JP2012137319A - Gas detection element - Google Patents

Gas detection element Download PDF

Info

Publication number
JP2012137319A
JP2012137319A JP2010288143A JP2010288143A JP2012137319A JP 2012137319 A JP2012137319 A JP 2012137319A JP 2010288143 A JP2010288143 A JP 2010288143A JP 2010288143 A JP2010288143 A JP 2010288143A JP 2012137319 A JP2012137319 A JP 2012137319A
Authority
JP
Japan
Prior art keywords
gas
coating layer
detection element
gas detection
sensitive part
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2010288143A
Other languages
Japanese (ja)
Other versions
JP5927639B2 (en
Inventor
Yoshihiro Yamada
佳博 山田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
New Cosmos Electric Co Ltd
Original Assignee
New Cosmos Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by New Cosmos Electric Co Ltd filed Critical New Cosmos Electric Co Ltd
Priority to JP2010288143A priority Critical patent/JP5927639B2/en
Publication of JP2012137319A publication Critical patent/JP2012137319A/en
Application granted granted Critical
Publication of JP5927639B2 publication Critical patent/JP5927639B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Investigating Or Analyzing Materials By The Use Of Fluid Adsorption Or Reactions (AREA)
  • Investigating Or Analyzing Materials By The Use Of Electric Means (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a gas detection element that is excelling in poisoning resistance against organic silicone gas, shorten detection sensitivity recovery time of a gas sensor, and prevent crack or exfoliation on a coating layer.SOLUTION: A gas detection element comprises a sensing electrode 2, a gas sensitive part 4 including a metal oxide semiconductor, and a heating unit 3 for heating the gas sensitive part 4. A coating layer 5 including an amorphous aluminum oxide is provided on an outer peripheral face of the gas sensitive part 4.

Description

本発明は、検出電極と、金属酸化物半導体を含むガス感応部と、当該ガス感応部を加熱する加熱部とを備えるガス検知素子に関する。   The present invention relates to a gas detection element including a detection electrode, a gas sensitive part including a metal oxide semiconductor, and a heating part for heating the gas sensitive part.

半導体式ガスセンサは、上記ガス検知素子のガス感応部に被検知ガスが接触したときに発生する抵抗値変化を検出する。
しかし、半導体式ガスセンサは、雰囲気中の有機シリコーンガス(例えば、ヘキサメチルジシロキサン等)によってガス検知素子が被毒すると、被検知ガスに対する検出感度が低下してしまうという問題を抱えている。
The semiconductor gas sensor detects a change in resistance value that occurs when the gas to be detected comes into contact with the gas sensitive portion of the gas detection element.
However, the semiconductor type gas sensor has a problem that when the gas detection element is poisoned by an organic silicone gas (for example, hexamethyldisiloxane) in the atmosphere, the detection sensitivity to the detection gas is lowered.

このような問題を解決するために開発されている従来のガス検知素子として、ガス感応部の外周面に結晶構造を有するα又はγ−酸化アルミニウムを含む被覆層を設け、有機シリコーンガスを前記被覆層に選択的に吸着させることによって、ガスセンサの検出感度の低下を抑えようとするものが知られている。
尚、この様な従来技術に関しては、当業者の間で広く知られているものであるため、先行技術文献を示さない。
As a conventional gas detection element that has been developed to solve such problems, a coating layer containing α or γ-aluminum oxide having a crystal structure is provided on the outer peripheral surface of the gas sensitive portion, and the organic silicone gas is coated with the coating layer. It is known to selectively reduce the detection sensitivity of a gas sensor by selectively adsorbing the layer.
Note that such prior art is widely known among those skilled in the art, and therefore, prior art documents are not shown.

しかし、従来のガス検知素子では、有機シリコーンガスを確実に吸着する高い耐被毒性能を備えるようにするためには、その被覆層を数十〜数百μm程度という相当厚いものに設定する必要がある。   However, in the conventional gas detection element, in order to provide high poisoning resistance that reliably adsorbs the organosilicon gas, it is necessary to set the coating layer to a considerable thickness of about several tens to several hundreds μm. There is.

被覆層が厚いと、無通電時に被検知ガスが留まり易くなり検出感度を回復させるための時間が長くなるため、ガスセンサの使用勝手が悪くなるという問題があった。また、被覆層の厚みが大きいほどひび割れが生じ易く、さらにガス感応部から剥離し易いという問題も生じていた。   If the coating layer is thick, the gas to be detected is liable to stay at the time of no energization, and it takes a long time to recover the detection sensitivity. In addition, the larger the thickness of the coating layer, the more likely it is to crack, and further the problem is that it easily peels from the gas sensitive part.

本発明の目的は、有機シリコーンガスに対する耐被毒性能が高く、ガスセンサの検出感度の回復時間をより短縮化させ、さらに被覆層におけるひび割れや剥離が生じ難いガス検知素子を提供することにある。   An object of the present invention is to provide a gas detection element that has a high resistance to poisoning with respect to an organic silicone gas, shortens the recovery time of the detection sensitivity of the gas sensor, and is less likely to crack or peel off in the coating layer.

本発明のガス検知素子に係る第1特徴構成は、検出電極と、金属酸化物半導体を含むガス感応部と、当該ガス感応部を加熱する加熱部とを備えるガス検知素子であって、前記ガス感応部の外周面に、無定形の酸化アルミニウムを含む被覆層を設けてある点にある。   A first characteristic configuration relating to the gas detection element of the present invention is a gas detection element comprising a detection electrode, a gas sensitive part including a metal oxide semiconductor, and a heating part for heating the gas sensitive part, wherein the gas The coating layer containing amorphous aluminum oxide is provided on the outer peripheral surface of the sensitive part.

〔作用及び効果〕
本構成のごとく、結晶構造を有しない無定形の酸化アルミニウムを適用することによって、被覆層の厚みを数十〜数百nm程度まで薄くしても、有機シリコーンガスを選択的に確実に吸着することができる。
被覆層が従来と比べて非常に薄いため、無通電時に被検知ガスが留まり難くなり、検出感度を回復させるための時間が短くて済む。さらにひび割れが生じ難く、ガス感応部からも剥離し難い。
[Action and effect]
As in this configuration, by applying amorphous aluminum oxide having no crystal structure, even if the thickness of the coating layer is reduced to about several tens to several hundreds of nanometers, the organosilicon gas is selectively and reliably adsorbed. be able to.
Since the coating layer is very thin as compared with the conventional one, it becomes difficult for the gas to be detected to stay at the time of non-energization, and the time for recovering the detection sensitivity can be shortened. Furthermore, it is difficult for cracks to occur, and it is difficult for the gas sensitive part to peel off.

第2特徴構成は、前記被覆層が、無定形の酸化アルミニウムを含むアルミナゾルで前記ガス感応部の外周面を被覆した後、焼成することによって形成される点にある。   The second characteristic configuration is that the coating layer is formed by coating the outer peripheral surface of the gas-sensitive portion with an alumina sol containing amorphous aluminum oxide and then firing.

〔作用及び効果〕
本構成によれば、図6、図7、図11、図12に示すように、被覆層の表面形状が羽毛状となる。この羽毛状態は、無定形の酸化アルミニウムの粒子が重合してできた糸状体が三次元的に絡み合うことによって構成される。この構成によって、糸状体同士の結びつきと、糸状体とガス感応部との接着状態が強くなるため、被覆層のひび割れや剥離をより一層効果的に抑えることができる。
[Action and effect]
According to this configuration, as shown in FIGS. 6, 7, 11, and 12, the surface shape of the coating layer is a feather shape. This feather state is formed by three-dimensionally intertwining filaments formed by polymerizing amorphous aluminum oxide particles. With this configuration, since the connection between the filamentous bodies and the adhesive state between the filamentous bodies and the gas sensitive portion are strengthened, cracking and peeling of the coating layer can be more effectively suppressed.

本発明のガス検知素子の模式図である。It is a schematic diagram of the gas detection element of this invention. 本発明のガス検知素子において被覆層を形成する前のガス感応部の表面の走査型電子顕微鏡写真である(倍率10,000倍)。It is a scanning electron micrograph of the surface of the gas sensitive part before forming a coating layer in the gas detection element of this invention (10,000 times magnification). 本発明のガス検知素子において被覆層を形成する前のガス感応部の表面の走査型電子顕微鏡写真である(倍率20,000倍)。It is a scanning electron micrograph of the surface of the gas sensitive part before forming a coating layer in the gas detection element of this invention (magnification 20,000 times). 本発明のガス検知素子において被覆層を形成する前のガス感応部の表面の走査型電子顕微鏡写真である(倍率50,000倍)。It is a scanning electron micrograph of the surface of the gas sensitive part before forming a coating layer in the gas detection element of this invention (magnification 50,000 times). 本発明のガス検知素子におけるガス感応部とその外周面に形成した被覆層(厚み30nm)の走査型電子顕微鏡写真である(倍率10,000倍)。It is a scanning electron micrograph of the gas sensitive part in the gas detection element of this invention and the coating layer (thickness 30 nm) formed in the outer peripheral surface (10,000 times magnification). 本発明のガス検知素子におけるガス感応部とその外周面に形成した被覆層(厚み30nm)の走査型電子顕微鏡写真である(倍率30,000倍)。It is a scanning electron micrograph of the gas sensitive part in the gas detection element of this invention and the coating layer (thickness 30 nm) formed in the outer peripheral surface (magnification 30,000 times). 本発明のガス検知素子におけるガス感応部とその外周面に形成した被覆層(厚み30nm)の走査型電子顕微鏡写真である(倍率50,000倍)。It is a scanning electron micrograph of the gas sensitive part in the gas detection element of this invention and the coating layer (thickness 30 nm) formed in the outer peripheral surface (50,000 times magnification). 本発明のガス検知素子におけるガス感応部とその外周面に形成した被覆層(厚み900nm)の走査型電子顕微鏡写真である(倍率2,000倍)。It is a scanning electron micrograph of the gas sensitive part in the gas detection element of this invention, and the coating layer (thickness 900nm) formed in the outer peripheral surface (2,000 times magnification). 本発明のガス検知素子におけるガス感応部とその外周面に形成した被覆層(厚み900nm)の走査型電子顕微鏡写真である(倍率10,000倍)。It is a scanning electron microscope photograph (magnification 10,000 times) of the gas sensitive part in the gas detection element of this invention, and the coating layer (thickness 900nm) formed in the outer peripheral surface. 本発明のガス検知素子におけるガス感応部とその外周面に形成した被覆層(厚み900nm)の走査型電子顕微鏡写真である(倍率50,000倍)。It is a scanning electron micrograph of the gas sensitive part in the gas detection element of this invention and the coating layer (thickness 900nm) formed in the outer peripheral surface (50,000 times magnification). 本発明のガス検知素子における被覆層(厚み900nm)の表面の走査型電子顕微鏡写真である(倍率20,000倍)。It is a scanning electron micrograph of the surface of the coating layer (thickness 900 nm) in the gas detection element of this invention (magnification 20,000 times). 本発明のガス検知素子における被覆層(厚み900nm)の表面の走査型電子顕微鏡写真である(倍率50,000倍)。It is a scanning electron micrograph of the surface of the coating layer (thickness 900 nm) in the gas detection element of this invention (50,000 times magnification). 本発明の実施例1におけるヘキサメチルジシロキサンの暴露試験結果を示す図である。It is a figure which shows the exposure test result of the hexamethyldisiloxane in Example 1 of this invention. 本発明の実施例2におけるヘキサメチルジシロキサンの暴露試験結果を示す図である。It is a figure which shows the exposure test result of the hexamethyldisiloxane in Example 2 of this invention. 本発明の実施例3におけるヘキサメチルジシロキサンの暴露試験結果を示す図である。It is a figure which shows the exposure test result of the hexamethyldisiloxane in Example 3 of this invention. 比較例1におけるヘキサメチルジシロキサンの暴露試験結果を示す図である。It is a figure which shows the exposure test result of the hexamethyldisiloxane in the comparative example 1. 比較例2におけるヘキサメチルジシロキサンの暴露試験結果を示す図である。It is a figure which shows the exposure test result of the hexamethyldisiloxane in the comparative example 2. 比較例3におけるヘキサメチルジシロキサンの暴露試験結果を示す図である。It is a figure which shows the exposure test result of the hexamethyldisiloxane in the comparative example 3. 比較例4におけるヘキサメチルジシロキサンの暴露試験結果を示す図である。It is a figure which shows the exposure test result of the hexamethyldisiloxane in the comparative example 4. 比較例5におけるヘキサメチルジシロキサンの暴露試験結果を示す図である。It is a figure which shows the exposure test result of the hexamethyldisiloxane in the comparative example 5. 比較例6におけるヘキサメチルジシロキサンの暴露試験結果を示す図である。It is a figure which shows the exposure test result of the hexamethyldisiloxane in the comparative example 6. 高温高湿条件(35℃、65%)下で無通電放置を実施した場合の空気に対する出力変動を示す図である。It is a figure which shows the output fluctuation | variation with respect to the air at the time of implementing a non-energization leaving under high temperature high humidity conditions (35 degreeC, 65%). 高温高湿条件(35℃、65%)下で無通電放置を実施した場合のメタンガスに対する感度変動を示す図である。It is a figure which shows the sensitivity fluctuation | variation with respect to methane gas at the time of implementing a non-energization leaving under high temperature high humidity conditions (35 degreeC, 65%). 高温高湿条件(35℃、65%)下で無通電放置を実施した場合のフロンガスに対する感度変動を示す図である。It is a figure which shows the sensitivity fluctuation | variation with respect to Freon gas at the time of implementing a non-energization leaving under high temperature, high humidity conditions (35 degreeC, 65%). 高温高湿条件(35℃、65%)下で無通電放置を実施した場合の水素ガスに対する感度変動を示す図である。It is a figure which shows the sensitivity fluctuation | variation with respect to hydrogen gas at the time of implementing a non-energization leaving under high temperature high humidity conditions (35 degreeC, 65%). 標準条件(20℃、60%)下で無通電放置を実施した場合の空気に対する出力変動を示す図である。It is a figure which shows the output fluctuation | variation with respect to the air at the time of implementing a non-energization leaving under standard conditions (20 degreeC, 60%). 標準条件(20℃、60%)下で無通電放置を実施した場合のメタンガスに対する感度変動を示す図である。It is a figure which shows the sensitivity fluctuation | variation with respect to methane gas at the time of implementing a non-energization leaving under standard conditions (20 degreeC, 60%). 標準条件(20℃、60%)下で無通電放置を実施した場合のフロンガスに対する感度変動を示す図である。It is a figure which shows the sensitivity fluctuation | variation with respect to Freon gas at the time of implementing a non-energization leaving under standard conditions (20 degreeC, 60%). 標準条件(20℃、60%)下で無通電放置を実施した場合の水素ガスに対する感度変動を示す図である。It is a figure which shows the sensitivity fluctuation | variation with respect to hydrogen gas at the time of implementing a non-energization leaving under standard conditions (20 degreeC, 60%). 種々の被検知ガスに放置した後の初期安定時間の測定結果を示す図である。It is a figure which shows the measurement result of the initial stabilization time after leaving to stand in various to-be-detected gas.

〔実施形態〕
(ガス検知素子)
本発明の実施形態を図1に基づいて説明する。
図1に示すように、本実施形態のガス検知素子1は、検出電極としての金属電極線2と、被検知ガスと接触自在に設けられた略球形のガス感応部4と、ガス感応部4を加熱する加熱部としてのコイル状ヒータ3とを備える。尚、金属電極線2は、コイル状ヒータ3を兼ねるものであり、これらは一体として構成されている。
Embodiment
(Gas detection element)
An embodiment of the present invention will be described with reference to FIG.
As shown in FIG. 1, the gas detection element 1 of the present embodiment includes a metal electrode wire 2 as a detection electrode, a substantially spherical gas sensitive part 4 provided so as to be in contact with a gas to be detected, and a gas sensitive part 4. And a coiled heater 3 as a heating unit for heating the heater. The metal electrode wire 2 also serves as the coil heater 3 and is configured as an integral unit.

金属電極線2及びコイル状ヒータ3の材質としては、例えば、白金、又は白金にロジウム等を添加したもの等を適宜選択して使用することができるが、これらに限定されるものではない。また、コイル状ヒータ3のコイル径や巻き数等については図示したものに限らず必要に応じて適宜設定して良い。   As a material of the metal electrode wire 2 and the coiled heater 3, for example, platinum or a material obtained by adding rhodium or the like to platinum can be appropriately selected and used. However, the material is not limited thereto. Further, the coil diameter, the number of turns, and the like of the coiled heater 3 are not limited to those shown in the drawings, and may be appropriately set as necessary.

ガス感応部4は、金属酸化物半導体から構成されている。そのような金属酸化物半導体としては、例えば、酸化スズ、酸化インジウム、酸化チタン、酸化亜鉛、酸化鉄、又は酸化セリウム等の一種又は二種以上からなるものが挙げられ、被検知ガスの種類に応じて任意に選択可能である。   The gas sensitive part 4 is comprised from the metal oxide semiconductor. Examples of such a metal oxide semiconductor include one or two or more of tin oxide, indium oxide, titanium oxide, zinc oxide, iron oxide, cerium oxide, and the like. It can be arbitrarily selected depending on the case.

ガス感応部4の外周面には、無定形の酸化アルミニウム(Al23)を含む被覆層5が設けられている。被覆層5の厚みと比表面積は、有機シリコーンガスを選択的に確実に吸着することができ、被覆層5のひび割れや剥離が生じ難く、尚且つ被検知ガスが留まり難い厚みであれば特に限定されるものではないが、被覆層5の厚みはおよそ30nm〜900nmに設定することが望ましく、好ましくは50nm〜400nmである。また、被覆層5の比表面積(m2/g)は、100m2/g〜250m2/gに設定することが望ましく、好ましくは150m2/g〜200m2/gである。 A coating layer 5 containing amorphous aluminum oxide (Al 2 O 3 ) is provided on the outer peripheral surface of the gas sensitive portion 4. The thickness and specific surface area of the coating layer 5 are particularly limited as long as the organic silicone gas can be selectively and reliably adsorbed, the coating layer 5 is not easily cracked or peeled, and the gas to be detected is difficult to stay. However, the thickness of the coating layer 5 is desirably set to approximately 30 nm to 900 nm, and preferably 50 nm to 400 nm. The specific surface area of the coating layer 5 (m 2 / g) is preferably set to 100m 2 / g~250m 2 / g, preferably from 150m 2 / g~200m 2 / g.

被覆層5は、無定形の酸化アルミニウムを主成分とするものであり、その他の成分として、結晶構造を有するα及びγ−酸化アルミニウムの少なくともいずれか一方を含むものであっても良い。また、無定形の酸化アルミニウムの表面にパラジウム(Pd)触媒等の金属触媒を担持させても良い。   The coating layer 5 is mainly composed of amorphous aluminum oxide, and may include at least one of α and γ-aluminum oxide having a crystal structure as other components. Further, a metal catalyst such as a palladium (Pd) catalyst may be supported on the surface of amorphous aluminum oxide.

本発明における無定形の酸化アルミニウムとは、α及びγ−酸化アルミニウムのような結晶構造を有しないものであって、図6、図7、図11、図12に示すように、その粒子が重合してできた糸状体が三次元的に絡み合うようにして羽毛状態を形成するものを言う。   The amorphous aluminum oxide in the present invention does not have a crystal structure like α and γ-aluminum oxide, and as shown in FIGS. 6, 7, 11, and 12, the particles are polymerized. This means that the formed filaments are intertwined three-dimensionally to form a feather state.

被検知ガスとしては、例えば、メタンガス、液化石油ガス(LPG)、水素、一酸化炭素、硫化水素、フロンガス、アンモニア、その他の可燃性ガス、毒性ガス等が挙げられるが、これらに限定されるものではない。   Examples of the gas to be detected include methane gas, liquefied petroleum gas (LPG), hydrogen, carbon monoxide, hydrogen sulfide, Freon gas, ammonia, other flammable gases, toxic gases, and the like, but are not limited thereto. is not.

(製造方法)
次いで、ガス検知素子1の製造方法について説明する。
先ず、金属電極線2のコイル状ヒータ3の部分を金属酸化物半導体中に埋設させて球状に成形した後、焼成してガス感応部4を形成する。このとき例えば、金属電極線2の線径がおよそ10μm〜50μmであって、コイル状ヒータ3のコイル径が100μm〜500μmであり、巻き数が6回〜20回である場合、ガス感応部4の球径はおよそ200μm〜1000μmである。
(Production method)
Next, a method for manufacturing the gas detection element 1 will be described.
First, the portion of the coil heater 3 of the metal electrode wire 2 is embedded in a metal oxide semiconductor and formed into a spherical shape, and then fired to form the gas sensitive portion 4. At this time, for example, when the wire diameter of the metal electrode wire 2 is approximately 10 μm to 50 μm, the coil diameter of the coiled heater 3 is 100 μm to 500 μm, and the number of turns is 6 to 20 times, the gas sensitive part 4 The sphere diameter is approximately 200 μm to 1000 μm.

次いで、無定形の酸化アルミニウムを含むアルミナゾルを水で希釈する。そのアルミナゾルの希釈液の液滴をガス感応部4の外周面に滴下する。アルミナゾルの希釈液でガス感応部4の外周面を覆って乾燥させた後、550℃〜650℃(650℃付近)で焼成して被覆層5を形成する。   Next, the alumina sol containing amorphous aluminum oxide is diluted with water. A droplet of the diluted solution of alumina sol is dropped on the outer peripheral surface of the gas sensitive portion 4. The outer peripheral surface of the gas sensitive part 4 is covered with a diluted solution of alumina sol and dried, and then fired at 550 ° C. to 650 ° C. (around 650 ° C.) to form the coating layer 5.

(1)ガス検知素子の作製
白金線のコイル状ヒータの部分を酸化スズ中に埋設させて球状に成形する。そして、およそ800℃で2時間焼成してガス感応部を形成した。図2〜図4は、ガス感応部の表面の状態を示している。
(1) Production of gas detection element A platinum wire coil-shaped heater is embedded in tin oxide and formed into a spherical shape. And it baked at about 800 degreeC for 2 hours, and formed the gas sensitive part. 2-4 has shown the state of the surface of a gas sensitive part.

無定形の酸化アルミニウムを含むアルミナゾルとして、以下の表1に示す組成及び性質を備えるものを使用した。尚、このアルミナゾルは、粘土変化が著しく、その粘性はチクソトロピックな性質を有する。   As an alumina sol containing amorphous aluminum oxide, one having the composition and properties shown in Table 1 below was used. This alumina sol has a remarkable clay change, and its viscosity has a thixotropic property.

上記アルミナゾルを、水で0.3重量%〜20重量%(酸化アルミニウム含量として0.03重量%〜2重量%)に希釈し、この希釈液の液滴を上述のガス感応部の表面に滴下して乾燥させた。最後に650℃付近で焼成して被覆層5を形成した。   The alumina sol is diluted with water to 0.3 wt% to 20 wt% (aluminum oxide content of 0.03 wt% to 2 wt%), and droplets of this diluted solution are dropped on the surface of the gas sensitive part. And dried. Finally, the coating layer 5 was formed by firing at around 650 ° C.

本実施例におけるガス検知素子として、被覆層の膜厚が30nm及び900nmのものをそれぞれ作製した。図5〜図7は、被覆層の膜厚がおよそ30nmであるガス検知素子を示しており、図8〜図10は、被覆層の膜厚がおよそ900nmであるガス検知素子を示している。   As the gas detection element in this example, ones having a coating layer thickness of 30 nm and 900 nm were prepared. 5 to 7 show a gas detection element having a coating layer thickness of about 30 nm, and FIGS. 8 to 10 show a gas detection element having a coating layer thickness of about 900 nm.

図5〜図7、図11、及び図12に示すように、ガス検知素子の被覆層5の表面において、無定形の酸化アルミニウムの粒子が重合してできた糸状体が、三次元的に互いに絡み合うようにして羽毛状態を形成している。   As shown in FIGS. 5 to 7, 11, and 12, the filaments formed by polymerizing amorphous aluminum oxide particles on the surface of the coating layer 5 of the gas detection element are three-dimensionally connected to each other. A feather state is formed so as to be intertwined.

(2)有機シリコーンガス(ヘキサメチルジシロキサン)における暴露試験
本発明のガス検知素子の有機シリコーンガスに対する耐被毒性能を確認するために暴露試験を実施した。試験を実施した試料を以下の表2に示す。
(2) Exposure test in organic silicone gas (hexamethyldisiloxane) An exposure test was carried out to confirm the poisoning resistance of the gas detection element of the present invention to organic silicone gas. The samples tested are shown in Table 2 below.

実施例1及び2は、上述の(1)ガス検知素子の作製の欄と同様の作製方法で作製したものであるが、実施例3は、無定形の酸化アルミニウムを含む被覆層にさらにパラジウム(Pd)触媒を含有させたものである。   Examples 1 and 2 were produced by the same production method as in the above-mentioned (1) Production of gas detection element, but in Example 3, a coating layer containing amorphous aluminum oxide was further coated with palladium ( Pd) A catalyst is contained.

比較例1は、被覆層を設けていない試料である。
比較例2及び3は、α−酸化アルミニウムを含むアルミナゾル材料を用いて被覆層を形成した試料である。
比較例4及び5は、γ−酸化アルミニウムを含むアルミナゾル材料を用いて被覆層を形成した試料である。
比較例6は、粉体状の酸化アルミニウムを用いて被覆層を形成した試料である。
上記試料(実施例1〜3、及び比較例1〜6)における被覆層以外の構成(ガス感応部及び金属電極線等)はいずれも、上述の(1)ガス検知素子の作製の欄で作製したものと同様である。
Comparative Example 1 is a sample without a coating layer.
Comparative Examples 2 and 3 are samples in which a coating layer was formed using an alumina sol material containing α-aluminum oxide.
Comparative Examples 4 and 5 are samples in which a coating layer was formed using an alumina sol material containing γ-aluminum oxide.
Comparative Example 6 is a sample in which a coating layer was formed using powdered aluminum oxide.
All the configurations (gas sensitive part, metal electrode wire, etc.) other than the coating layer in the above samples (Examples 1 to 3 and Comparative Examples 1 to 6) are prepared in the section of (1) Preparation of gas detection element. It is the same as what I did.

上記実施例1〜3、及び比較例1〜6に係るガス検知素子を備えるガスセンサを、空気、1000ppmのメタンガス雰囲気下、3000ppmのメタンガス雰囲気下、1%のメタンガス雰囲気下、100ppmの水素ガス雰囲気下、及び100ppmのエタノールガス雰囲気下において、10ppmのヘキサメチルジシロキサンに所定時間(10時間、20時間、30時間、及び50時間)暴露させ、各所定時間における出力値(mV)を測定した。   The gas sensor including the gas detection elements according to Examples 1 to 3 and Comparative Examples 1 to 6 is air, under a 1000 ppm methane gas atmosphere, under a 3000 ppm methane gas atmosphere, under a 1% methane gas atmosphere, under a 100 ppm hydrogen gas atmosphere. In a 100 ppm ethanol gas atmosphere, 10 ppm of hexamethyldisiloxane was exposed to a predetermined time (10 hours, 20 hours, 30 hours, and 50 hours), and an output value (mV) at each predetermined time was measured.

図13〜図21の太線部分に示される、3000ppmのメタンガス雰囲気下における初期の出力値、即ちヘキサメチルジシロキサンの暴露時間が0時間のときの出力値を警報レベルとした場合、図13及び図15に示すように、実施例1及び実施例3のガス検知素子を備えるガスセンサは、10ppmのヘキサメチルジシロキサンに50時間暴露しても、被検知ガス(メタンガス、水素ガス、エタノールガス)が存在しない空気中では警報を発しない。   When the initial output value in the methane gas atmosphere of 3000 ppm, that is, the output value when the exposure time of hexamethyldisiloxane is 0 hour, shown in the bold line part of FIGS. As shown in FIG. 15, the gas sensor including the gas detection element of Example 1 and Example 3 has gas to be detected (methane gas, hydrogen gas, ethanol gas) even after being exposed to 10 ppm of hexamethyldisiloxane for 50 hours. No alarm is issued in the air.

これに対して図16〜図21に示すように、比較例1〜6では、暴露後30時間以内に、被検知ガスが存在しない空気中で警報を発するようになる。特に、被覆層の厚みが実施例1及び3と同等の厚みを有する比較例4は、暴露後25時間程度で空気中において警報を発するようになる。   On the other hand, as shown in FIGS. 16 to 21, in Comparative Examples 1 to 6, an alarm is issued in the air in which no gas to be detected exists within 30 hours after exposure. In particular, Comparative Example 4 having a coating layer thickness equivalent to that of Examples 1 and 3 gives an alarm in the air about 25 hours after exposure.

また、図13に示すように、実施例1では空気中の50時間暴露後の出力値が約100mVであるのに対して、図15に示すように、実施例3では空気中の50時間暴露後の出力値が約30mVであったため、パラジウム触媒を含有させることによってさらに有機シリコーンガスに対する耐被毒性能が向上することが分かる。   Further, as shown in FIG. 13, in Example 1, the output value after exposure in air for 50 hours is about 100 mV, whereas in Example 3, as shown in FIG. 15, exposure in air for 50 hours is performed. Since the later output value was about 30 mV, it can be seen that the poisoning resistance to the organosilicon gas is further improved by containing the palladium catalyst.

また、図14、図17、図18、図20、図21に示すように、本発明の実施例2に係るガス検知素子、並びに、比較例2、3、5、6に係る従来のガス検知素子はいずれも、暴露後10時間程度で被検知ガスが存在しない空気中で警報を発するようになる。   Further, as shown in FIGS. 14, 17, 18, 20, and 21, the gas detection element according to Example 2 of the present invention and the conventional gas detection according to Comparative Examples 2, 3, 5, and 6 are used. All the elements emit an alarm in the air in which no gas to be detected exists in about 10 hours after exposure.

即ち、実施例2に係るガス検知素子は、その被覆層の厚みが約30nmであり、従来のガス検知素子の被覆層の厚み(約5μm及び約50μm)と比べて極端に薄いものであるにもかかわらず、有機シリコーンガスに対して従来のガス検知素子と同等の耐被毒性能を有することが分かる。   That is, the thickness of the coating layer of the gas detection element according to Example 2 is about 30 nm, which is extremely thin compared to the thickness of the coating layer of the conventional gas detection element (about 5 μm and about 50 μm). Nevertheless, it can be seen that the organosilicon gas has a poisoning resistance equivalent to that of the conventional gas sensing element.

以上より、本発明のガス検知素子は、その被覆層の厚みが従来のガス検知素子の被覆層の厚みと比べて極端に薄いものであるにもかかわらず、有機シリコーンガスに対して比較例のガス検知素子と同等以上の耐被毒性能を有することが分かる。   As described above, the gas detection element of the present invention has a comparative thickness compared to the organic silicone gas even though the thickness of the coating layer is extremely thinner than the thickness of the coating layer of the conventional gas detection element. It can be seen that the poisoning performance is equal to or better than that of the gas detection element.

(3)無通電放置における出力及び感度の変動
上記実施例1、比較例1、及び比較例3に係るガス検知素子を備えるガスセンサについて、無通電放置における出力及び感度の変動について試験を実施した。試験方法については以下の通りである。
所定の気温及び湿度において、空気に対する出力値を測定して、初期値(試験初日の測定値)を得る。その後、初期値を得たときと同じ気温及び湿度の条件下で無通電放置を行って、7日おきに空気に対する出力値を再測定する。この再測定を6回繰り返して、初期値に対する変化量(%)をプロットした。
また、メタンガス、フロンガス、及び水素ガスについても上記空気の場合と同様の試験を実施して、初期値に対する出力値の比を感度比(%)としてプロットした。
(3) Change in output and sensitivity when left unpowered With respect to the gas sensor including the gas detection element according to Example 1, Comparative Example 1, and Comparative Example 3, a test was conducted on the change in output and sensitivity when left unpowered. The test method is as follows.
An output value for air is measured at a predetermined temperature and humidity to obtain an initial value (measured value on the first test day). Thereafter, the device is left unpowered under the same temperature and humidity conditions as when the initial value was obtained, and the output value for air is remeasured every 7 days. This remeasurement was repeated 6 times, and the amount of change (%) with respect to the initial value was plotted.
Further, methane gas, chlorofluorocarbon gas, and hydrogen gas were also subjected to the same test as in the case of the air, and the ratio of the output value to the initial value was plotted as a sensitivity ratio (%).

図22〜図25は、気温35℃、湿度65%という高温高湿の条件下で実施されたときの結果を示すものであり、図26〜図29は、気温20℃、湿度60%という標準条件下で実施されたときの結果を示すものである。   FIGS. 22 to 25 show the results when the temperature is 35 ° C. and the humidity is 65%, and the results are shown in FIGS. 26 to 29. FIGS. 26 to 29 show the standard temperature 20 ° C. and humidity 60%. The results when carried out under conditions are shown.

図22及び図26に示すように、高温高湿条件下、及び標準条件下のいずれの条件下においても、本発明に係る実施例1は、試験期間全体(49日間)に亘って、被覆層を有しない比較例1と略同等の空気に対する出力変動を示し、従来のガス検知素子に相当する比較例3と比べて、出力値の減少が著しく抑えられている。   As shown in FIGS. 22 and 26, Example 1 according to the present invention under the conditions of high temperature and high humidity and standard conditions, the coating layer was applied over the entire test period (49 days). The output fluctuation with respect to the air is substantially the same as that of Comparative Example 1 that does not include the gas, and the decrease in the output value is remarkably suppressed as compared with Comparative Example 3 that corresponds to the conventional gas detection element.

図23に示すように、高温高湿条件下におけるメタンガスに対する感度変動については、実施例1は、被覆層を有しない比較例1と比べて感度が多少低下してくるものの、従来のガス検知素子に相当する比較例3と比べて感度の低下が抑えられている。また、図27に示すように、標準条件下におけるメタンガスに対する感度変動については、実施例1は、被覆層を有しない比較例1と比べて感度が多少低下してくるものの、従来のガス検知素子に相当する比較例3とは略同等の感度を維持していた。   As shown in FIG. 23, with respect to the sensitivity variation with respect to methane gas under high temperature and high humidity conditions, the sensitivity of Example 1 is somewhat lower than that of Comparative Example 1 having no coating layer. As compared with Comparative Example 3 corresponding to the above, a decrease in sensitivity is suppressed. In addition, as shown in FIG. 27, the sensitivity fluctuation with respect to methane gas under standard conditions is somewhat lower in sensitivity than in Comparative Example 1 having no coating layer, but the conventional gas detection element. The substantially same sensitivity as Comparative Example 3 corresponding to was maintained.

図24、図25、図28、図29に示すように、高温高湿条件下、及び標準条件下のいずれの条件下においても、実施例1は、メタンガス及びフロンガスに対して、試験期間全体(49日間)に亘って、被覆層を有しない比較例1と略同等の感度を示すと共に、従来のガス検知素子に相当する比較例3と比べて感度の低下が著しく抑えられている。即ち、本発明のガス検知素子は、従来のガス検知素子と比べて被覆層が薄く被検知ガスが被覆層から抜け易いため、無通電時におけるガス吸着が少なく、感度低下が抑えられていると考えられる。   As shown in FIG. 24, FIG. 25, FIG. 28, and FIG. 29, in any of the high-temperature and high-humidity conditions and the standard conditions, Example 1 shows that the entire test period ( 49 days), the sensitivity is substantially the same as that of Comparative Example 1 having no coating layer, and the decrease in sensitivity is significantly suppressed as compared with Comparative Example 3 corresponding to a conventional gas detection element. That is, the gas detection element of the present invention has a thinner coating layer than the conventional gas detection element, and the gas to be detected can easily escape from the coating layer. Conceivable.

(4)種々の被検知ガスに放置した後の初期安定時間の測定
上記実施例1、比較例1、及び比較例3に係るガス検知素子を備えるガスセンサについて、1000ppmの種々の被検知ガス(メチルエチルケトン、エタノール、トルエン、1,2−ジクロロエタン)中に15時間放置した直後に検出を始めてから出力値が安定するまでの時間(初期安定時間)を測定した。
尚、図30において、初期値とは、上記被検知ガス中に放置する前のガスセンサの初期安定時間を意味する。また、試験後とは、上記被検知ガスに放置する試験を終えた後のガスセンサの初期安定時間を意味する。
(4) Measurement of initial stabilization time after being left in various detected gases About 1000 ppm of various detected gases (methyl ethyl ketone) with respect to the gas sensor including the gas detecting elements according to Example 1, Comparative Example 1, and Comparative Example 3 above. , Ethanol, toluene, 1,2-dichloroethane) immediately after being left for 15 hours, the time from the start of detection to the stabilization of the output value (initial stabilization time) was measured.
In FIG. 30, the initial value means an initial stabilization time of the gas sensor before being left in the gas to be detected. Further, “after the test” means an initial stabilization time of the gas sensor after the test to be left in the detected gas is finished.

図30に示すように、比較例1では、種々の被検知ガス(メチルエチルケトン、エタノール、トルエン、1,2−ジクロロエタン)に放置した場合の初期安定時間は、初期値及び試験後における初期安定時間とほとんど変わらず、検出感度の回復に時間がかからない。比較例1は被覆層を有しないため、被検知ガスが被覆層内に留まるということがなく検出感度が短時間で回復する。   As shown in FIG. 30, in Comparative Example 1, the initial stabilization time when left in various detected gases (methyl ethyl ketone, ethanol, toluene, 1,2-dichloroethane) is the initial value and the initial stabilization time after the test. Almost unchanged, recovery of detection sensitivity does not take time. Since Comparative Example 1 does not have a coating layer, the detection sensitivity is recovered in a short time without the gas to be detected remaining in the coating layer.

比較例3では、種々の被検知ガス(メチルエチルケトン、エタノール、トルエン、1,2−ジクロロエタン)に放置した場合の初期安定時間が、初期値及び試験後における初期安定時間に比べて極端に大きくなり、検出感度の回復に時間がかかる。これは、比較例3のガス検知素子における被覆層の厚みが大きく、被検知ガスが被覆層から抜け難く留まり易いためと考えられる。   In Comparative Example 3, the initial stabilization time when left in various detected gases (methyl ethyl ketone, ethanol, toluene, 1,2-dichloroethane) becomes extremely large compared to the initial value and the initial stabilization time after the test, Recovery of detection sensitivity takes time. This is presumably because the thickness of the coating layer in the gas detection element of Comparative Example 3 is large, and the gas to be detected does not easily escape from the coating layer and remains easily.

一方、本発明に係る実施例1では、種々の被検知ガス(メチルエチルケトン、エタノール、トルエン、1,2−ジクロロエタン)に放置した場合の初期安定時間は、初期値及び試験後における初期安定時間とほとんど変わらず、検出感度の回復に時間がかからない。即ち、本発明のガス検知素子は、従来のガス検知素子と比べて被覆層が薄く被検知ガスが被覆層から抜け易いため、無通電時におけるガス吸着が少なく、検出感度が短時間で回復するものと考えられる。   On the other hand, in Example 1 according to the present invention, the initial stabilization time when left in various detected gases (methyl ethyl ketone, ethanol, toluene, 1,2-dichloroethane) is almost the same as the initial value and the initial stabilization time after the test. It doesn't change and it doesn't take time to recover the detection sensitivity. That is, the gas detection element of the present invention has a thinner coating layer than the conventional gas detection element, and the gas to be detected can easily escape from the coating layer. It is considered a thing.

以上説明したように、本発明のガス検知素子は、可燃性ガスや毒性ガス等のガスを検知する半導体式ガスセンサにおいて有用であり、半導体式ガスセンサの製造業等において実施し得るものである。   As described above, the gas detection element of the present invention is useful in a semiconductor type gas sensor that detects a gas such as a flammable gas or a toxic gas, and can be implemented in the manufacturing industry of a semiconductor type gas sensor.

1 ガス検知素子
2 金属電極線
3 コイル状ヒータ
4 ガス感応部
5 被覆層
DESCRIPTION OF SYMBOLS 1 Gas detection element 2 Metal electrode wire 3 Coiled heater 4 Gas sensitive part 5 Coating layer

Claims (2)

検出電極と、金属酸化物半導体を含むガス感応部と、当該ガス感応部を加熱する加熱部とを備えるガス検知素子であって、
前記ガス感応部の外周面に、無定形の酸化アルミニウムを含む被覆層を設けてあるガス検知素子。
A gas detection element comprising a detection electrode, a gas sensitive part including a metal oxide semiconductor, and a heating part for heating the gas sensitive part,
A gas detection element in which a coating layer containing amorphous aluminum oxide is provided on an outer peripheral surface of the gas sensitive portion.
前記被覆層が、無定形の酸化アルミニウムを含むアルミナゾルで前記ガス感応部の外周面を被覆した後、焼成することによって形成される請求項1に記載のガス検知素子。   2. The gas detection element according to claim 1, wherein the coating layer is formed by coating the outer peripheral surface of the gas sensitive portion with an alumina sol containing amorphous aluminum oxide and then firing the coating.
JP2010288143A 2010-12-24 2010-12-24 Gas detection element Active JP5927639B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010288143A JP5927639B2 (en) 2010-12-24 2010-12-24 Gas detection element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010288143A JP5927639B2 (en) 2010-12-24 2010-12-24 Gas detection element

Publications (2)

Publication Number Publication Date
JP2012137319A true JP2012137319A (en) 2012-07-19
JP5927639B2 JP5927639B2 (en) 2016-06-01

Family

ID=46674863

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010288143A Active JP5927639B2 (en) 2010-12-24 2010-12-24 Gas detection element

Country Status (1)

Country Link
JP (1) JP5927639B2 (en)

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5529715A (en) * 1978-08-23 1980-03-03 Toshiba Corp Gas sensitive element
JPH05171072A (en) * 1991-10-04 1993-07-09 Nippon Achison Kk Conductive coating agent
JPH06166986A (en) * 1992-11-30 1994-06-14 Seiko Kagaku Kogyo Co Ltd Paper-making method
JPH07291621A (en) * 1994-04-28 1995-11-07 Nissan Chem Ind Ltd Aqueous alumina sol ans its production
JPH08114568A (en) * 1994-10-18 1996-05-07 Fuji Electric Co Ltd Manufacture of gas detection element
JPH09166567A (en) * 1995-12-18 1997-06-24 F I S Kk Semiconductor type gas sensor and manufacture thereof
JPH10121142A (en) * 1996-10-11 1998-05-12 Sumitomo Metal Ind Ltd Separation agent for annealing and production of grain-oriented silicon steel sheet using it
JP2007063477A (en) * 2005-09-01 2007-03-15 Asahi Glass Co Ltd Inorganic coating composition, hydrophilic coating film, and agricultural film
JP2007099884A (en) * 2005-10-04 2007-04-19 Asahi Glass Co Ltd Method for producing inorganic coating composition, hydrophilic coated film and agricultural film
JP2008145148A (en) * 2006-12-07 2008-06-26 Fuji Electric Fa Components & Systems Co Ltd Thin-film gas sensor and manufacturing method therefor

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5529715A (en) * 1978-08-23 1980-03-03 Toshiba Corp Gas sensitive element
JPH05171072A (en) * 1991-10-04 1993-07-09 Nippon Achison Kk Conductive coating agent
JPH06166986A (en) * 1992-11-30 1994-06-14 Seiko Kagaku Kogyo Co Ltd Paper-making method
JPH07291621A (en) * 1994-04-28 1995-11-07 Nissan Chem Ind Ltd Aqueous alumina sol ans its production
JPH08114568A (en) * 1994-10-18 1996-05-07 Fuji Electric Co Ltd Manufacture of gas detection element
JPH09166567A (en) * 1995-12-18 1997-06-24 F I S Kk Semiconductor type gas sensor and manufacture thereof
JPH10121142A (en) * 1996-10-11 1998-05-12 Sumitomo Metal Ind Ltd Separation agent for annealing and production of grain-oriented silicon steel sheet using it
JP2007063477A (en) * 2005-09-01 2007-03-15 Asahi Glass Co Ltd Inorganic coating composition, hydrophilic coating film, and agricultural film
JP2007099884A (en) * 2005-10-04 2007-04-19 Asahi Glass Co Ltd Method for producing inorganic coating composition, hydrophilic coated film and agricultural film
JP2008145148A (en) * 2006-12-07 2008-06-26 Fuji Electric Fa Components & Systems Co Ltd Thin-film gas sensor and manufacturing method therefor

Also Published As

Publication number Publication date
JP5927639B2 (en) 2016-06-01

Similar Documents

Publication Publication Date Title
Marichy et al. Tin dioxide sensing layer grown on tubular nanostructures by a non‐aqueous atomic layer deposition process
Luo et al. Nanocrystalline SnO2 film prepared by the aqueous sol–gel method and its application as sensing films of the resistance and SAW H2S sensor
Jun et al. High H2 sensing behavior of TiO2 films formed by thermal oxidation
US20100012919A1 (en) Gas sensor having zinc oxide nano-structures and method of fabricating the same
JP2013224959A (en) Hydrogen sensitive composite material, hydrogen gas sensor, and sensor for detecting hydrogen and other gases with improved baseline resistance
JPH04208847A (en) Gas detection element
US20240068972A1 (en) Method for increasing gas selection functions of multifunctional gas-sensitive sensor, and gas-sensitive sensor
Singh et al. Tunable nanostructured columnar growth of SnO2 for efficient detection of CO gas
Zhang et al. Adverse effect of substrate surface impurities on O2 sensing properties of TiO2 gas sensor operating at high temperature
Korotcenkov et al. The role of Rh dispersion in gas sensing effects observed in SnO2 thin films
JP6472168B2 (en) Contact combustion type gas sensor
Takács et al. Gas sensitivity of sol-gel prepared mesoporous WO3 thin film
JP5927639B2 (en) Gas detection element
Al Shboul et al. Hydrogen Sulfide Gas Detection in ppb Levels at Room Temperature with a Printed, Flexible, Disposable In2O3 NPs‐Based Sensor for IoT Food Packaging Applications
JP2013088267A (en) Gas sensor
Madhi et al. Impedance spectroscopy study of porous ito based gas sensor
Cherneva et al. Nanoindentation investigation of mechanical properties of ZrO2, ZrO2–Y2O3, Al2O3 and TiO2 thin films deposited on stainless steel OC 404 substrate by spray pyrolysis
Iqbal et al. Study of polymer coating delamination kinetics on zinc modified with zinc oxide of different morphologies
WO2020049643A1 (en) Gas detection device
Jin et al. Influence of TiOx and TaOx adhesion layers on the properties of Pt films
US10648961B2 (en) Core-shell type catalyst and gas sensor including the catalyst
JP7403232B2 (en) Semiconductor gas detection element
Espinosa et al. Highly selective NO2 gas sensors made of MWCNTs and WO3 hybrid layers
Luthra et al. Ethanol sensing characteristics of Zn0. 99M0. 01O (M= Al/Ni) nanopowders
CN116997621A (en) Method for obtaining dyes from carbon nanomaterials, products and use thereof in monitoring strain, stress and impact

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20131213

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140807

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140821

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20141017

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150305

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150427

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150908

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20151030

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160329

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160405

R150 Certificate of patent or registration of utility model

Ref document number: 5927639

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250