiber reinforced composite material excellent in the mechanical characteristics which has the high fracture toughness obtained by containing Cu.

そして、前記多角形は、三角形、四角形または、五角形または六角形またはこれらの組み合わせのいずれかで構成されることを特徴とする。このような構成をとることで、より機械特性に優れた繊維強化複合材料を提供することができる。   The polygon is formed of any one of a triangle, a quadrangle, a pentagon, a hexagon, or a combination thereof. By adopting such a configuration, it is possible to provide a fiber-reinforced composite material having more excellent mechanical properties.

本発明に係る繊維強化複合材料は、長繊維強化繊維と短繊維強化繊維の形態を適切に調整することで、剥離等が効果的に抑制されて機械強度に優れた繊維強化複合材料とすることが可能である。   The fiber reinforced composite material according to the present invention is a fiber reinforced composite material that is excellent in mechanical strength by effectively suppressing peeling and the like by appropriately adjusting the form of the long fiber reinforced fiber and the short fiber reinforced fiber. Is possible.

本発明の実施形態に係る繊維強化複合材料を、断面からみた形態を示す概念図である。It is a conceptual diagram which shows the form which looked at the fiber reinforced composite material which concerns on embodiment of this invention from the cross section. 本発明の実施形態に係る繊維強化複合材料の、長繊維束からなる層状構造体の2次元平面上の格子形状と層状構造体の位置関係を示す概念図である。It is a conceptual diagram which shows the positional relationship of the lattice shape on the two-dimensional plane of the layered structure which consists of a long fiber bundle of the fiber reinforced composite material which concerns on embodiment of this invention, and a layered structure. 本発明の実施形態に係る繊維強化複合材料の、長繊維束からなる層状構造体の2次元平面上の格子形状が、例えば六角形形状である場合を示す概念図である。It is a conceptual diagram which shows the case where the lattice shape on the two-dimensional plane of the layered structure which consists of a long fiber bundle of the fiber reinforced composite material which concerns on embodiment of this invention is a hexagonal shape, for example.

以下、本発明の実施形態について詳細に説明する。図1は、本発明に係る繊維強化複合材料を、断面からみた状態を示す概念図である。   Hereinafter, embodiments of the present invention will be described in detail. FIG. 1 is a conceptual diagram showing a state in which a fiber-reinforced composite material according to the present invention is viewed from a cross section.

本発明の実施形態に係る繊維強化複合材料は、炭化ケイ素(SiC)、炭素(C)、及びシリコン(Si)で構成されるセラミックスマトリックスと、炭素繊維又は炭化ケイ素繊維のいずれか1種以上の材料で構成される強化繊維と、からなる繊維強化複合材料であって、強化繊維が短繊維の集合体と長繊維の集合体とを共に含み、長繊維の集合体の表面が炭素被膜で覆われて、長繊維の集合体が2次元平面上で格子状に配置された層状構造体であり、さらに、複数の層状構造体同士が複数積層されて立体構造を形成している。ここで、上述の格子形状が、三角形、正方形、長方形、菱形、平行四辺形のいずれかである。   The fiber-reinforced composite material according to the embodiment of the present invention includes a ceramic matrix composed of silicon carbide (SiC), carbon (C), and silicon (Si), and at least one of carbon fiber and silicon carbide fiber. A fiber-reinforced composite material comprising a reinforcing fiber composed of a material, wherein the reinforcing fiber includes both a short-fiber aggregate and a long-fiber aggregate, and the surface of the long-fiber aggregate is covered with a carbon coating. In other words, the aggregate of long fibers is a layered structure arranged in a lattice shape on a two-dimensional plane, and a plurality of layered structures are stacked to form a three-dimensional structure. Here, the above-described lattice shape is any one of a triangle, a square, a rectangle, a rhombus, and a parallelogram.

セラミックスマトリックスは、炭化ケイ素、炭素、及びシリコンで構成される。これらは、セラミックスとして適用できる材料であれば、広く既存のものを用いてよい。また、炭化ケイ素、炭素、及びシリコンの重量比は、設計される繊維強化複合材料の仕様に応じて、適時設定して差し支えない。   The ceramic matrix is composed of silicon carbide, carbon, and silicon. Any of these materials may be used as long as they can be applied as ceramics. Further, the weight ratio of silicon carbide, carbon, and silicon may be set as appropriate according to the specifications of the fiber-reinforced composite material to be designed.

繊維の材質は、炭素繊維又は炭化ケイ素繊維のいずれか1種以上の材料で構成される。いずれか一方のみでもよいし、この2つの材料を混合してもよい。しかしながら、製造が容易、強度などの諸特性が優れている点では、炭素が好適である。この場合、炭素の品質、純度は、通常のセラミックス材料に用いられるものでよく、特に限定されない。   The material of the fiber is composed of one or more materials of carbon fiber or silicon carbide fiber. Only one of them may be used, or these two materials may be mixed. However, carbon is preferred because it is easy to manufacture and has excellent properties such as strength. In this case, the quality and purity of carbon may be those used for ordinary ceramic materials and are not particularly limited.

本発明の実施形態に係る強化繊維は、強化繊維が短繊維の集合体と長繊維の集合体とを共に含むこと、を特徴としている。短繊維の集合体は、繊維強化複合材料に対して、物理的、あるいは熱的衝撃が加えられたときに発生する亀裂の進展を防止する作用を有する。長繊維は、短繊維束では吸収しきれない大きな衝撃に対して、亀裂の進展を抑制するのに有効で、これにより、繊維強化複合材料の使用時の破壊に対する信頼性が確保される。   The reinforcing fiber according to the embodiment of the present invention is characterized in that the reinforcing fiber includes both an assembly of short fibers and an assembly of long fibers. The aggregate of short fibers has a function of preventing the development of cracks that occur when a physical or thermal impact is applied to the fiber-reinforced composite material. Long fibers are effective in suppressing the growth of cracks against large impacts that cannot be absorbed by short fiber bundles, and this ensures reliability against breakage during use of the fiber-reinforced composite material.

短繊維の長さは、平均で0.5mm以上15mm以下が好ましい。短繊維の長さが0.5mm未満では、強化繊維としての機能を発揮するには短すぎるので好ましくない。一方、短繊維の長さが15mmを超えると、繊維の本数が少ない割に、繊維強化複合材料全体に占める短繊維の重量%が相対的に大きくなり、短繊維自身のもつ強度不足の影響が大きくなるので、これも好ましくない。   The average length of the short fibers is preferably 0.5 mm or more and 15 mm or less. If the length of the short fiber is less than 0.5 mm, it is not preferable because it is too short to exhibit the function as the reinforcing fiber. On the other hand, if the length of the short fiber exceeds 15 mm, the weight percentage of the short fiber in the entire fiber-reinforced composite material becomes relatively large for a small number of fibers, and the short fiber itself has an effect of insufficient strength. This is also undesirable because it increases.

短繊維の直径は、特に限定されるものではないが、より好適には、平均で1μm以上50μm以下である。短繊維の直径が1μm未満では、短繊維が細すぎて強化繊維同士が容易に凝集し、不必要に巨大化することで強化繊維としての機能が十分発揮されず、好ましくない。一方、短繊維の直径が50μmを超えると、繊維の本数が少ない割に繊維強化複合材料全体に占める短繊維の重量%が相対的に大きくなり、短繊維自身のもつ強度不足の影響が無視できなくなるので、これも好ましいものとはいえない。   Although the diameter of a short fiber is not specifically limited, More preferably, it is 1 micrometer or more and 50 micrometers or less on an average. If the diameter of the short fiber is less than 1 μm, the short fiber is too thin and the reinforcing fibers are easily aggregated and unnecessarily enlarged. On the other hand, when the diameter of the short fiber exceeds 50 μm, the weight percentage of the short fiber in the entire fiber-reinforced composite material becomes relatively large for a small number of fibers, and the influence of the shortness of the short fiber itself can be ignored. This is also not preferable because it disappears.

本発明の実施形態において、短繊維の集合体とは、前述の短繊維を複数集合したもので、その形状は、特に限定されるものではない。例えば、フェルト状、不織布状でも良いが、好ましい例としては、短繊維が数本から数千本束ねられ、全体として針状、棒状、小片状、板状、塊状の形態を成している、いわゆる短繊維束が挙げられる。   In the embodiment of the present invention, the aggregate of short fibers is a collection of a plurality of the short fibers described above, and the shape thereof is not particularly limited. For example, a felt shape or a non-woven fabric shape may be used, but as a preferable example, a short fiber is bundled from several to several thousand, and as a whole, it forms a needle shape, a rod shape, a small piece shape, a plate shape, or a lump shape. And so-called short fiber bundles.

短繊維束の長さと直径についても、設計される繊維強化複合材料の仕様に応じて、適時選択できる。ここで、短繊維束の長さは、1mm以上20mm以下がより好ましい。短繊維束の長さが1mm未満では、強化繊維としての機能を発揮するには短すぎるので好ましくない。一方、短繊維束の長さが20mmを超えると、繊維強化複合材料中での分散性が低下し、繊維強化複合材料全体の強度低下を招く恐れがあるので、これも好ましくない。   The length and diameter of the short fiber bundle can also be selected as appropriate according to the specifications of the fiber reinforced composite material to be designed. Here, the length of the short fiber bundle is more preferably 1 mm or more and 20 mm or less. If the length of the short fiber bundle is less than 1 mm, it is not preferable because it is too short to exhibit the function as the reinforcing fiber. On the other hand, when the length of the short fiber bundle exceeds 20 mm, the dispersibility in the fiber reinforced composite material is lowered, and the strength of the entire fiber reinforced composite material may be lowered.

短繊維束の直径は、特に限定されるものではないが、0.3mm以上4mm以下が、より好ましい。短繊維束の長さと同様に、短繊維束の直径が0.3mm未満では、強化繊維としての機能を発揮するには細すぎるので好ましくない。一方、短繊維束の直径が4mmを超えると、繊維強化複合材料中での分散性が低下し、繊維強化複合材料全体の強度低下を招く恐れがあるので、これも好ましくない。   Although the diameter of a short fiber bundle is not specifically limited, 0.3 mm or more and 4 mm or less are more preferable. Similarly to the length of the short fiber bundle, it is not preferable that the diameter of the short fiber bundle is less than 0.3 mm because it is too thin to exhibit the function as the reinforcing fiber. On the other hand, when the diameter of the short fiber bundle exceeds 4 mm, the dispersibility in the fiber reinforced composite material is lowered, and the strength of the entire fiber reinforced composite material may be lowered.

なお、本発明の実施形態に係る短繊維束は、必要に応じて、その表層面を炭素材料で被覆しても良く、その膜厚や積層数に特別限定を必要としない。また、短繊維束の束ねた本数を意図的に変更した、複数種類の短繊維束を用いても良い。あるいは、短繊維単体と短繊維束の組み合わせの形態でも差し支えない。   In addition, the short fiber bundle which concerns on embodiment of this invention may coat | cover the surface layer surface with a carbon material as needed, and does not require special limitation in the film thickness or the number of lamination | stacking. A plurality of types of short fiber bundles may be used in which the number of short fiber bundles is intentionally changed. Alternatively, a combination of a single short fiber and a short fiber bundle may be used.

本発明の実施形態において、長繊維の集合体については、以下の通りとする。まず、長繊維は、繊維強化複合材料中である特定の方向に対して連続した構造の繊維を指すものとする。そして、この長繊維が複数集合したものを長繊維束とする。一例として、糸状の繊維が絡み合って縄のようになった形状があるが、さらにこの束が複数集合された形状であってもよい。   In the embodiment of the present invention, the aggregate of long fibers is as follows. First, the long fiber refers to a fiber having a continuous structure with respect to a specific direction in the fiber-reinforced composite material. Then, a bundle of a plurality of long fibers is defined as a long fiber bundle. As an example, there is a shape in which thread-like fibers are intertwined to form a rope, but a shape in which a plurality of bundles are gathered may be used.

そして、この長繊維束の表層面は、炭素材料で被覆されている。被覆する目的は、繊維強化複合材料の製造過程において、長繊維が他の材料と反応することを抑制するためであり、また、セラミックスマトリックスとの熱膨張差に起因する応力を緩和する作用を持たせる為である。なお、被覆は、表層面全体を覆うことが好ましいが、一部の長繊維束表層面が露出していても、前述の作用効果を発現できる程度の被覆があれば、特に差し支えない。   And the surface layer surface of this long fiber bundle is coat | covered with the carbon material. The purpose of coating is to prevent the long fibers from reacting with other materials in the manufacturing process of fiber reinforced composite materials, and also has the effect of relaxing the stress caused by the difference in thermal expansion from the ceramic matrix. It is to make it. In addition, it is preferable that the coating covers the entire surface of the surface layer, but even if a part of the surface layer of the long fiber bundle is exposed, there is no particular problem as long as there is a coating that can exhibit the above-described effects.

炭素材料の種類と、炭素材料の被覆の膜厚は、特に限定されない。好適には、炭素材料として各種の樹脂材料、例えば、フェノール樹脂、エポキシ、フラン、フルフリル、メラミン、尿素、ポリエステル、ポリイミド、ピッチ、メソフェーズ等が用いられる。また、膜厚は平均で10μm〜50μmの範囲であればよい。   The kind of carbon material and the film thickness of the coating of the carbon material are not particularly limited. Preferably, various resin materials such as phenol resin, epoxy, furan, furfuryl, melamine, urea, polyester, polyimide, pitch, mesophase and the like are used as the carbon material. The film thickness may be in the range of 10 μm to 50 μm on average.

本発明の実施形態においては、この長繊維束を2次元平面上で格子状に配置した層状構造体を有し、さらに複数積層して立体構造を形成している。一般に、繊維強化複合材料中における長繊維束の配置は、その用途や製法に応じたさまざまな形態が考えられる。   In the embodiment of the present invention, the long fiber bundle has a layered structure in which the bundle of long fibers is arranged in a lattice shape on a two-dimensional plane, and a plurality of layers are stacked to form a three-dimensional structure. Generally, the arrangement of the long fiber bundles in the fiber reinforced composite material can be considered in various forms depending on the use and production method.

ここで、長繊維束を2次元平面上で格子状に配置した層状構造体は、一例として図2に示すように、格子状の網目形状の層が好適である。このようにすると、平面方向における耐衝撃性を少ない長繊維量で向上することができる。しかし、層状構造なので、平面に対して垂直方向、すなわち、厚さ方向に対しては、層状構造体同士は強く接合されていない。このため、厚さ方向に対する強い力が加わると、層状構造体の一部の層が剥離するおそれがあった。   Here, as an example, a layered structure in which long fiber bundles are arranged in a lattice on a two-dimensional plane is preferably a lattice-like mesh-shaped layer as shown in FIG. In this way, the impact resistance in the planar direction can be improved with a small amount of long fibers. However, because of the layered structure, the layered structures are not strongly bonded in the direction perpendicular to the plane, that is, in the thickness direction. For this reason, when a strong force in the thickness direction is applied, a part of the layered structure may be peeled off.

これを防止すべく、本願発明者らは研究を重ね層状構造体の平面方向、および厚さ方向に対して、短繊維束を含むセラミックスマトリックスが、適切な位置関係で配置されると、層状構造体同士が剥離しにくくなり、かつ繊維強化複合材料全体の強度も十分確保できることを見出した。従って、本発明の実施形態においては、層状構造体の平面方向、および厚さ方向に対して、短繊維束を含むセラミックスマトリックスが適切な位置関係で配置される。   In order to prevent this, the inventors of the present invention have repeatedly studied and, when the ceramic matrix including short fiber bundles is arranged in an appropriate positional relationship with respect to the planar direction and the thickness direction of the layered structure, the layered structure is formed. It was found that the bodies are difficult to peel off and the strength of the entire fiber-reinforced composite material can be sufficiently secured. Therefore, in the embodiment of the present invention, the ceramic matrix including the short fiber bundle is arranged in an appropriate positional relationship with respect to the planar direction and the thickness direction of the layered structure.

本発明の実施形態に係る繊維強化複合材料において、層状構造体の格子形状は、一辺が5mm以上10mm以下の三角形、正方形、長方形、菱形、平行四辺形のいずれかであり、層状構造体同士は、0.5mm以上3mm以下の間隔で積層されて立体構造を形成していることが好ましい。   In the fiber-reinforced composite material according to the embodiment of the present invention, the lattice shape of the layered structure is any one of a triangle, a square, a rectangle, a rhombus, and a parallelogram having sides of 5 mm to 10 mm, and the layered structures are It is preferable that the three-dimensional structure is formed by laminating at intervals of 0.5 mm or more and 3 mm or less.

格子形状は、平面方向に加わる力が均等に分散されること、炭素材料で形成できる単純な形状であること、単位面積当たりの長繊維束の量が少なくでも強度が確保できる形態であることから、好ましいものといえる。   The lattice shape is that the force applied in the plane direction is evenly distributed, that it is a simple shape that can be formed of a carbon material, and that the strength can be ensured even with a small amount of long fiber bundles per unit area. It can be said that it is preferable.

格子の形状は、一辺が5mm以上10mm以下の三角形、正方形、長方形、菱形、平行四辺形のいずれかであればよいが、必要に応じて、例えば、1層目の層状構造体は正方形の格子、2層目の層状構造体は平行四辺形、以下、その繰り返しという形態でもよい。あるいは、3種類以上の格子形状の任意の組み合わせでもよい。さらには、格子の形は同じで、格子の一辺の形状を任意に変化させたものを組み合わせても良い。   The shape of the lattice may be any one of a triangle, a square, a rectangle, a rhombus, and a parallelogram having a side of 5 mm to 10 mm. If necessary, for example, the first layered structure is a square lattice. The layered structure of the second layer may be in the form of a parallelogram, hereinafter repeated. Alternatively, any combination of three or more types of lattice shapes may be used. Furthermore, the shape of the lattice is the same, and those obtained by arbitrarily changing the shape of one side of the lattice may be combined.

なお、四角形形状の場合においては、X−Y軸方向に対して長繊維を織り込んで層状構造体を形成できる。これに対して、例えば、三角形では、3方向に対して長繊維を織り込んでいく必要があり、単位面積当たりの長繊維量が増加する。よって、三角形と四角形を比較すると、四角形からなる格子形状のほうが、強度の点でいえば、より好ましいといえる。   In the case of a quadrangular shape, a layered structure can be formed by weaving long fibers in the XY axis direction. In contrast, for example, in a triangle, it is necessary to weave long fibers in three directions, and the amount of long fibers per unit area increases. Therefore, when a triangle and a quadrangle are compared, it can be said that a lattice shape made of a quadrangle is more preferable in terms of strength.

格子の一辺が5mm未満では、格子の四角形部分に十分なセラミックスマトリックスが形成されず、この部位に欠陥となる空隙が発生するおそれがあり、好ましくない。一方、格子の一辺が10mmを越えると、格子の四角形部分の間隔が広すぎて、十分な耐損傷許容性が発現しないので、こちらも好ましくない。   If the length of one side of the lattice is less than 5 mm, a sufficient ceramic matrix is not formed in the square portion of the lattice, and a void that becomes a defect may be generated in this portion, which is not preferable. On the other hand, if one side of the grid exceeds 10 mm, the interval between the square portions of the grid is too wide, and sufficient damage resistance tolerance is not exhibited.

本発明においては、格子形状の一辺の長さが、繊維強化複合材料の寸法、形状によって、格別限定されるものではない。しかしながら、繊維強化複合材料が、例えば円盤状の場合において、円盤の一主面における最大寸法が、例えば格子間隔の上限値である10mmに対して近い場合は、繊維強化複合材料自体に、十分な強度が確保されないおそれがある。これは、繊維強化複合材料全体に存在する格子の数が、相対的に少なくなるためである。   In the present invention, the length of one side of the lattice shape is not particularly limited by the size and shape of the fiber-reinforced composite material. However, in the case where the fiber reinforced composite material is, for example, a disk shape, if the maximum dimension on one main surface of the disk is close to, for example, 10 mm which is the upper limit value of the lattice spacing, the fiber reinforced composite material itself is sufficient. There is a risk that strength is not secured. This is because the number of lattices present in the entire fiber reinforced composite material is relatively small.

一例として、層状構造体の正方形からなる格子間隔が10mmである場合において、円盤の直径が50mm以上であれば、本発明の効果が得られる。なお、例えば直径が500mmを越える場合であっても、本発明の効果は得られる。   As an example, in the case where the lattice interval composed of squares of the layered structure is 10 mm, the effect of the present invention can be obtained if the diameter of the disk is 50 mm or more. For example, even if the diameter exceeds 500 mm, the effect of the present invention can be obtained.

そして、層状構造体同士は、0.5mm以上3mm以下の間隔で積層されて、厚さ方向に対して立体構造を形成していることが好ましい。層状構造体で平面方向の強度が確保され、これが厚さ方向に積層されることで、厚さ方向の強度も向上する。なお、ここでいう間隔は、隣接する層状構造体間に存在する、短繊維束を含むセラミックスマトリックスの厚さと置き換えても良い。   And it is preferable that layered structures are laminated | stacked by the space | interval of 0.5 mm or more and 3 mm or less, and form the three-dimensional structure with respect to the thickness direction. The strength in the planar direction is ensured by the layered structure, and the strength in the thickness direction is also improved by laminating them in the thickness direction. In addition, you may replace the space | interval here with the thickness of the ceramic matrix containing the short fiber bundle which exists between adjacent layered structures.

層状構造体同士の間隔が0.5mm未満では、層状構造体同士の空隙に対して、十分なセラミックスマトリックスが形成されず、この部位に欠陥となる空隙が発生するおそれがあり、好ましくない。一方、層状構造体同士の間隔が3mmを越えると、間隔が広すぎて、十分な耐損傷許容性が発現しないので、こちらも好ましくない。   If the distance between the layered structures is less than 0.5 mm, a sufficient ceramic matrix is not formed with respect to the gap between the layered structures, and a void that becomes a defect may be generated at this portion, which is not preferable. On the other hand, when the interval between the layered structures exceeds 3 mm, the interval is too wide, and sufficient damage resistance tolerance is not exhibited.

なお、層状構造体同士の間隔についても、繊維強化複合材料全体の寸法、形状に対して、格別限定されるものではない。しかしながら、繊維強化複合材料が円盤のような板状の場合において、円盤の平均厚さの最大寸法が、例えば3mmに近い場合は、繊維強化複合材料自体に、十分な強度が確保されないおそれがある。これは、繊維強化複合材料全体に存在する層状構造体の層数が、相対的に少なくなるためである。一例として、層状構造体の正方形からなる格子間隔が3mmである場合において、円盤の平均厚さが10mm以上であれば、本発明の効果が得られる。   The spacing between the layered structures is not particularly limited with respect to the size and shape of the entire fiber reinforced composite material. However, in the case where the fiber reinforced composite material has a plate shape such as a disk, if the maximum dimension of the average thickness of the disk is, for example, close to 3 mm, the fiber reinforced composite material itself may not have sufficient strength. . This is because the number of layered structures existing in the entire fiber-reinforced composite material is relatively small. As an example, in the case where the lattice interval composed of squares of the layered structure is 3 mm, the effect of the present invention can be obtained if the average thickness of the disk is 10 mm or more.

短繊維の集合体は、繊維強化複合材料全体に対して10重量%以上40重量%以下であることが好ましい。短繊維の集合体が少ないと、繊維強化複合材料に対して、物理的、あるいは熱的衝撃が加えられたときに発生する亀裂の進展を防止する作用が低下するので好ましくない。一方、短繊維の集合体が多いと、繊維強化複合材料全体に対して、十分なセラミックスマトリックスが形成されず、この部位に欠陥となる空隙が発生するおそれがあり、強度が低下するので好ましくない。   The aggregate of short fibers is preferably 10% by weight or more and 40% by weight or less with respect to the entire fiber reinforced composite material. If there are few aggregates of short fibers, the effect of preventing the development of cracks that occur when a physical or thermal impact is applied to the fiber-reinforced composite material is not preferred. On the other hand, if there are many aggregates of short fibers, a sufficient ceramic matrix may not be formed for the entire fiber-reinforced composite material, and voids that become defects may be generated in this part, which is not preferable because the strength decreases. .

長繊維の集合体である長繊維束を構成する長繊維の本数は、好ましくは、3000本以上8000本以下、より好ましくは、4000本以上6000本以下である。少なすぎると、大きな衝撃に対する耐損傷許容性が発現されず、多すぎると、繊維強化複合材料全体に占めるセラミックスマトリックスの割合が相対的に低下し、強度低下を招くおそれがあるので、いずれも好ましくない。   The number of long fibers constituting the long fiber bundle, which is an aggregate of long fibers, is preferably 3000 or more and 8000 or less, more preferably 4000 or more and 6000 or less. If the amount is too small, damage resistance tolerance against a large impact is not expressed. If the amount is too large, the ratio of the ceramic matrix occupying the entire fiber-reinforced composite material is relatively decreased, which may cause a decrease in strength. Absent.

本発明の実施形態に係る繊維強化複合材料は、セラミックスマトリックス中にCuをさらに含むことが好ましい。セラミックスマトリックス中に発生する気孔部に対して、シリコンを含浸する含浸法の適用で、繊維強化複合材料が緻密化でき、強度を向上させることができる。このとき、Cuをさらに加えると、破壊靭性が向上して、本発明の実施形態に係る長繊維束と短繊維束の配置との相性がよく、それぞれの構成がもつ作用効果が相互に活かされて、より優れた特性をえることが可能となる。   The fiber-reinforced composite material according to the embodiment of the present invention preferably further includes Cu in the ceramic matrix. By applying the impregnation method in which silicon is impregnated into the pores generated in the ceramic matrix, the fiber-reinforced composite material can be densified and the strength can be improved. At this time, when Cu is further added, fracture toughness is improved, the compatibility of the arrangement of the long fiber bundle and the short fiber bundle according to the embodiment of the present invention is good, and the functions and effects of the respective configurations are mutually utilized. Therefore, it is possible to obtain more excellent characteristics.

なお、本発明の実施形態においては、層状構造体の格子形状と、層状構造体同士の間隔、そして、短繊維の集合体の繊維強化複合材料全体に対する重量比を、それぞれ適正化することで、繊維強化複合材料の特性をより綿密に制御することも可能である。すなわち、長繊維による耐損傷許容性、セラミックスマトリックスによる繊維強化複合材料全体の強度、短繊維の集合体による亀裂の進展防止、のそれぞれの効果が優位に発現される要素のバランスをとり、目的に応じた特性を意図的に得ることもできる。   In the embodiment of the present invention, by optimizing the lattice shape of the layered structure, the interval between the layered structures, and the weight ratio of the aggregate of short fibers to the entire fiber-reinforced composite material, It is also possible to control the properties of the fiber reinforced composite material more closely. In other words, the balance of the factors that express the advantages of damage resistance by long fibers, the strength of the entire fiber-reinforced composite material by ceramic matrix, and the prevention of crack growth by aggregates of short fibers, The corresponding characteristics can also be obtained intentionally.

以上説明したとおり、上述の本発明の実施形態においては、長繊維束を2次元平面上で格子状に配置した層状構造体を用いたが、層状構造体の形状は、格子状に限定されるものではなく、長繊維束を2次元平面上で例えば図3に示すように、六角形などの多角形を形成するように配置してもよい。この場合、長繊維の集合体が多角形を形成するように配置された層状構造体の各多角形の大きさは、当該多角形に内接する円(以下、内接円という。)の半径Rが5/2mm以上5mm以下であり、層状構造体同士は、0.5mm以上3mm以下の間隔で積層されて、立体構造を形成していることが好ましい。   As described above, in the above-described embodiment of the present invention, a layered structure in which long fiber bundles are arranged in a lattice on a two-dimensional plane is used. However, the shape of the layered structure is limited to a lattice. Instead, the long fiber bundles may be arranged on a two-dimensional plane so as to form a polygon such as a hexagon as shown in FIG. In this case, the size of each polygon of the layered structure arranged so that the aggregate of long fibers forms a polygon is the radius R of a circle inscribed in the polygon (hereinafter referred to as an inscribed circle). 5/2 mm or more and 5 mm or less, and the layered structures are preferably laminated at intervals of 0.5 mm or more and 3 mm or less to form a three-dimensional structure.

層状構造体の内接円の半径が5/2mm未満では、十分なセラミックスマトリックスが形成されず、この部位に欠陥となる空隙が発生するおそれがあり、好ましくない。一方、内接円の半径が5mmを越えると、十分な耐損傷許容性が発現しないので、好ましくない。層状構造体同士は、0.5mm以上3mm以下の間隔で積層されて、厚さ方向に対して立体構造を形成していることが好ましい。層状構造体で平面方向の強度が確保され、これが厚さ方向に積層されることで、厚さ方向の強度も向上する。なお、ここでいう間隔は、隣接する層状構造体間に存在する、短繊維束を含むセラミックスマトリックスの厚さと置き換えても良い。層状構造体同士の間隔が0.5mm未満では、層状構造体同士の空隙に対して、十分なセラミックスマトリックスが形成されず、この部位に欠陥となる空隙が発生するおそれがあり、好ましくない。一方、層状構造体同士の間隔が3mmを越えると、間隔が広すぎて、十分な耐損傷許容性が発現しないので好ましくない。   When the radius of the inscribed circle of the layered structure is less than 5/2 mm, a sufficient ceramic matrix is not formed, and there is a possibility that a void that becomes a defect may be generated in this part, which is not preferable. On the other hand, if the radius of the inscribed circle exceeds 5 mm, sufficient damage resistance tolerance is not exhibited, which is not preferable. The layered structures are preferably laminated with an interval of 0.5 mm or more and 3 mm or less to form a three-dimensional structure in the thickness direction. The strength in the planar direction is ensured by the layered structure, and the strength in the thickness direction is also improved by laminating them in the thickness direction. In addition, you may replace the space | interval here with the thickness of the ceramic matrix containing the short fiber bundle which exists between adjacent layered structures. If the distance between the layered structures is less than 0.5 mm, a sufficient ceramic matrix is not formed with respect to the gap between the layered structures, and a void that becomes a defect may be generated at this portion, which is not preferable. On the other hand, if the interval between the layered structures exceeds 3 mm, the interval is too wide, and sufficient damage resistance tolerance is not exhibited, which is not preferable.

以上のとおり、本発明の実施形態に係る繊維強化複合材料は、長繊維の強化繊維と短繊維の強化繊維の形状を適切に調整することで、長繊維の強化繊維に短繊維の強化繊維を分散させ、セラミックスマトリックス全体の密度を低下させず、長繊維と短繊維との熱膨張による層間の剥離等が効果的に抑制されて、機械強度に優れた繊維強化複合材料とすることを可能とするものである。   As described above, the fiber reinforced composite material according to the embodiment of the present invention appropriately adjusts the shape of the long fiber reinforced fiber and the short fiber reinforced fiber, so that the short fiber reinforced fiber is added to the long fiber reinforced fiber. Dispersion does not reduce the density of the entire ceramic matrix, and it is possible to effectively suppress delamination between layers due to thermal expansion of long fibers and short fibers, and to make a fiber-reinforced composite material with excellent mechanical strength. To do.

以下、本発明の好ましい実施形態を実施例に基づき説明するが、本発明はこの実施例により限定されるものではない。なお、以下の実施例においては、長繊維の集合体で構成される層状構造体は、長繊維束が2次元平面上で格子状に配置された例について説明するが、層状構造体はこれに限定されず、長繊維束2次元平面上で多角形を形成するように配置されたものであってもよい。   Hereinafter, preferred embodiments of the present invention will be described based on examples, but the present invention is not limited to these examples. In the following examples, a layered structure composed of long fiber aggregates will be described as an example in which long fiber bundles are arranged in a lattice pattern on a two-dimensional plane. It is not limited, The long fiber bundle may be arranged so as to form a polygon on a two-dimensional plane.

(実験1)
実施例1として、以下の通りの内容で、評価用部材を作製した。
(Experiment 1)
As Example 1, a member for evaluation was produced with the following contents.

長繊維束として、平均径10μmの長繊維を格子状に配置し、長繊維格子を用意した。そして、この格子に、熱硬化性樹脂としてフェノール樹脂をエタノールとを混合したものを浸透させた。その後、不活性雰囲気下で1000℃、1時間熱処理して、熱硬化性樹脂を炭化した。このようにして、長繊維束であるシートの表層面上に、炭素被膜を形成した。このときの炭素被膜の膜厚は、およそ30μmであった。なお、長繊維束を構成する長繊維の本数は、平均で5000本である。   As long fiber bundles, long fibers having an average diameter of 10 μm were arranged in a lattice shape to prepare a long fiber lattice. And what mixed phenol resin and ethanol as a thermosetting resin was infiltrated into this lattice. Thereafter, heat treatment was performed at 1000 ° C. for 1 hour in an inert atmosphere to carbonize the thermosetting resin. Thus, the carbon film was formed on the surface layer surface of the sheet which is a long fiber bundle. The film thickness of the carbon coating at this time was approximately 30 μm. The number of long fibers constituting the long fiber bundle is 5000 on average.

短繊維束に用いる短繊維は、平均長8mm、平均径10μmの炭素繊維を用いた。この短繊維10gと、炭化ケイ素粉末(HSスタルク製)を40gと、バインダーとしてフェノール樹脂を2.5gをそれぞれ秤量して、混練機を用いて混合した。このようにして、短繊維束を形成するとともに、この短繊維束が分散された短繊維混合体を作製し、短繊維混合体と長繊維格子を交互に積層した。   The short fiber used for the short fiber bundle was a carbon fiber having an average length of 8 mm and an average diameter of 10 μm. 10 g of this short fiber, 40 g of silicon carbide powder (manufactured by HS Starck), and 2.5 g of phenol resin as a binder were weighed and mixed using a kneader. In this manner, a short fiber bundle was formed, and a short fiber mixture in which the short fiber bundle was dispersed was produced, and the short fiber mixture and the long fiber lattice were alternately laminated.

このようにして得られた長繊維束のシートが積層されてなる混合体を、乾燥オーブンにて50℃×300分乾燥させ、続いて熱処理炉にてAr雰囲気中1000℃まで昇温し2時間保持する処理を行った後、1000N/cmで加圧成形した。その後、Ar雰囲気下1800℃で2時間焼成して、さらに、真空雰囲気下1600℃で2時間保持して、シリコン含浸処理を行った。以上の工程を経て、実施例1の評価用部材を得た。なお、短繊維束の全体に対する重量比は25%である。 The mixture obtained by laminating the sheets of long fiber bundles thus obtained is dried in a drying oven at 50 ° C. for 300 minutes, and then heated to 1000 ° C. in an Ar atmosphere in a heat treatment furnace for 2 hours. After performing the holding process, it was pressure molded at 1000 N / cm 2 . Then, it baked at 1800 degreeC for 2 hours under Ar atmosphere, and also hold | maintained at 1600 degreeC for 2 hours under vacuum atmosphere, and performed the silicon impregnation process. The member for evaluation of Example 1 was obtained through the above steps. In addition, the weight ratio with respect to the whole short fiber bundle is 25%.

評価用部材に対しては、気孔率と破壊エネルギーを測定し比較することで評価を行った。気孔率の測定は、JIS R 1634に準拠した。また、破壊エネルギーは、得られたCF/SiCコンポジットから3×4×40(mm)の試験片を切り出し、これを評価サンプルとして、日本セラミックス協会規格JCRS−201「シェブロンノッチ試験片の準静的3点曲げ破壊によるセラミック系複合材料の破壊エネルギー試験方法」に準拠し、そのときの支点間距離は30mm、クロスヘッドスピードは0.01mm/min.とした。   Evaluation members were evaluated by measuring and comparing porosity and fracture energy. The measurement of porosity was based on JIS R1634. In addition, the fracture energy was obtained by cutting out a 3 × 4 × 40 (mm) test piece from the obtained CF / SiC composite, and using this as an evaluation sample, the Japan Ceramic Society Standard JCRS-201 “Semi-static of chevron notch test piece” In accordance with “Test Method for Fracture Energy of Ceramic Composite by Three-Point Bending Fracture”, the distance between fulcrums is 30 mm and the crosshead speed is 0.01 mm / min. It was.

実施例1に対して、長繊維束のシートの表層面上に炭素被膜を形成しないで、それ以外は実施例1と同様にして作製、評価したものを比較例1とした。   In contrast to Example 1, a carbon film was not formed on the surface layer surface of the sheet of long fiber bundles, and the others were prepared and evaluated in the same manner as in Example 1, and Comparative Example 1 was used.

実施例1に対して、短繊維束を添加しないで、それ以外は実施例1と同様にして作製、評価したものを比較例2とした。   Comparative Example 2 was prepared and evaluated in the same manner as in Example 1 except that the short fiber bundle was not added to Example 1.

実施例1に対して、長繊維束をシートにしたものではなく、長繊維束を単に一方向に揃えて成型した塊の表層面上に炭素被膜を形成したものを用い、それ以外は実施例1と同様にして作製、評価したものを比較例3とした。   In contrast to Example 1, a long fiber bundle was not formed into a sheet, but a carbon fiber film was formed on the surface of a lump formed by simply aligning long fiber bundles in one direction. 1 was prepared and evaluated in the same manner as in Example 1.

実施例1の気孔率は0.5%、破壊エネルギーは2720J/mあったのに対して、比較例1の気孔率は1.1%、破壊エネルギーは350J/m、比較例2の気孔率は1.4%、破壊エネルギーは1650J/m、そして、比較例3の気孔率は1.3%で破壊エネルギーは25〜2360J/mであった。このことから、本発明の構成を具備することで、気孔率が小さくて緻密な複合材料とすることができ、さらに、破壊エネルギーの高いものとすることができた。 The porosity of Example 1 was 0.5% and the fracture energy was 2720 J / m 2 , whereas the porosity of Comparative Example 1 was 1.1% and the fracture energy was 350 J / m 2 . The porosity was 1.4%, the fracture energy was 1650 J / m 2 , and the porosity of Comparative Example 3 was 1.3% and the fracture energy was 25-2360 J / m 2 . From this, by providing the structure of the present invention, it was possible to obtain a dense composite material having a low porosity and a high fracture energy.

(実験2)
実施例1に対して、長繊維束のシートの格子形状の一辺の長さと層状構造体同士の間隔を変更し、それ以外は実施例1と同様にした評価用部材を作製した。評価は実施例1に準じ、評価基準として、気孔率2%以下、破壊エネルギー2000J/m未満を×とした。なお、いずれかひとつが×のものは総合判定において△として、本発明の効果が見られたものとした。
(Experiment 2)
An evaluation member was prepared in the same manner as in Example 1 except that the length of one side of the lattice shape of the sheet of the long fiber bundle and the interval between the layered structures were changed. Evaluation was made in accordance with Example 1, and as evaluation criteria, a porosity of 2% or less and a fracture energy of less than 2000 J / m 2 were evaluated as x. In addition, the thing of any one x is set as (triangle | delta) in comprehensive determination, and the effect of this invention was seen.

Figure 2012140283
Figure 2012140283

表1の結果から、本発明の構成を有する範囲においては、気孔率が小さくて緻密な複合材料とすることができ、または、破壊エネルギーの高いものとすることができた。一方、本発明の好ましい構成範囲外においては、気孔率、破壊エネルギーともに、十分な特性が得られているとはいえなかった。   From the results shown in Table 1, within the range having the configuration of the present invention, a dense composite material having a low porosity can be obtained, or a high fracture energy can be obtained. On the other hand, outside the preferable constitution range of the present invention, it was not said that sufficient characteristics were obtained for both porosity and fracture energy.

(実験3)
次に、以下の表2に示す内容で、実施例1に対して、短繊維の長さと短繊維束の繊維維強化複合材料全体に対する重量比を変更し、それ以外は実施例1と同様にした評価用部材を作製した。評価用部材に対しては、曲げ強度(MPa)と破壊エネルギーを測定し比較することで評価を行った。曲げ強度の測定は、JIS R 1601に準拠して行った。また、破壊エネルギーの測定は、実験1に準拠して行った。評価基準として、曲げ強度150Mpa、以下、破壊エネルギー2000J/m未満を×とした。なお、いずれかひとつが×のものは総合判定において△として、本発明の効果が見られたものとした。
(Experiment 3)
Next, with the contents shown in Table 2 below, the length ratio of the short fibers and the weight ratio of the short fiber bundles to the entire fiber reinforced composite material are changed with respect to Example 1, and the rest is the same as Example 1. An evaluation member was prepared. Evaluation members were evaluated by measuring and comparing bending strength (MPa) and fracture energy. The bending strength was measured according to JIS R 1601. Further, the measurement of the fracture energy was performed according to Experiment 1. As an evaluation standard, the bending strength was 150 Mpa, hereinafter, the breaking energy of less than 2000 J / m 2 was set as x. In addition, the thing of any one x is set as (triangle | delta) in comprehensive determination, and the effect of this invention was seen.

Figure 2012140283
Figure 2012140283

表2の結果から、本発明のより好ましい構成を有する範囲においては、本発明のより好ましい構成範囲外と比較して、曲げ強度、破壊エネルギーともに、さらに良好な特性が得られていることがわかった。   From the results of Table 2, it can be seen that in the range having the more preferable configuration of the present invention, better characteristics are obtained in both bending strength and fracture energy than outside the more preferable configuration range of the present invention. It was.

(実験4)
さらに、以下の表3に示す内容で、実施例1に対して、長繊維束を構成する長繊維の本数を変更し、それ以外は実験3と同様にした評価用部材を作製した。評価は実験3に準じ、評価基準として、曲げ強度150Mpa、以下、破壊エネルギー2000J/m未満を×とした。なお、いずれかひとつが×のものは△として、本発明の効果が見られたものとした。
(Experiment 4)
Furthermore, with the contents shown in Table 3 below, an evaluation member was manufactured in the same manner as in Experiment 3 except that the number of long fibers constituting the long fiber bundle was changed with respect to Example 1. Evaluation was based on Experiment 3 and, as an evaluation standard, bending strength was 150 Mpa, hereinafter, fracture energy was less than 2000 J / m 2 as x. In addition, the thing of any one x is set as (triangle | delta), and the effect of this invention was seen.

Figure 2012140283
Figure 2012140283

表3の結果から、本発明のより好ましい構成を有する範囲においては、本発明のより好ましい構成範囲外と比較して、曲げ強度、破壊エネルギーともに、さらに良好な特性が得られていることがわかった。   From the results of Table 3, it can be seen that in the range having a more preferable configuration of the present invention, better characteristics are obtained in both bending strength and fracture energy than outside the more preferable configuration range of the present invention. It was.

本発明は、自動車や鉄道車両などのブレーキディスク用セラミックス部材として特に好適であるが、軽量で高強度である利点を活かし、例えば、高速回転部の流体用メカニカルシール部材などにも適用が可能である。   The present invention is particularly suitable as a ceramic member for brake discs of automobiles and railway vehicles, but it can be applied to, for example, a mechanical seal member for fluids of a high-speed rotating part, taking advantage of its light weight and high strength. is there.

1…繊維強化複合材料、2…セラミックスマトリックス部、3…短繊維束、4…長繊維束、5…長繊維束を格子状に配置した層状構造体、6…層状構造体同士の間隔、7…層状構造体の格子の一辺、8…層状構造体の格子の他の一辺。   DESCRIPTION OF SYMBOLS 1 ... Fiber reinforced composite material, 2 ... Ceramics matrix part, 3 ... Short fiber bundle, 4 ... Long fiber bundle, 5 ... Layered structure which arranged long fiber bundle in the grid | lattice form, 6 ... Space | interval of layered structures, 7 ... one side of the lattice of the layered structure, 8 ... the other side of the lattice of the layered structure.

Claims (8)

炭化ケイ素、炭素、及びシリコンで構成されるセラミックスマトリックスと、炭素繊維又は炭化ケイ素繊維のいずれか1種以上の材料で構成される強化繊維と、からなる繊維強化複合材料であって、
前記強化繊維が短繊維の集合体と長繊維の集合体とを共に含み、
前記長繊維の集合体表面が炭素被膜で覆れ、2次元平面上で格子状に配置された層状構造体であり、複数の前記層状構造体同士が積層されて立体構造を形成していることを特徴とする繊維強化複合材料。
A fiber reinforced composite material comprising a ceramic matrix composed of silicon carbide, carbon, and silicon, and a reinforced fiber composed of at least one material of carbon fiber or silicon carbide fiber,
The reinforcing fibers include both short fiber aggregates and long fiber aggregates;
The long fiber aggregate surface is covered with a carbon film, and is a layered structure arranged in a lattice shape on a two-dimensional plane, and a plurality of the layered structures are laminated to form a three-dimensional structure. A fiber reinforced composite material characterized by:
炭化ケイ素、炭素、及びシリコンで構成されるセラミックスマトリックスと、炭素繊維又は炭化ケイ素繊維のいずれか1種以上の材料で構成される強化繊維と、からなる繊維強化複合材料であって、
前記強化繊維が短繊維の集合体と長繊維の集合体とを共に含み、
前記長繊維の集合体表面が炭素被膜で覆われ、2次元平面上で多角形を構成するように配置された層状構造体であり、複数の前記層状構造体同士が積層されて立体構造を形成していることを特徴とする繊維強化複合材料。
A fiber reinforced composite material comprising a ceramic matrix composed of silicon carbide, carbon, and silicon, and a reinforced fiber composed of at least one material of carbon fiber or silicon carbide fiber,
The reinforcing fibers include both short fiber aggregates and long fiber aggregates;
The long fiber aggregate surface is covered with a carbon coating, and is a layered structure arranged to form a polygon on a two-dimensional plane, and a plurality of the layered structures are laminated to form a three-dimensional structure A fiber-reinforced composite material characterized by
前記層状構造体の格子形状は、三角形、正方形、長方形、菱形または平行四辺形のいずれかであることを特徴とする請求項1に記載の繊維強化複合材料。   The fiber-reinforced composite material according to claim 1, wherein the lattice shape of the layered structure is any one of a triangle, a square, a rectangle, a rhombus, and a parallelogram. 前記層状構造体の格子形状は、一辺の長さ5mm以上10mm以下であり、複数の前記層状構造体は、0.5mm以上3mm以下の間隔で積層されて立体構造を形成していることを特徴とする、請求項1に記載の繊維強化複合材料。   The lattice shape of the layered structure has a side length of 5 mm or more and 10 mm or less, and the plurality of layered structures are stacked at intervals of 0.5 mm or more and 3 mm or less to form a three-dimensional structure. The fiber-reinforced composite material according to claim 1. 前記層状構造体の多角形は、内接円の半径が5/2mm以上5mm以下で、複数の前記層状構造体同士が0.5mm以上3mm以下の間隔で積層されて立体構造を形成していることを特徴とする請求項2に記載の繊維強化複合材料。   The polygon of the layered structure has a radius of an inscribed circle of 5/2 mm or more and 5 mm or less, and a plurality of the layered structures are laminated at intervals of 0.5 mm or more and 3 mm or less to form a three-dimensional structure. The fiber-reinforced composite material according to claim 2. 前記短繊維は、平均長さが0.5mm以上15mm以下であり、前記短繊維の集合体は、繊維強化複合材料全体に対して10重量%以上40重量%以下ことを特徴とする請求項1乃至請求項5のいずれか一項に記載の繊維強化複合材料。   The average length of the short fibers is 0.5 mm or more and 15 mm or less, and the aggregate of the short fibers is 10 wt% or more and 40 wt% or less with respect to the entire fiber reinforced composite material. The fiber-reinforced composite material according to any one of claims 5 to 5. 前記長繊維の集合体は、3000本以上8000本以下の長繊維を集合してなることを特徴とする、請求項1乃至請求項5のいずれか一項に記載の繊維強化複合材料。   The fiber-reinforced composite material according to any one of claims 1 to 5, wherein the aggregate of long fibers is formed by collecting 3000 to 8000 long fibers. 前記セラミックスマトリックス中にCuをさらに含むことを特徴とする、請求項1乃至請求項5のいずれか一項に記載の繊維強化複合材料。   The fiber-reinforced composite material according to any one of claims 1 to 5, further comprising Cu in the ceramic matrix.
JP2010293795A 2010-12-28 2010-12-28 Fiber reinforced composite material Active JP5525436B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010293795A JP5525436B2 (en) 2010-12-28 2010-12-28 Fiber reinforced composite material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010293795A JP5525436B2 (en) 2010-12-28 2010-12-28 Fiber reinforced composite material

Publications (2)

Publication Number Publication Date
JP2012140283A true JP2012140283A (en) 2012-07-26
JP5525436B2 JP5525436B2 (en) 2014-06-18

Family

ID=46676993

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010293795A Active JP5525436B2 (en) 2010-12-28 2010-12-28 Fiber reinforced composite material

Country Status (1)

Country Link
JP (1) JP5525436B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014097654A (en) * 2012-10-16 2014-05-29 Toshio Tanimoto Method for manufacturing laminate-type ceramic-based ceramic-textile composite material

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63265871A (en) * 1987-04-20 1988-11-02 Toyota Central Res & Dev Lab Inc Inorganic fiber reinforced ceramics composite and its production
JPH02184575A (en) * 1989-01-11 1990-07-19 Sumitomo Electric Ind Ltd Carbon-fiber reinforced carbon composite material
JPH04193775A (en) * 1990-11-27 1992-07-13 Showa Aircraft Ind Co Ltd Ceramic plate and its manufacture
JP2002534352A (en) * 1999-01-14 2002-10-15 メンツォリット−フィブロン ゲゼルシャフト ミット ベシュレンクテル ハフツング Fiber reinforced ceramic body and method of manufacturing the same
JP2003129199A (en) * 2001-10-26 2003-05-08 Kinzo Nakazawa New composite material and manufacturing method therefor
JP2003201184A (en) * 2001-12-31 2003-07-15 Sgl Carbon Ag Fiber-reinforced ceramic composite
JP2004043861A (en) * 2002-07-10 2004-02-12 Taiheiyo Cement Corp Metal-carbon fiber composite material

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63265871A (en) * 1987-04-20 1988-11-02 Toyota Central Res & Dev Lab Inc Inorganic fiber reinforced ceramics composite and its production
JPH02184575A (en) * 1989-01-11 1990-07-19 Sumitomo Electric Ind Ltd Carbon-fiber reinforced carbon composite material
JPH04193775A (en) * 1990-11-27 1992-07-13 Showa Aircraft Ind Co Ltd Ceramic plate and its manufacture
JP2002534352A (en) * 1999-01-14 2002-10-15 メンツォリット−フィブロン ゲゼルシャフト ミット ベシュレンクテル ハフツング Fiber reinforced ceramic body and method of manufacturing the same
JP2003129199A (en) * 2001-10-26 2003-05-08 Kinzo Nakazawa New composite material and manufacturing method therefor
JP2003201184A (en) * 2001-12-31 2003-07-15 Sgl Carbon Ag Fiber-reinforced ceramic composite
JP2004043861A (en) * 2002-07-10 2004-02-12 Taiheiyo Cement Corp Metal-carbon fiber composite material

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014097654A (en) * 2012-10-16 2014-05-29 Toshio Tanimoto Method for manufacturing laminate-type ceramic-based ceramic-textile composite material

Also Published As

Publication number Publication date
JP5525436B2 (en) 2014-06-18

Similar Documents

Publication Publication Date Title
US9046138B2 (en) Friction discs having a structured ceramic friction layer and method of manufacturing the friction discs
Krenkel et al. C/C‐SiC composites for advanced friction systems
JP4647053B2 (en) SiC-C / C composite composite material, use thereof, and production method thereof
EP1911990A2 (en) Carbon-carbon friction material with improved wear life
JP3652900B2 (en) Fiber composite materials and uses thereof
JP5868336B2 (en) Carbon fiber reinforced silicon carbide composite material and braking material
KR102434077B1 (en) Composite refractory and method for manufacturing the same
CN112377547B (en) Carbon-ceramic brake disc and preparation method thereof
JP2017172790A (en) Molding heat insulation material with surface layer and its process of manufacture
JPWO2019087846A1 (en) Molded insulation with surface layer and its manufacturing method
EP3816137A1 (en) Method of manufacturing cmc components using boron carbide
JP5525436B2 (en) Fiber reinforced composite material
JP2000081062A (en) Brake member
JP6313676B2 (en) Long fiber reinforced ceramic composite material
JP6783183B2 (en) Carbon short fiber reinforced composite material and its manufacturing method
JP4374339B2 (en) Brake member manufacturing method
JP7373498B2 (en) Carbon fiber molded insulation material and its manufacturing method
JP5522797B2 (en) Carbon fiber reinforced silicon carbide ceramics and method for producing the same
JP5263980B2 (en) REINFORCING FIBER MATERIAL, FIBER-REINFORCED CERAMIC COMPOSITE MATERIAL USING THE SAME, AND METHOD FOR PRODUCING THEM.
JP2002257168A (en) Brake pad or disk, and brake
WO2015016072A1 (en) Ceramic composite material and production method for ceramic composite material
US20230382810A1 (en) Composites and methods of forming composites having an increased volume of oxidation resistant ceramic particles
US20230234331A1 (en) Composites and methods of forming composites having tailored hardness profile
JP6921787B2 (en) Braking material and its manufacturing method
EP4282847A1 (en) Sacrificial materials to improve chemical vapor infiltration of b4c loaded preforms

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130802

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20131206

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20131210

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140205

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140408

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140411

R150 Certificate of patent or registration of utility model

Ref document number: 5525436

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250