JP2012140265A - Polymer cement mortar - Google Patents

Polymer cement mortar Download PDF

Info

Publication number
JP2012140265A
JP2012140265A JP2010292991A JP2010292991A JP2012140265A JP 2012140265 A JP2012140265 A JP 2012140265A JP 2010292991 A JP2010292991 A JP 2010292991A JP 2010292991 A JP2010292991 A JP 2010292991A JP 2012140265 A JP2012140265 A JP 2012140265A
Authority
JP
Japan
Prior art keywords
group
polymer
mass
fine aggregate
cement
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2010292991A
Other languages
Japanese (ja)
Other versions
JP5723147B2 (en
Inventor
Yusuke Sugino
雄亮 杉野
Atsushi Osaku
淳 大作
Shinya Satake
紳也 佐竹
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Taiheiyo Materials Corp
Original Assignee
Taiheiyo Materials Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Taiheiyo Materials Corp filed Critical Taiheiyo Materials Corp
Priority to JP2010292991A priority Critical patent/JP5723147B2/en
Publication of JP2012140265A publication Critical patent/JP2012140265A/en
Application granted granted Critical
Publication of JP5723147B2 publication Critical patent/JP5723147B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Curing Cements, Concrete, And Artificial Stone (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a polymer cement mortar which hardly flows even when laid on a pitched place while vibrating and has excellent surface smoothness after execution.SOLUTION: The polymer cement mortar contains (a) a fine aggregate having a maximum grain size of ≤5 mm, (b) a polymer for cement blend, (c) a thickening agent and (d) cement. The mortar is characterized in that when the component (a) is divided into at least three groups by the magnitude of grain size and continuous three groups of the three or more groups are defined as the first, second and third groups, the content of the fine aggregate in each of the first, second and third groups is 10 pts.mass or more based on 100 pts.mass of the component (a), and the content of the fine aggregate in the second group is lower by ≥1 pt.mass than those of the first and third groups based on 100 pts.mass of the component (a).

Description

本発明は、ポリマーセメントモルタルに関する。   The present invention relates to a polymer cement mortar.

近年、道路橋等では、RC床版の輪荷重による疲労せん断破壊や鋼床版のUリブルート部からの疲労損傷が多数生じており、床版上の舗装の一部を強度の高い材料に置き換えて、床版に作用する力を低減させる対策が講じられている。
このような強度を高める方法として、前述の床版の上面を、鋼繊維補強コンクリート(特許文献1)やポリマーセメントモルタル(特許文献2)で補強する上面増厚工法が知られている。
In recent years, a lot of fatigue shear fractures due to the wheel load of RC slabs and fatigue damage from the U-rib root part of steel slabs have occurred in road bridges, etc., and a part of the pavement on the slabs was replaced with a high-strength material. Therefore, measures are taken to reduce the force acting on the floor slab.
As a method for increasing such strength, an upper surface thickening method is known in which the upper surface of the above-mentioned floor slab is reinforced with steel fiber reinforced concrete (Patent Document 1) or polymer cement mortar (Patent Document 2).

旧コンクリートや鋼板との接着性を高めるために、上面増厚工法で用いるポリマーセメントモルタルには流動性等が、その材料には高い充填性が、それぞれ求められている。
また、このポリマーセメントモルタルは、均一な厚さを得るために、振動締固め等によって施工されている(特許文献3)。
In order to enhance the adhesion to old concrete and steel plate, the polymer cement mortar used in the upper surface thickening method is required to have fluidity and the like, and the material is required to have high filling properties.
Moreover, this polymer cement mortar is constructed by vibration compaction or the like in order to obtain a uniform thickness (Patent Document 3).

特開2005−314992号公報JP 2005-314992 A 特開2008−179995号公報JP 2008-179995 A 特開2008−179993号公報JP 2008-179993 A

しかしながら、勾配のある床版を補強するような場合、振動締固めをするときに与える振動によってポリマーセメントモルタルが勾配下方に流れてしまい、均一な厚みを得るのが難しいばかりでなく、流れ出したモルタルが型枠から溢れ出ることもあった。
一方、振動締固めの時間を短くすると、モルタルが勾配下方に流れる量を抑えることはできるものの、表面の平滑性が十分には得られず、うねりが発生する等の問題があった。
したがって、本発明の課題は、勾配があるところで振動を与えても流れにくく、施工後の表面の平滑性に優れるポリマーセメントモルタルの提供にある。
However, when reinforcing a floor slab with a gradient, the vibration applied during vibration compaction causes the polymer cement mortar to flow down the gradient, making it difficult to obtain a uniform thickness. Sometimes overflowed from the formwork.
On the other hand, if the vibration compaction time is shortened, the amount of mortar flowing downward in the gradient can be suppressed, but the surface smoothness cannot be sufficiently obtained, and there is a problem that undulation occurs.
Accordingly, an object of the present invention is to provide a polymer cement mortar that is difficult to flow even when a vibration is applied in a gradient and is excellent in surface smoothness after construction.

そこで、本発明者らは、鋭意検討した結果、セメント用ポリマー、増粘剤及びセメントに、特定の粒度分布に調整した最大粒径5mm以下の細骨材を含有せしめることにより、勾配があるところで振動を与えても流れにくく、施工後の表面の平滑性に優れるポリマーセメントモルタルが得られることを見出した。   Therefore, as a result of intensive studies, the present inventors have found that there is a gradient by including fine aggregates having a maximum particle size of 5 mm or less adjusted to a specific particle size distribution in cement polymer, thickener and cement. It has been found that polymer cement mortar is obtained which is difficult to flow even when vibration is applied and which has excellent surface smoothness after construction.

すなわち、本発明は、(a)最大粒径5mm以下の細骨材、(b)セメント用ポリマー、(c)増粘剤及び(d)セメントを含有し、成分(a)を少なくとも3つ以上の群に粒径で分け、前記3つ以上の群のうちの連続する3つの群を、第1群、第2群及び第3群としたときに、第1群、第2群及び第3群の各群の細骨材の含有量が、成分(a)100質量部に対し、いずれも10質量部以上であり、前記第2群の細骨材の含有量が、前記第1群の細骨材の含有量及び前記第3群の細骨材の含有量よりも、1質量部以上低いことを特徴とするポリマーセメントモルタルを提供するものである。   That is, the present invention contains (a) a fine aggregate having a maximum particle diameter of 5 mm or less, (b) a polymer for cement, (c) a thickener and (d) cement, and contains at least three components (a). When the three consecutive groups among the three or more groups are defined as the first group, the second group, and the third group, the first group, the second group, and the third group. The content of fine aggregate in each group of the group is 10 parts by mass or more with respect to 100 parts by mass of the component (a), and the content of fine aggregate in the second group is that of the first group. The present invention provides a polymer cement mortar characterized by being 1 mass part or more lower than the fine aggregate content and the third group fine aggregate content.

本発明のポリマーセメントモルタルは、勾配があるところで振動を与えても流れにくく、施工後の表面の平滑性及び圧縮強度に優れる。   The polymer cement mortar of the present invention is difficult to flow even when it is vibrated where there is a gradient, and is excellent in surface smoothness and compressive strength after construction.

振動締固め後のモルタルの厚み測定の一例を示す図である。It is a figure which shows an example of the thickness measurement of the mortar after vibration compaction.

本発明のポリマーセメントモルタルは、上記成分(a)〜(d)を含有する。まず、これら成分について詳細に説明する。   The polymer cement mortar of the present invention contains the components (a) to (d). First, these components will be described in detail.

<(a)最大粒径5mm以下の細骨材>
成分(a)の最大粒径5mm以下の細骨材としては、川砂、陸砂、海砂、砕砂、珪砂及び人工軽量骨材等が挙げられ、これらを単独で又は2種以上を組み合わせて使用できる。この中でも、反応性及びコストが低い点で、珪砂が好ましい。
上記細骨材の粒径としては、0.01〜5mmが好ましく、0.05〜5mmがより好ましく、0.05〜3mmが特に好ましい。本発明の粒径は、後記実施例に記載のとおり、レーザー回折式粒度分布測定装置で測定できる。
<(A) Fine aggregate with a maximum particle size of 5 mm or less>
Examples of the fine aggregate having a maximum particle size of 5 mm or less of the component (a) include river sand, land sand, sea sand, crushed sand, silica sand and artificial lightweight aggregate, and these are used alone or in combination of two or more. it can. Among these, silica sand is preferable in terms of low reactivity and low cost.
The particle size of the fine aggregate is preferably 0.01 to 5 mm, more preferably 0.05 to 5 mm, and particularly preferably 0.05 to 3 mm. The particle size of the present invention can be measured with a laser diffraction type particle size distribution measuring device as described in Examples below.

上記細骨材の含有量としては、流動性、充填性、収縮量及び水和熱の点から、成分(d)100質量部に対し、50〜400質量部が好ましく、100〜350質量部がより好ましく、200〜300質量部が特に好ましい。   As content of the said fine aggregate, 50-400 mass parts is preferable with respect to 100 mass parts of components (d) from the point of fluidity | liquidity, a filling property, shrinkage | contraction amount, and a heat | fever of hydration, and 100-350 mass parts is preferable. More preferred is 200 to 300 parts by mass.

ここで、本発明においては、上記成分(a)を少なくとも3つ以上の群に粒径で分け、前記3つ以上の群のうちの連続する3つの群を、第1群、第2群及び第3群としたときの、第1群、第2群及び第3群の各群の細骨材の含有量が、成分(a)100質量部に対し、いずれも10質量部以上である。   Here, in the present invention, the component (a) is divided into at least three or more groups according to particle size, and three consecutive groups among the three or more groups are divided into a first group, a second group, and The content of fine aggregates in each group of the first group, the second group, and the third group when it is set as the third group is 10 parts by mass or more with respect to 100 parts by mass of the component (a).

上記粒径で分ける群の数は、3つ以上であるが、流動性及び平滑性の点から、3〜15が好ましく、3〜10がより好ましく、3〜6が特に好ましい。群分けが3つの場合は、粒径の大きい群から第1群、第2群、第3群である。一方、群分けが5つの場合は、粒径の大きい群から1〜5の5つの群のうち、1〜3、2〜4又は3〜5群が、第1群、第2群、第3群である。   The number of groups divided by the particle size is 3 or more, but from the viewpoint of fluidity and smoothness, 3 to 15 is preferable, 3 to 10 is more preferable, and 3 to 6 is particularly preferable. When there are three groupings, the groups are the first group, the second group, and the third group from the group having a larger particle size. On the other hand, when the grouping is five, among the five groups from 1 to 5 having a large particle size, the groups 1-3, 2-4, or 3-5 are the first group, the second group, and the third group. A group.

上記第1群の細骨材の含有量としては、流動性及び平滑性の点から、成分(a)100質量部に対し、15〜50質量部が好ましく、20〜40質量部がより好ましく、20〜30質量部がより好ましく、25〜28質量部が特に好ましい。   As content of the said 1st group fine aggregate, 15-50 mass parts is preferable with respect to 100 mass parts of components (a) from the point of fluidity | liquidity and smoothness, 20-40 mass parts is more preferable, 20-30 mass parts is more preferable, and 25-28 mass parts is especially preferable.

上記第2群の細骨材の含有量としては、流動性及び平滑性の点から、成分(a)100質量部に対し、10〜25質量部が好ましく、10〜20質量部がより好ましく、12〜18質量部がより好ましく、13.5〜15.5質量部が特に好ましい。
また、第2群の細骨材の含有量は、前記第1群の細骨材の含有量及び前記第3群の細骨材の含有量よりも、1質量部以上低い量であるが、流動性及び平滑性の点から、5〜30質量部低いのが好ましく、10〜20質量部低いのが特に好ましい。
As content of the said 2nd group fine aggregate, 10-25 mass parts is preferable with respect to 100 mass parts of component (a) from the point of fluidity | liquidity and smoothness, 10-20 mass parts is more preferable, 12-18 mass parts is more preferable, and 13.5-15.5 mass parts is especially preferable.
Further, the content of the fine aggregate of the second group is an amount that is 1 part by mass or more lower than the content of the fine aggregate of the first group and the content of the fine aggregate of the third group, From the viewpoint of fluidity and smoothness, it is preferably 5 to 30 parts by mass, particularly preferably 10 to 20 parts by mass.

上記第3群の細骨材の含有量としては、流動性及び平滑性の点から、成分(a)100質量部に対し、15〜50質量部が好ましく、20〜40質量部がより好ましく、20〜35質量部がより好ましく、28〜35質量部が特に好ましい。   As content of the said 3rd group fine aggregate, 15-50 mass parts is preferable with respect to 100 mass parts of components (a) from the point of fluidity | liquidity and smoothness, 20-40 mass parts is more preferable, 20-35 mass parts is more preferable, and 28-35 mass parts is especially preferable.

上記第1群、第2群及び第3群に含まれる細骨材の粒径の範囲としては、例えば、0.01mm以上0.15mm未満、0.15mm以上0.3mm未満、0.3mm以上0.6mm未満、0.6mm以上1.18mm未満、1.18mm以上2.26mm未満、2.26mm以上5mm以下が挙げられる。
第1群、第2群及び第3群の組み合わせとしては、流動性及び平滑性の点から、第1群の粒径が1.18mm以上2.26mm未満であり、第2群の粒径が0.6mm以上1.18mm未満であり、及び第3群の粒径が0.3mm以上0.6mm未満である組み合わせ;第1群の粒径が0.6mm以上1.18mm未満であり、第2群の粒径が0.3mm以上0.6mm未満であり、及び第3群の粒径が0.15mm以上0.3mm未満である組み合わせが好ましい。
The range of the particle size of the fine aggregates included in the first group, the second group, and the third group is, for example, 0.01 mm or more and less than 0.15 mm, 0.15 mm or more and less than 0.3 mm, or 0.3 mm or more. It is less than 0.6 mm, 0.6 mm or more and less than 1.18 mm, 1.18 mm or more and less than 2.26 mm, 2.26 mm or more and 5 mm or less.
As a combination of the first group, the second group and the third group, from the viewpoint of fluidity and smoothness, the particle size of the first group is 1.18 mm or more and less than 2.26 mm, and the particle size of the second group is A combination of 0.6 mm or more and less than 1.18 mm and a third group particle size of 0.3 mm or more and less than 0.6 mm; a first group particle size of 0.6 mm or more and less than 1.18 mm; A combination in which the particle size of the second group is 0.3 mm or more and less than 0.6 mm and the particle size of the third group is 0.15 mm or more and less than 0.3 mm is preferable.

<(b)セメント用ポリマー>
成分(b)のセメント用ポリマーとしは、JIS A 6203「セメント混和用ポリマーディスパージョン及び再乳化形粉末樹脂」に規定されるポリマーが好ましい。このようなセメント用ポリマーとしては、ポリマーディスパージョン、再乳化形粉末樹脂が挙げられる。ポリマーディスパージョンとしては、スチレンブタジエンゴム等の合成ゴム系;天然ゴム系;ゴムアスファルト系;エチレン酢酸ビニル系;アクリル酸エステル系;樹脂アスファルト系が好ましい。この中でも、合成ゴム系が好ましく、合成ゴムラテックス、ポリアクリル酸エステル、エチレン酢酸ビニルがより好ましく、旧コンクリートや鋼板との接着性の点から、スチレンブタジエンゴムが特に好ましい。
<(B) Polymer for cement>
The polymer for cement of component (b) is preferably a polymer specified in JIS A 6203 “Polymer dispersion for cement admixture and re-emulsifying powder resin”. Examples of such cement polymers include polymer dispersions and re-emulsifying powder resins. The polymer dispersion is preferably a synthetic rubber such as styrene butadiene rubber; a natural rubber; a rubber asphalt; an ethylene vinyl acetate; an acrylate ester; or a resin asphalt. Among these, a synthetic rubber system is preferable, synthetic rubber latex, polyacrylic acid ester, and ethylene vinyl acetate are more preferable, and styrene butadiene rubber is particularly preferable from the viewpoint of adhesion to old concrete and steel plate.

上記セメント用ポリマーの含有量としては、接着性及び施工性の点から、成分(d)100質量部に対し、9〜30質量部が好ましく、15〜20質量部がより好ましい。9質量部以上とすることにより、接着性が向上し、旧コンクリートや鋼板に対する優れた追従性が得られる。一方、30質量部以下とすることにより、優れた施工性が得られる。   As content of the said polymer for cement, 9-30 mass parts is preferable with respect to 100 mass parts of components (d) from the point of adhesiveness and workability, and 15-20 mass parts is more preferable. By setting it as 9 mass parts or more, adhesiveness improves and the outstanding followable | trackability with respect to old concrete or a steel plate is obtained. On the other hand, the workability which was excellent by setting it as 30 mass parts or less is acquired.

<(c)増粘剤>
成分(c)の増粘剤としては、保水作用を示す観点から、セルロース系やアクリル系等多糖類系若しくは合成系の水溶性高分子、又は多糖類系の不水溶性高分子を主成分とするものが好ましく、多糖類を主成分とするものが好ましい。
上記多糖類としては、セルロース系水溶性高分子、デンプン、ペクチン、グアーガム、キサンタンガム、カラギーナン等が挙げられる。
<(C) Thickener>
As a thickener of component (c), from the viewpoint of showing water retention, a cellulose-based or acrylic-based polysaccharide-based or synthetic water-soluble polymer, or a polysaccharide-based water-insoluble polymer is a main component. It is preferable to use a polysaccharide as a main component.
Examples of the polysaccharide include cellulose-based water-soluble polymers, starch, pectin, guar gum, xanthan gum, and carrageenan.

上記増粘剤の含有量としては、成分(d)100質量部に対し、0.002〜2.0質量部が好ましく、0.01〜0.5質量部がより好ましい。0.01〜0.5質量部とすることにより、振動締固めによる施工性や充填性が向上する。   As content of the said thickener, 0.002-2.0 mass parts is preferable with respect to 100 mass parts of component (d), and 0.01-0.5 mass part is more preferable. By setting it as 0.01-0.5 mass part, the workability and filling property by vibration compaction improve.

<(d)セメント>
成分(d)のセメントとしては、例えば、普通、早強、超早強、低熱及び中庸熱等の各種ポルトランドセメント;アルミナセメント;速硬性セメント;フライアッシュ、高炉スラグ、又はシリカや石灰石微粉末等をポルトランドセメントに混合した各種混合セメントが挙げられる。
これらの中でも、水和発熱や長期材齢強度の点から、ポルトランドセメントが好ましく、普通ポルトランドセメントが特に好ましい。
<(D) Cement>
Examples of the component (d) cement include various ordinary Portland cements such as normal strength, early strength, ultra-high strength, low heat and moderate heat; alumina cement; fast-hardening cement; fly ash, blast furnace slag, silica or limestone fine powder, etc. Various mixed cements in which Portland cement is mixed.
Among these, Portland cement is preferable and normal Portland cement is particularly preferable from the viewpoint of hydration heat generation and long-term age strength.

本発明のポリマーセメントモルタルは、上記成分(a)〜(d)の他に、(e)水、(f)短繊維、(g)減水剤を含んでいてもよい。   The polymer cement mortar of the present invention may contain (e) water, (f) short fibers, and (g) a water reducing agent in addition to the components (a) to (d).

成分(e)の水の含有量は、通常、成分(d)100質量部に対し、25〜45質量部程度であるが、流動性及び施工性の点から、26〜32質量部が好ましい。   The water content of the component (e) is usually about 25 to 45 parts by mass with respect to 100 parts by mass of the component (d), but is preferably 26 to 32 parts by mass from the viewpoint of fluidity and workability.

成分(f)の短繊維としては、例えば、鋼繊維、ガラス繊維、合成繊維、炭素繊維、ポリプロピレン繊維、アラミド繊維等が挙げられる。
上記短繊維の含有量は、通常、成分(d)100質量部に対し、0.01〜0.3質量部程度である。
Examples of the short fiber of component (f) include steel fiber, glass fiber, synthetic fiber, carbon fiber, polypropylene fiber, and aramid fiber.
Content of the said short fiber is about 0.01-0.3 mass part normally with respect to 100 mass parts of components (d).

成分(g)の減水剤としては、例えば、高性能減水剤、高性能AE減水剤、AE減水剤、流動化剤を含む減水剤が好ましい。このような減水剤としては、JIS A 6204「コンクリート用化学混和剤」に規定される減水剤が挙げられる。
これらの中でも、ポリカルボン酸系のもの、ナフタレン系のもの、リグニンスルホン酸系のもの、アクリル系のものが好ましい。
上記減水剤の含有量は、通常、成分(d)100質量部に対し、0.1〜5質量部程度である。
As the water reducing agent of component (g), for example, a water reducing agent including a high performance water reducing agent, a high performance AE water reducing agent, an AE water reducing agent, and a fluidizing agent is preferable. Examples of such a water reducing agent include water reducing agents specified in JIS A 6204 “Chemical admixture for concrete”.
Among these, polycarboxylic acid type, naphthalene type, lignin sulfonic acid type, and acrylic type are preferable.
The content of the water reducing agent is usually about 0.1 to 5 parts by mass with respect to 100 parts by mass of the component (d).

なお、本発明のポリマーセメントモルタルは、上記成分(a)〜(g)の他に、モルタルに通常使用されるもの、例えば、遅延剤、硬化促進剤、発泡剤、防水剤、防錆剤、収縮低減剤、顔料、撥水剤、白華防止剤等を含んでいてもよい。
上記遅延剤としては、例えば、フッ化物、リン酸塩、ホウ酸塩等の無機物や糖類、リグニンスルホン酸塩、クエン酸塩等の有機物が挙げられる。
In addition to the components (a) to (g) described above, the polymer cement mortar of the present invention is usually used in mortars, for example, retarders, curing accelerators, foaming agents, waterproofing agents, rust prevention agents, Shrinkage reducing agents, pigments, water repellents, white flower inhibitors, and the like may be included.
Examples of the retarder include inorganic substances such as fluoride, phosphate and borate, and organic substances such as sugars, lignin sulfonate and citrate.

本発明のポリマーセメントモルタルは、ふるい分け、混合等の操作によって成分(a)最大粒径5mm以下の細骨材を得た後、常法に従い製造できる。
そして、本発明のポリマーセメントモルタルは、勾配があるところで振動を与えても流れにくく、施工後の表面の平滑性及び圧縮強度に優れる。
したがって、勾配のある道路(路盤等)及び床版や、建築物の壁面(外壁等)の施工、或いは振動締固めによる上面増圧工法に用いるのに特に有用である。
The polymer cement mortar of the present invention can be produced according to a conventional method after obtaining a fine aggregate having a maximum particle size of 5 mm or less by operation such as sieving and mixing.
The polymer cement mortar of the present invention is less likely to flow even when it is vibrated where there is a gradient, and is excellent in surface smoothness and compressive strength after construction.
Therefore, it is particularly useful for the construction of sloped roads (roadbeds, etc.) and floor slabs, wall surfaces (outer walls, etc.) of buildings, or top surface pressure increasing methods by vibration compaction.

以下、実施例を挙げて本発明を詳細に説明するが、本発明はこれら実施例に限定されるものではない。
実施例で使用したポリマーセメントモルタルの材料は、以下のとおりである。
細骨材(珪砂):前田建材工業(株)、山形珪砂;高野商事(株)、鹿島珪砂
セメント用ポリマー:太平洋マテリアル(株)、太平洋CX−B(主成分:スチレンブタジエンゴム)
増粘剤:BASFポゾリス(株)、スタービス(主成分:多糖類)
セメント:太平洋セメント(株)、普通ポルトランドセメント
繊維(ガラス繊維(繊維長:10mm)):太平洋マテリアル(株)、アンチクラック
減水剤(アクリル系):昭和電工(株)、メルメント
EXAMPLES Hereinafter, although an Example is given and this invention is demonstrated in detail, this invention is not limited to these Examples.
The materials of the polymer cement mortar used in the examples are as follows.
Fine aggregate (silica sand): Maeda Kensetsu Kogyo Co., Ltd., Yamagata silica sand; Takano Shoji Co., Ltd., Kashima quartz sand Polymer for cement: Taiheiyo Material Co., Ltd., Pacific CX-B (main component: styrene butadiene rubber)
Thickener: BASF Pozzolith Co., Ltd., Starvis (main component: polysaccharide)
Cement: Taiheiyo Cement Co., Ltd., Normal Portland Cement Fiber (Glass fiber (fiber length: 10 mm)): Taiheiyo Material Co., Ltd. Anti-crack Water reducing agent (acrylic): Showa Denko Co., Ltd., Melment

<ポリマーセメントモルタルの製造>
(実施例1)
前述の複数の市販品の細骨材を混合し、これを、電動式ロータップふるい振動機を用いてふるいにかけ、以下のA〜Fに粒径でわけた。次いで、これら粒径の異なる細骨材を混ぜ合わせ、表1に示す粒径分布の細骨材を得た。なお、細骨材の粒径は、レーザー回折式粒度分布測定装置を用いて確認した。
A:2.26mm以上
B:1.18mm以上2.26mm未満
C:0.6mm以上1.18mm未満
D:0.3mm以上0.6mm未満
E:0.15mm以上0.3mm未満
F:0.15mm未満
次いで、得られた細骨材、セメント及び増粘剤を混合し、これに水及びセメント用ポリマーを添加し、ハンドミキサで90秒間攪拌し、以下に示す配合処方のポリマーセメントモルタルを得た。
<Manufacture of polymer cement mortar>
Example 1
A plurality of the above-mentioned commercially available fine aggregates were mixed, and this was sieved using an electric ro-tap sieve vibrator, and divided into the following particle sizes A to F. Subsequently, these fine aggregates having different particle diameters were mixed together to obtain fine aggregates having a particle size distribution shown in Table 1. The particle size of the fine aggregate was confirmed using a laser diffraction particle size distribution measuring device.
A: 2.26 mm or more B: 1.18 mm or more and less than 2.26 mm C: 0.6 mm or more and less than 1.18 mm D: 0.3 mm or more and less than 0.6 mm E: 0.15 mm or more and less than 0.3 mm F: 0. Less than 15 mm Next, the obtained fine aggregate, cement and thickener were mixed, water and cement polymer were added thereto, and the mixture was stirred for 90 seconds with a hand mixer to obtain a polymer cement mortar having the formulation shown below. It was.

細骨材:300質量部
セメント用ポリマー:18質量部
増粘剤:0.02質量部
セメント:100質量部
水:27質量部
Fine aggregate: 300 parts by weight Polymer for cement: 18 parts by weight Thickener: 0.02 parts by weight Cement: 100 parts by weight Water: 27 parts by weight

(実施例2〜4及び比較例1〜4)
細骨材の粒径分布を表1に示す粒径分布に換えた以外は実施例1と同様にしてポリマーセメントモルタルを得た。
なお、下記表1中、実施例1〜3のB及び実施例4のCが第1群であり、実施例1〜3のC及び実施例4のDが第2群であり、実施例1〜3のD及び実施例4のEが第3群である。
(Examples 2 to 4 and Comparative Examples 1 to 4)
A polymer cement mortar was obtained in the same manner as in Example 1 except that the particle size distribution of the fine aggregate was changed to the particle size distribution shown in Table 1.
In Table 1 below, B in Examples 1 to 3 and C in Example 4 are the first group, C in Examples 1 to 3 and D in Example 4 are the second group, and Example 1 D of ˜3 and E of Example 4 are the third group.

Figure 2012140265
Figure 2012140265

<ポリマーセメントモルタルの評価>
前記の操作で得られた各ポリマーセメントモルタルについて、以下に示す評価及び試験を行った。結果を表2に示す。
<Evaluation of polymer cement mortar>
Each polymer cement mortar obtained by the above operation was evaluated and tested as follows. The results are shown in Table 2.

(振動締固め後のモルタルの厚み測定)
図1に示すような縦3000mm×横1600mmの鋼板(横断勾配8%)に40mm高さでポリマーセメントモルタルを振動締固めにより敷き均した後、5分間放置し、モルタルの厚み(mm)を測定した。
測定箇所は施工面上端から横断方向に、0mm、400mm、800mm、1200mm、1600mmとした。
(Measurement of mortar thickness after vibration compaction)
A polymer cement mortar with a height of 40 mm is placed on a steel plate of 3000 mm long and 1600 mm wide as shown in FIG. 1 (crossing gradient: 8%) and placed by vibration compaction and left for 5 minutes to measure the thickness (mm) of the mortar. did.
The measurement locations were 0 mm, 400 mm, 800 mm, 1200 mm, and 1600 mm in the transverse direction from the upper end of the construction surface.

(平滑性の評価)
目視および指触による評価
○:部分的な凹凸が少なく、モルタル表面の波打ちが見られない。
△:部分的に2〜3mmの凹凸があり、モルタル表面が波打つ部分がある。
(Evaluation of smoothness)
Evaluation by visual observation and finger touch ○: There are few partial irregularities, and no undulation on the mortar surface is observed.
(Triangle | delta): There exists an unevenness | corrugation of 2-3 mm partially, and there exists a part where the surface of a mortar waves.

(圧縮強度の測定)
直径5cm×高さ10cmの供試体を3体作製し、供試体を材齢28日まで気中養生した後、JSCE−G505−1999「円柱供試体を用いたモルタルまたはセメントペーストの圧縮強度試験方法」に準じて、圧縮強度を測定した。圧縮強度25N/mm2以上であれば「良好」と判断した。
(Measurement of compressive strength)
Three specimens having a diameter of 5 cm and a height of 10 cm were prepared, and after the specimens were cured in air until the age of 28 days, JSCE-G505-1999 “Method for testing compressive strength of mortar or cement paste using cylindrical specimens The compressive strength was measured according to the above. If the compressive strength was 25 N / mm 2 or more, it was judged as “good”.

Figure 2012140265
Figure 2012140265

上記試験結果より、実施例1〜4のポリマーセメントモルタルは、勾配があるところで振動締固めにより施工しても、モルタルがダレにくく、厚みが均一になり、表面の平滑性にも優れることがわかった。   From the above test results, it can be seen that the polymer cement mortars of Examples 1 to 4 are difficult to sag, have a uniform thickness, and have excellent surface smoothness even if they are applied by vibration compaction where there is a gradient. It was.

(実施例5及び6)
細骨材、セメント増粘剤、水及びセメント用ポリマーに加えて、表3に記載の成分を使用した以外は実施例1と同様にしてポリマーセメントモルタルを得た。
得られたポリマーセメントモルタルについて、前述の測定法と同様にして、振動締固め後のモルタルの厚みを測定した。結果を表4に示す。
(Examples 5 and 6)
A polymer cement mortar was obtained in the same manner as in Example 1 except that the components listed in Table 3 were used in addition to the fine aggregate, cement thickener, water and cement polymer.
About the obtained polymer cement mortar, the thickness of the mortar after vibration compaction was measured in the same manner as described above. The results are shown in Table 4.

Figure 2012140265
Figure 2012140265

Figure 2012140265
Figure 2012140265

Claims (3)

(a)最大粒径5mm以下の細骨材、(b)セメント用ポリマー、(c)増粘剤及び(d)セメントを含有し、
成分(a)を少なくとも3つ以上の群に粒径で分け、前記3つ以上の群のうちの連続する3つの群を、第1群、第2群及び第3群としたときに、
第1群、第2群及び第3群の各群の細骨材の含有量が、成分(a)100質量部に対し、いずれも10質量部以上であり、
前記第2群の細骨材の含有量が、前記第1群の細骨材の含有量及び前記第3群の細骨材の含有量よりも、1質量部以上低いことを特徴とするポリマーセメントモルタル。
(A) a fine aggregate having a maximum particle size of 5 mm or less, (b) a polymer for cement, (c) a thickener and (d) cement.
When component (a) is divided into at least three or more groups by particle size, and three consecutive groups of the three or more groups are defined as a first group, a second group, and a third group,
The fine aggregate content of each group of the first group, the second group and the third group is 10 parts by mass or more with respect to 100 parts by mass of the component (a),
The polymer characterized in that the content of the fine aggregate of the second group is 1 part by mass or more lower than the content of the fine aggregate of the first group and the content of the fine aggregate of the third group. Cement mortar.
さらに、(f)短繊維及び(g)減水剤から選ばれる1種以上を含有する請求項1記載のポリマーセメントモルタル。   The polymer cement mortar according to claim 1, further comprising one or more selected from (f) short fibers and (g) a water reducing agent. 振動締固めによる上面増圧工法に用いるためのものである請求項1又は2記載のポリマーセメントモルタル。   The polymer cement mortar according to claim 1 or 2, wherein the polymer cement mortar is used for a top pressure increasing method by vibration compaction.
JP2010292991A 2010-12-28 2010-12-28 Polymer cement mortar Active JP5723147B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010292991A JP5723147B2 (en) 2010-12-28 2010-12-28 Polymer cement mortar

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010292991A JP5723147B2 (en) 2010-12-28 2010-12-28 Polymer cement mortar

Publications (2)

Publication Number Publication Date
JP2012140265A true JP2012140265A (en) 2012-07-26
JP5723147B2 JP5723147B2 (en) 2015-05-27

Family

ID=46676977

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010292991A Active JP5723147B2 (en) 2010-12-28 2010-12-28 Polymer cement mortar

Country Status (1)

Country Link
JP (1) JP5723147B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015157892A (en) * 2014-02-24 2015-09-03 株式会社ジェイアール総研エンジニアリング Anticorrosion base coating material for steel material, anticorrosion coating method of steel material and anticorrosion steel material
JP2018059104A (en) * 2017-10-18 2018-04-12 株式会社ジェイアール総研エンジニアリング Anticorrosive undercoat material for steel material
JP2019064884A (en) * 2017-10-04 2019-04-25 太平洋マテリアル株式会社 Polymer cement mortar composition and polymer cement mortar
JP2020158372A (en) * 2019-03-27 2020-10-01 太平洋マテリアル株式会社 Highly durable grout composition

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015157892A (en) * 2014-02-24 2015-09-03 株式会社ジェイアール総研エンジニアリング Anticorrosion base coating material for steel material, anticorrosion coating method of steel material and anticorrosion steel material
JP2019064884A (en) * 2017-10-04 2019-04-25 太平洋マテリアル株式会社 Polymer cement mortar composition and polymer cement mortar
JP2021151952A (en) * 2017-10-04 2021-09-30 太平洋マテリアル株式会社 Polymer cement mortar composition and polymer cement mortar
JP7016659B2 (en) 2017-10-04 2022-02-07 太平洋マテリアル株式会社 Polymer cement mortar for repair / reinforcement of concrete structures Polymer cement mortar for repair / reinforcement of concrete structures
JP7177891B2 (en) 2017-10-04 2022-11-24 太平洋マテリアル株式会社 Polymer cement mortar composition and polymer cement mortar
JP2018059104A (en) * 2017-10-18 2018-04-12 株式会社ジェイアール総研エンジニアリング Anticorrosive undercoat material for steel material
JP2020158372A (en) * 2019-03-27 2020-10-01 太平洋マテリアル株式会社 Highly durable grout composition
JP7350425B2 (en) 2019-03-27 2023-09-26 太平洋マテリアル株式会社 Highly durable grout composition

Also Published As

Publication number Publication date
JP5723147B2 (en) 2015-05-27

Similar Documents

Publication Publication Date Title
Ahmad et al. Rheological and mechanical properties of self-compacting concrete with glass and polyvinyl alcohol fibres
Luo et al. Bonding and toughness properties of PVA fibre reinforced aqueous epoxy resin cement repair mortar
Karahan et al. The durability properties of polypropylene fiber reinforced fly ash concrete
CN107827418A (en) A kind of superhigh tenacity concrete and preparation method thereof
CN103626444A (en) Construction process of steel fiber shotcrete
JP4709677B2 (en) Premix high toughness polymer cement mortar material and high toughness polymer cement mortar
JP2008120611A (en) Grout composition, grout mortar and grout construction method
JP4842050B2 (en) Section repair material and section repair method
KR20140105965A (en) Hybrid material of self consolidating concrete(scc)
CN104261764B (en) A kind of shrinkage type concrete interface treating agent and interface processing method thereof
CN105906289A (en) Concrete repairing dry-mixed mortar and preparation method thereof
Voit et al. Characteristics of selected concrete with tunnel excavation material
JP5723147B2 (en) Polymer cement mortar
Faria et al. Assessment of adhesive strength of an earth plaster on different substrates through different methods
JP2016023103A (en) Fast curing polymer cement mortar composition for repair reinforcement and repair reinforcement method using the same
Yadav et al. Enlargement of geo polymer compound material for the renovation of conventional concrete structures
JP5959096B2 (en) Grout material composition for existing pipe lining, cured product thereof, and lining construction method for existing pipe
JP2011016681A (en) Rapid hardening polymer cement mortar composition for repair and method for applying the same
US20210139375A1 (en) Dry premixture for flexible concrete and method for its preparation and use thereof
CN106478025A (en) A kind of high ductility microlith aggregate cement based composites
CN101786847B (en) Repair mortar and construction method thereof
Lv et al. Preparation and characterization of calcium sulfoaluminate based engineered cementitious composites for rapid repairing of concrete member
JP2013007188A (en) Asphalt pavement structure and asphalt pavement method
JP2007270470A (en) Construction method for repairing/reinforcing concrete structure
Rovnaník et al. Mechanical fracture properties of alkali-activated slag with graphite filler

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20131025

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140710

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140715

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140909

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150317

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150327

R150 Certificate of patent or registration of utility model

Ref document number: 5723147

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250