JP2012137309A - Control method of immersion depth of molten metal measuring probe, and molten metal measuring probe used therefor - Google Patents

Control method of immersion depth of molten metal measuring probe, and molten metal measuring probe used therefor Download PDF

Info

Publication number
JP2012137309A
JP2012137309A JP2010287980A JP2010287980A JP2012137309A JP 2012137309 A JP2012137309 A JP 2012137309A JP 2010287980 A JP2010287980 A JP 2010287980A JP 2010287980 A JP2010287980 A JP 2010287980A JP 2012137309 A JP2012137309 A JP 2012137309A
Authority
JP
Japan
Prior art keywords
molten metal
probe
metal layer
electrode
immersion depth
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2010287980A
Other languages
Japanese (ja)
Other versions
JP5375815B2 (en
Inventor
Yukio Terauchi
幸生 寺内
Hiroki Okamoto
博樹 岡本
Kazuharu Hanazaki
一治 花崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Heraeus Electro Nite Japan Ltd
Original Assignee
Heraeus Electro Nite Japan Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Heraeus Electro Nite Japan Ltd filed Critical Heraeus Electro Nite Japan Ltd
Priority to JP2010287980A priority Critical patent/JP5375815B2/en
Publication of JP2012137309A publication Critical patent/JP2012137309A/en
Application granted granted Critical
Publication of JP5375815B2 publication Critical patent/JP5375815B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Investigating And Analyzing Materials By Characteristic Methods (AREA)
  • Waste-Gas Treatment And Other Accessory Devices For Furnaces (AREA)
  • Carbon Steel Or Casting Steel Manufacturing (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a control method of an immersion depth of a molten metal measuring probe capable of surely performing measurements, for example, a molten temperature, a solidification temperature, and sample properties by precisely controlling the immersion depth in a molten metal layer.SOLUTION: Detecting means 2 that detects the surface Ls of a molten metal layer L in a process of immersing a probe distal end 1a into a molten metal container is provided. The control method of the immersion depth comprises: based on a detecting signal of the molten metal layer surface Ls output from the detecting means 2 in an immersing step of the probe 1, controlling a subsequent immersion depth of the probe 1 in the molten metal layer L in the immersing step; calculating a lowering distance (an immersion amount) thereafter at a time point when the immersion depth in the molten metal layer in a charge reaches the molten metal layer surface Ls; and controlling and setting the immersion depth in real time.

Description

本発明は、転炉等で好適に使用される溶融金属測定用プローブの浸漬深さ制御方法、及びこれに用いる溶融金属測定用プローブに関する。   The present invention relates to a method for controlling the immersion depth of a probe for measuring a molten metal that is preferably used in a converter or the like, and a probe for measuring a molten metal used therefor.

転炉等の容器内の溶融金属の温度や凝固温度、サンプル性状などを測定するため、各種センサーやサンプル採取口を備えた溶融金属測定用プローブが使用される。このプローブによる各種測定やサンプル採取を確実に行うためには、溶融金属に当該プローブを浸漬させる深さを所定深さに制御する必要がある。このプローブ浸漬深さを制御するためには、溶融金属層の表面レベルを把握する必要がある。溶融金属測定用プローブを用いて前記溶融金属層表面レベルを測定する方法は、従来から様々な方法が提案されている(例えば、特許文献1〜4参照。)。   In order to measure the temperature, solidification temperature, sample properties, etc. of the molten metal in a vessel such as a converter, a molten metal measuring probe having various sensors and a sample sampling port is used. In order to reliably perform various measurements and sample collection with this probe, it is necessary to control the depth at which the probe is immersed in the molten metal to a predetermined depth. In order to control the probe immersion depth, it is necessary to grasp the surface level of the molten metal layer. Various methods for measuring the surface level of the molten metal layer using a molten metal measuring probe have been proposed (see, for example, Patent Documents 1 to 4).

しかし、従来の測定方法は、いずれも溶融金属測定用プローブを浸漬する過程を利用するものの、得られた表面レベルの情報を次のチャージ(精製処理)で利用するものであった。したがって、次のチャージで溶融金属の量が変動すると、その分だけ浸漬深さも変動してしまい、浸漬深さの精度にはいささかのズレが生じるのは否めなかった。   However, all of the conventional measuring methods use the process of immersing the probe for measuring molten metal, but use the obtained surface level information in the next charge (purification process). Therefore, when the amount of the molten metal fluctuates in the next charge, the immersion depth also changes accordingly, and it is unavoidable that a slight deviation occurs in the accuracy of the immersion depth.

特開2004−125566号公報Japanese Patent Laid-Open No. 2004-125 566 特開2002−356709号公報JP 2002-356709 A 特開平9−113333号公報JP-A-9-113333 特開平10−122934号公報Japanese Patent Laid-Open No. 10-122934

そこで、本発明が前述の状況に鑑み、解決しようとするところは、溶融金属層への浸漬深さをより正確に制御することで、例えば溶鋼温度や凝固温度、サンプル性状などの測定をより確実に行うことができる溶融金属測定用プローブの浸漬深さ制御方法、及びこれに用いる溶融金属測定用プローブを提供する点にある。   Therefore, in view of the above-mentioned situation, the present invention intends to solve the problem by measuring the molten steel temperature, the solidification temperature, the sample properties, etc. more reliably by controlling the immersion depth in the molten metal layer more accurately. It is in the point which provides the immersion depth control method of the probe for a molten metal measurement which can be performed to this, and the probe for a molten metal measurement used for this.

本発明は、前述の課題解決のために、溶融金属測定用プローブを浸漬する深さを制御する方法であって、溶融金属測定用プローブの先端部に、該プローブを溶融金属容器内に浸漬させてゆく過程で溶融金属層表面を検知する検知手段を設け、前記プローブ浸漬の過程で前記検知手段から出力された溶融金属層表面の検知信号に基づき、当該浸漬の工程におけるその後の溶融金属層内への該プローブの浸漬深さを制御することを特徴とする溶融金属測定用プローブの浸漬深さ制御方法を提供する(請求項1)。   The present invention is a method for controlling the depth at which a molten metal measurement probe is immersed in order to solve the above-mentioned problems, and the probe is immersed in a molten metal container at the tip of the molten metal measurement probe. A detection means for detecting the surface of the molten metal layer is provided in the course of the process, and based on a detection signal of the surface of the molten metal layer output from the detection means in the process of the probe immersion, A method for controlling the immersion depth of a probe for measuring a molten metal is provided, wherein the immersion depth of the probe is controlled.

ここで、前記検知手段として前記溶融金属測定用プローブの先端部に電極を外部露出状態で設け、前記電極を通じた電気的特性の変化に基づき溶融金属層表面を検知することが好ましい(請求項2)。   Here, it is preferable that an electrode is provided at the tip of the molten metal measurement probe as the detection means in an externally exposed state, and the surface of the molten metal layer is detected based on a change in electrical characteristics through the electrode. ).

特に、前記溶融金属を収容して導電性を帯びた容器と前記電極との間の電気的特性を監視し、この電極−容器間の電気的特性が、前記電極が前記溶融金属層表面に接触した際の前記溶融金属層の介在による導電性に移行した時点を検知することが好ましい(請求項3)。   In particular, the electrical characteristics between the electrode containing the molten metal and the conductive container and the electrode are monitored, and the electrical characteristics between the electrode and the container are such that the electrode contacts the surface of the molten metal layer. It is preferable to detect the point of time when the molten metal layer shifts to conductivity due to the inclusion of the molten metal layer.

更に、溶融金属層表面にスラグ層が浮遊しており、前記電極−容器間の電気的特性が、前記電極が前記スラグ層にて電解質として機能する該スラグ層の介在による発電性から、前記電極が前記溶融金属層表面に接触した際の前記溶融金属層の介在による導電性に移行した時点を検知することが好ましい(請求項4)。   Furthermore, since the slag layer floats on the surface of the molten metal layer, the electrical characteristics between the electrode and the container are from the power generation property due to the interposition of the slag layer in which the electrode functions as an electrolyte in the slag layer. It is preferable to detect a point in time at which the transition to conductivity due to the presence of the molten metal layer occurs when contacting the surface of the molten metal layer.

具体的には、前記電極を、プローブ先端部のセンサーを覆う紙キャップの外周面に沿って設けることが好ましい(請求項5)。   Specifically, the electrode is preferably provided along the outer peripheral surface of a paper cap that covers the sensor at the tip of the probe.

また、前記プローブ浸漬の過程で前記検知手段から出力された溶融金属層表面の検知信号と、該プローブを下降させる速度情報とに基づき、当該浸漬の工程におけるその後の溶融金属層内への該プローブの浸漬深さを制御することが好ましい(請求項6)。   Further, based on the detection signal of the surface of the molten metal layer outputted from the detection means in the probe immersion process and the speed information for lowering the probe, the probe into the molten metal layer in the subsequent immersion process It is preferable to control the immersion depth.

また本発明は、上記浸漬深さ制御方法に用いる溶融金属測定用プローブであって、先端部に、該プローブを溶融金属容器内に浸漬させてゆく過程で溶融金属層表面を検知する検知手段を設けてなることを特徴とする溶融金属測定用プローブをも提供する(請求項7)。   The present invention also provides a probe for measuring a molten metal used in the immersion depth control method, wherein a detection means for detecting the surface of the molten metal layer in the process of immersing the probe in the molten metal container is provided at the tip. There is also provided a probe for measuring a molten metal, which is provided.

更に、前記検知手段として前記溶融金属測定用プローブの先端部に電極を外部露出状態で設け、前記電極を通じた電気的特性の変化に基づき溶融金属層表面を検知してなるものが好ましい(請求項8)。   Further, as the detection means, an electrode is preferably provided at the tip of the molten metal measurement probe in an externally exposed state, and the surface of the molten metal layer is detected based on a change in electrical characteristics through the electrode. 8).

また、前記電極を、プローブ先端部のセンサーを覆う紙キャップの外周面に沿って設けてなるものが好ましい(請求項9)。   Further, it is preferable that the electrode is provided along the outer peripheral surface of a paper cap that covers the sensor at the tip of the probe.

請求項1に係る溶融金属測定用プローブの浸漬深さ制御方法によれば、プローブ浸漬の過程で検知手段から出力された溶融金属層表面の検知信号に基づき、当該浸漬の工程におけるその後の溶融金属層内への該プローブの浸漬深さを制御するので、同一チャージの同一浸漬過程で、レベル測定とともにそれに基づいて浸漬深さがリアルタイムに制御され、従来のように溶融金属の量の変動による浸漬深さのズレが生じず、したがって浸漬深さをより正確に制御でき、溶鋼温度や凝固温度、サンプル性状などの測定をより確実に行うことができる。   According to the method for controlling the immersion depth of the probe for measuring molten metal according to claim 1, based on the detection signal of the surface of the molten metal layer output from the detection means during the probe immersion process, the subsequent molten metal in the immersion process Since the immersion depth of the probe in the layer is controlled, the immersion depth is controlled in real time based on the level measurement in the same immersion process with the same charge. Depth of the depth does not occur, so that the immersion depth can be controlled more accurately, and measurements such as molten steel temperature, solidification temperature, and sample properties can be more reliably performed.

請求項2に係る溶融金属測定用プローブの浸漬深さ制御方法によれば、前記検知手段として前記溶融金属測定用プローブの先端部に電極を外部露出状態で設け、前記電極を通じた電気的特性の変化に基づき溶融金属層表面を検知してなるので、電極が溶融金属層表面に達した時点で瞬時に検知でき、それに基づきその後の浸漬深さをリアルタイムに制御できる。   According to the method for controlling the immersion depth of the molten metal measurement probe according to claim 2, an electrode is provided at the tip of the molten metal measurement probe as the detection means in an externally exposed state, and electrical characteristics through the electrode are controlled. Since the surface of the molten metal layer is detected based on the change, it can be detected instantaneously when the electrode reaches the surface of the molten metal layer, and the subsequent immersion depth can be controlled in real time based on the detection.

請求項3に係る溶融金属測定用プローブの浸漬深さ制御方法によれば、前記溶融金属を収容して導電性を帯びた容器と前記電極との間の電気的特性を監視し、この電極−容器間の電気的特性が、前記電極が前記溶融金属層表面に接触した際の前記溶融金属層の介在による導電性に移行した時点を検知してなるので、この検知により溶融金属層表面に達した時点を瞬時に検知でき、それに基づきその後の浸漬深さをリアルタイムに制御できる。   According to the method for controlling the immersion depth of the probe for measuring a molten metal according to claim 3, the electrical characteristics between the container containing the molten metal and having conductivity and the electrode are monitored. Since the electrical characteristics between the containers are detected when the electrode is brought into conductivity due to the presence of the molten metal layer when the electrode contacts the surface of the molten metal layer, the detection reaches the surface of the molten metal layer. It is possible to instantly detect the time point, and based on that, the subsequent immersion depth can be controlled in real time.

請求項4に係る溶融金属測定用プローブの浸漬深さ制御方法によれば、溶融金属層表面にスラグ層が浮遊しており、前記電極−容器間の電気的特性が、前記電極が前記スラグ層にて電解質として機能する該スラグ層の介在による発電性から、前記電極が前記溶融金属層表面に接触した際の前記溶融金属層の介在による導電性に移行した時点を検知してなるので、スラグ層が存在しても溶融金属層表面に達した時点を瞬時に検知でき、それに基づきその後の浸漬深さをリアルタイムに制御できる。   According to the method for controlling the immersion depth of the probe for measuring a molten metal according to claim 4, the slag layer is suspended on the surface of the molten metal layer, and the electrical characteristics between the electrode and the container indicate that the electrode is the slag layer. In this case, it is detected at the time when the electrode shifts from the power generation property due to the interposition of the slag layer functioning as an electrolyte to the conductivity due to the interposition of the molten metal layer when the electrode contacts the surface of the molten metal layer. Even when a layer is present, it is possible to instantly detect when the molten metal layer surface is reached, and to control the subsequent immersion depth in real time.

請求項5に係る溶融金属測定用プローブの浸漬深さ制御方法によれば、前記電極を、プローブ先端部のセンサーを覆う紙キャップの外周面に沿って設けてなるので、紙キャップが溶けるまでの時間差がなく、外周面の電極が溶融金属層表面に達した時点で瞬時に検知でき、それに基づきその後の浸漬深さをリアルタイムに制御できる。   According to the method for controlling the immersion depth of the molten metal measurement probe according to claim 5, since the electrode is provided along the outer peripheral surface of the paper cap that covers the sensor at the tip of the probe, until the paper cap is melted. There is no time difference, and when the electrode on the outer peripheral surface reaches the surface of the molten metal layer, it can be detected instantaneously, and the subsequent immersion depth can be controlled in real time based on this.

請求項6に係る溶融金属測定用プローブの浸漬深さ制御方法によれば、前記プローブ浸漬の過程で前記検知手段から出力された溶融金属層表面の検知信号と、該プローブを下降させる速度情報とに基づき、当該浸漬の工程におけるその後の溶融金属層内への該プローブの浸漬深さを制御するので、表面検知後、そこからの浸漬量を速度との関係で演算し、更にどれだけの時間下降させるかをリアルタイムに把握し、下降量を時間で容易に制御できる。   According to the method for controlling the immersion depth of the probe for measuring molten metal according to claim 6, the detection signal of the surface of the molten metal layer output from the detection means in the process of the probe immersion, the speed information for lowering the probe, Therefore, the depth of immersion of the probe into the molten metal layer in the immersion process is controlled based on the above, so after the surface detection, the amount of immersion from there is calculated in relation to the speed, and how much time It is possible to grasp in real time whether to descend, and to easily control the amount of descending by time.

請求項7に係る溶融金属測定用プローブによれば、先端部に、該プローブを溶融金属容器内に浸漬させてゆく過程で溶融金属層表面を検知する検知手段を設けてなるので、同じく同一チャージの同一浸漬過程で、レベル測定とともにそれに基づいて浸漬深さがリアルタイムに制御され、従来のように溶融金属の量の変動による浸漬深さのズレが生じず、したがって浸漬深さをより正確に制御でき、溶鋼温度や凝固温度、サンプル性状などの測定をより確実に行うことができる。   According to the probe for measuring a molten metal according to the seventh aspect of the invention, since the tip portion is provided with the detecting means for detecting the surface of the molten metal layer in the process of immersing the probe in the molten metal container, In the same immersion process, the immersion depth is controlled in real time based on the level measurement, and there is no deviation of the immersion depth due to fluctuations in the amount of molten metal as before, so the immersion depth is more accurately controlled. It is possible to measure the molten steel temperature, solidification temperature, sample properties, etc. more reliably.

請求項8に係る溶融金属測定用プローブによれば、前記検知手段として前記溶融金属測定用プローブの先端部に電極を外部露出状態で設け、前記電極を通じた電気的特性の変化に基づき溶融金属層表面を検知してなるので、電極が溶融金属層表面に達した時点で瞬時に検知でき、それに基づきその後の浸漬深さをリアルタイムに制御できる。   According to the molten metal measuring probe according to claim 8, an electrode is externally exposed at the tip of the molten metal measuring probe as the detection means, and the molten metal layer is formed based on a change in electrical characteristics through the electrode. Since the surface is detected, it can be detected instantaneously when the electrode reaches the surface of the molten metal layer, and the subsequent immersion depth can be controlled in real time based on the detection.

請求項9に係る溶融金属測定用プローブによれば、前記電極を、プローブ先端部のセンサーを覆う紙キャップの外周面に沿って設けてなるので、紙キャップが溶けるまでの時間差がなく、外周面の電極が溶融金属層表面に達した時点で瞬時に検知でき、それに基づきその後の浸漬深さをリアルタイムに制御できる。   According to the molten metal measuring probe according to claim 9, since the electrode is provided along the outer peripheral surface of the paper cap that covers the sensor at the probe tip, there is no time difference until the paper cap melts, and the outer peripheral surface. When the electrode reaches the surface of the molten metal layer, it can be detected instantaneously, and the subsequent immersion depth can be controlled in real time based on this.

本発明の代表的実施形態に係る溶融金属測定用プローブの浸漬深さ制御方法を示す説明図。Explanatory drawing which shows the immersion depth control method of the probe for a molten metal measurement which concerns on typical embodiment of this invention. 同じく溶融金属測定用プローブの先端部分を示す説明図。Explanatory drawing which similarly shows the front-end | tip part of the probe for a molten metal measurement. 溶融金属測定用プローブの変形例を示す説明図。Explanatory drawing which shows the modification of the probe for a molten metal measurement. 溶融金属測定用プローブの他の変形例を示す説明図。Explanatory drawing which shows the other modification of the probe for molten metal measurement.

次に、本発明の実施形態を添付図面に基づき詳細に説明する。   Next, embodiments of the present invention will be described in detail with reference to the accompanying drawings.

本発明に係る溶融金属測定用プローブの浸漬深さ制御方法は、図1に示すように、溶融金属測定用プローブ1の先端部1aに該プローブを溶融金属容器内に浸漬させてゆく過程で溶融金属層Lの表面Lsを検知する検知手段2を設けたものであり、当該プローブ1の浸漬過程で検知手段2から出力された溶融金属層表面Lsの検知信号に基づき、当該浸漬工程におけるその後の溶融金属層L内への該プローブ1の浸漬深さを制御するものである。これにより、例えば溶融金属容器Cの上方から下方に向けて溶融金属測定用プローブ1を下降させてゆく際、リアルタイムに、すなわち当該チャージにおける溶融金属層L内への浸漬深さを溶融金属層表面Lsに達した時点でそれ以降の下降量(浸漬量)を演算してリアルタイムに制御・設定できるものである。   The method for controlling the immersion depth of the probe for measuring molten metal according to the present invention, as shown in FIG. 1, melts in the process of immersing the probe in the molten metal container at the tip 1a of the probe 1 for measuring molten metal. The detecting means 2 for detecting the surface Ls of the metal layer L is provided. Based on the detection signal of the molten metal layer surface Ls output from the detecting means 2 during the immersion process of the probe 1, the subsequent steps in the immersion process are performed. The immersion depth of the probe 1 in the molten metal layer L is controlled. Accordingly, for example, when the molten metal measuring probe 1 is lowered from the upper side to the lower side of the molten metal container C, the immersion depth in the molten metal layer L in the charge is determined in real time, that is, the surface of the molten metal layer. When reaching Ls, the subsequent descending amount (immersion amount) can be calculated and controlled and set in real time.

従来の検知手段は、電極が紙キャップ等の内容に内装され、溶融金属層で溶けて露出した電極を用いて上昇時に溶融金属層表面の位置を記憶し、次のチャージ時の際におよそ同じ位置であると仮定して、その記憶された情報に基づき浸漬深さを設定するものであるが、本例では、同じチャージにおける浸漬工程の初期、すなわち溶融金属層Lの表面Lsに至った段階で該表面に至ったことを検知するとともにそこから溶融金属層L内部への浸漬量を演算し、プローブ1を更にどれだけ下降させるかをリアルタイムに把握して下降量を制御可能としたものである。したがって、まさにそのチャージにおける溶融金属の状態を正確に反映したプローブ浸漬量を設定でき、溶融金属測定用プローブ1による各種測定、サンプル採取を正確かつ確実に行なうことができるのである。   In the conventional detection means, the electrode is embedded in the contents such as a paper cap, and the position of the surface of the molten metal layer is memorized at the time of ascending by using the electrode melted and exposed by the molten metal layer. The immersion depth is set based on the stored information on the assumption that it is a position. In this example, the initial stage of the immersion process in the same charge, that is, the stage where the surface Ls of the molten metal layer L is reached. In addition to detecting that the surface has been reached, the amount of immersion in the molten metal layer L is calculated from there, and it is possible to grasp in real time how much the probe 1 is further lowered and to control the amount of lowering. is there. Therefore, the probe immersion amount that accurately reflects the state of the molten metal in the charge can be set, and various measurements and sample collection by the molten metal measuring probe 1 can be performed accurately and reliably.

溶融金属容器Cは、溶融金属として溶鋼を収容する転炉や取鍋などに適用できるが、その他の溶融金属用容器に適用することもできる。以下の実施形態では、転炉での吹錬工程に適用した例を示すがこれに限定されるものではない。符号3はプローブを支持するサブランス、4はサブランスを昇降させるサブランス昇降装置、5はサブランス動作制御部、6は先端部から下方の溶鋼へ酸素を吹き出すメインランスを示している。   The molten metal container C can be applied to a converter or ladle that contains molten steel as molten metal, but can also be applied to other molten metal containers. In the following embodiment, although the example applied to the blowing process in a converter is shown, it is not limited to this. Reference numeral 3 is a sub lance for supporting the probe, 4 is a sub lance lifting device for raising and lowering the sub lance, 5 is a sub lance operation control unit, and 6 is a main lance for blowing oxygen from the tip to the molten steel below.

溶融金属測定用プローブ1は、基本的には従来から公知の種々のプローブと同じ基本構造を備えるとともに、更に上記溶融金属層表面を検知する検知手段2を設けたものである。本例のプローブ1は、基本構造として図2に示すように先端部1aに酸素センサ11、補正電極12、及び温度センサ13が耐熱セメントで固定され、これらは紙キャップ10に覆われている。また、プローブ1の胴部にはサンプル採取口14が設けられ、紙製の外装部材で塞がれている。このようなプローブ1は、溶融金属層Lの所定深さ位置まで浸漬されることで高温の溶融金属により上記紙キャップ10や外装部材が溶融消失し、センサーが露出して当該位置にて溶融金属の各種測定を行うとともにサンプル採取口14から溶融金属を取り込み、凝固温度等の測定に利用される。   The molten metal measuring probe 1 basically has the same basic structure as various conventionally known probes, and further includes detection means 2 for detecting the surface of the molten metal layer. As shown in FIG. 2, the probe 1 of this example has an oxygen sensor 11, a correction electrode 12, and a temperature sensor 13 fixed to the tip 1 a with heat-resistant cement as shown in FIG. 2, and these are covered with a paper cap 10. A sample collection port 14 is provided in the body of the probe 1 and is closed with a paper exterior member. When such a probe 1 is immersed to a predetermined depth position of the molten metal layer L, the paper cap 10 and the exterior member are melted and disappeared by the high-temperature molten metal, the sensor is exposed, and the molten metal is exposed at the position. In addition to performing various measurements, the molten metal is taken from the sample collection port 14 and used for measurement of the solidification temperature and the like.

溶融金属測定用プローブ1は、図1に示すようにサブランス3によって転炉C内部に浸漬される。具体的には、転炉Cの上側に縦方向に配設されたサブランス3の下端部に溶融金属測定用プローブ1を装着し、このサブランス3をプローブ1とともにサブランス昇降装置4で上下させることにより、転炉Cの内部にプローブ1を昇降させることができる。これによってプローブ1は、大気層Aから溶融金属表面に浮遊するスラグ層Bを通って溶融金属層Lに浸漬させ、所定深さの位置に数秒間停止して各種センサーによる測定やサンプル採取を行った後、溶融金属層Lからスラグ層Bを通って大気層Aへ引き上げられる。サブランス昇降装置4は、サーボモータやパルスモータ等を用いて構成され、サブランス動作制御部5により制御される。更に本例では、サブランス昇降装置4にはロータリーエンコーダが付設され、サブランス3の上下方向の移動距離を把握している。   The molten metal measuring probe 1 is immersed in the converter C by a sublance 3 as shown in FIG. Specifically, a molten metal measuring probe 1 is attached to the lower end portion of a sublance 3 disposed in the vertical direction above the converter C, and the sublance 3 is moved up and down by the sublance lifting device 4 together with the probe 1. The probe 1 can be moved up and down inside the converter C. As a result, the probe 1 is immersed in the molten metal layer L through the slag layer B floating on the surface of the molten metal from the atmospheric layer A, stopped at a predetermined depth for several seconds, and measured by various sensors and sampled. After that, the molten metal layer L is pulled up to the atmosphere layer A through the slag layer B. The sublance lifting / lowering device 4 is configured using a servo motor, a pulse motor, or the like, and is controlled by the sublance operation control unit 5. Furthermore, in this example, the sub lance lifting / lowering device 4 is provided with a rotary encoder to grasp the vertical movement distance of the sub lance 3.

転炉Cは、金属製の容器の内側に耐火煉瓦を積み上げて形成されており、容器自体が大地にアースされている。転炉だけでは導電性を有しないが、転炉内に溶鋼を収容することによって、転炉の内面に金属が付着し、転炉の内面と大地との間が導電性を有するようになる。即ち、転炉が大地にアースされたのと等価となる。   The converter C is formed by stacking refractory bricks inside a metal container, and the container itself is grounded to the ground. The converter alone does not have conductivity, but by containing molten steel in the converter, metal adheres to the inner surface of the converter, and the space between the inner surface of the converter and the ground has conductivity. That is, it is equivalent to the converter being grounded to the ground.

溶融金属測定用プローブ1の検知手段2は、プローブ先端部1aの上述したセンサー11、13等を覆っている紙キャップ10の外周面に沿って電極20が外部露出状態で設けられている。この電極20のリード線は、酸素センサ11、補正電極12、及び温度センサ13と同じようにプローブ1に沿って基端側に延ばされ、図示しないコネクタを介してサブランス3内の配線に接続され、該配線はサブランス動作制御部5に接続されている。   The detection means 2 of the probe 1 for measuring a molten metal is provided with an electrode 20 in an externally exposed state along the outer peripheral surface of a paper cap 10 that covers the above-described sensors 11 and 13 of the probe tip 1a. Similar to the oxygen sensor 11, the correction electrode 12, and the temperature sensor 13, the lead wire of the electrode 20 is extended to the base end side along the probe 1, and is connected to the wiring in the sub lance 3 through a connector (not shown). The wiring is connected to the sub lance operation control unit 5.

以下、溶融金属測定用プローブ1の浸漬深さを制御方法を説明する。   Hereinafter, a method for controlling the immersion depth of the molten metal measurement probe 1 will be described.

プローブ1をサブランス3とともに転炉C内部に浸漬してゆく。プローブ1は、まず大気層Aから溶融金属表面に浮遊するスラグ層Bに挿入される。転炉Cはアースに接続されており、プローブ先端の電極20と転炉Cとの間の電気的特性が、大気層Aの絶縁性からスラグ層Bの発電性に移行した時点を捉えて、スラグ層Bの表面位置を検知し、その位置を記憶する。さらにスラグ層Bを下降させて同じく電極20と転炉Cとの間の電気的特性が発電性から溶融金属層Lの導電性に移行した点を捉えて、溶融金属層の表面Lsを検知し、その位置を記憶する。   The probe 1 is immersed in the converter C together with the sublance 3. The probe 1 is first inserted into the slag layer B floating on the molten metal surface from the atmospheric layer A. The converter C is connected to the ground, and the time when the electrical characteristics between the electrode 20 at the tip of the probe and the converter C shift from the insulation of the atmospheric layer A to the power generation of the slag layer B, The surface position of the slag layer B is detected and the position is stored. Furthermore, the surface Ls of the molten metal layer is detected by lowering the slag layer B and capturing the point that the electrical characteristics between the electrode 20 and the converter C have shifted from the power generation property to the conductivity of the molten metal layer L. , Remember its position.

この溶融金属層の表面位置と前記したスラグ層Bの表面位置から、スラグ層Bの厚みを算出できる。尚、スラグ層Bの表面位置の記憶、スラグ層Bの厚みの算出は、プローブ1の下降時に行う必要はなく、各種センサーによる測定やサンプル採取後、プローブを上昇させる際に行ってもよい。また、真空炉の場合のようにスラグ層がない場合は、大気層の絶縁性から溶融金属層の導電性に移行した点を捉えることになる。   From the surface position of the molten metal layer and the surface position of the slag layer B described above, the thickness of the slag layer B can be calculated. The storage of the surface position of the slag layer B and the calculation of the thickness of the slag layer B do not have to be performed when the probe 1 is lowered, and may be performed when the probe is raised after measurement by various sensors or sample collection. Moreover, when there is no slag layer like the case of a vacuum furnace, the point which shifted to the electroconductivity of a molten metal layer from the insulation of an atmospheric layer will be caught.

電気的特性の変化を捉える検知手法は、特開2002−356709号や特開平8−49024号を参考にすることができる。特開平8−49024号では、プローブ側に2個の電極を設けて導電性を判断している。本願でもこのように2個の電極を設けてその間の導電性を判断してもよい。しかし、この場合は溶融金属層表面に届く前にスプラッシュなどで導通し、誤検知してしまう虞がある。よって、本例のように電極−容器間の電気的特性をみることがより好ましい。   Japanese Unexamined Patent Application Publication No. 2002-356709 and Japanese Unexamined Patent Application Publication No. 8-49024 can be referred to as a detection method for capturing a change in electrical characteristics. In JP-A-8-49024, two electrodes are provided on the probe side to determine conductivity. Also in the present application, two electrodes may be provided in this way to determine the conductivity between them. However, in this case, there is a risk of conducting a detection by splash or the like before reaching the surface of the molten metal layer, and erroneous detection. Therefore, it is more preferable to look at the electrical characteristics between the electrode and the container as in this example.

溶融金属層の表面Lsを検知した情報に基づき、サブランス動作制御部5がサブランスの降下速度から浸漬深さを割り出し、サブランスのその後の降下動作を制御する。つまり、溶融金属表面からの浸漬量を速度との関係で演算し、更にどれだけの時間下降させるかをリアルタイムに把握し、下降量を時間で制御可能としたものである。尚、このように下降速度から下降量を制御する方法以外に、エンコーダの回転数でその後の下降距離(浸漬深さ)を制御することもできる。   Based on the detected information on the surface Ls of the molten metal layer, the sub lance operation control unit 5 calculates the immersion depth from the sub lance descent speed, and controls the subsequent descent operation of the sub lance. That is, the amount of immersion from the surface of the molten metal is calculated in relation to the speed, and it is possible to grasp in real time how much time is lowered, and the amount of decrease can be controlled by time. In addition to the method of controlling the descending amount from the descending speed as described above, the subsequent descending distance (immersion depth) can also be controlled by the rotation speed of the encoder.

溶融金属層L内の所定深さまで浸漬されたプローブ1は、上述した通り、該深さ位置で停止し、各種センサー(符号11〜13)による酸素分圧や温度等の測定やサンプル採取口14からのサンプル採取を行った後、溶融金属層Lからスラグ層Bを通って大気層Aへ引き上げられる。   As described above, the probe 1 immersed in the molten metal layer L to a predetermined depth stops at the depth position, and measures the oxygen partial pressure and temperature by various sensors (reference numerals 11 to 13) and the sample collection port 14. After the sample is taken from the molten metal layer L, the molten metal layer L is pulled up to the atmosphere layer A through the slag layer B.

図3は、溶融金属測定用プローブ1の先端部1aの紙キャップ10に、更に内部に非接触で溶融金属層表面レベルを測定できるコイル式レベル計21を設けた例である。これは溶融金属層表面が近づくことによる磁界変動を捉えることで該表面レベルを検知するものであり、非接触で検知できることから紙キャップ10内に装着でき、上記した露出電極20による検知が万が一ご検知であっても、このレベル計21と併用することで正常動作か否か検証することができ、誤検知を防止できる。図4は、図3で説明したコイル式レベル計21のみで検知手段2を構成した例であり、これも可能である。更に、他の従来から提案されている公知の検知手段2を利用することもできる。   FIG. 3 shows an example in which a coil-type level meter 21 that can measure the surface level of the molten metal layer without contact is provided inside the paper cap 10 of the tip 1a of the probe 1 for measuring molten metal. This is to detect the fluctuation of the magnetic field due to the approach of the surface of the molten metal layer and to detect the surface level. Since it can be detected in a non-contact manner, it can be mounted in the paper cap 10 and should be detected by the exposed electrode 20 described above. Even in the case of detection, it can be verified whether or not the operation is normal by using this level meter 21 together, and erroneous detection can be prevented. FIG. 4 shows an example in which the detection means 2 is configured by only the coil type level meter 21 described in FIG. 3, and this is also possible. Furthermore, other known detection means 2 proposed in the past can be used.

以上、本発明の実施形態について説明したが、本発明はこうした実施例に何ら限定されるものではなく、本発明の要旨を逸脱しない範囲において種々なる形態で実施し得ることは勿論である。   Although the embodiments of the present invention have been described above, the present invention is not limited to these embodiments, and can of course be implemented in various forms without departing from the gist of the present invention.

1 溶融金属測定用プローブ
1a 先端部
2 検知手段
3 サブランス
4 サブランス昇降装置
5 サブランス動作制御部
6 メインランス
10 紙キャップ
11 酸素センサ
12 補正電極
13 温度センサ
14 サンプル採取口
20 電極
21 コイル式レベル計
A 大気層
B スラグ層
C 容器(転炉)
L 溶融金属層(溶鋼層)
Ls 表面
DESCRIPTION OF SYMBOLS 1 Molten metal measuring probe 1a Tip part 2 Detection means 3 Sublance 4 Sublance raising / lowering device 5 Sublance operation control part 6 Main lance 10 Paper cap 11 Oxygen sensor 12 Correction electrode 13 Temperature sensor 14 Sample sampling port 20 Electrode 21 Coil type level meter A Atmosphere layer B Slag layer C Container (converter)
L Molten metal layer (molten steel layer)
Ls surface

Claims (9)

溶融金属測定用プローブを浸漬する深さを制御する方法であって、
溶融金属測定用プローブの先端部に、該プローブを溶融金属容器内に浸漬させてゆく過程で溶融金属層表面を検知する検知手段を設け、
前記プローブ浸漬の過程で前記検知手段から出力された溶融金属層表面の検知信号に基づき、当該浸漬の工程におけるその後の溶融金属層内への該プローブの浸漬深さを制御することを特徴とする溶融金属測定用プローブの浸漬深さ制御方法。
A method for controlling the depth at which a probe for measuring a molten metal is immersed,
A detection means for detecting the surface of the molten metal layer in the process of immersing the probe in the molten metal container is provided at the tip of the probe for measuring the molten metal,
Based on the detection signal of the surface of the molten metal layer output from the detection means during the probe immersion process, the immersion depth of the probe in the molten metal layer in the subsequent immersion process is controlled. A method for controlling the immersion depth of a probe for measuring molten metal.
前記検知手段として前記溶融金属測定用プローブの先端部に電極を外部露出状態で設け、前記電極を通じた電気的特性の変化に基づき溶融金属層表面を検知してなる請求項1記載の浸漬深さ制御方法。   2. The immersion depth according to claim 1, wherein an electrode is provided at the tip of the molten metal measurement probe as the detection means in an externally exposed state, and the surface of the molten metal layer is detected based on a change in electrical characteristics through the electrode. Control method. 前記溶融金属を収容して導電性を帯びた容器と前記電極との間の電気的特性を監視し、この電極−容器間の電気的特性が、前記電極が前記溶融金属層表面に接触した際の前記溶融金属層の介在による導電性に移行した時点を検知してなる請求項2記載の浸漬深さ制御方法。   The electrical property between the electrode containing the molten metal and the conductive container and the electrode is monitored, and the electrical property between the electrode and the container is determined when the electrode contacts the surface of the molten metal layer. The immersion depth control method according to claim 2, wherein a time point at which transition to conductivity is detected due to the presence of the molten metal layer is detected. 溶融金属層表面にスラグ層が浮遊しており、前記電極−容器間の電気的特性が、前記電極が前記スラグ層にて電解質として機能する該スラグ層の介在による発電性から、前記電極が前記溶融金属層表面に接触した際の前記溶融金属層の介在による導電性に移行した時点を検知してなる請求項3記載の浸漬深さ制御方法。   A slag layer floats on the surface of the molten metal layer, and the electrical characteristics between the electrode and the container are from the power generation property due to the interposition of the slag layer in which the electrode functions as an electrolyte in the slag layer. The immersion depth control method according to claim 3, wherein the immersion depth control method is formed by detecting a time point when the molten metal layer is brought into conductivity due to the presence of the molten metal layer when contacting the surface of the molten metal layer. 前記電極を、プローブ先端部のセンサーを覆う紙キャップの外周面に沿って設けてなる請求項2〜4の何れか1項に記載の浸漬深さ制御方法。   The immersion depth control method according to any one of claims 2 to 4, wherein the electrode is provided along an outer peripheral surface of a paper cap that covers a sensor at a probe tip. 前記プローブ浸漬の過程で前記検知手段から出力された溶融金属層表面の検知信号と、該プローブを下降させる速度情報とに基づき、当該浸漬の工程におけるその後の溶融金属層内への該プローブの浸漬深さを制御することを特徴とする請求項1〜5の何れか1項に記載の浸漬深さ制御方法。   Based on the detection signal of the surface of the molten metal layer output from the detection means in the course of the probe immersion and the speed information for lowering the probe, the probe is subsequently immersed in the molten metal layer in the immersion process. The depth is controlled, The immersion depth control method according to claim 1, wherein the depth is controlled. 請求項1〜6の何れか1項に記載の浸漬深さ制御方法に用いる溶融金属測定用プローブであって、先端部に、該プローブを溶融金属容器内に浸漬させてゆく過程で溶融金属層表面を検知する検知手段を設けてなることを特徴とする溶融金属測定用プローブ。   It is a probe for a molten metal measurement used for the immersion depth control method of any one of Claims 1-6, Comprising: Molten metal layer in the process in which this probe is immersed in a molten metal container at the front-end | tip part A probe for measuring a molten metal, comprising a detecting means for detecting a surface. 前記検知手段として前記溶融金属測定用プローブの先端部に電極を外部露出状態で設け、前記電極を通じた電気的特性の変化に基づき溶融金属層表面を検知してなる請求項7記載の溶融金属測定用プローブ。   The molten metal measurement according to claim 7, wherein an electrode is externally exposed at the tip of the molten metal measurement probe as the detection means, and the surface of the molten metal layer is detected based on a change in electrical characteristics through the electrode. Probe. 前記電極を、プローブ先端部のセンサーを覆う紙キャップの外周面に沿って設けてなる請求項8記載の溶融金属測定用プローブ。   The molten metal measuring probe according to claim 8, wherein the electrode is provided along an outer peripheral surface of a paper cap that covers a sensor at a tip portion of the probe.
JP2010287980A 2010-12-24 2010-12-24 Method for controlling immersion depth of probe for measuring molten metal, and probe for measuring molten metal used therefor Active JP5375815B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010287980A JP5375815B2 (en) 2010-12-24 2010-12-24 Method for controlling immersion depth of probe for measuring molten metal, and probe for measuring molten metal used therefor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010287980A JP5375815B2 (en) 2010-12-24 2010-12-24 Method for controlling immersion depth of probe for measuring molten metal, and probe for measuring molten metal used therefor

Publications (2)

Publication Number Publication Date
JP2012137309A true JP2012137309A (en) 2012-07-19
JP5375815B2 JP5375815B2 (en) 2013-12-25

Family

ID=46674853

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010287980A Active JP5375815B2 (en) 2010-12-24 2010-12-24 Method for controlling immersion depth of probe for measuring molten metal, and probe for measuring molten metal used therefor

Country Status (1)

Country Link
JP (1) JP5375815B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014031564A (en) * 2012-08-06 2014-02-20 Nippon Steel & Sumitomo Metal Blowing method of converter

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002356709A (en) * 2001-05-25 2002-12-13 Heraeus Electro Nite Kk Method for measuring slag layer thickness, and method and apparatus for measuring surface level positions of slag layer and molten metal layer surface
WO2010073304A1 (en) * 2008-12-22 2010-07-01 川惣電機工業株式会社 Molten metal measuring system and probe used in the system

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002356709A (en) * 2001-05-25 2002-12-13 Heraeus Electro Nite Kk Method for measuring slag layer thickness, and method and apparatus for measuring surface level positions of slag layer and molten metal layer surface
WO2010073304A1 (en) * 2008-12-22 2010-07-01 川惣電機工業株式会社 Molten metal measuring system and probe used in the system

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014031564A (en) * 2012-08-06 2014-02-20 Nippon Steel & Sumitomo Metal Blowing method of converter

Also Published As

Publication number Publication date
JP5375815B2 (en) 2013-12-25

Similar Documents

Publication Publication Date Title
EP2564173B1 (en) Measurements in metallurgical vessels
CA2669952C (en) Container for molten metal, use of the container and method for determining an interface layer
JP5263905B2 (en) Molten metal measurement system and probe used in the system
JP5124894B2 (en) Slag layer thickness or slag layer thickness and molten metal layer surface level position measuring method and apparatus
JP3891592B2 (en) Method and infiltration meter for measuring electrochemical activity
JP5375815B2 (en) Method for controlling immersion depth of probe for measuring molten metal, and probe for measuring molten metal used therefor
CN110230975B (en) Steel slag layer thickness measuring device
JP3138953B2 (en) Slag thickness measuring device
JP4181374B2 (en) Method for measuring surface position of molten steel layer and / or thickness of slag layer, apparatus thereof and probe used therefor
CN205940705U (en) Detection of electroslag furnace liquid level, temperature measurement, sampling device
CA2709206A1 (en) Assembly for measurement of a metal level in a reduction cell
JP3672632B2 (en) Consumable probe for simultaneous measurement of molten slag temperature and electrical conductivity, and method for simultaneous measurement of molten slag temperature and electrical conductivity
JPH04348230A (en) Dipping type level gauge for high temperature molten metal, dipping type temperature measuring apparatus with level measuring function for high temperature molten metal and surveillance probe with level measuring function
JP2012251884A (en) Boundary position detection method, boundary position detection system and data measurement probe used in boundary position detection system
CN220507939U (en) Measuring gun
KR101577809B1 (en) Combination probe capable of measuring thickness of slag in metal melts
JP3744426B2 (en) Method and apparatus for measuring slag oxidation
KR20010055824A (en) Thicknes measurement apparatus of teel making slag
JPH10122934A (en) Method and device for measuring level of molten body of metal and the like
JP2003207473A (en) Method and apparatus for measurement of basicity of slag

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130611

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130807

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130827

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130909

R150 Certificate of patent or registration of utility model

Ref document number: 5375815

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250