JP2012139613A - Photocatalyst carrier and manufacturing method for the same - Google Patents
Photocatalyst carrier and manufacturing method for the same Download PDFInfo
- Publication number
- JP2012139613A JP2012139613A JP2010292147A JP2010292147A JP2012139613A JP 2012139613 A JP2012139613 A JP 2012139613A JP 2010292147 A JP2010292147 A JP 2010292147A JP 2010292147 A JP2010292147 A JP 2010292147A JP 2012139613 A JP2012139613 A JP 2012139613A
- Authority
- JP
- Japan
- Prior art keywords
- photocatalyst
- metal
- supported
- layer
- carrier
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 239000011941 photocatalyst Substances 0.000 title claims abstract description 64
- 238000004519 manufacturing process Methods 0.000 title claims abstract description 19
- 229910052751 metal Inorganic materials 0.000 claims abstract description 24
- 239000002184 metal Substances 0.000 claims abstract description 24
- 239000002245 particle Substances 0.000 claims abstract description 15
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical group O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 claims description 35
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 claims description 18
- 239000000843 powder Substances 0.000 claims description 18
- 239000000758 substrate Substances 0.000 claims description 13
- 239000004408 titanium dioxide Substances 0.000 claims description 10
- 239000006185 dispersion Substances 0.000 claims description 9
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 9
- 229910052709 silver Inorganic materials 0.000 claims description 7
- 239000004332 silver Substances 0.000 claims description 6
- 239000002904 solvent Substances 0.000 claims description 5
- FPCJKVGGYOAWIZ-UHFFFAOYSA-N butan-1-ol;titanium Chemical group [Ti].CCCCO.CCCCO.CCCCO.CCCCO FPCJKVGGYOAWIZ-UHFFFAOYSA-N 0.000 claims description 4
- 150000002894 organic compounds Chemical class 0.000 claims description 4
- 239000002243 precursor Substances 0.000 claims description 4
- SQGYOTSLMSWVJD-UHFFFAOYSA-N silver(1+) nitrate Chemical group [Ag+].[O-]N(=O)=O SQGYOTSLMSWVJD-UHFFFAOYSA-N 0.000 claims description 4
- 150000003839 salts Chemical class 0.000 claims description 3
- 229910001961 silver nitrate Inorganic materials 0.000 claims description 2
- 239000010419 fine particle Substances 0.000 abstract description 14
- 239000002923 metal particle Substances 0.000 abstract description 4
- 239000000919 ceramic Substances 0.000 description 13
- 239000010410 layer Substances 0.000 description 13
- 239000006260 foam Substances 0.000 description 12
- OGIDPMRJRNCKJF-UHFFFAOYSA-N titanium oxide Inorganic materials [Ti]=O OGIDPMRJRNCKJF-UHFFFAOYSA-N 0.000 description 10
- 238000001179 sorption measurement Methods 0.000 description 9
- 229910010413 TiO 2 Inorganic materials 0.000 description 8
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 7
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 description 6
- 238000011156 evaluation Methods 0.000 description 6
- 238000000034 method Methods 0.000 description 6
- 230000001699 photocatalysis Effects 0.000 description 6
- RWSOTUBLDIXVET-UHFFFAOYSA-N Dihydrogen sulfide Chemical compound S RWSOTUBLDIXVET-UHFFFAOYSA-N 0.000 description 5
- 229910000037 hydrogen sulfide Inorganic materials 0.000 description 5
- 230000000052 comparative effect Effects 0.000 description 4
- 238000000354 decomposition reaction Methods 0.000 description 4
- 238000010438 heat treatment Methods 0.000 description 4
- 239000000463 material Substances 0.000 description 4
- 239000002105 nanoparticle Substances 0.000 description 4
- 239000000243 solution Substances 0.000 description 4
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 description 3
- NINIDFKCEFEMDL-UHFFFAOYSA-N Sulfur Chemical compound [S] NINIDFKCEFEMDL-UHFFFAOYSA-N 0.000 description 3
- 239000000084 colloidal system Substances 0.000 description 3
- 150000001875 compounds Chemical class 0.000 description 3
- 150000002500 ions Chemical class 0.000 description 3
- 238000006864 oxidative decomposition reaction Methods 0.000 description 3
- 229910052717 sulfur Inorganic materials 0.000 description 3
- 239000011593 sulfur Substances 0.000 description 3
- JOYRKODLDBILNP-UHFFFAOYSA-N Ethyl urethane Chemical compound CCOC(N)=O JOYRKODLDBILNP-UHFFFAOYSA-N 0.000 description 2
- LSDPWZHWYPCBBB-UHFFFAOYSA-N Methanethiol Chemical compound SC LSDPWZHWYPCBBB-UHFFFAOYSA-N 0.000 description 2
- LRHPLDYGYMQRHN-UHFFFAOYSA-N N-Butanol Chemical compound CCCCO LRHPLDYGYMQRHN-UHFFFAOYSA-N 0.000 description 2
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 2
- MCMNRKCIXSYSNV-UHFFFAOYSA-N Zirconium dioxide Chemical compound O=[Zr]=O MCMNRKCIXSYSNV-UHFFFAOYSA-N 0.000 description 2
- 239000011247 coating layer Substances 0.000 description 2
- 239000013078 crystal Substances 0.000 description 2
- WQOXQRCZOLPYPM-UHFFFAOYSA-N dimethyl disulfide Chemical compound CSSC WQOXQRCZOLPYPM-UHFFFAOYSA-N 0.000 description 2
- -1 hydrogen sulfide Chemical class 0.000 description 2
- 238000002156 mixing Methods 0.000 description 2
- 230000003647 oxidation Effects 0.000 description 2
- 238000007254 oxidation reaction Methods 0.000 description 2
- 239000011148 porous material Substances 0.000 description 2
- 150000003464 sulfur compounds Chemical class 0.000 description 2
- 238000012360 testing method Methods 0.000 description 2
- 239000010936 titanium Substances 0.000 description 2
- 229910052719 titanium Inorganic materials 0.000 description 2
- 229910052720 vanadium Inorganic materials 0.000 description 2
- 229910052725 zinc Inorganic materials 0.000 description 2
- IHEDBVUTTQXGSJ-UHFFFAOYSA-M 2-[bis(2-oxidoethyl)amino]ethanolate;titanium(4+);hydroxide Chemical compound [OH-].[Ti+4].[O-]CCN(CC[O-])CC[O-] IHEDBVUTTQXGSJ-UHFFFAOYSA-M 0.000 description 1
- 101710134784 Agnoprotein Proteins 0.000 description 1
- 229910052684 Cerium Inorganic materials 0.000 description 1
- QMMFVYPAHWMCMS-UHFFFAOYSA-N Dimethyl sulfide Chemical compound CSC QMMFVYPAHWMCMS-UHFFFAOYSA-N 0.000 description 1
- 229910052692 Dysprosium Inorganic materials 0.000 description 1
- 229910052691 Erbium Inorganic materials 0.000 description 1
- 229910052693 Europium Inorganic materials 0.000 description 1
- 229910001111 Fine metal Inorganic materials 0.000 description 1
- 229910052688 Gadolinium Inorganic materials 0.000 description 1
- 229910052689 Holmium Inorganic materials 0.000 description 1
- 229910052765 Lutetium Inorganic materials 0.000 description 1
- 229910052779 Neodymium Inorganic materials 0.000 description 1
- 229910052777 Praseodymium Inorganic materials 0.000 description 1
- 229910052772 Samarium Inorganic materials 0.000 description 1
- FOIXSVOLVBLSDH-UHFFFAOYSA-N Silver ion Chemical compound [Ag+] FOIXSVOLVBLSDH-UHFFFAOYSA-N 0.000 description 1
- 239000004809 Teflon Substances 0.000 description 1
- 229920006362 Teflon® Polymers 0.000 description 1
- 229910052771 Terbium Inorganic materials 0.000 description 1
- 229910052775 Thulium Inorganic materials 0.000 description 1
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical group [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 1
- 238000002441 X-ray diffraction Methods 0.000 description 1
- 229910052769 Ytterbium Inorganic materials 0.000 description 1
- 229910021536 Zeolite Inorganic materials 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 229910052804 chromium Inorganic materials 0.000 description 1
- 239000011248 coating agent Substances 0.000 description 1
- 238000000576 coating method Methods 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 238000002425 crystallisation Methods 0.000 description 1
- 230000008025 crystallization Effects 0.000 description 1
- 230000001877 deodorizing effect Effects 0.000 description 1
- HNPSIPDUKPIQMN-UHFFFAOYSA-N dioxosilane;oxo(oxoalumanyloxy)alumane Chemical group O=[Si]=O.O=[Al]O[Al]=O HNPSIPDUKPIQMN-UHFFFAOYSA-N 0.000 description 1
- 238000001035 drying Methods 0.000 description 1
- 238000001914 filtration Methods 0.000 description 1
- 238000010304 firing Methods 0.000 description 1
- 238000004817 gas chromatography Methods 0.000 description 1
- 229910052737 gold Inorganic materials 0.000 description 1
- 238000001027 hydrothermal synthesis Methods 0.000 description 1
- 238000010335 hydrothermal treatment Methods 0.000 description 1
- 229910052741 iridium Inorganic materials 0.000 description 1
- 229910052742 iron Inorganic materials 0.000 description 1
- 229910052746 lanthanum Inorganic materials 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 229910052748 manganese Inorganic materials 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 239000012528 membrane Substances 0.000 description 1
- 239000011259 mixed solution Substances 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 229910052763 palladium Inorganic materials 0.000 description 1
- 229910052697 platinum Inorganic materials 0.000 description 1
- 229920002620 polyvinyl fluoride Polymers 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 239000011347 resin Substances 0.000 description 1
- 229920005989 resin Polymers 0.000 description 1
- 229910052703 rhodium Inorganic materials 0.000 description 1
- 229910052707 ruthenium Inorganic materials 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
- HBMJWWWQQXIZIP-UHFFFAOYSA-N silicon carbide Chemical compound [Si+]#[C-] HBMJWWWQQXIZIP-UHFFFAOYSA-N 0.000 description 1
- 229910010271 silicon carbide Inorganic materials 0.000 description 1
- 239000000377 silicon dioxide Substances 0.000 description 1
- 239000002002 slurry Substances 0.000 description 1
- 238000005507 spraying Methods 0.000 description 1
- 239000007858 starting material Substances 0.000 description 1
- 229910052721 tungsten Inorganic materials 0.000 description 1
- 229910052727 yttrium Inorganic materials 0.000 description 1
- 239000010457 zeolite Substances 0.000 description 1
Images
Landscapes
- Catalysts (AREA)
Abstract
Description
本発明は、基体表面に光触媒を担持した光触媒担持体及びその製造方法に関する。 The present invention relates to a photocatalyst carrier having a photocatalyst supported on the surface of a substrate and a method for producing the same.
一般に、銀(Ag)等の金属微粒子を二酸化チタン(TiO2)等の光触媒に担持することで、硫黄を含む化合物(メチルメルカプタン、硫化水素、硫化メチル、二硫化メチル等)の脱臭性能を向上させることが公知である。かかる金属担持光触媒の製造方法として、特許文献1には、セラミックフォーム(基体)表面に二酸化チタン膜を形成し、二酸化チタン膜を形成したセラミックフォームを銀イオン溶液に含浸後、還元雰囲気中で焼成をすることで、図2に示すように、基体3の表面に形成した二酸化チタン層5の表面に金属微粒子11を点在させた金属担持光触媒の製造方法が開示されている。
Generally, deodorizing performance of sulfur-containing compounds (methyl mercaptan, hydrogen sulfide, methyl sulfide, methyl disulfide, etc.) is improved by supporting fine metal particles such as silver (Ag) on a photocatalyst such as titanium dioxide (TiO 2 ). Is known. As a method for producing such a metal-supported photocatalyst, Patent Document 1 discloses that a titanium dioxide film is formed on the surface of a ceramic foam (substrate), and the ceramic foam on which the titanium dioxide film is formed is impregnated in a silver ion solution and then fired in a reducing atmosphere. As shown in FIG. 2, a method for producing a metal-supported photocatalyst in which metal
また、特許文献2には、セラミック多孔体(基体)を酸化チタンゾル液に浸漬した後焼成し、この焼成体を銀コロイドの分散液に浸漬した後に、乾燥させて銀微粒子を担持した金属担持光触媒の製造方法が開示されている。この特許文献2の技術においても、図2に示すように、基体3の表面に形成した二酸化チタン層5の表面に金属微粒子11を点在させる構成としている。
Patent Document 2 discloses a metal-supported photocatalyst in which a ceramic porous body (substrate) is immersed in a titanium oxide sol and then fired, and the fired body is immersed in a silver colloid dispersion and dried to carry silver fine particles. A manufacturing method is disclosed. Also in the technique of Patent Document 2, as shown in FIG. 2, the metal
特許文献3には、二酸化チタンの微粒子を分散した水と、銀のコロイド水溶液とを混合した後、生成物をろ過膜で分離して得る金属担持光触媒の製造方法が開示されている。 Patent Document 3 discloses a method for producing a metal-supported photocatalyst obtained by mixing water in which fine particles of titanium dioxide are dispersed with an aqueous colloidal silver solution and then separating the product with a filtration membrane.
しかし、特許文献1や特許文献2の技術では、図2に示すように、光触媒層5を形成後に、その層5の表面に金属微粒子11を担持する構成であるから、金属微粒子11が化学的に不安定であると共に、空気中で酸化されやすいという問題がある。更に、金属微粒子11は光触媒層5の表面に担持しているだけであるから脱落しやすく、耐久性に劣るという問題がある。
However, in the techniques of Patent Document 1 and Patent Document 2, as shown in FIG. 2, after the
更に、特許文献3の技術では、高価な金属粒子コロイド溶液を用いているので、コストが高くなるという問題がある。 Furthermore, in the technique of Patent Document 3, since an expensive metal particle colloid solution is used, there is a problem that the cost is increased.
本発明は、金属微粒子担持の耐久性が高く、製造コストが安価で且つ容易に製造することができる光触媒担持体及びその製造方法の提供を目的とする。 An object of the present invention is to provide a photocatalyst carrier that has high durability for carrying metal fine particles, is inexpensive in production cost, and can be easily produced, and a method for producing the photocatalyst carrier.
本発明に係る光触媒担持体1は、図1に示すように、基体3と、基体表面に形成した光触媒層5と、光触媒層5の表面に設けた金属担持光触媒粒子7とを備えることを特徴とする。
As shown in FIG. 1, the photocatalyst carrier 1 according to the present invention includes a substrate 3, a
基体3は、樹脂材、セラミックス、金属等が用いられ、特に制限はないが、ゼオライトや多孔質のセラミックスが好ましい。多孔質のセラミックスは、例えば、アルミナ粉末を溶媒に分散したスラリーをウレタンフォームに含浸させた後、焼成してウレタンを焼き抜くことにより、アルミナからなるセラミックスフォームを得ることができる。セラミックスの材質としては、アルミナに限らず、炭化珪素、シリカ、ジルコニア等があり、又はこれらの混合タイプでも良い。 The substrate 3 is made of a resin material, ceramic, metal or the like, and is not particularly limited, but is preferably zeolite or porous ceramic. For example, the porous ceramics can be obtained by impregnating a urethane foam with a slurry in which alumina powder is dispersed in a solvent, and then firing to burn out the urethane to obtain a ceramic foam made of alumina. The material of the ceramic is not limited to alumina, but may be silicon carbide, silica, zirconia, or a mixed type thereof.
金属担持光触媒粒子7は、粒状光触媒9の表面に金属微粒子11を担持したものであり、金属微粒子11は硫化水素などの硫黄化合物を寄せ付ける能力を持ち、粒状光触媒9が金属微粒子11を担持することで、硫化水素の吸着能力が高められる。特に、金属微粒子11が銀粒子であり、粒状光触媒9が二酸化チタンである場合には、硫化水素の吸着能力が高い。
The metal-supported photocatalyst particle 7 has
更に、金属担持光触媒粒子7に、紫外光を照射した際に生じた励起電子は、金属微粒子11に拡散することになるので、光触媒に金属微粒子を担持することは、励起電子と電子ホールとの電荷分離を高めさせ、硫化水素に対する分解性能が高められる。
Furthermore, since the excited electrons generated when the metal-supported photocatalyst particles 7 are irradiated with ultraviolet light are diffused into the metal
第2の発明は、第1の発明に係る光触媒担持体の製造方法であって、基体表面に光触媒層を形成する第1工程と、光触媒の有機化合物前駆体と金属塩とをアルコール及び水の少なくとも一方を含む溶媒に混合し、水熱処理することにより金属担持光触媒の粉末を得る第2工程と、第2工程で得た粉末を第1工程で得た光触媒層表面に付与する第3工程とを備えることを特徴とする。 A second invention is a method for producing a photocatalyst carrier according to the first invention, wherein a first step of forming a photocatalyst layer on a substrate surface, an organic compound precursor of a photocatalyst and a metal salt are mixed with alcohol and water. A second step of obtaining a metal-supported photocatalyst powder by mixing in a solvent containing at least one and hydrothermally treating, and a third step of applying the powder obtained in the second step to the photocatalyst layer surface obtained in the first step; It is characterized by providing.
第2工程の水熱温度は、高すぎても低すぎても金属微粒子イオンを還元しにくくなるので、水熱温度は250℃以下が望ましく、更に望ましくは、150℃〜180℃である。 If the hydrothermal temperature in the second step is too high or too low, it is difficult to reduce the metal fine particle ions. Therefore, the hydrothermal temperature is preferably 250 ° C. or less, and more preferably 150 ° C. to 180 ° C.
水熱処理で得た粉末の金属担持光触媒は、次に熱処理することが望ましい。熱処理は、特定雰囲気は必要なく、空気中でも良い。
熱処理温度は、特に制限はなく、得られる結晶の制御によっても異なるが、例えば、400℃〜700℃である。光触媒が二酸化チタンの場合は、熱処理温度が400℃、500℃では二酸化チタンの結晶型がアナターゼであり、600℃、700℃では、アナターゼとルチルとの混合型、又はルチルである。
The powder metal-supported photocatalyst obtained by hydrothermal treatment is preferably subjected to a heat treatment next. The heat treatment does not require a specific atmosphere and may be performed in air.
There is no restriction | limiting in particular in heat processing temperature, Although it changes also by control of the crystal | crystallization obtained, it is 400 to 700 degreeC, for example. When the photocatalyst is titanium dioxide, the crystal form of titanium dioxide is anatase when the heat treatment temperature is 400 ° C. or 500 ° C., and the mixed type of anatase and rutile or rutile at 600 ° C. or 700 ° C.
第2工程における光触媒の有機化合物前駆体は、光触媒金属とアルコール等の反応によって得られるものであり、例えば、光触媒金属成分がチタンの場合には、ブチルチタネート、プロピルチタネート、トリエタノールアミンチタネート等がある。 The organic compound precursor of the photocatalyst in the second step is obtained by a reaction of a photocatalytic metal and an alcohol. For example, when the photocatalytic metal component is titanium, butyl titanate, propyl titanate, triethanolamine titanate, etc. is there.
光触媒金属成分としては、Ti、V、W、Mo、Sr及びZn等がある。 Examples of the photocatalytic metal component include Ti, V, W, Mo, Sr, and Zn.
金属担持光触媒7が担持する金属微粒子11としては、Ag、Pt、Ir、Rh、Ru、Pd、Au、Cu、Zn、V、Cr、Mn、Fe、Co、Ni、Sc、Y、La、Ce、Pr、Nd、Pm、Sm、Eu、Gd、Tb、Dy、Ho、Er、Tm、Yb及びLu等があるが、Ag(銀)が好ましく用いられる。
The metal
第2工程で用いられる溶媒は、アルコール、水、アルコールと水との混合物のいずれかが用いられる。アルコールとしては、特に制限はないが、例えば、エタノール、メタノール、ブチルアルコール等がある。 As the solvent used in the second step, any one of alcohol, water, and a mixture of alcohol and water is used. Although there is no restriction | limiting in particular as alcohol, For example, there exist ethanol, methanol, butyl alcohol, etc.
例えば、ブチルチタネート、硝酸銀をそれぞれTiO2、Agイオンの出発原料とし、エタノールまたは水は溶媒をとし、混合溶液を水熱させることにより、ブチルチタネートを分解しTiO2を合成するとともに、AgイオンをAgに還元してTiO2粒子表面に析出する。尚、水熱方法で得たAg担持TiO2粉末を更に熱処理することで、Ag担持TiO2粉末を製造することが好ましい。 For example, butyl titanate and silver nitrate are used as starting materials for TiO 2 and Ag ions, ethanol or water is used as a solvent, and the mixed solution is hydrothermally decomposed to synthesize TiO 2 and synthesize Ag ions. It is reduced to Ag and deposited on the surface of TiO 2 particles. Note that by further heat-treating the Ag supported TiO 2 powder obtained in the hydrothermal method, it is preferable to produce the Ag supported TiO 2 powder.
第3工程は、第2工程で得た粉末の分散液を吹き付けたり、第2工程で得た粉末の分散液に浸漬したり、分散液を塗りつけたりした後、乾燥又は焼成する。好ましくは、第2工程で得た粉末の分散液を光触媒層5の表面に吹き付け、その後焼成する。
In the third step, the powder dispersion obtained in the second step is sprayed, immersed in the powder dispersion obtained in the second step, or the dispersion is applied, followed by drying or baking. Preferably, the powder dispersion obtained in the second step is sprayed on the surface of the
第2工程で得た粉末の分散液は、金属担持光触媒粉末をエタノール中に超音波分散させた後、水に加え必要な濃度まで希釈する方法で製造する。 The dispersion of the powder obtained in the second step is produced by a method in which the metal-supported photocatalyst powder is ultrasonically dispersed in ethanol and then diluted with water to the required concentration.
本発明によれば、硫黄を含む化合物に対する吸着及び酸化分解性能が高い光触媒担持体を提供できると共に、金属担持の耐久性が高く、製造コストが安価で且つ製造が容易な光触媒担持体及びその製造方法を提供できる。 ADVANTAGE OF THE INVENTION According to this invention, while being able to provide the photocatalyst carrier with the high adsorption and oxidative decomposition performance with respect to the compound containing sulfur, the photocatalyst carrier which has high metal carrying | support durability, low manufacturing cost, and manufacture is easy, and its manufacture Can provide a method.
以下、本発明の実施例について説明する。
(実施例)
第1工程
大きさ75×75×8mm、空孔径2〜3mmのアルミナフォームを酸化チタンゾルに浸漬し、引き上げた後、余分な酸化チタンゾルをブロアで取除き、大気中400℃で焼成し、酸化チタンのコーティング層を持ったセラミックフォームを得た。
Examples of the present invention will be described below.
(Example)
First Step Alumina foam having a size of 75 × 75 × 8 mm and a pore diameter of 2 to 3 mm is dipped in a titanium oxide sol and pulled up. Then, excess titanium oxide sol is removed with a blower and baked at 400 ° C. in the atmosphere. A ceramic foam having a coating layer was obtained.
第2工程
0.2gのAgNO3と1.5mlブチルチタネートを25mlのエタノールに混合させ、その後、100mlテフロン内壁のSUS密閉容器に入れ、160℃で24h(時間)水熱した。
沈殿物質は黒い粉末だった。沈殿物質をエタノールと水で繰り返し洗浄・濾過した後一晩80℃で乾燥した。次いで、空気中に500℃で2h熱処理した。得た黒粉末は、X線回析でアナターゼ型のTiO2ナノ粒子とAgナノ粒子から構成していたことを確認した。SEM測定から、Agナノ粒子はTiO2ナノ粒子表面に担持し、TiO2粒子は15〜20nm、Ag粒子は5〜10nmであった。
Second Step 0.2 g of AgNO 3 and 1.5 ml of butyl titanate were mixed with 25 ml of ethanol, then placed in a 100 ml Teflon inner wall SUS sealed container and hydrothermally heated at 160 ° C. for 24 hours (hours).
The precipitated material was a black powder. The precipitated material was repeatedly washed with ethanol and water, filtered and dried overnight at 80 ° C. Next, heat treatment was performed in air at 500 ° C. for 2 hours. It was confirmed by X-ray diffraction that the obtained black powder was composed of anatase-type TiO 2 nanoparticles and Ag nanoparticles. From SEM measurement, Ag nanoparticles were supported on the surface of TiO 2 nanoparticles, TiO 2 particles were 15 to 20 nm, and Ag particles were 5 to 10 nm.
第3工程
0.2gのAg担持酸化チタン粒子の黒粉末を25mlのエタノール液に入れ、超音波で10分間分散させた後、25mlの水を加えさらに5分間超音波を掛け、Ag担持酸化チタン粒子の分散液を得た。
そして、酸化チタンのコーティング層を持ったセラミックフォームにAg担持酸化チタン粒子の分散液を吹付け、次いで、400℃で焼成し、Ag担持光触媒セラミックフォームを得た。
Third Step 0.2 g of Ag-supported titanium oxide particle black powder was placed in 25 ml of ethanol solution and dispersed ultrasonically for 10 minutes. Then, 25 ml of water was added and ultrasonic waves were applied for another 5 minutes. A dispersion of particles was obtained.
Then, a dispersion of Ag-supported titanium oxide particles was sprayed onto the ceramic foam having a titanium oxide coating layer, and then fired at 400 ° C. to obtain an Ag-supported photocatalytic ceramic foam.
Ag担持光触媒セラミックフォームの構成は、SEM観察したところ、基体から表に向け、中心はアルミナセラミック基体、その基体の上は約1〜10μmの酸化チタン層、その層の表面には直径約0.1〜0.5μmの凝集したAg担持酸化チタン粒子が島状に分散していた。 The structure of the Ag-supported photocatalytic ceramic foam was observed by SEM. From the substrate to the surface, the center was an alumina ceramic substrate, the titanium oxide layer was about 1 to 10 μm above the substrate, and the surface of the layer had a diameter of about 0.00 mm. Aggregated Ag-supported titanium oxide particles having a size of 1 to 0.5 μm were dispersed in an island shape.
(評価試験)
H2Sを硫黄化合物代表として、実施例で得たAg担持光触媒セラミックフォームはH2Sに対する吸着能力、酸化分解能力をガスバック法で評価した。
大きさ75×75×8mm、空孔径2〜3mmのAg担持アルミナフォームを評価サンプルとした。3L(リットル)のテドラーバッグに評価サンプルを入れ、H2S濃度30ppmを含有する空気を吸着平衡でH2S濃度20〜25ppmに安定するまで繰り返し、3Lのサンプルバッグに充填し、H2Sに対してサンプルの吸着値を計算した。
H2S濃度20−25ppmに安定なると、0.6mW/cm2で365nmの紫外光を照射し、H2Sの分解速度を求めた。尚、H2S濃度はガスクロマトグラフィで測定した。
(Evaluation test)
The Ag-supported photocatalytic ceramic foam obtained in the examples with H 2 S as a representative sulfur compound was evaluated for the adsorption ability and oxidative decomposition ability for H 2 S by the gas-back method.
An Ag-supported alumina foam having a size of 75 × 75 × 8 mm and a pore diameter of 2 to 3 mm was used as an evaluation sample. Put the evaluation samples Tedlar bag of 3L (liters), repeated at air adsorption equilibrium containing the concentration of H 2 S 30ppm to stabilize the concentration of H 2 S 20~25Ppm, filled into 3L sample bag, the H 2 S The adsorption value of the sample was calculated for it.
When the H 2 S concentration became stable at 20-25 ppm, 365 nm ultraviolet light was irradiated at 0.6 mW / cm 2 to determine the decomposition rate of H 2 S. The H 2 S concentration was measured by gas chromatography.
比較品として、Ag担持酸化チタン粉末を吹き付けずに酸化チタンコーティングのみを施したアルミナセラミックフォームを用いた。比較品の大きさと空孔径は評価サンプルと同じだった。 As a comparative product, an alumina ceramic foam in which only the titanium oxide coating was applied without spraying the Ag-supported titanium oxide powder was used. The size of the comparison product and the hole diameter were the same as the evaluation sample.
比較品のH2Sの吸着能力は、20.4mgH2S/gTiO2、H2S酸化分解速度は
1.5ppm/minであった。
一方、評価サンプルはH2Sの吸着能力は63.8mgH2S/gTiO2、比較品の3.1倍であった、H2S酸化分解速度は4.5ppm/min、比較品の3.0倍であった。
Adsorption capacity of H 2 S in the comparative product, 20.4mgH 2 S / gTiO 2, H 2 S oxidation decomposition rate was 1.5 ppm / min.
On the other hand, evaluation samples adsorption capacity H 2 S is 63.8mgH 2 S / gTiO 2, was 3.1 times that of the comparative product, H 2 S oxidation decomposition rate of 4.5 ppm / min, the comparative product 3. It was 0 times.
この評価試験結果から明らかなように、本発明によれば、硫黄を含む化合物に対する吸着及び酸化分解性能が高い金属担持光触媒提供できた。また、本発明にかかる金属担持光触媒は、先行技術文献1及び2のように光触媒層の表面に金属微粒子を担持するものではないので、金属担持の耐久性が高く、しかも先行技術文献3のように金属粒子コロイド液を用いないので製造コストが安価で且つ製造が容易であった。 As is clear from the evaluation test results, according to the present invention, a metal-supported photocatalyst having high adsorption and oxidative decomposition performance for a compound containing sulfur could be provided. Further, since the metal-supported photocatalyst according to the present invention does not support metal fine particles on the surface of the photocatalyst layer as in the prior art documents 1 and 2, the durability of the metal support is high, and as in the prior art document 3 Since no metal particle colloid liquid is used, the production cost is low and the production is easy.
Claims (5)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2010292147A JP2012139613A (en) | 2010-12-28 | 2010-12-28 | Photocatalyst carrier and manufacturing method for the same |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2010292147A JP2012139613A (en) | 2010-12-28 | 2010-12-28 | Photocatalyst carrier and manufacturing method for the same |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2012139613A true JP2012139613A (en) | 2012-07-26 |
Family
ID=46676466
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2010292147A Pending JP2012139613A (en) | 2010-12-28 | 2010-12-28 | Photocatalyst carrier and manufacturing method for the same |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2012139613A (en) |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2000334309A (en) * | 1999-05-25 | 2000-12-05 | Shinichi Harigai | Photocatalyst |
JP2002151000A (en) * | 2000-11-13 | 2002-05-24 | Hitachi Ltd | Fluorescent lamp having photocatalyst antibacterial film and its manufacturing method |
US20100105549A1 (en) * | 2008-10-24 | 2010-04-29 | Institute Of Nuclear Energy Research Atomic Energy Council, Executive Yuan | Method for making metal/titania pulp and photocatalyst |
-
2010
- 2010-12-28 JP JP2010292147A patent/JP2012139613A/en active Pending
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2000334309A (en) * | 1999-05-25 | 2000-12-05 | Shinichi Harigai | Photocatalyst |
JP2002151000A (en) * | 2000-11-13 | 2002-05-24 | Hitachi Ltd | Fluorescent lamp having photocatalyst antibacterial film and its manufacturing method |
US20100105549A1 (en) * | 2008-10-24 | 2010-04-29 | Institute Of Nuclear Energy Research Atomic Energy Council, Executive Yuan | Method for making metal/titania pulp and photocatalyst |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5920478B2 (en) | Composite photocatalyst and photocatalyst material | |
JP6004528B2 (en) | Method for producing porous silica-encapsulated particles and porous silica | |
JP4686536B2 (en) | Photocatalyst, method for producing the same, dispersion containing photocatalyst, and photocatalyst coating composition | |
JP2007216223A (en) | Photocatalytic material having semiconductor properties, and its manufacturing method and use | |
JP2017100923A (en) | Metal composite carbon nitride for deodorization and method for producing the same | |
Kwon et al. | Gas-phase nitrogen doping of monolithic TiO2 nanoparticle-based aerogels for efficient visible light-driven photocatalytic H2 production | |
Wolski et al. | The effect of the preparation procedure on the morphology, texture and photocatalytic properties of ZnO | |
JP2015199065A (en) | Photocatalyst and production method therefor | |
JP2019037918A (en) | Photocatalyst production method, and hydrogen generation method | |
Wang et al. | Growth of Ag/g-C3N4 nanocomposites on nickel foam to enhance photocatalytic degradation of formaldehyde under visible light | |
Clavijo-Chaparro et al. | Water splitting behavior of copper-cerium oxide nanorods and nanocubes using hydrazine as a scavenging agent | |
Balbuena et al. | Enhanced activity of α-Fe 2 O 3 for photocatalytic NO removal | |
JP2013027869A (en) | Method for manufacturing metal particle carrying catalyst | |
JP5627006B2 (en) | Photocatalyst and method for producing the same | |
JP2005152725A (en) | Catalyst body and its producing method | |
JP5544618B2 (en) | Tungsten oxide secondary structure with antibacterial action | |
JP2007098197A (en) | Manufacturing method of photocatalyst material | |
JP4163374B2 (en) | Photocatalytic membrane | |
JP2008104996A (en) | Photocatalyst, coating liquid for forming photocatalyst and method for manufacturing photocatalyst | |
JP6165937B2 (en) | Method for producing porous silica-encapsulated particles | |
KR20130045911A (en) | Method for producing photocatalyst coating film, and photocatalyst coating film | |
JP3939433B2 (en) | Method for producing highly efficient metal-supported photocatalyst | |
WO2023079766A1 (en) | Photocatalyst antibacterial deodorizing material, method for producing same, antibacterial deodorizing material, and antibacterial deodorizing filter | |
JP2016074577A (en) | Carbon dioxide reduction method | |
JP2012139613A (en) | Photocatalyst carrier and manufacturing method for the same |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20131107 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20140612 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20140715 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20150407 |