JP2012139613A - Photocatalyst carrier and manufacturing method for the same - Google Patents

Photocatalyst carrier and manufacturing method for the same Download PDF

Info

Publication number
JP2012139613A
JP2012139613A JP2010292147A JP2010292147A JP2012139613A JP 2012139613 A JP2012139613 A JP 2012139613A JP 2010292147 A JP2010292147 A JP 2010292147A JP 2010292147 A JP2010292147 A JP 2010292147A JP 2012139613 A JP2012139613 A JP 2012139613A
Authority
JP
Japan
Prior art keywords
photocatalyst
metal
supported
layer
carrier
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2010292147A
Other languages
Japanese (ja)
Inventor
Chuka Shu
忠華 周
Teruhisa Kawashima
輝久 川島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SHOWA CERAMICS CO Ltd
Original Assignee
SHOWA CERAMICS CO Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by SHOWA CERAMICS CO Ltd filed Critical SHOWA CERAMICS CO Ltd
Priority to JP2010292147A priority Critical patent/JP2012139613A/en
Publication of JP2012139613A publication Critical patent/JP2012139613A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Catalysts (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a photocatalyst carrier having a high durability for metal fine particle carrying, and which can be manufactured easily at low production cost, and the manufacturing method for the same.SOLUTION: The photocatalyst carrier 1 includes: a base 3; a photocatalyst layer 5 formed on the surface of the base; and metal-carrying photocatalyst particles 7 provided on the surface of the photocatalyst layer. The metal-carrying photocatalyst particle 7 is such formed that metal particles 11 are carried on a granular photocatalyst 9.

Description

本発明は、基体表面に光触媒を担持した光触媒担持体及びその製造方法に関する。   The present invention relates to a photocatalyst carrier having a photocatalyst supported on the surface of a substrate and a method for producing the same.

一般に、銀(Ag)等の金属微粒子を二酸化チタン(TiO)等の光触媒に担持することで、硫黄を含む化合物(メチルメルカプタン、硫化水素、硫化メチル、二硫化メチル等)の脱臭性能を向上させることが公知である。かかる金属担持光触媒の製造方法として、特許文献1には、セラミックフォーム(基体)表面に二酸化チタン膜を形成し、二酸化チタン膜を形成したセラミックフォームを銀イオン溶液に含浸後、還元雰囲気中で焼成をすることで、図2に示すように、基体3の表面に形成した二酸化チタン層5の表面に金属微粒子11を点在させた金属担持光触媒の製造方法が開示されている。 Generally, deodorizing performance of sulfur-containing compounds (methyl mercaptan, hydrogen sulfide, methyl sulfide, methyl disulfide, etc.) is improved by supporting fine metal particles such as silver (Ag) on a photocatalyst such as titanium dioxide (TiO 2 ). Is known. As a method for producing such a metal-supported photocatalyst, Patent Document 1 discloses that a titanium dioxide film is formed on the surface of a ceramic foam (substrate), and the ceramic foam on which the titanium dioxide film is formed is impregnated in a silver ion solution and then fired in a reducing atmosphere. As shown in FIG. 2, a method for producing a metal-supported photocatalyst in which metal fine particles 11 are scattered on the surface of a titanium dioxide layer 5 formed on the surface of a substrate 3 is disclosed.

また、特許文献2には、セラミック多孔体(基体)を酸化チタンゾル液に浸漬した後焼成し、この焼成体を銀コロイドの分散液に浸漬した後に、乾燥させて銀微粒子を担持した金属担持光触媒の製造方法が開示されている。この特許文献2の技術においても、図2に示すように、基体3の表面に形成した二酸化チタン層5の表面に金属微粒子11を点在させる構成としている。   Patent Document 2 discloses a metal-supported photocatalyst in which a ceramic porous body (substrate) is immersed in a titanium oxide sol and then fired, and the fired body is immersed in a silver colloid dispersion and dried to carry silver fine particles. A manufacturing method is disclosed. Also in the technique of Patent Document 2, as shown in FIG. 2, the metal fine particles 11 are scattered on the surface of the titanium dioxide layer 5 formed on the surface of the substrate 3.

特許文献3には、二酸化チタンの微粒子を分散した水と、銀のコロイド水溶液とを混合した後、生成物をろ過膜で分離して得る金属担持光触媒の製造方法が開示されている。   Patent Document 3 discloses a method for producing a metal-supported photocatalyst obtained by mixing water in which fine particles of titanium dioxide are dispersed with an aqueous colloidal silver solution and then separating the product with a filtration membrane.

特開2008−73571号公報JP 2008-73571 A 特開2005−111354号公報JP 2005-111354 A 特公平6−87979号公報Japanese Patent Publication No. 6-87979

しかし、特許文献1や特許文献2の技術では、図2に示すように、光触媒層5を形成後に、その層5の表面に金属微粒子11を担持する構成であるから、金属微粒子11が化学的に不安定であると共に、空気中で酸化されやすいという問題がある。更に、金属微粒子11は光触媒層5の表面に担持しているだけであるから脱落しやすく、耐久性に劣るという問題がある。   However, in the techniques of Patent Document 1 and Patent Document 2, as shown in FIG. 2, after the photocatalyst layer 5 is formed, the metal fine particles 11 are supported on the surface of the layer 5. Are unstable and easily oxidized in the air. Furthermore, since the metal fine particles 11 are only carried on the surface of the photocatalyst layer 5, there is a problem that they are easily dropped and inferior in durability.

更に、特許文献3の技術では、高価な金属粒子コロイド溶液を用いているので、コストが高くなるという問題がある。   Furthermore, in the technique of Patent Document 3, since an expensive metal particle colloid solution is used, there is a problem that the cost is increased.

本発明は、金属微粒子担持の耐久性が高く、製造コストが安価で且つ容易に製造することができる光触媒担持体及びその製造方法の提供を目的とする。   An object of the present invention is to provide a photocatalyst carrier that has high durability for carrying metal fine particles, is inexpensive in production cost, and can be easily produced, and a method for producing the photocatalyst carrier.

本発明に係る光触媒担持体1は、図1に示すように、基体3と、基体表面に形成した光触媒層5と、光触媒層5の表面に設けた金属担持光触媒粒子7とを備えることを特徴とする。   As shown in FIG. 1, the photocatalyst carrier 1 according to the present invention includes a substrate 3, a photocatalyst layer 5 formed on the surface of the substrate, and metal-supported photocatalyst particles 7 provided on the surface of the photocatalyst layer 5. And

基体3は、樹脂材、セラミックス、金属等が用いられ、特に制限はないが、ゼオライトや多孔質のセラミックスが好ましい。多孔質のセラミックスは、例えば、アルミナ粉末を溶媒に分散したスラリーをウレタンフォームに含浸させた後、焼成してウレタンを焼き抜くことにより、アルミナからなるセラミックスフォームを得ることができる。セラミックスの材質としては、アルミナに限らず、炭化珪素、シリカ、ジルコニア等があり、又はこれらの混合タイプでも良い。   The substrate 3 is made of a resin material, ceramic, metal or the like, and is not particularly limited, but is preferably zeolite or porous ceramic. For example, the porous ceramics can be obtained by impregnating a urethane foam with a slurry in which alumina powder is dispersed in a solvent, and then firing to burn out the urethane to obtain a ceramic foam made of alumina. The material of the ceramic is not limited to alumina, but may be silicon carbide, silica, zirconia, or a mixed type thereof.

金属担持光触媒粒子7は、粒状光触媒9の表面に金属微粒子11を担持したものであり、金属微粒子11は硫化水素などの硫黄化合物を寄せ付ける能力を持ち、粒状光触媒9が金属微粒子11を担持することで、硫化水素の吸着能力が高められる。特に、金属微粒子11が銀粒子であり、粒状光触媒9が二酸化チタンである場合には、硫化水素の吸着能力が高い。   The metal-supported photocatalyst particle 7 has metal particulates 11 supported on the surface of the granular photocatalyst 9. The metal particulates 11 have the ability to attract sulfur compounds such as hydrogen sulfide, and the particulate photocatalyst 9 supports the metal particulates 11. This increases the hydrogen sulfide adsorption capacity. In particular, when the metal fine particles 11 are silver particles and the granular photocatalyst 9 is titanium dioxide, the adsorption ability of hydrogen sulfide is high.

更に、金属担持光触媒粒子7に、紫外光を照射した際に生じた励起電子は、金属微粒子11に拡散することになるので、光触媒に金属微粒子を担持することは、励起電子と電子ホールとの電荷分離を高めさせ、硫化水素に対する分解性能が高められる。   Furthermore, since the excited electrons generated when the metal-supported photocatalyst particles 7 are irradiated with ultraviolet light are diffused into the metal fine particles 11, supporting the metal fine particles on the photocatalyst is a combination of the excited electrons and the electron holes. Charge separation is enhanced and the decomposition performance against hydrogen sulfide is enhanced.

第2の発明は、第1の発明に係る光触媒担持体の製造方法であって、基体表面に光触媒層を形成する第1工程と、光触媒の有機化合物前駆体と金属塩とをアルコール及び水の少なくとも一方を含む溶媒に混合し、水熱処理することにより金属担持光触媒の粉末を得る第2工程と、第2工程で得た粉末を第1工程で得た光触媒層表面に付与する第3工程とを備えることを特徴とする。   A second invention is a method for producing a photocatalyst carrier according to the first invention, wherein a first step of forming a photocatalyst layer on a substrate surface, an organic compound precursor of a photocatalyst and a metal salt are mixed with alcohol and water. A second step of obtaining a metal-supported photocatalyst powder by mixing in a solvent containing at least one and hydrothermally treating, and a third step of applying the powder obtained in the second step to the photocatalyst layer surface obtained in the first step; It is characterized by providing.

第2工程の水熱温度は、高すぎても低すぎても金属微粒子イオンを還元しにくくなるので、水熱温度は250℃以下が望ましく、更に望ましくは、150℃〜180℃である。   If the hydrothermal temperature in the second step is too high or too low, it is difficult to reduce the metal fine particle ions. Therefore, the hydrothermal temperature is preferably 250 ° C. or less, and more preferably 150 ° C. to 180 ° C.

水熱処理で得た粉末の金属担持光触媒は、次に熱処理することが望ましい。熱処理は、特定雰囲気は必要なく、空気中でも良い。
熱処理温度は、特に制限はなく、得られる結晶の制御によっても異なるが、例えば、400℃〜700℃である。光触媒が二酸化チタンの場合は、熱処理温度が400℃、500℃では二酸化チタンの結晶型がアナターゼであり、600℃、700℃では、アナターゼとルチルとの混合型、又はルチルである。
The powder metal-supported photocatalyst obtained by hydrothermal treatment is preferably subjected to a heat treatment next. The heat treatment does not require a specific atmosphere and may be performed in air.
There is no restriction | limiting in particular in heat processing temperature, Although it changes also by control of the crystal | crystallization obtained, it is 400 to 700 degreeC, for example. When the photocatalyst is titanium dioxide, the crystal form of titanium dioxide is anatase when the heat treatment temperature is 400 ° C. or 500 ° C., and the mixed type of anatase and rutile or rutile at 600 ° C. or 700 ° C.

第2工程における光触媒の有機化合物前駆体は、光触媒金属とアルコール等の反応によって得られるものであり、例えば、光触媒金属成分がチタンの場合には、ブチルチタネート、プロピルチタネート、トリエタノールアミンチタネート等がある。   The organic compound precursor of the photocatalyst in the second step is obtained by a reaction of a photocatalytic metal and an alcohol. For example, when the photocatalytic metal component is titanium, butyl titanate, propyl titanate, triethanolamine titanate, etc. is there.

光触媒金属成分としては、Ti、V、W、Mo、Sr及びZn等がある。   Examples of the photocatalytic metal component include Ti, V, W, Mo, Sr, and Zn.

金属担持光触媒7が担持する金属微粒子11としては、Ag、Pt、Ir、Rh、Ru、Pd、Au、Cu、Zn、V、Cr、Mn、Fe、Co、Ni、Sc、Y、La、Ce、Pr、Nd、Pm、Sm、Eu、Gd、Tb、Dy、Ho、Er、Tm、Yb及びLu等があるが、Ag(銀)が好ましく用いられる。   The metal fine particles 11 supported by the metal-supported photocatalyst 7 include Ag, Pt, Ir, Rh, Ru, Pd, Au, Cu, Zn, V, Cr, Mn, Fe, Co, Ni, Sc, Y, La, and Ce. , Pr, Nd, Pm, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, and Lu, but Ag (silver) is preferably used.

第2工程で用いられる溶媒は、アルコール、水、アルコールと水との混合物のいずれかが用いられる。アルコールとしては、特に制限はないが、例えば、エタノール、メタノール、ブチルアルコール等がある。   As the solvent used in the second step, any one of alcohol, water, and a mixture of alcohol and water is used. Although there is no restriction | limiting in particular as alcohol, For example, there exist ethanol, methanol, butyl alcohol, etc.

例えば、ブチルチタネート、硝酸銀をそれぞれTiO、Agイオンの出発原料とし、エタノールまたは水は溶媒をとし、混合溶液を水熱させることにより、ブチルチタネートを分解しTiOを合成するとともに、AgイオンをAgに還元してTiO粒子表面に析出する。尚、水熱方法で得たAg担持TiO粉末を更に熱処理することで、Ag担持TiO粉末を製造することが好ましい。 For example, butyl titanate and silver nitrate are used as starting materials for TiO 2 and Ag ions, ethanol or water is used as a solvent, and the mixed solution is hydrothermally decomposed to synthesize TiO 2 and synthesize Ag ions. It is reduced to Ag and deposited on the surface of TiO 2 particles. Note that by further heat-treating the Ag supported TiO 2 powder obtained in the hydrothermal method, it is preferable to produce the Ag supported TiO 2 powder.

第3工程は、第2工程で得た粉末の分散液を吹き付けたり、第2工程で得た粉末の分散液に浸漬したり、分散液を塗りつけたりした後、乾燥又は焼成する。好ましくは、第2工程で得た粉末の分散液を光触媒層5の表面に吹き付け、その後焼成する。   In the third step, the powder dispersion obtained in the second step is sprayed, immersed in the powder dispersion obtained in the second step, or the dispersion is applied, followed by drying or baking. Preferably, the powder dispersion obtained in the second step is sprayed on the surface of the photocatalyst layer 5 and then fired.

第2工程で得た粉末の分散液は、金属担持光触媒粉末をエタノール中に超音波分散させた後、水に加え必要な濃度まで希釈する方法で製造する。   The dispersion of the powder obtained in the second step is produced by a method in which the metal-supported photocatalyst powder is ultrasonically dispersed in ethanol and then diluted with water to the required concentration.

本発明によれば、硫黄を含む化合物に対する吸着及び酸化分解性能が高い光触媒担持体を提供できると共に、金属担持の耐久性が高く、製造コストが安価で且つ製造が容易な光触媒担持体及びその製造方法を提供できる。   ADVANTAGE OF THE INVENTION According to this invention, while being able to provide the photocatalyst carrier with the high adsorption and oxidative decomposition performance with respect to the compound containing sulfur, the photocatalyst carrier which has high metal carrying | support durability, low manufacturing cost, and manufacture is easy, and its manufacture Can provide a method.

本発明にかかる光触媒担持体の断面図である。It is sectional drawing of the photocatalyst carrier concerning this invention. 従来の光触媒担持体の断面図である。It is sectional drawing of the conventional photocatalyst carrier.

以下、本発明の実施例について説明する。
(実施例)
第1工程
大きさ75×75×8mm、空孔径2〜3mmのアルミナフォームを酸化チタンゾルに浸漬し、引き上げた後、余分な酸化チタンゾルをブロアで取除き、大気中400℃で焼成し、酸化チタンのコーティング層を持ったセラミックフォームを得た。
Examples of the present invention will be described below.
(Example)
First Step Alumina foam having a size of 75 × 75 × 8 mm and a pore diameter of 2 to 3 mm is dipped in a titanium oxide sol and pulled up. Then, excess titanium oxide sol is removed with a blower and baked at 400 ° C. in the atmosphere. A ceramic foam having a coating layer was obtained.

第2工程
0.2gのAgNOと1.5mlブチルチタネートを25mlのエタノールに混合させ、その後、100mlテフロン内壁のSUS密閉容器に入れ、160℃で24h(時間)水熱した。
沈殿物質は黒い粉末だった。沈殿物質をエタノールと水で繰り返し洗浄・濾過した後一晩80℃で乾燥した。次いで、空気中に500℃で2h熱処理した。得た黒粉末は、X線回析でアナターゼ型のTiOナノ粒子とAgナノ粒子から構成していたことを確認した。SEM測定から、Agナノ粒子はTiOナノ粒子表面に担持し、TiO粒子は15〜20nm、Ag粒子は5〜10nmであった。
Second Step 0.2 g of AgNO 3 and 1.5 ml of butyl titanate were mixed with 25 ml of ethanol, then placed in a 100 ml Teflon inner wall SUS sealed container and hydrothermally heated at 160 ° C. for 24 hours (hours).
The precipitated material was a black powder. The precipitated material was repeatedly washed with ethanol and water, filtered and dried overnight at 80 ° C. Next, heat treatment was performed in air at 500 ° C. for 2 hours. It was confirmed by X-ray diffraction that the obtained black powder was composed of anatase-type TiO 2 nanoparticles and Ag nanoparticles. From SEM measurement, Ag nanoparticles were supported on the surface of TiO 2 nanoparticles, TiO 2 particles were 15 to 20 nm, and Ag particles were 5 to 10 nm.

第3工程
0.2gのAg担持酸化チタン粒子の黒粉末を25mlのエタノール液に入れ、超音波で10分間分散させた後、25mlの水を加えさらに5分間超音波を掛け、Ag担持酸化チタン粒子の分散液を得た。
そして、酸化チタンのコーティング層を持ったセラミックフォームにAg担持酸化チタン粒子の分散液を吹付け、次いで、400℃で焼成し、Ag担持光触媒セラミックフォームを得た。
Third Step 0.2 g of Ag-supported titanium oxide particle black powder was placed in 25 ml of ethanol solution and dispersed ultrasonically for 10 minutes. Then, 25 ml of water was added and ultrasonic waves were applied for another 5 minutes. A dispersion of particles was obtained.
Then, a dispersion of Ag-supported titanium oxide particles was sprayed onto the ceramic foam having a titanium oxide coating layer, and then fired at 400 ° C. to obtain an Ag-supported photocatalytic ceramic foam.

Ag担持光触媒セラミックフォームの構成は、SEM観察したところ、基体から表に向け、中心はアルミナセラミック基体、その基体の上は約1〜10μmの酸化チタン層、その層の表面には直径約0.1〜0.5μmの凝集したAg担持酸化チタン粒子が島状に分散していた。   The structure of the Ag-supported photocatalytic ceramic foam was observed by SEM. From the substrate to the surface, the center was an alumina ceramic substrate, the titanium oxide layer was about 1 to 10 μm above the substrate, and the surface of the layer had a diameter of about 0.00 mm. Aggregated Ag-supported titanium oxide particles having a size of 1 to 0.5 μm were dispersed in an island shape.

(評価試験)
Sを硫黄化合物代表として、実施例で得たAg担持光触媒セラミックフォームはHSに対する吸着能力、酸化分解能力をガスバック法で評価した。
大きさ75×75×8mm、空孔径2〜3mmのAg担持アルミナフォームを評価サンプルとした。3L(リットル)のテドラーバッグに評価サンプルを入れ、HS濃度30ppmを含有する空気を吸着平衡でHS濃度20〜25ppmに安定するまで繰り返し、3Lのサンプルバッグに充填し、HSに対してサンプルの吸着値を計算した。
S濃度20−25ppmに安定なると、0.6mW/cmで365nmの紫外光を照射し、HSの分解速度を求めた。尚、HS濃度はガスクロマトグラフィで測定した。
(Evaluation test)
The Ag-supported photocatalytic ceramic foam obtained in the examples with H 2 S as a representative sulfur compound was evaluated for the adsorption ability and oxidative decomposition ability for H 2 S by the gas-back method.
An Ag-supported alumina foam having a size of 75 × 75 × 8 mm and a pore diameter of 2 to 3 mm was used as an evaluation sample. Put the evaluation samples Tedlar bag of 3L (liters), repeated at air adsorption equilibrium containing the concentration of H 2 S 30ppm to stabilize the concentration of H 2 S 20~25Ppm, filled into 3L sample bag, the H 2 S The adsorption value of the sample was calculated for it.
When the H 2 S concentration became stable at 20-25 ppm, 365 nm ultraviolet light was irradiated at 0.6 mW / cm 2 to determine the decomposition rate of H 2 S. The H 2 S concentration was measured by gas chromatography.

比較品として、Ag担持酸化チタン粉末を吹き付けずに酸化チタンコーティングのみを施したアルミナセラミックフォームを用いた。比較品の大きさと空孔径は評価サンプルと同じだった。   As a comparative product, an alumina ceramic foam in which only the titanium oxide coating was applied without spraying the Ag-supported titanium oxide powder was used. The size of the comparison product and the hole diameter were the same as the evaluation sample.

比較品のHSの吸着能力は、20.4mgHS/gTiO、HS酸化分解速度は
1.5ppm/minであった。
一方、評価サンプルはHSの吸着能力は63.8mgHS/gTiO、比較品の3.1倍であった、HS酸化分解速度は4.5ppm/min、比較品の3.0倍であった。
Adsorption capacity of H 2 S in the comparative product, 20.4mgH 2 S / gTiO 2, H 2 S oxidation decomposition rate was 1.5 ppm / min.
On the other hand, evaluation samples adsorption capacity H 2 S is 63.8mgH 2 S / gTiO 2, was 3.1 times that of the comparative product, H 2 S oxidation decomposition rate of 4.5 ppm / min, the comparative product 3. It was 0 times.

この評価試験結果から明らかなように、本発明によれば、硫黄を含む化合物に対する吸着及び酸化分解性能が高い金属担持光触媒提供できた。また、本発明にかかる金属担持光触媒は、先行技術文献1及び2のように光触媒層の表面に金属微粒子を担持するものではないので、金属担持の耐久性が高く、しかも先行技術文献3のように金属粒子コロイド液を用いないので製造コストが安価で且つ製造が容易であった。   As is clear from the evaluation test results, according to the present invention, a metal-supported photocatalyst having high adsorption and oxidative decomposition performance for a compound containing sulfur could be provided. Further, since the metal-supported photocatalyst according to the present invention does not support metal fine particles on the surface of the photocatalyst layer as in the prior art documents 1 and 2, the durability of the metal support is high, and as in the prior art document 3 Since no metal particle colloid liquid is used, the production cost is low and the production is easy.

Claims (5)

基体と、基体表面に形成した光触媒層と、光触媒層表面に設けた金属担持光触媒粒子とを備えることを特徴とする光触媒担持体。   A photocatalyst carrier comprising: a base; a photocatalyst layer formed on the surface of the base; and metal-supported photocatalyst particles provided on the surface of the photocatalyst layer. 光触媒層は二酸化チタン層であり、金属担持光触媒粒子は銀を担持した粒子状二酸化チタンであることを特徴とする光触媒担持体。   A photocatalyst carrier, wherein the photocatalyst layer is a titanium dioxide layer, and the metal-supported photocatalyst particles are particulate titanium dioxide carrying silver. 基体表面に光触媒層を形成する第1工程と、光触媒の有機化合物前駆体と金属塩とをアルコール及び水の少なくとも一方を含む溶媒に混合し、水熱処理することにより金属担持光触媒の粉末を得る第2工程と、第2工程で得た粉末を第1工程で得た光触媒層表面に付与する第3工程とを備えることを特徴とする光触媒担持体の製造方法。   A first step of forming a photocatalyst layer on the substrate surface, a photocatalyst organic compound precursor and a metal salt mixed in a solvent containing at least one of alcohol and water, and hydrothermally treated to obtain a metal-supported photocatalyst powder. A method for producing a photocatalyst carrier, comprising two steps and a third step of applying the powder obtained in the second step to the surface of the photocatalyst layer obtained in the first step. 第3工程では、第2工程で得た金属担持光触媒の粉末の分散液を、第1工程の光触媒層表面に供給し、次に焼成したことを特徴とする請求項3に記載の金属担持光触媒の製造方法。   4. The metal-supported photocatalyst according to claim 3, wherein in the third step, the dispersion of the metal-supported photocatalyst powder obtained in the second step is supplied to the surface of the photocatalyst layer in the first step and then baked. Manufacturing method. 第2工程において、光触媒の有機化合物前駆体はブチルチタネートであり、金属塩は硝酸銀であることを特徴とする請求項4に記載の金属担持光触媒の製造方法。   5. The method for producing a metal-supported photocatalyst according to claim 4, wherein the organic compound precursor of the photocatalyst is butyl titanate and the metal salt is silver nitrate in the second step.
JP2010292147A 2010-12-28 2010-12-28 Photocatalyst carrier and manufacturing method for the same Pending JP2012139613A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010292147A JP2012139613A (en) 2010-12-28 2010-12-28 Photocatalyst carrier and manufacturing method for the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010292147A JP2012139613A (en) 2010-12-28 2010-12-28 Photocatalyst carrier and manufacturing method for the same

Publications (1)

Publication Number Publication Date
JP2012139613A true JP2012139613A (en) 2012-07-26

Family

ID=46676466

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010292147A Pending JP2012139613A (en) 2010-12-28 2010-12-28 Photocatalyst carrier and manufacturing method for the same

Country Status (1)

Country Link
JP (1) JP2012139613A (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000334309A (en) * 1999-05-25 2000-12-05 Shinichi Harigai Photocatalyst
JP2002151000A (en) * 2000-11-13 2002-05-24 Hitachi Ltd Fluorescent lamp having photocatalyst antibacterial film and its manufacturing method
US20100105549A1 (en) * 2008-10-24 2010-04-29 Institute Of Nuclear Energy Research Atomic Energy Council, Executive Yuan Method for making metal/titania pulp and photocatalyst

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000334309A (en) * 1999-05-25 2000-12-05 Shinichi Harigai Photocatalyst
JP2002151000A (en) * 2000-11-13 2002-05-24 Hitachi Ltd Fluorescent lamp having photocatalyst antibacterial film and its manufacturing method
US20100105549A1 (en) * 2008-10-24 2010-04-29 Institute Of Nuclear Energy Research Atomic Energy Council, Executive Yuan Method for making metal/titania pulp and photocatalyst

Similar Documents

Publication Publication Date Title
JP5920478B2 (en) Composite photocatalyst and photocatalyst material
JP6004528B2 (en) Method for producing porous silica-encapsulated particles and porous silica
JP4686536B2 (en) Photocatalyst, method for producing the same, dispersion containing photocatalyst, and photocatalyst coating composition
JP2007216223A (en) Photocatalytic material having semiconductor properties, and its manufacturing method and use
JP2017100923A (en) Metal composite carbon nitride for deodorization and method for producing the same
Kwon et al. Gas-phase nitrogen doping of monolithic TiO2 nanoparticle-based aerogels for efficient visible light-driven photocatalytic H2 production
Wolski et al. The effect of the preparation procedure on the morphology, texture and photocatalytic properties of ZnO
JP2015199065A (en) Photocatalyst and production method therefor
JP2019037918A (en) Photocatalyst production method, and hydrogen generation method
Wang et al. Growth of Ag/g-C3N4 nanocomposites on nickel foam to enhance photocatalytic degradation of formaldehyde under visible light
Clavijo-Chaparro et al. Water splitting behavior of copper-cerium oxide nanorods and nanocubes using hydrazine as a scavenging agent
Balbuena et al. Enhanced activity of α-Fe 2 O 3 for photocatalytic NO removal
JP2013027869A (en) Method for manufacturing metal particle carrying catalyst
JP5627006B2 (en) Photocatalyst and method for producing the same
JP2005152725A (en) Catalyst body and its producing method
JP5544618B2 (en) Tungsten oxide secondary structure with antibacterial action
JP2007098197A (en) Manufacturing method of photocatalyst material
JP4163374B2 (en) Photocatalytic membrane
JP2008104996A (en) Photocatalyst, coating liquid for forming photocatalyst and method for manufacturing photocatalyst
JP6165937B2 (en) Method for producing porous silica-encapsulated particles
KR20130045911A (en) Method for producing photocatalyst coating film, and photocatalyst coating film
JP3939433B2 (en) Method for producing highly efficient metal-supported photocatalyst
WO2023079766A1 (en) Photocatalyst antibacterial deodorizing material, method for producing same, antibacterial deodorizing material, and antibacterial deodorizing filter
JP2016074577A (en) Carbon dioxide reduction method
JP2012139613A (en) Photocatalyst carrier and manufacturing method for the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20131107

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140612

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140715

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20150407