JP2012138614A - Method for forming interlayer dielectric film, semiconductor device and apparatus for producing semiconductor - Google Patents

Method for forming interlayer dielectric film, semiconductor device and apparatus for producing semiconductor Download PDF

Info

Publication number
JP2012138614A
JP2012138614A JP2012064867A JP2012064867A JP2012138614A JP 2012138614 A JP2012138614 A JP 2012138614A JP 2012064867 A JP2012064867 A JP 2012064867A JP 2012064867 A JP2012064867 A JP 2012064867A JP 2012138614 A JP2012138614 A JP 2012138614A
Authority
JP
Japan
Prior art keywords
insulating film
interlayer insulating
forming
monomer
group
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2012064867A
Other languages
Japanese (ja)
Inventor
Hiroki Yamamoto
博規 山本
Fuminori Ito
文則 伊藤
Yoshihiro Hayashi
喜宏 林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Renesas Electronics Corp
Original Assignee
Renesas Electronics Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Renesas Electronics Corp filed Critical Renesas Electronics Corp
Priority to JP2012064867A priority Critical patent/JP2012138614A/en
Publication of JP2012138614A publication Critical patent/JP2012138614A/en
Withdrawn legal-status Critical Current

Links

Images

Landscapes

  • Physical Vapour Deposition (AREA)
  • Chemical Vapour Deposition (AREA)
  • Internal Circuitry In Semiconductor Integrated Circuit Devices (AREA)
  • Formation Of Insulating Films (AREA)

Abstract

PROBLEM TO BE SOLVED: To improve reliability of a device by suppressing change with time in an interlayer dielectric film in a semiconductor device.SOLUTION: A residence time of gas molecules in a chamber is shortened to prevent depositing of monomer decomposition products to a film surface at the end of film formation. Also, the monomer decomposition products deposited on the surface are removed by treating the surface with inactive gas plasma.

Description

本発明は、層間絶縁膜形成方法、層間絶縁膜、半導体デバイス、および半導体製造装置に関し、特に経時変化の少ない層間絶縁膜の形成方法および当該方法により形成される層間絶縁膜に関する。   The present invention relates to an interlayer insulating film forming method, an interlayer insulating film, a semiconductor device, and a semiconductor manufacturing apparatus, and more particularly to an interlayer insulating film forming method with little change with time and an interlayer insulating film formed by the method.

従来、半導体装置の銅配線層に使われる層間絶縁膜材料としてはシリカ(SiO2)が広く用いられてきた。しかし、半導体装置の微細化および高速化の進行に伴い、配線における信号伝達遅延と消費電力の抑制のために、層間絶縁膜としてはより誘電率の低い低誘電率膜が用いられるようになってきた。誘電率の低下には空孔(ポア)の導入やハイドロカーボンの導入が一般的であり、製法もプラズマCVD法やスピンコートによる方法が用いられている。これら方法により比誘電率が2.4以下となる層間絶縁膜もいくつか報告されているが、空孔やハイドロカーボン増加による層間絶縁膜の機械的強度の減少により、半導体プロセス内での剥離による信頼性の低下が問題になっている。   Conventionally, silica (SiO 2) has been widely used as an interlayer insulating film material used for a copper wiring layer of a semiconductor device. However, with the progress of miniaturization and speeding up of semiconductor devices, a low dielectric constant film having a lower dielectric constant has been used as an interlayer insulating film in order to suppress signal transmission delay and power consumption in wiring. It was. In general, pores or hydrocarbons are introduced to lower the dielectric constant, and plasma CVD or spin coating is used as the production method. Several interlayer insulation films with a relative dielectric constant of 2.4 or less have been reported by these methods, but due to the decrease in mechanical strength of the interlayer insulation film due to the increase in vacancies and hydrocarbons, it is due to delamination within the semiconductor process. Declining reliability is a problem.

そこで機械的強度の観点から層間絶縁膜の成膜にはプラズマCVD法が用いられることが多い。多くのプラズマCVD法による層間絶縁膜成長の場合、不活性ガスからなるキャリアガス、有機シラン原料ガスと酸化ガスの混合ガスをリアクターの導入し、原料ガスと酸化ガスとの酸化反応をプラズマ中で促進させて層間絶縁膜を成長させている。   Therefore, from the viewpoint of mechanical strength, a plasma CVD method is often used for forming an interlayer insulating film. In the case of interlayer insulation film growth by many plasma CVD methods, a carrier gas composed of an inert gas, a mixed gas of an organic silane source gas and an oxidizing gas is introduced into the reactor, and the oxidation reaction between the source gas and the oxidizing gas is performed in the plasma. The interlayer insulating film is grown by promoting.

空孔やハイドロカーボン増加は機械的強度の低下のみならず、大気中の水分を吸着という問題の原因となる。空孔中に水分が吸着されると誘電率の増加が懸念される。また吸着した水分はハイドロカーボンの分解を誘発しこれも誘電率増加の一因となっている。特にプラズマCVD法で成膜を行う際、プラズマ反応による原料の分解生成物は終端されず、水分吸着のサイトになる可能性がある。特にフッ素を含む層間絶縁膜では水分吸着による誘電率の増加が顕著のため、特許文献1では成膜時に水素を導入し安定な膜を得る試みが紹介されている。一方、特許文献2では成膜前に不活性ガスのパージによる反応生成物を除去する方法が述べられている。
特開平11−330070号公報 特開2006−253290号公報
Increases in pores and hydrocarbons cause not only a decrease in mechanical strength but also a problem of adsorption of moisture in the atmosphere. When moisture is adsorbed in the pores, there is a concern about an increase in dielectric constant. Also, the adsorbed moisture induces decomposition of the hydrocarbon, which also contributes to an increase in dielectric constant. In particular, when a film is formed by the plasma CVD method, the decomposition product of the raw material due to the plasma reaction is not terminated and may become a site for moisture adsorption. In particular, since an increase in dielectric constant due to moisture adsorption is remarkable in an interlayer insulating film containing fluorine, Patent Document 1 introduces an attempt to obtain a stable film by introducing hydrogen during film formation. On the other hand, Patent Document 2 describes a method of removing reaction products by purging with an inert gas before film formation.
JP 11-330070 A JP 2006-253290 A

しかしながら、特許文献1に記載の技術を用いた場合、水素の反応をつかった成膜は2種類のガス導入よる系の複雑さと、膜自体の還元を誘発するため制御が難しい。また特許文献2にあるように成膜前に不活性ガスによるパージを行っても、その後に行われる層間絶縁膜成膜時の反応生成物を除去することは不可能であり、結果的に膜の誘電率の経時変化を招く結果になってしまう。このような膜の誘電率の経時変化は、プラズマ重合法あるいはプラズマ共重合法において顕著となる。該プラズマ重合法とは、プラズマCVD法に一実施形態の通称であって、酸化ガスを用いず、不活性ガスと不飽和炭化水素を持つモノマーとの混合ガスをプラズマ中で活性化させ、該モノマーを骨格の一部とした層間絶縁膜を成長するプラズマCVD法である。また、プラズマ共重合法とは、酸化ガスの添加なしに複数の原料モノマーと不活性ガスとを用いて層間絶縁膜を成長する方法である。このようなプラズマ反応を用いた層間絶縁膜の成膜において、簡便でかつ誘電率の経時変化の少ない方法が求められている。   However, when the technique described in Patent Document 1 is used, film formation using a hydrogen reaction is difficult to control because it induces the complexity of the system by introducing two kinds of gases and the reduction of the film itself. In addition, as described in Patent Document 2, even if purging with an inert gas is performed before film formation, it is impossible to remove reaction products at the time of subsequent interlayer insulation film formation. As a result, a change in the dielectric constant over time is caused. Such a change with time in the dielectric constant of the film becomes remarkable in the plasma polymerization method or the plasma copolymerization method. The plasma polymerization method is a common name for one embodiment of the plasma CVD method, and without using an oxidizing gas, a mixed gas of an inert gas and a monomer having an unsaturated hydrocarbon is activated in the plasma, This is a plasma CVD method for growing an interlayer insulating film having a monomer as a part of the skeleton. The plasma copolymerization method is a method of growing an interlayer insulating film using a plurality of raw material monomers and an inert gas without adding an oxidizing gas. In forming an interlayer insulating film using such a plasma reaction, there is a demand for a simple method with little change in dielectric constant with time.

本発明は上記事情に鑑みなされたものであって、層間絶縁膜の経時変化を抑制し、長期安定性を実現した層間絶縁膜およびそれを用いた半導体装置とその製造方法を提供することを目的とする。   The present invention has been made in view of the above circumstances, and it is an object of the present invention to provide an interlayer insulating film that suppresses changes over time of the interlayer insulating film and realizes long-term stability, a semiconductor device using the same, and a method of manufacturing the same. And

不飽和炭化水素を持つモノマーを使ったプラズマCVD法による層間絶縁膜の成膜方法において、成膜の高周波電源OFF直後から不活性ガスでパージを行う。あるいは不飽和炭化水素を持つモノマーを使ったプラズマCVD法による層間絶縁膜の成膜方法において、成膜後不活性ガスのプラズマにより表面処理を行った後不活性ガスでパージを行う。または不飽和炭化水素を持つモノマーを使ったプラズマCVD法による層間絶縁膜の成膜方法において、成膜時の高周波電源をOFFする前に原料の供給を止め、キャリアガスのみでプラズマ処理を行った後高周波電源をOFFし、不活性ガスでパージを行う。   In the method of forming an interlayer insulating film by plasma CVD using a monomer having an unsaturated hydrocarbon, purging is performed with an inert gas immediately after the high-frequency power supply for film formation is turned off. Alternatively, in a method for forming an interlayer insulating film by a plasma CVD method using a monomer having an unsaturated hydrocarbon, a surface treatment is performed with an inert gas plasma after the film formation, and then a purge is performed with the inert gas. Alternatively, in the method of forming an interlayer insulating film by plasma CVD using monomers having unsaturated hydrocarbons, the supply of raw materials was stopped before turning off the high-frequency power supply during film formation, and plasma treatment was performed only with a carrier gas. After that, the high frequency power supply is turned off and purged with an inert gas.

これらにより成膜終了時にチャンバー内で成膜に寄与できなかったモノマー分解生成物が層間絶縁膜表面に吸着されるのを防止する。モノマー分解生成物は結合手が切れ終端されていない状態であるため活性が高く大気中の水分等を吸着しやすい。そのためこのモノマー分解生成物が絶縁物表面に吸着すると、ここを基点に水分の吸湿が始まり、ポア内での滞留あるいはハイドロカーボン成分の分解が始まる。その結果層間絶縁膜は時間の経過と共に比誘電率を増加していくこととなる。このような現象は成膜時原料モノマーとキャリアガス、あるいは原料モノマーとキャリアガスと不活性ガスのみをリアクタに導入するプロセスで起こりやすい。なぜなら分解したモノマーには酸素のダングリングボンドが多数存在し大気中の水分等をより吸着しやすくなるためである。   As a result, the monomer decomposition product that could not contribute to film formation in the chamber at the end of film formation is prevented from being adsorbed on the surface of the interlayer insulating film. Since the monomer decomposition product is in a state in which the bond is not cut and terminated, it is highly active and easily adsorbs moisture in the atmosphere. For this reason, when the monomer decomposition product is adsorbed on the surface of the insulator, moisture absorption starts from this point, and residence in the pores or decomposition of the hydrocarbon component begins. As a result, the dielectric constant of the interlayer insulating film increases with time. Such a phenomenon is likely to occur in a process in which only the raw material monomer and carrier gas or only the raw material monomer, carrier gas and inert gas are introduced into the reactor during film formation. This is because the decomposed monomer has a large number of dangling bonds of oxygen and can easily adsorb moisture in the atmosphere.

本発明はこれら事象に鑑み行われたものであり、特に不飽和炭化水素を持つモノマーからなる層間絶縁膜表面へのモノマー分解生成物の吸着を抑制する方法である。高周波電源OFF時に成膜チャンバーの中には成膜に寄与しなかったモノマー分解生成物が存在する。この分解生成物を不活性ガスで高速にチャンバー外へ排出することで層間絶縁膜表面への吸着を抑制することが出来る。また成膜後不活性ガスによるプラズマで表面処理を行うことにより吸着した分解生成物を取り除くことが出来る。また成膜時に先に原料モノマーの供給を止め、キャリアガスのみのプラズマにより表面処理を行うことにより分解生成物を取り除くことが出来る。   The present invention has been made in view of these events, and is a method for suppressing adsorption of monomer decomposition products onto the surface of an interlayer insulating film made of a monomer having an unsaturated hydrocarbon. When the high frequency power supply is turned off, monomer decomposition products that did not contribute to film formation exist in the film formation chamber. The decomposition product is discharged out of the chamber at a high speed with an inert gas, whereby adsorption to the surface of the interlayer insulating film can be suppressed. In addition, the adsorbed decomposition products can be removed by performing a surface treatment with an inert gas plasma after film formation. In addition, the decomposition product can be removed by stopping the supply of the raw material monomer at the time of film formation and performing the surface treatment with the plasma of only the carrier gas.

本発明の層間絶縁膜の製造方法、層間絶縁膜、半導体デバイス、および半導体製造装置
およびを用いることにより、配線の長期信頼性の劣化を抑制できるため、高速、低消費電力なLSIの形成が可能となる。
By using the interlayer insulating film manufacturing method, the interlayer insulating film, the semiconductor device, and the semiconductor manufacturing apparatus of the present invention, it is possible to suppress degradation of long-term reliability of wiring, so that high speed and low power consumption LSI can be formed. It becomes.

本発明の実施の形態1の半導体装置成膜装置の概要図。1 is a schematic diagram of a semiconductor device deposition apparatus according to a first embodiment of the present invention. 本発明の実施の形態1の半導体装置成膜装置のチャンバー概要図。BRIEF DESCRIPTION OF THE DRAWINGS The chamber schematic diagram of the semiconductor device film-forming apparatus of Embodiment 1 of this invention. 本発明における滞在時間と比誘電率の経時変化の関係を示した図。The figure which showed the relationship between the residence time in this invention, and a time-dependent change of a dielectric constant. 本発明における滞在時間と最表面の付着物の存在の関係を示した図。The figure which showed the relationship between the residence time in this invention, and presence of the deposit | attachment of the outermost surface. 本発明における滞在時間とTDS分析結果を示した図。The figure which showed the stay time and TDS analysis result in this invention. 本発明における第1の実施の形態の成膜プロセスを示した図。The figure which showed the film-forming process of 1st Embodiment in this invention. 本発明における第2の実施の形態の成膜プロセスを示した図。The figure which showed the film-forming process of 2nd Embodiment in this invention. 本発明における第3の実施の形態の成膜プロセスを示した図。The figure which showed the film-forming process of 3rd Embodiment in this invention.

(第1の実施の形態)
次に本発明を実施するための最良の形態について図を用いて説明する。
(First embodiment)
Next, the best mode for carrying out the present invention will be described with reference to the drawings.

層間絶縁膜の成膜には不飽和炭化水素を持つモノマーを原料に成膜を行う。不飽和炭化水素を持つモノマーにはSiOの3員環構造を持つモノマー(式1)、SiOの4員環構造を持つモノマー(式5)、直鎖構造を持つモノマーが上げられる(式10)。   The interlayer insulating film is formed using a monomer having an unsaturated hydrocarbon as a raw material. Monomers having unsaturated hydrocarbons include monomers having a 3-membered ring structure of SiO (Formula 1), monomers having a 4-membered ring structure of SiO (Formula 5), and monomers having a linear structure (Formula 10). .

Figure 2012138614
Figure 2012138614

Figure 2012138614
Figure 2012138614

Figure 2012138614
式1に示す前記3員環構造を持つ不飽和炭化水素を持つモノマーは、R1は不飽和炭素化合物、R2飽和炭素化合物であり、R1はビニル基、またはアリル基、R2はメチル基、エチル基、プロピル基、イソプロピル基、ブチル基のいずれかである。
Figure 2012138614
The monomer having an unsaturated hydrocarbon having the three-membered ring structure shown in Formula 1 is R1 is an unsaturated carbon compound or R2 saturated carbon compound, R1 is a vinyl group or an allyl group, R2 is a methyl group, an ethyl group , A propyl group, an isopropyl group, or a butyl group.

式5に示す前記4員環構造を持つ不飽和炭化水素を持つモノマーは、R3が不飽和炭素化合物、R4が飽和炭素化合物であり、R1は、ビニル基またはアリル基、R2はメチル基、エチル基、プロピル基、イソプロピル基、ブチル基のいずれかである。   In the monomer having an unsaturated hydrocarbon having the 4-membered ring structure shown in Formula 5, R3 is an unsaturated carbon compound, R4 is a saturated carbon compound, R1 is a vinyl group or an allyl group, R2 is a methyl group, ethyl Group, propyl group, isopropyl group, or butyl group.

式10に示す直鎖状モノマーは、R5が不飽和炭素化合物、R6,R7,R8が飽和炭素化合物であり、R5は、ビニル基またはアリル基、R6、R7、R8はメチル基、エチル基、プロピル基、イソプロピル基、ブチル基のいずれかである。   In the linear monomer represented by Formula 10, R5 is an unsaturated carbon compound, R6, R7, and R8 are saturated carbon compounds, R5 is a vinyl group or an allyl group, R6, R7, and R8 are a methyl group, an ethyl group, One of propyl group, isopropyl group and butyl group.

成膜に用いたプラズマCVD装置を図1に示す。   A plasma CVD apparatus used for film formation is shown in FIG.

モノマーリザーバー2は原料供給部である。圧送ガス3は原料モノマーをモノマーリザーバー1から排出するガスである。液体マスフロー4はモノマーリザーバー1から排出された原料モノマー1の流量を制御する装置である。気化器5は原料モノマー1を気化する装置である。キャリアガス6は気化した原料モノマーを輸送するガスである。マスフロー7はキャリガス6の流量を制御する装置である。リアクタ8はプラズマCVDにより成膜を行うチャンバーである。RFユニット9はプラズマを発生するためにRFを印加する装置である。排気ポンプ10はリアクタ8に導入した原料モノマー1の気化ガスおよびキャリアガス6を排出する装置である。不活性ガス11はパージガスである。   The monomer reservoir 2 is a raw material supply unit. The pressurized gas 3 is a gas for discharging the raw material monomer from the monomer reservoir 1. The liquid mass flow 4 is a device that controls the flow rate of the raw material monomer 1 discharged from the monomer reservoir 1. The vaporizer 5 is a device that vaporizes the raw material monomer 1. The carrier gas 6 is a gas that transports the vaporized raw material monomer. The mass flow 7 is a device that controls the flow rate of the carrier gas 6. The reactor 8 is a chamber for forming a film by plasma CVD. The RF unit 9 is a device that applies RF in order to generate plasma. The exhaust pump 10 is an apparatus for discharging the vaporized gas of the raw material monomer 1 and the carrier gas 6 introduced into the reactor 8. The inert gas 11 is a purge gas.

図2はリアクタ8をさらに詳細に記載した図である。   FIG. 2 shows the reactor 8 in more detail.

上部電極12と下部電極13はRFユニット9よりバイアスが印加されプラズマを発生する部分である。基板14は成膜が行われるウエハーである。分解生成物15は原料モノマー1がプラズマによって分解されたものである。成膜は以下に示す方法によって行っている。モノマーリザーバー2に満たされた原料モノマー1を圧送ガス3により排出し、液体マスフロー4により原料モノマー1の流量制御を行う。流量制御された原料モノマー1は気化器5内のヒータ(図示せず)から熱をもらい気化する。この気化したガスは、マスフロー7により流量制御されたキャリアガス6と気化器5内で混合しリアクタ8に送られる。リアクタ8に送られた原料モノマー1の気化ガスとキャリアガス6は、RFユニット9より供給された電力により、上部電極12と下部電極13の間でプラズマとなる。このときCVD反応によって基板14上に層間絶縁膜が形成される。高周波電源OFF時には上部電極12と下部電極13の間には原料モノマー1の分解生成物15が存在する。   The upper electrode 12 and the lower electrode 13 are portions where a bias is applied from the RF unit 9 to generate plasma. The substrate 14 is a wafer on which film formation is performed. The decomposition product 15 is the raw material monomer 1 decomposed by plasma. Film formation is performed by the following method. The raw material monomer 1 filled in the monomer reservoir 2 is discharged by the pressurized gas 3, and the flow rate of the raw material monomer 1 is controlled by the liquid mass flow 4. The raw material monomer 1 whose flow rate is controlled is vaporized by receiving heat from a heater (not shown) in the vaporizer 5. The vaporized gas is mixed with the carrier gas 6 whose flow rate is controlled by the mass flow 7 in the vaporizer 5 and sent to the reactor 8. The vaporized gas of the raw material monomer 1 and the carrier gas 6 sent to the reactor 8 become plasma between the upper electrode 12 and the lower electrode 13 by the power supplied from the RF unit 9. At this time, an interlayer insulating film is formed on the substrate 14 by the CVD reaction. The decomposition product 15 of the raw material monomer 1 exists between the upper electrode 12 and the lower electrode 13 when the high frequency power supply is turned off.

成膜時リアクタ8内には原料モノマーとキャリアガス、あるいは原料モノマーとキャリアガスと不活性ガスのみが導入されているため、これら分解生成物の酸素のダングリングボンドは終端するものがなく、大気に曝した際、水分等の吸着が発生しやすい。そこで分解生成物の滞在時間を短くし吸着前にリアクタ外に排出する必要がある。   Since only the raw material monomer and carrier gas, or the raw material monomer, carrier gas and inert gas are introduced into the reactor 8 at the time of film formation, there is no termination of oxygen dangling bonds of these decomposition products. When exposed to water, adsorption of moisture and the like is likely to occur. Therefore, it is necessary to shorten the residence time of the decomposition product and to discharge it outside the reactor before adsorption.

(実施例1)
次に第1の実施の形態を用いた実施例1を図を用いて説明する。層間絶縁膜の成膜には用いる原料モノマーには以下に示すものを使用することができる。SiO3員環構造のモノマーでは(式2)〜(式4)に示すモノマーを使用することができる。
Example 1
Next, Example 1 using the first embodiment will be described with reference to the drawings. The following raw materials can be used for the formation of the interlayer insulating film. As the monomer having a SiO3 member ring structure, monomers represented by (Formula 2) to (Formula 4) can be used.

Figure 2012138614
Figure 2012138614

Figure 2012138614
Figure 2012138614

Figure 2012138614
またSiO4員環構造のモノマーとしては(式6)〜(式9)に示すものを原料として使用することができる。
Figure 2012138614
Moreover, as a monomer of SiO4 member ring structure, those shown in (Formula 6) to (Formula 9) can be used as raw materials.

Figure 2012138614
Figure 2012138614

Figure 2012138614
Figure 2012138614

Figure 2012138614
Figure 2012138614

Figure 2012138614
また直鎖状モノマーとしては(式11)に示す構造の原料を用いることが出来る。
Figure 2012138614
As the linear monomer, a raw material having a structure shown in (Formula 11) can be used.

Figure 2012138614
モノマーリザーバー2に満たされた上記原料モノマー1を圧送ガス3により排出し、液体マスフロー4により原料モノマー1の流量制御を行う。流量制御された原料モノマー1は気化器5内のヒータ(図示せず)から熱をもらい気化する。この気化したガスは、マスフロー7により流量制御されたキャリアガス6と気化器5内で混合しリアクタ8に送られる。リアクタ8に送られた原料モノマー1の気化ガスとキャリアガス6は、RFユニット9より供給された電力により、上部電極12と下部電極13の間でプラズマとなる。図3に示す成膜装置では原料供給ラインが2系統あり、1原料のみを使ったプラズマ重合法、あるいは2原料によるプラズマ共重合反応により成膜が可能である。これら手法により基板14上に層間絶縁膜が形成される。高周波電源OFF時には上部電極12と下部電極13の間には原料モノマー1の分解生成物15が存在する。図5に第一の実施の形態の成膜プロセスを示す。高周波電源OFFと同時に原料モノマーの供給を停止する。ここで同時とは高周波電源OFFと原料供給バルブ(図示せず)を閉じるタイミングが同時であることを意味しており、リアクタ内の状態は数秒のタイムラグが発生している。この分解生成物15を排出し基板14に吸着させないために不活性ガス11を導入しリアクタ8内をパージする。このときリアクタ8内に気体分子(分解生成物)が滞在する平均滞在時間τは以下の式により求めることが出来る。なお、式12は、電気書院発刊岡本幸雄著「プラズマプロセッシングの基礎」p.16に記載されている。
Figure 2012138614
The raw material monomer 1 filled in the monomer reservoir 2 is discharged by the pressurized gas 3 and the flow rate of the raw material monomer 1 is controlled by the liquid mass flow 4. The raw material monomer 1 whose flow rate is controlled is vaporized by receiving heat from a heater (not shown) in the vaporizer 5. The vaporized gas is mixed with the carrier gas 6 whose flow rate is controlled by the mass flow 7 in the vaporizer 5 and sent to the reactor 8. The vaporized gas of the raw material monomer 1 and the carrier gas 6 sent to the reactor 8 become plasma between the upper electrode 12 and the lower electrode 13 by the power supplied from the RF unit 9. In the film forming apparatus shown in FIG. 3, there are two raw material supply lines, and film formation is possible by a plasma polymerization method using only one raw material or a plasma copolymerization reaction using two raw materials. By these methods, an interlayer insulating film is formed on the substrate 14. The decomposition product 15 of the raw material monomer 1 exists between the upper electrode 12 and the lower electrode 13 when the high frequency power supply is turned off. FIG. 5 shows a film forming process of the first embodiment. The supply of the raw material monomer is stopped simultaneously with turning off the high frequency power supply. Here, simultaneous means that the high-frequency power supply is turned off and the timing of closing the raw material supply valve (not shown) is simultaneous, and the state in the reactor has a time lag of several seconds. In order to discharge the decomposition product 15 and prevent the decomposition product 15 from being adsorbed on the substrate 14, an inert gas 11 is introduced to purge the inside of the reactor 8. At this time, the average residence time τ during which gas molecules (decomposition products) stay in the reactor 8 can be obtained by the following equation. Note that Equation 12 is based on Yukio Okamoto, published by Denki Shoin, “Fundamentals of Plasma Processing” p. 16.

τ=pV/pS・・・・(式12)
ここでτは平均滞在時間(秒)、pはリアクタ圧力(Torr)、Vはリアクタ体積(L)、Sは排気速度(L/sec)である。また排気速度Sは直接藻止めることが出来ないが排気量QはpとSの積で表すことが出来るので(式12)は以下のように変形できる。
τ = pV / pS (12)
Where τ is the average residence time (seconds), p is the reactor pressure (Torr), V is the reactor volume (L), and S is the exhaust velocity (L / sec). Further, although the exhaust speed S cannot be directly stopped, the displacement Q can be expressed by the product of p and S, so (Equation 12) can be modified as follows.

τ=pV/Q・・・・(式13)
式14からリアクタをパージする際、リアクタ圧力が一定であるならば排気量Qはパージガス導入量と等しくなる。そのたパージガス導入量を多くすれば平均滞在時間τを短くすることが出来、分解生成物15が基板に吸着する前に排出可能である。不活性ガスにはヘリウムと窒素の混合ガスを用いた。図3は層間絶縁膜の比誘電率の経時変化を示した図である。この図から平均滞在時間τがなくなるようにパージを行った水準は比誘電率の増加が激しいことが判明した。
τ = pV / Q (Equation 13)
When purging the reactor from Equation 14, if the reactor pressure is constant, the exhaust amount Q becomes equal to the purge gas introduction amount. If the amount of purge gas introduced is increased, the average residence time τ can be shortened and can be discharged before the decomposition product 15 is adsorbed on the substrate. A mixed gas of helium and nitrogen was used as the inert gas. FIG. 3 is a diagram showing the change with time of the relative dielectric constant of the interlayer insulating film. From this figure, it was found that the relative permittivity increased drastically when the purge was performed so that the average residence time τ disappeared.

そこで滞在時間τが1秒のサンプルと滞在時間0.05秒のサンプル最表面をTOF−SIMSにて分析を行い、表面状態の違いを分析した結果を図4に示す。この図から滞在時間の長くなるようパージした膜表面にはカルボン酸など酸素を含む物質が多いことが判明した。このカルボン酸は基板表面に吸着した分解生成物に起因するものである。   Therefore, a sample having a stay time τ of 1 second and a sample outermost surface having a stay time of 0.05 seconds were analyzed by TOF-SIMS, and the result of analyzing the difference in the surface state is shown in FIG. From this figure, it was found that the surface of the film purged so as to increase the residence time contains a large amount of substances containing oxygen such as carboxylic acid. This carboxylic acid originates from decomposition products adsorbed on the substrate surface.

次にTDS分析を行い表面から放出される有機物の分析を行った。その結果滞在時間が短いパージを行ったサンプルでは400℃以上過熱しないと有機物が放出されることはなかった。それに対し滞在時間の長いパージを行ったサンプルでは120℃付近で有機物を放出することが判明した。これは表面に吸着した分解生成物により水分等が吸着しハイドロカーボンが分解され、低温で放出されやすくなっていると考えられる。   Next, TDS analysis was performed to analyze organic substances released from the surface. As a result, in the sample that was purged with a short residence time, organic matter was not released unless it was overheated at 400 ° C. or higher. On the other hand, it was found that the organic substance was released at around 120 ° C. in the sample that was purged with a long residence time. It is thought that this is because moisture and the like are adsorbed by the decomposition product adsorbed on the surface, the hydrocarbon is decomposed, and is easily released at a low temperature.

(第2の実施の形態)
次に本発明を実施するための第2の実施の形態を図を用いて説明する。
(Second Embodiment)
Next, a second embodiment for carrying out the present invention will be described with reference to the drawings.

第1の実施の形態と同様に基板14上に層間絶縁膜の成膜を行った後、不活性ガスを導入しプラズマ処理を層間絶縁膜表面に施した。このプロセスを図6に示す。成膜後原料モノマーとキャリアガスの導入を同時に止めた後、不活性ガスを導入し安定した後プラズマを発生させ処理を行った。不活性ガスにはHeをつかい、リアクタ圧力800Pa、RFパワー400Wで10〜60秒処理を行った。この処理条件は、リアクタの大きさ、不活性ガス種、原料モノマー種により変るものであり、一意に決定される物ではない。不活性ガスによるプラズマ処理後、気体分子の滞在時間が0.8秒となる条件でパージを行った。この結果、第一の実施の形態のパージガスの滞在時間が短かった場合と同様に層間絶縁膜の比誘電率経時変化を抑制することが可能となった。   As in the first embodiment, an interlayer insulating film was formed on the substrate 14, and then an inert gas was introduced to perform plasma treatment on the surface of the interlayer insulating film. This process is illustrated in FIG. After the film formation, the introduction of the raw material monomer and the carrier gas was stopped at the same time, the inert gas was introduced and stabilized, and then plasma was generated to perform the treatment. He was used as the inert gas, and the treatment was performed at a reactor pressure of 800 Pa and an RF power of 400 W for 10 to 60 seconds. The processing conditions vary depending on the reactor size, the inert gas species, and the raw material monomer species, and are not uniquely determined. After the plasma treatment with the inert gas, purging was performed under the condition that the residence time of the gas molecules was 0.8 seconds. As a result, it is possible to suppress the change in the relative dielectric constant with time of the interlayer insulating film, as in the case where the stay time of the purge gas in the first embodiment is short.

(第3の実施の形態)
次に本発明を実施するための第3の実施の形態を図を用いて説明する。
(Third embodiment)
Next, a third embodiment for carrying out the present invention will be described with reference to the drawings.

第1の実施の形態と同様に基板14上に層間絶縁膜の成膜を行ないRFパワーの印加を止める前に原料モノマーの供給を止める。このプロセスを図7に示す。これによりリアクタ内ではキャリアガスのみでプラズマが生成されることになる。キャリアガスにはHeを使用し層間絶縁膜表面の処理をおこなった。表面処理条件は原料導入を止める以外は成膜と同じ条件で行い、10〜60秒処理を行った。キャリアガスによるプラズマ処理後、気体分子の滞在時間が0.6秒となる条件でパージを行った。この結果、第一の実施の形態のパージガスの滞在時間が短かった場合と同様に層間絶縁膜の比誘電率経時変化を抑制することが可能となった。   As in the first embodiment, an interlayer insulating film is formed on the substrate 14 and the supply of the raw material monomer is stopped before the application of RF power is stopped. This process is illustrated in FIG. As a result, plasma is generated only by the carrier gas in the reactor. He was used as a carrier gas to treat the surface of the interlayer insulating film. The surface treatment conditions were the same as the film formation except that the introduction of raw materials was stopped, and the treatment was performed for 10 to 60 seconds. After the plasma treatment with the carrier gas, purging was performed under the condition that the residence time of the gas molecules was 0.6 seconds. As a result, it is possible to suppress the change in the relative dielectric constant with time of the interlayer insulating film, as in the case where the stay time of the purge gas in the first embodiment is short.

1・・・原料モノマー
2・・・モノマーリザーバー
3・・・圧送ガス
4・・・液体マスフロー
5・・・気化器
6・・・キャリアガス
7・・・マスフロー
8・・・リアクタ
9・・・RFユニット
10・・・排気ポンプ
11・・・不活性ガス
12・・・上部電極
13・・・下部電極
14・・・基板
15・・・分解生成物
DESCRIPTION OF SYMBOLS 1 ... Raw material monomer 2 ... Monomer reservoir 3 ... Pressure feed gas 4 ... Liquid mass flow 5 ... Vaporizer 6 ... Carrier gas 7 ... Mass flow 8 ... Reactor 9 ... RF unit 10 ... exhaust pump 11 ... inert gas 12 ... upper electrode 13 ... lower electrode 14 ... substrate 15 ... decomposition product

第1の実施の形態と同様に基板14上に層間絶縁膜の成膜を行ないRFパワーの印加を止める前に原料モノマーの供給を止める。このプロセスを図7に示す。これによりリアクタ内ではキャリアガスのみでプラズマが生成されることになる。キャリアガスにはHeを使用し層間絶縁膜表面の処理をおこなった。表面処理条件は原料導入を止める以外は成膜と同じ条件で行い、10〜60秒処理を行った。キャリアガスによるプラズマ処理後、気体分子の滞在時間が0.6秒となる条件でパージを行った。この結果、第一の実施の形態のパージガスの滞在時間が短かった場合と同様に層間絶縁膜の比誘電率経時変化を抑制することが可能となった。
なお、上記したいずれかの実施形態には、以下の発明が開示されている。
(付記1)
不飽和炭化水素を持つモノマーを使ったプラズマCVD法による層間絶縁膜の成膜方法において、
成膜の高周波電源OFFと同時に不活性ガスでパージを行うことを特徴とする層間絶縁膜形成方法。
(付記2)
不飽和炭化水素を持つモノマーを使ったプラズマCVD法による層間絶縁膜の成膜方法において、
成膜後不活性ガスのプラズマにより表面処理を行った後不活性ガスでパージを行うことを特徴とする層間絶縁膜形成方法。
(付記3)
不飽和炭化水素を持つモノマーを使ったプラズマCVD法による層間絶縁膜の成膜方法において、
成膜時の高周波電源をOFFする前に原料の供給を止め、キャリアガスのみでプラズマ処理を行った後高周波電源をOFFし、不活性ガスでパージを行う特徴とする層間絶縁膜形成方法。
(付記4)
不飽和炭化水素を持つモノマーを使ったプラズマCVD法による層間絶縁膜の成膜方法において、
成膜時に原料モノマーとキャリアガスのみ、あるいは原料モノマーとキャリアガスと不活性ガスのみがリアクタ内に供給されることを特徴とする付記1乃至3のいずれか一つに記載の層間絶縁膜形成方法。
(付記5)
前記不活性ガスがヘリウム、窒素、アルゴンの1種類以上からなることを特徴とする付記1乃至4のいずれか一つに記載の層間絶縁膜形成方法。
(付記6)
前記不活性ガスによるパージの際の流量が、成膜チャンバー内における滞在時間が0.8秒以下となるようにすることを特徴とする付記1乃至5のいずれか一つに記載の層間絶縁膜形成方法。
(付記7)
前記不飽和炭化水素を持つモノマーがSiOの3員環構造、4員環構造あるいは直鎖構造を持つことを特徴とする付記1乃至6のいずれか一つに記載の層間絶縁膜形成方法。
(付記8)
前記SiOの3員環構造を持つ不飽和炭化水素を持つモノマーが、下記式1に示す構造であり、R1は不飽和炭素化合物、R2飽和炭素化合物であり、R1はビニル基、またはアリル基、R2はメチル基、エチル基、プロピル基、イソプロピル基、ブチル基のいずれかであることを特徴とする付記7に記載の層間絶縁膜形成方法。

Figure 2012138614
(付記9)
前記SiOの3員環構造を持つ不飽和炭化水素を持つモノマーが、下記式2、3、4に示す構造のうち少なくともいずれかの1つであることを特徴とする付記7に記載の層間絶縁膜形成方法。
Figure 2012138614
Figure 2012138614
Figure 2012138614
(付記10)
前記SiOの4員環構造を持つ不飽和炭化水素を持つモノマーが、下記式5に示す構造であり、R3は不飽和炭素化合物、R4飽和炭素化合物であり、R1はビニル基またはアリル基、R2はメチル基、エチル基、プロピル基、イソプロピル基、ブチル基のいずれかであることを特徴とする付記7に記載の層間絶縁膜形成方法。
Figure 2012138614
(付記11)
前記SiOの4員環構造を持つ不飽和炭化水素を持つモノマーが下記式6、7、8、9に示す構造のうち少なくともいずれかの1つであることを特徴とする付記7に記載の層間絶縁膜形成方法。
Figure 2012138614
Figure 2012138614
Figure 2012138614
Figure 2012138614
(付記12)
前記SiOの直鎖構造を持つ不飽和炭化水素を持つモノマーが、下記式10に示す構造であり、R5は不飽和炭素化合物、R6、R7、R8は飽和炭素化合物であり、R5はビニル基またはアリル基、R6、R7、R8はメチル基、エチル基、プロピル基、イソプロピル基、ブチル基のいずれかであることを特徴とする付記7に記載の層間絶縁膜形成方法。
Figure 2012138614
(付記13)
前記SiOの直鎖構造を持つ不飽和炭化水素を持つモノマーが下記式11に示す構造であることを特徴とする付記7に記載の層間絶縁膜形成方法。
Figure 2012138614
(付記14)
前記不活性ガスが原料供給ラインとは異なった経路で供給されることを特徴とする付記1乃至4のいずれか一つに記載の層間絶縁膜形成方法。
(付記15)
前記キャリアガスが、ヘリウム、窒素、アルゴンのいずれか1種類以上含むことを特徴とする付記3記載の層間絶縁膜形成方法。
(付記16)
付記1乃至15のいずれか一つに記載の層間絶縁膜形成方法であって、原料となる不飽和炭化水素を持つモノマーが1種であるプラズマ重合反応、もしくは2種であるプラズマ重合反応を用いることを特徴とする層間絶縁膜形成方法。
(付記17)
前記付記1乃至16のいずれか一つに記載の層間絶縁膜形成方法によって形成された層間絶縁膜であって、TDS分析より120℃で放出される有機物がないことを特徴とする層間絶縁膜。
(付記18)
付記1乃至16のいずれか一つに記載の層間絶縁膜形成方法によって形成された層間絶縁膜を具備することを特徴とする半導体デバイス。
(付記19)
付記1乃至16のいずれか一つに記載の層間絶縁膜形成方法によって層間絶縁膜を成膜する半導体製造装置。

As in the first embodiment, an interlayer insulating film is formed on the substrate 14 and the supply of the raw material monomer is stopped before the application of RF power is stopped. This process is illustrated in FIG. As a result, plasma is generated only by the carrier gas in the reactor. He was used as a carrier gas to treat the surface of the interlayer insulating film. The surface treatment conditions were the same as the film formation except that the introduction of raw materials was stopped, and the treatment was performed for 10 to 60 seconds. After the plasma treatment with the carrier gas, purging was performed under the condition that the residence time of the gas molecules was 0.6 seconds. As a result, it is possible to suppress the change in the relative dielectric constant with time of the interlayer insulating film, as in the case where the stay time of the purge gas in the first embodiment is short.
In any of the above-described embodiments, the following invention is disclosed.
(Appendix 1)
In the method of forming an interlayer insulating film by plasma CVD using a monomer having an unsaturated hydrocarbon,
A method of forming an interlayer insulating film, characterized by purging with an inert gas simultaneously with turning off the high-frequency power supply for film formation.
(Appendix 2)
In the method of forming an interlayer insulating film by plasma CVD using a monomer having an unsaturated hydrocarbon,
A method for forming an interlayer insulating film, characterized by performing a surface treatment with an inert gas plasma after film formation and then purging with an inert gas.
(Appendix 3)
In the method of forming an interlayer insulating film by plasma CVD using a monomer having an unsaturated hydrocarbon,
A method of forming an interlayer insulating film, characterized in that the supply of raw materials is stopped before turning off the high frequency power supply during film formation, the plasma treatment is performed only with the carrier gas, the high frequency power supply is turned off, and the inert gas is purged.
(Appendix 4)
In the method of forming an interlayer insulating film by plasma CVD using a monomer having an unsaturated hydrocarbon,
The interlayer insulating film forming method according to any one of appendices 1 to 3, wherein only the raw material monomer and the carrier gas or only the raw material monomer, the carrier gas and the inert gas are supplied into the reactor during the film formation. .
(Appendix 5)
The method for forming an interlayer insulating film according to any one of appendices 1 to 4, wherein the inert gas includes one or more of helium, nitrogen, and argon.
(Appendix 6)
The interlayer insulating film according to any one of appendices 1 to 5, wherein the flow rate during the purging with the inert gas is such that the residence time in the deposition chamber is 0.8 seconds or less. Forming method.
(Appendix 7)
The interlayer insulating film forming method according to any one of appendices 1 to 6, wherein the monomer having an unsaturated hydrocarbon has a three-membered ring structure, a four-membered ring structure, or a straight chain structure of SiO.
(Appendix 8)
The monomer having an unsaturated hydrocarbon having a three-membered ring structure of SiO is a structure represented by the following formula 1, R1 is an unsaturated carbon compound, an R2 saturated carbon compound, R1 is a vinyl group or an allyl group, The interlayer insulating film forming method according to appendix 7, wherein R2 is any one of a methyl group, an ethyl group, a propyl group, an isopropyl group, and a butyl group.
Figure 2012138614
(Appendix 9)
The interlayer insulation according to appendix 7, wherein the monomer having an unsaturated hydrocarbon having a three-membered ring structure of SiO is at least one of the structures represented by the following formulas 2, 3, and 4: Film forming method.
Figure 2012138614
Figure 2012138614
Figure 2012138614
(Appendix 10)
The monomer having an unsaturated hydrocarbon having a 4-membered ring structure of SiO has a structure represented by the following formula 5, wherein R3 is an unsaturated carbon compound or an R4 saturated carbon compound, R1 is a vinyl group or an allyl group, R2 The method for forming an interlayer insulating film according to appendix 7, wherein any one of methyl group, ethyl group, propyl group, isopropyl group, and butyl group is used.
Figure 2012138614
(Appendix 11)
The interlayer according to appendix 7, wherein the monomer having an unsaturated hydrocarbon having a 4-membered ring structure of SiO is at least one of structures represented by the following formulas 6, 7, 8, and 9: Insulating film forming method.
Figure 2012138614
Figure 2012138614
Figure 2012138614
Figure 2012138614
(Appendix 12)
The monomer having an unsaturated hydrocarbon having a straight chain structure of SiO is a structure represented by the following formula 10, R5 is an unsaturated carbon compound, R6, R7, and R8 are saturated carbon compounds, and R5 is a vinyl group or 8. The method for forming an interlayer insulating film according to appendix 7, wherein allyl group, R6, R7, and R8 are any of methyl group, ethyl group, propyl group, isopropyl group, and butyl group.
Figure 2012138614
(Appendix 13)
The interlayer insulating film forming method according to appendix 7, wherein the monomer having an unsaturated hydrocarbon having a linear structure of SiO has a structure represented by the following formula 11.
Figure 2012138614
(Appendix 14)
The method for forming an interlayer insulating film according to any one of appendices 1 to 4, wherein the inert gas is supplied through a path different from that of the raw material supply line.
(Appendix 15)
The method for forming an interlayer insulating film according to appendix 3, wherein the carrier gas contains one or more of helium, nitrogen, and argon.
(Appendix 16)
The method for forming an interlayer insulating film according to any one of appendices 1 to 15, wherein a plasma polymerization reaction in which a monomer having an unsaturated hydrocarbon as a raw material is one type or a plasma polymerization reaction in which two types are used is used. An interlayer insulating film forming method characterized by the above.
(Appendix 17)
An interlayer insulating film formed by the method for forming an interlayer insulating film according to any one of Appendices 1 to 16, wherein no organic material is released at 120 ° C. by TDS analysis.
(Appendix 18)
A semiconductor device comprising an interlayer insulating film formed by the method for forming an interlayer insulating film according to any one of appendices 1 to 16.
(Appendix 19)
A semiconductor manufacturing apparatus for forming an interlayer insulating film by the interlayer insulating film forming method according to any one of appendices 1 to 16.

Claims (19)

不飽和炭化水素を持つモノマーを使ったプラズマCVD法による層間絶縁膜の成膜方法において、
成膜の高周波電源OFFと同時に不活性ガスでパージを行うことを特徴とする層間絶縁膜形成方法。
In the method of forming an interlayer insulating film by plasma CVD using a monomer having an unsaturated hydrocarbon,
A method of forming an interlayer insulating film, characterized by purging with an inert gas simultaneously with turning off the high-frequency power supply for film formation.
不飽和炭化水素を持つモノマーを使ったプラズマCVD法による層間絶縁膜の成膜方法において、
成膜後不活性ガスのプラズマにより表面処理を行った後不活性ガスでパージを行うことを特徴とする層間絶縁膜形成方法。
In the method of forming an interlayer insulating film by plasma CVD using a monomer having an unsaturated hydrocarbon,
A method for forming an interlayer insulating film, characterized by performing a surface treatment with an inert gas plasma after film formation and then purging with an inert gas.
不飽和炭化水素を持つモノマーを使ったプラズマCVD法による層間絶縁膜の成膜方法において、
成膜時の高周波電源をOFFする前に原料の供給を止め、キャリアガスのみでプラズマ処理を行った後高周波電源をOFFし、不活性ガスでパージを行う特徴とする層間絶縁膜形成方法。
In the method of forming an interlayer insulating film by plasma CVD using a monomer having an unsaturated hydrocarbon,
A method of forming an interlayer insulating film, characterized in that the supply of raw materials is stopped before turning off the high frequency power supply during film formation, the plasma treatment is performed only with the carrier gas, the high frequency power supply is turned off, and the inert gas is purged.
不飽和炭化水素を持つモノマーを使ったプラズマCVD法による層間絶縁膜の成膜方法において、
成膜時に原料モノマーとキャリアガスのみ、あるいは原料モノマーとキャリアガスと不活性ガスのみがリアクタ内に供給されることを特徴とする請求項1乃至3のいずれか一項に記載の層間絶縁膜形成方法。
In the method of forming an interlayer insulating film by plasma CVD using a monomer having an unsaturated hydrocarbon,
4. The interlayer insulating film formation according to claim 1, wherein only the raw material monomer and the carrier gas, or only the raw material monomer, the carrier gas, and the inert gas are supplied into the reactor during the film formation. Method.
前記不活性ガスがヘリウム、窒素、アルゴンの1種類以上からなることを特徴とする請求項1乃至4のいずれか一項に記載の層間絶縁膜形成方法。   5. The method for forming an interlayer insulating film according to claim 1, wherein the inert gas is one or more of helium, nitrogen, and argon. 前記不活性ガスによるパージの際の流量が、成膜チャンバー内における滞在時間が0.8秒以下となるようにすることを特徴とする請求項1乃至5のいずれか一項に記載の層間絶縁膜形成方法。   The interlayer insulation according to any one of claims 1 to 5, wherein a flow rate during the purging with the inert gas is set so that a residence time in the film forming chamber is 0.8 seconds or less. Film forming method. 前記不飽和炭化水素を持つモノマーがSiOの3員環構造、4員環構造あるいは直鎖構造を持つことを特徴とする請求項1乃至6のいずれか一項に記載の層間絶縁膜形成方法。   The method for forming an interlayer insulating film according to claim 1, wherein the monomer having an unsaturated hydrocarbon has a three-membered ring structure, a four-membered ring structure, or a straight chain structure of SiO. 前記SiOの3員環構造を持つ不飽和炭化水素を持つモノマーが、下記式1に示す構造であり、R1は不飽和炭素化合物、R2飽和炭素化合物であり、R1はビニル基、またはアリル基、R2はメチル基、エチル基、プロピル基、イソプロピル基、ブチル基のいずれかであることを特徴とする請求項7に記載の層間絶縁膜形成方法。
Figure 2012138614
The monomer having an unsaturated hydrocarbon having a three-membered ring structure of SiO is a structure represented by the following formula 1, R1 is an unsaturated carbon compound, an R2 saturated carbon compound, R1 is a vinyl group or an allyl group, 8. The method for forming an interlayer insulating film according to claim 7, wherein R2 is any one of a methyl group, an ethyl group, a propyl group, an isopropyl group, and a butyl group.
Figure 2012138614
前記SiOの3員環構造を持つ不飽和炭化水素を持つモノマーが、下記式2、3、4に示す構造のうち少なくともいずれかの1つであることを特徴とする請求項7に記載の層間絶縁膜形成方法。
Figure 2012138614
Figure 2012138614
Figure 2012138614
The interlayer monomer according to claim 7, wherein the monomer having an unsaturated hydrocarbon having a three-membered ring structure of SiO is at least one of structures represented by the following formulas 2, 3, and 4. Insulating film forming method.
Figure 2012138614
Figure 2012138614
Figure 2012138614
前記SiOの4員環構造を持つ不飽和炭化水素を持つモノマーが、下記式5に示す構造であり、R3は不飽和炭素化合物、R4飽和炭素化合物であり、R1はビニル基またはアリル基、R2はメチル基、エチル基、プロピル基、イソプロピル基、ブチル基のいずれかであることを特徴とする請求項7に記載の層間絶縁膜形成方法。
Figure 2012138614
The monomer having an unsaturated hydrocarbon having a 4-membered ring structure of SiO has a structure represented by the following formula 5, wherein R3 is an unsaturated carbon compound or an R4 saturated carbon compound, R1 is a vinyl group or an allyl group, R2 8. The method for forming an interlayer insulating film according to claim 7, wherein is one of a methyl group, an ethyl group, a propyl group, an isopropyl group, and a butyl group.
Figure 2012138614
前記SiOの4員環構造を持つ不飽和炭化水素を持つモノマーが下記式6、7、8、9に示す構造のうち少なくともいずれかの1つであることを特徴とする請求項7に記載の層間絶縁膜形成方法。
Figure 2012138614
Figure 2012138614
Figure 2012138614
Figure 2012138614
The monomer having an unsaturated hydrocarbon having a 4-membered ring structure of SiO is at least one of structures represented by the following formulas 6, 7, 8, and 9. Interlayer insulating film forming method.
Figure 2012138614
Figure 2012138614
Figure 2012138614
Figure 2012138614
前記SiOの直鎖構造を持つ不飽和炭化水素を持つモノマーが、下記式10に示す構造であり、R5は不飽和炭素化合物、R6、R7、R8は飽和炭素化合物であり、R5はビニル基またはアリル基、R6、R7、R8はメチル基、エチル基、プロピル基、イソプロピル基、ブチル基のいずれかであることを特徴とする請求項7に記載の層間絶縁膜形成方法。
Figure 2012138614
The monomer having an unsaturated hydrocarbon having a straight chain structure of SiO is a structure represented by the following formula 10, R5 is an unsaturated carbon compound, R6, R7, and R8 are saturated carbon compounds, and R5 is a vinyl group or 8. The method for forming an interlayer insulating film according to claim 7, wherein allyl group, R6, R7, and R8 are any one of methyl group, ethyl group, propyl group, isopropyl group, and butyl group.
Figure 2012138614
前記SiOの直鎖構造を持つ不飽和炭化水素を持つモノマーが下記式11に示す構造であることを特徴とする請求項7に記載の層間絶縁膜形成方法。
Figure 2012138614
8. The method for forming an interlayer insulating film according to claim 7, wherein the monomer having an unsaturated hydrocarbon having a linear structure of SiO has a structure represented by the following formula 11.
Figure 2012138614
前記不活性ガスが原料供給ラインとは異なった経路で供給されることを特徴とする請求項1乃至4のいずれか一項に記載の層間絶縁膜形成方法。   5. The method of forming an interlayer insulating film according to claim 1, wherein the inert gas is supplied through a path different from that of the raw material supply line. 前記キャリアガスが、ヘリウム、窒素、アルゴンのいずれか1種類以上含むことを特徴とする請求項3記載の層間絶縁膜形成方法。   4. The method for forming an interlayer insulating film according to claim 3, wherein the carrier gas contains one or more of helium, nitrogen, and argon. 請求項1乃至15のいずれか一項に記載の層間絶縁膜形成方法であって、原料となる不飽和炭化水素を持つモノマーが1種であるプラズマ重合反応、もしくは2種であるプラズマ重合反応を用いることを特徴とする層間絶縁膜形成方法。   The interlayer insulating film forming method according to any one of claims 1 to 15, wherein a plasma polymerization reaction in which a monomer having an unsaturated hydrocarbon as a raw material is one type or a plasma polymerization reaction in which two types are used. A method for forming an interlayer insulating film, comprising using the method. 前記請求項1乃至16のいずれか一項に記載の層間絶縁膜形成方法によって形成された層間絶縁膜であって、TDS分析より120℃で放出される有機物がないことを特徴とする層間絶縁膜。   The interlayer insulating film formed by the interlayer insulating film forming method according to any one of claims 1 to 16, wherein there is no organic substance released at 120 ° C by TDS analysis. . 前記請求項1乃至16のいずれか一項に記載の層間絶縁膜形成方法によって形成された層間絶縁膜を具備することを特徴とする半導体デバイス。   17. A semiconductor device comprising an interlayer insulating film formed by the interlayer insulating film forming method according to claim 1. 前記請求項1乃至16のいずれか一項に記載の層間絶縁膜形成方法によって層間絶縁膜を成膜する半導体製造装置。   17. A semiconductor manufacturing apparatus for forming an interlayer insulating film by the interlayer insulating film forming method according to claim 1.
JP2012064867A 2012-03-22 2012-03-22 Method for forming interlayer dielectric film, semiconductor device and apparatus for producing semiconductor Withdrawn JP2012138614A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012064867A JP2012138614A (en) 2012-03-22 2012-03-22 Method for forming interlayer dielectric film, semiconductor device and apparatus for producing semiconductor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012064867A JP2012138614A (en) 2012-03-22 2012-03-22 Method for forming interlayer dielectric film, semiconductor device and apparatus for producing semiconductor

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2007240721A Division JP5015705B2 (en) 2007-09-18 2007-09-18 Interlayer insulating film forming method, interlayer insulating film, semiconductor device, and semiconductor manufacturing apparatus

Publications (1)

Publication Number Publication Date
JP2012138614A true JP2012138614A (en) 2012-07-19

Family

ID=46675747

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012064867A Withdrawn JP2012138614A (en) 2012-03-22 2012-03-22 Method for forming interlayer dielectric film, semiconductor device and apparatus for producing semiconductor

Country Status (1)

Country Link
JP (1) JP2012138614A (en)

Similar Documents

Publication Publication Date Title
US8889566B2 (en) Low cost flowable dielectric films
KR101528832B1 (en) Manufacturing method of flowable dielectric layer
JP5600368B2 (en) Low temperature silicon oxide conversion
US9478414B2 (en) Method for hydrophobization of surface of silicon-containing film by ALD
JP6367658B2 (en) Method of generating oxide film by plasma assist process
JP4434146B2 (en) Porous insulating film, method of manufacturing the same, and semiconductor device using the porous insulating film
JP2014507797A (en) Radical vapor CVD
US20120238108A1 (en) Two-stage ozone cure for dielectric films
US9165762B2 (en) Method of depositing silicone dioxide films
JP2015521375A (en) Improved densification for flowable membranes
KR20120043073A (en) Formation of silicon oxide using non-carbon flowable cvd processes
JP2013521650A (en) Conformal layer by radical component CVD
SG182333A1 (en) In-situ ozone cure for radical-component cvd
KR20220006663A (en) In-situ control of film properties during atomic layer deposition
JP5015705B2 (en) Interlayer insulating film forming method, interlayer insulating film, semiconductor device, and semiconductor manufacturing apparatus
TWI706438B (en) Uv-assisted material injection into porous films
US8426288B2 (en) Method for improving capacitance uniformity in a MIM device
JP2012138614A (en) Method for forming interlayer dielectric film, semiconductor device and apparatus for producing semiconductor
JP4180393B2 (en) Method for forming low dielectric constant interlayer insulating film
KR20220036866A (en) Silicon oxide deposition method
JP5262144B2 (en) Semiconductor device and manufacturing method thereof
KR20190038323A (en) Source for depositing graphene oxide and method of forming graphene oxide thin film using the same
JP2004111688A (en) Semiconductor device and manufacturing method thereof
KR20230047002A (en) Selective deposition of organic material
KR20230100631A (en) Method of forming low-k material layer with high-frequency power, structure including the layer, and system for forming same

Legal Events

Date Code Title Description
A761 Written withdrawal of application

Free format text: JAPANESE INTERMEDIATE CODE: A761

Effective date: 20120807