JP2012136445A - Novel compound derived from sargassum patens and its use as glycolytic enzyme inhibitor - Google Patents

Novel compound derived from sargassum patens and its use as glycolytic enzyme inhibitor Download PDF

Info

Publication number
JP2012136445A
JP2012136445A JP2010288002A JP2010288002A JP2012136445A JP 2012136445 A JP2012136445 A JP 2012136445A JP 2010288002 A JP2010288002 A JP 2010288002A JP 2010288002 A JP2010288002 A JP 2010288002A JP 2012136445 A JP2012136445 A JP 2012136445A
Authority
JP
Japan
Prior art keywords
amylase
compound
ethanol
inhibitor
extract
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2010288002A
Other languages
Japanese (ja)
Inventor
Yasuko Konishi
康子 小西
Toshiki Enomoto
俊樹 榎本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ishikawa Prefectural Public University Corp
Original Assignee
Ishikawa Prefectural Public University Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ishikawa Prefectural Public University Corp filed Critical Ishikawa Prefectural Public University Corp
Priority to JP2010288002A priority Critical patent/JP2012136445A/en
Publication of JP2012136445A publication Critical patent/JP2012136445A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Medicines Containing Plant Substances (AREA)
  • Acyclic And Carbocyclic Compounds In Medicinal Compositions (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

PROBLEM TO BE SOLVED: To obtain a component having useful functions from Sargassum patens, and to provide useful applications of Sargassum patens or a processed product thereof.SOLUTION: An ethanol extract of Sargassum patens contains a novel compound 2-(4-(3,5-dihydroxy-phenoxy)-3,5-dihydroxy-phenoxy)benzene-1,3,5-triol. The compound and the ethanol extract of Sargassum patens have excellent glycolytic enzyme inhibitory effect and hypoglycemic effect.

Description

本発明は、ヤツマタモク由来新規化合物、該化合物を含有する組成物、並びに、該化合物の糖分解酵素阻害剤及び血糖値上昇抑制剤としての用途に関する。   The present invention relates to a novel compound derived from Yatsuma Tamoku, a composition containing the compound, and uses of the compound as a glycolytic enzyme inhibitor and a blood glucose level increase inhibitor.

ヤツマタモク (学名= Sargassum patens C. Agardh)はホンダワラ属に属する海藻である。ヤツマタモクは日本各地に生息し、一部の地域では藻体の先端部を食用されることがある。石川県能登地方では、絹モズクの栽培においてモズクが着床する足場として用いられているが、ヤツマタモク自体が食用されることは一般的ではない。 Yatsuma Tamoku (Scientific name = Sargassum patens C. Agardh) is a seaweed belonging to the genus Honda. Yatsuma Tamoku lives in various parts of Japan, and in some areas, the tip of the alga body may be edible. In the Noto region of Ishikawa Prefecture, it is used as a scaffold for mozuku in the cultivation of silk mozuku, but it is not common for yamtamamok itself to be edible.

一方、一部の海藻類の抽出物がα-グルコシダーゼ等の糖分解酵素を阻害することは知られている(特許文献1、2等)。しかしながら、ヤツマタモクに含まれる成分の機能性についてはほとんど知られていない。非特許文献1において、ヤツマタモクの藻体の粉末をラットに長期投与して血中脂質濃度を低下させる可能性が示唆されているものの、そのほかにヤツマタモクの有用性に関する報告はない。   On the other hand, it is known that some seaweed extracts inhibit glycolytic enzymes such as α-glucosidase (Patent Documents 1 and 2, etc.). However, little is known about the functionality of the ingredients contained in Yatsuma Tamoku. Non-patent document 1 suggests that long-term administration of algal body powder of Yamagatamok to rats may reduce the blood lipid concentration, but there is no report on the usefulness of Yamatamamok.

特開2002-212095号公報Japanese Patent Laid-Open No. 2002-212095 特開2006-104100号公報JP 2006-104100 A

Fisheries Science, 60, 8.-88 (1994)Fisheries Science, 60, 8.-88 (1994)

本発明は、有用な機能を有する成分をヤツマタモクから取得することを目的とする。本発明はまたヤツマタモク又はその処理物の有用な用途を提供することを目的とする。   An object of this invention is to acquire the component which has a useful function from Yamagatamok. Another object of the present invention is to provide a useful application of Yatsuma Tamoku or a processed product thereof.

本発明者らは鋭意検討した結果、ヤツマタモクのエタノール抽出物のα-アミラーゼ阻害作用が他の海藻のエタノール抽出物と比較して顕著に高いこと、ヤツマタモクのエタノール抽出物に由来する成分の経口摂取により血糖値上昇を抑制することを見出した。更に本発明者らは、これらの作用の原因となる化合物が、下記式I’で表される構造を有する新規なフロロタンニン化合物であることを見出した。本発明は以下の発明を包含する。   As a result of intensive studies, the present inventors have found that the α-amylase inhibitory action of the ethanol extract of Yamagatamok is significantly higher than that of other seaweed ethanol extracts, and the ingestion of components derived from the ethanol extract of Yamamatsumok Was found to suppress an increase in blood glucose level. Furthermore, the present inventors have found that the compound responsible for these actions is a novel fluorotannin compound having a structure represented by the following formula I ′. The present invention includes the following inventions.

(1) 式I’:

Figure 2012136445
[式中、R1、R2、R3、R4、R5、R6及びR7は、それぞれ独立に、水素、又は -C(=O)-R’で表されるアシル基であり、該アシル基中、-R’は直鎖状又は分岐鎖状の飽和又は不飽和の炭化水素基であり、該炭化水素基中の水素は1つ以上の置換基により置換されていてもよく、-R’全体の炭素数は1〜20である]
で表される化合物又は該化合物の塩。
(2) 上記式I’で表される化合物又は該化合物の塩を、固形分あたり0.3重量%以上の濃度で含有する組成物。
(3) 経口摂取用組成物である、(2)の組成物。
(4) エタノール又はエタノール含有溶液によるヤツマタモクの抽出物。
(5) (1)の化合物又は塩を有効成分として含む糖分解酵素の阻害剤。
(6) 糖分解酵素がα-アミラーゼ又はα-グルコシダーゼである、(5)の阻害剤。
(7) (1)の化合物又は塩を有効成分として含む血糖値上昇抑制剤。 (1) Formula I ':
Figure 2012136445
[Wherein R 1 , R 2 , R 3 , R 4 , R 5 , R 6 and R 7 are each independently hydrogen or an acyl group represented by —C (═O) —R ′. In the acyl group, —R ′ is a linear or branched saturated or unsaturated hydrocarbon group, and the hydrogen in the hydrocarbon group may be substituted with one or more substituents , -R ′ has 1 to 20 carbon atoms in total]
Or a salt of the compound.
(2) A composition comprising the compound represented by the formula I ′ or a salt of the compound at a concentration of 0.3% by weight or more per solid content.
(3) The composition according to (2), which is a composition for ingestion.
(4) An extract of Yamamamok by ethanol or ethanol-containing solution.
(5) A glycolytic enzyme inhibitor comprising the compound or salt of (1) as an active ingredient.
(6) The inhibitor according to (5), wherein the glycolytic enzyme is α-amylase or α-glucosidase.
(7) A blood glucose level increase inhibitor comprising the compound or salt of (1) as an active ingredient.

本発明によれば、糖分解酵素阻害作用及び血糖値上昇抑制作用を有する新規化合物、及び該化合物を含有する組成物が提供される。   ADVANTAGE OF THE INVENTION According to this invention, the novel compound which has a glycolytic enzyme inhibitory effect and a blood glucose level raise inhibitory effect, and the composition containing this compound are provided.

海藻からの抽出物の調製手順を示す。The preparation procedure of the extract from seaweed is shown. 各種抽出液によるα-アミラーゼ活性の阻害率を示す。The inhibition rate of α-amylase activity by various extracts is shown. ヤツマタモクエタノール抽出物からの溶媒抽出による活性成分の単離手順を示す。The isolation | separation procedure of the active ingredient by the solvent extraction from a Yatsuma Tamoku ethanol extract is shown. ヤツマタモクエタノール抽出物から得られた酢酸エチル画分のHPLCクロマトグラムを示す。The HPLC chromatogram of the ethyl acetate fraction obtained from the Yatsuma Tamoku ethanol extract is shown. HPLC_01のα-アミラーゼ阻害作用を反応速度的解析に用いられた、基質 (アミロペクチン) 濃度([Amylopectin])と反応物 (マルトース) 生成速度(M/min)との関係を示す。The relationship between the substrate (amylopectin) concentration ([Amylopectin]) and the reaction product (maltose) production rate (M / min) used in the reaction rate analysis of the α-amylase inhibitory action of HPLC_01 is shown. HPLC_01のα-アミラーゼ阻害作用を反応速度的解析に用いられた、基質 (アミロペクチン) 濃度([Amylopectin])と反応物 (マルトース) 生成速度(M/min)との両逆数プロットを示す。The reciprocal plot of the substrate (amylopectin) concentration ([Amylopectin]) and the reaction product (maltose) production rate (M / min) used for the kinetic analysis of the α-amylase inhibitory action of HPLC_01 is shown. HPLC_01の、ヒト唾液α-アミラーゼによるアミロペクチン消化の遅延効果を示す。The delayed effect of HPLC_01 of amylopectin digestion by human salivary α-amylase is shown. HPLC_01の、ヒト膵臓α-アミラーゼによるアミロペクチン消化の遅延効果を示す。The delayed effect of HPLC_01 digestion of amylopectin by human pancreatic α-amylase is shown. マウスへの酢酸エチル画分の経口投与による血糖値上昇抑制効果を示す。1 shows the effect of suppressing an increase in blood glucose level by oral administration of an ethyl acetate fraction to a mouse. 1H-NMR及び13C-NMRの化学シフト値の構造式における帰属を示す。 1 shows assignments in chemical formulas of chemical shift values of 1 H-NMR and 13 C-NMR. ヤツマタモクの10%エタノール抽出物によるα-アミラーゼ活性の阻害率を示す。The inhibition rate of α-amylase activity by 10% ethanol extract of Yatsuma Tamoku is shown.

本発明の化合物は、上記一般式I’で表される構造を有する。
R1、R2、R3、R4、R5、R6及びR7は、それぞれ独立に、水素、又は -C(=O)-R’で表されるアシル基である。
The compound of the present invention has a structure represented by the above general formula I ′.
R 1 , R 2 , R 3 , R 4 , R 5 , R 6 and R 7 are each independently hydrogen or an acyl group represented by —C (═O) —R ′.

アシル基中の-R’は、直鎖状又は分岐鎖状の飽和又は不飽和の炭化水素基であり、該炭化水素基中の水素は1つ以上の置換基により置換されていてもよく、-R’全体の炭素数(置換基がある場合は置換基の炭素数も含む)は1〜20である。該炭化水素基としてはメチル基、エチル基、プロピル基、ブチル基、ペンチル基、ヘキシル基、ヘプチル基、オクチル基、ノニル基、デシル基、フェニル基、ベンジル基、t-ブチル基等が挙げられる。置換基としては水酸基、アミノ基、カルボキシ基等が挙げられる。置換基の数は特に限定されないが、通常は3以下、好ましくは2以下、より好ましくは1又は0である。-R’全体の炭素数(置換基がある場合は置換基の炭素数も含む)はより好ましくは1〜10である。   -R 'in the acyl group is a linear or branched saturated or unsaturated hydrocarbon group, and the hydrogen in the hydrocarbon group may be substituted with one or more substituents, The total number of carbon atoms in -R '(including the number of carbon atoms in the substituent group if any) is 1 to 20. Examples of the hydrocarbon group include methyl group, ethyl group, propyl group, butyl group, pentyl group, hexyl group, heptyl group, octyl group, nonyl group, decyl group, phenyl group, benzyl group, t-butyl group and the like. . Examples of the substituent include a hydroxyl group, an amino group, and a carboxy group. The number of substituents is not particularly limited, but is usually 3 or less, preferably 2 or less, more preferably 1 or 0. The total number of carbon atoms in -R '(including the number of carbon atoms of the substituent, if any) is more preferably 1-10.

R1、R2、R3、R4、R5、R6及びR7が全て水素である下記式I:

Figure 2012136445
で表される化合物は、2-(4-(3,5-ジヒドロキシフェノキシ)-3,5-ジヒドロキシフェノキシ)ベンゼン-1,3,5-トリオールと命名されるフロロタンニン化合物である。該化合物は、下記実験2.7に示す物性値を示す化合物である。 R 1 , R 2 , R 3 , R 4 , R 5 , R 6 and R 7 are all hydrogen and have the following formula I:
Figure 2012136445
Is a fluorotannin compound named 2- (4- (3,5-dihydroxyphenoxy) -3,5-dihydroxyphenoxy) benzene-1,3,5-triol. The compound is a compound having physical property values shown in Experiment 2.7 below.

式Iで表される化合物はヤツマタモクから単離又は高濃度化することにより製造することができる。ヤツマタモクから式Iで表される化合物を単離する方法としては、ヤツマタモクの藻体の乾燥物のエタノール又はエタノール含有溶媒による抽出物を調製し、当該抽出物から溶媒を留去し,残留物にメタノール水溶液及びn-ヘキサンを添加混合したのち上層(n-ヘキサン層)と下層(水層)に分離させ、下層(水層)を取得し、当該下層(水層)にクロロホルムを添加混合したのち上層(水層)と下層(クロロホルム層)に分離させ、上層(水層)を取得、当該上層(水層)に酢酸エチルを添加混合したのち上層(酢酸エチル層)と下層(水層)に分離させ、上層(酢酸エチル層)を取得する工程を含む方法が挙げられる。当該上層(酢酸エチル層)から適宜溶媒を除去し、必要に応じてカラムクロマトグラフィーにより式Iで表される化合物を含有する画分を得ることができる。   The compound represented by Formula I can be produced by isolating or increasing the concentration from Yatsuma Tamoku. As a method for isolating the compound represented by the formula I from Yatsuma Tamoku, an extract of the dried alga body of Yatsuma Tamoku with ethanol or an ethanol-containing solvent is prepared, and the solvent is distilled off from the extract to obtain a residue. After adding and mixing aqueous methanol solution and n-hexane, the upper layer (n-hexane layer) and the lower layer (aqueous layer) were separated to obtain the lower layer (aqueous layer), and chloroform was added to the lower layer (aqueous layer) and mixed. Separate the upper layer (aqueous layer) and the lower layer (chloroform layer) to obtain the upper layer (aqueous layer), add ethyl acetate to the upper layer (aqueous layer), mix, and then mix the upper layer (ethyl acetate layer) and the lower layer (aqueous layer). Examples of the method include a step of separating and obtaining an upper layer (ethyl acetate layer). A solvent is appropriately removed from the upper layer (ethyl acetate layer), and a fraction containing the compound represented by formula I can be obtained by column chromatography as necessary.

式Iで表される化合物を適宜誘導体化することにより、7つの水酸基の水素のうち1つ以上を-C(=O)-R’で表されるアシル基により置換することができる。誘導体化のための方法は特に限定されず、水酸基をアシル基により保護するための通常の方法により行うことができる。   By appropriately derivatizing the compound represented by Formula I, one or more of the hydrogens of the seven hydroxyl groups can be substituted with an acyl group represented by -C (= O) -R '. The method for derivatization is not particularly limited, and can be performed by a usual method for protecting a hydroxyl group with an acyl group.

式I又はI’で表される化合物はいずれも適宜塩の形態で提供されてもよい。塩は飲食品、医薬品等の成分として経口摂取可能な塩であれば特に限定されない。経口摂取可能な塩としては、ナトリウム塩、カリウム塩等が挙げられる。   Any compound of formula I or I 'may be provided in the form of a salt as appropriate. The salt is not particularly limited as long as it is a salt that can be taken orally as a component of food and drink, pharmaceuticals and the like. Examples of salts that can be taken orally include sodium salts and potassium salts.

式I又はI’で表される化合物又はその塩は必ずしも純粋な化合物として提供される必要はなく、粗精製物として提供されてもよい。例えば式I又はI’で表される化合物又はその塩を固形分あたり60重量%以上、より好ましくは80重量%以上、より好ましくは90重量%以上の濃度で含有する粗精製物も「式I’で表される化合物」、「式Iで表される化合物」、「式I’で表される化合物の塩」、「式Iで表される化合物の塩」又は後述する式I又はI’で表される化合物又はその塩を含有する組成物の範囲に包含される。   The compound represented by the formula I or I 'or a salt thereof is not necessarily provided as a pure compound, and may be provided as a crude product. For example, a crude product containing a compound represented by the formula I or I ′ or a salt thereof at a concentration of 60% by weight or more, more preferably 80% by weight or more, more preferably 90% by weight or more per solid content is also represented by “Formula I 'Compound represented by', 'compound represented by formula I', 'salt of compound represented by formula I', 'salt of compound represented by formula I' or formula I or I 'described later In the range of the composition containing the compound represented by these, or its salt.

式I又はI’で表される化合物又はその塩は、水との水和物や、低級アルコール等との溶媒和物の形態で存在していてもよい。水和物又は溶媒和物は医薬、飲食品等の用途に許容される水和物又は溶媒和物であれば特に限定されない。すなわち、本発明における「式I’で表される化合物」、「式Iで表される化合物」、「式I’で表される化合物の塩」、「式Iで表される化合物の塩」には、それらの水和物又は溶媒和物の形態も下位概念として包含される。   The compound represented by the formula I or I ′ or a salt thereof may exist in the form of a hydrate with water or a solvate with a lower alcohol or the like. The hydrate or solvate is not particularly limited as long as it is a hydrate or solvate that is acceptable for uses such as pharmaceuticals and foods and drinks. That is, in the present invention, “a compound represented by formula I ′”, “a compound represented by formula I”, “a salt of a compound represented by formula I ′”, “a salt of a compound represented by formula I” These include hydrate or solvate forms as subordinate concepts.

式I又はI’で表される化合物又はその塩を天然のヤツマタモクにおける含有濃度よりも高い濃度で含有する組成物もまたα-アミラーゼ阻害作用等の有利な作用を有することが下記実施例において確認されている。このような組成物としては、式I又はI’で表される化合物又はその塩を、組成物の固形分全量あたり好ましくは0.3重量%以上の濃度、より好ましくは0.35重量%以上、特に好ましくは1.0重量%以上、最も好ましくは2.0重量%以上の濃度で含有する組成物である。当該組成物中の式I又はI’で表される化合物又はその塩の濃度の上限は特に限定されず、組成物の固形分全量あたり100重量%までの値であることができるが、典型的には60重量%未満である。   It is confirmed in the following examples that a composition containing a compound represented by the formula I or I ′ or a salt thereof at a concentration higher than that in natural yamatamamok also has an advantageous action such as an α-amylase inhibitory action. Has been. As such a composition, the compound represented by the formula I or I ′ or a salt thereof is preferably at a concentration of 0.3% by weight or more, more preferably 0.35% by weight or more, particularly preferably the total solid content of the composition. A composition containing 1.0% by weight or more, most preferably 2.0% by weight or more. The upper limit of the concentration of the compound represented by the formula I or I ′ in the composition or a salt thereof is not particularly limited, and can be a value up to 100% by weight based on the total solid content of the composition. Is less than 60% by weight.

本発明または、エタノール又はエタノール含有溶液によるヤツマタモクの抽出物を提供する。エタノール含有溶液としては、溶媒全量に対してエタノールを10(v/v)%以上、より好ましくは50(v/v)%以上の濃度で含有し、残部がエタノールと相溶性のある1種以上の他の溶媒であるエタノール含有溶液が挙げられる。前記「エタノールと相溶性のある1種以上の他の溶媒」は好ましくは水である。ヤツマタモクのエタノールによる抽出物には、固形分全量あたり約2.1重量%の式Iで表される化合物が含まれ、ヤツマタモクの10(v/v)%エタノール水溶液による抽出物には、固形分全量あたり約0.35重量%の式Iで表される化合物が含まれる。本発明のヤツマタモク抽出物は、適宜抽出溶媒を除去した形態で用いられてもよいし、更に他の成分と組み合わされた形態で用いられてもよい。本発明のヤツマタモク抽出物は分解酵素阻害剤、血糖値上昇抑制剤の有効成分として有用である。   The present invention or an extract of Yatsuma Tamoku by ethanol or an ethanol-containing solution is provided. The ethanol-containing solution contains ethanol at a concentration of 10 (v / v)% or more, more preferably 50 (v / v)% or more with respect to the total amount of the solvent, and the balance is one or more types compatible with ethanol. An ethanol-containing solution that is another solvent may be mentioned. The “one or more other solvents compatible with ethanol” is preferably water. The extract of Yatsuma Tamoku with ethanol contains about 2.1% by weight of the compound represented by Formula I per total solid content, and the extract of Yatsuma Tamoku with 10 (v / v)% ethanol aqueous solution contains About 0.35% by weight of the compound of formula I is included. The Yatsuma Tamoku extract of the present invention may be used in a form in which the extraction solvent is appropriately removed, or may be used in a form combined with other components. The extract of Yatsuma Tamoku of the present invention is useful as an active ingredient of a degrading enzyme inhibitor and a blood sugar level increase inhibitor.

上記組成物及び抽出物は、経口摂取用組成物であることが好ましい。経口摂取用組成物とは、飲食品組成物や、経口投与用の医薬品組成物が挙げられる。経口摂取用組成物は、式I又はI’で表される化合物又はその塩、或いはヤツマタモク抽出物と、飲食品又は医薬品として許容される経口摂取可能な他の成分とを含む。   It is preferable that the said composition and extract are compositions for oral consumption. Examples of the composition for ingestion include a food and drink composition and a pharmaceutical composition for oral administration. The composition for oral ingestion contains the compound represented by the formula I or I 'or a salt thereof, or an extract of Yamatamamok, and other components that can be orally ingested as food or drink or pharmaceuticals.

本発明はまた、式I又はI’で表される化合物又はその塩を有効成分として含む糖分解酵素の阻害剤を提供する。糖分解酵素としてはα-アミラーゼ、α-グルコシダーゼ(マルターゼ活性、スクラーゼ活性等)が挙げられる。本発明の糖分解酵素阻害剤は、ヒト等の哺乳動物に摂取され、in vivoにて糖分解酵素による糖の分解を阻害する。そのため、本発明の糖分解酵素阻害剤は、糖分解酵素を阻害することにより改善される疾患又は症状の予防又は治療の目的に用いられることができる。このような疾患又は症状としては、糖尿病や、血糖値の上昇が挙げられる。本発明の糖分解酵素阻害剤はin vitroにおいて糖分解酵素を阻害するための試薬として用いられてもよい。   The present invention also provides a glycolytic enzyme inhibitor comprising a compound represented by the formula I or I 'or a salt thereof as an active ingredient. Examples of the glycolytic enzyme include α-amylase and α-glucosidase (maltase activity, sucrase activity, etc.). The glycolytic enzyme inhibitor of the present invention is ingested by mammals such as humans and inhibits the degradation of sugar by a glycolytic enzyme in vivo. Therefore, the glycolytic enzyme inhibitor of the present invention can be used for the purpose of preventing or treating a disease or symptom that is improved by inhibiting a glycolytic enzyme. Such diseases or symptoms include diabetes and an increase in blood glucose level. The glycolytic enzyme inhibitor of the present invention may be used as a reagent for inhibiting a glycolytic enzyme in vitro.

本発明はまた、式I又はI’で表される化合物又はその塩を有効成分として含む血糖値上昇抑制剤に関する。   The present invention also relates to a blood glucose level increase inhibitor comprising a compound represented by the formula I or I 'or a salt thereof as an active ingredient.

本発明の糖分解酵素の阻害剤及び血糖値上昇抑制剤は医薬品の形態であってもよいし、飲食品の形態であってもよい。医薬品は、種々の投与経路に適した形態に製剤化されたものであってよく、液剤、錠剤、顆粒剤等の経口剤、注射剤等の非経口剤等の形態が挙げられる。これらの医薬品製剤は、式I又はI’で表される化合物又はその塩、或いは該化合物又は該塩を含む組成物もしくは抽出物と、賦形剤等の製薬上許容される他の成分とを含む。飲食品としては、飲料、錠剤、顆粒、その他の、通常の飲食品の形態のものが挙げられる。これらの飲食品は、式I又はI’で表される化合物又はその塩、或いは該化合物又は該塩を含む組成物もしくは抽出物と、食品として許容される他の成分とを含む。   The inhibitor of glycolytic enzyme and the inhibitor of increase in blood glucose level of the present invention may be in the form of a pharmaceutical product or food or drink. The pharmaceutical may be formulated into a form suitable for various administration routes, and forms such as oral preparations such as liquids, tablets and granules, and parenteral preparations such as injections. These pharmaceutical preparations comprise a compound represented by the formula I or I ′ or a salt thereof, or a composition or extract containing the compound or the salt, and other pharmaceutically acceptable components such as excipients. Including. Examples of the food and drink include beverages, tablets, granules, and other ordinary food and drink. These foods and drinks contain a compound represented by the formula I or I 'or a salt thereof, or a composition or extract containing the compound or the salt, and other ingredients acceptable as food.

実験1: スクリーニング
蒸留水(DW)、エタノール又はジメチルスルホキシド(DMSO)を抽出溶媒として用いて、海藻類から抽出物を調製し、各海藻抽出物のαアミラーゼ阻害活性を測定した。蒸留水による抽出は25℃又は85℃にて行った。エタノール及びDMSOによる抽出は25℃にて行った。
Experiment 1: Screening distilled water (DW), ethanol or dimethyl sulfoxide (DMSO) was used as an extraction solvent to prepare extracts from seaweeds, and the α-amylase inhibitory activity of each seaweed extract was measured. Extraction with distilled water was performed at 25 ° C or 85 ° C. Extraction with ethanol and DMSO was performed at 25 ° C.

用いた海藻は、スギモク、ヤナギモク、トゲモク、ヨレモク、ウミトラノオ、ヤツマタモク、アオノリ、ハバノリ、モズク、クロメ、メカブ、ギンバサ、ワカメ、カジメ、キヌモズクである。   The seaweed used was Sugimok, Yanagimok, Togemoku, Yoremoku, Umitorano, Yatsuma Tamoku, Aonori, Habanori, Mozuku, Kurome, Mekabu, Gimbasa, Wakame, Kajime, Kinumozuku.

抽出物は以下の手順により調製した。概要を図1に示す。具体的には、採取された海藻を流水にて軽く洗浄し、-80℃にて凍結保存した。次いで凍結乾燥し、乾燥物をブレンダーにて粉砕し、0.5mm メッシュのふるいを通過させ、粉末サンプルを得た。粉末サンプル(重量 1.0g)と抽出溶媒 (約40mL) とを混合し、混合物をホモジナイザーにより粉砕した。ただし抽出溶媒が85℃の蒸留水である場合は、ホモジナイザーによる粉砕の前に混合物を85℃にて1時間加温保持した。ホモジナイザーによる粉砕物を25℃にて1時間振とうしたのち、遠心分離した。沈殿物に再び抽出溶媒を加えて抽出操作を繰り返した。遠心分離による上清液を一つにまとめたのち、抽出溶媒を加えて100mLとし、粉末サンプル1gから100mLの海藻抽出液を得た。   The extract was prepared by the following procedure. An overview is shown in FIG. Specifically, the collected seaweed was gently washed with running water and stored frozen at -80 ° C. Subsequently, it was freeze-dried, the dried product was pulverized with a blender, and passed through a 0.5 mm mesh sieve to obtain a powder sample. The powder sample (weight 1.0 g) and the extraction solvent (about 40 mL) were mixed, and the mixture was pulverized with a homogenizer. However, when the extraction solvent was distilled water at 85 ° C., the mixture was kept warm at 85 ° C. for 1 hour before pulverization with a homogenizer. The pulverized product by the homogenizer was shaken at 25 ° C. for 1 hour and then centrifuged. The extraction solvent was added again to the precipitate, and the extraction operation was repeated. After the supernatants by centrifugation were combined into one, the extraction solvent was added to make 100 mL, and 100 mL of seaweed extract was obtained from 1 g of the powder sample.

比較のために、α-アミラーゼ阻害活性を有することが知られている緑茶、グァバ茶、月桂樹葉についても同様の手順で抽出物を調製した。   For comparison, extracts were prepared in the same manner for green tea, guava tea, and bay leaves known to have α-amylase inhibitory activity.

α-アミラーゼ阻害活性は、ヒト唾液α-アミラーゼを用いたヨウ素デンプン反応法により測定した。具体的には、抽出溶媒ごとに下表のNo.1 列のように海藻抽出物と、100nMヒト唾液α-アミラーゼ(α-Amylase From Saliva、シグマ社製)と、20mMトリス塩酸緩衝液(pH7.2)とを混合した試料液に、デンプン(可溶性デンプン、ナカライテスク社製)を、デンプン添加後の試料液の容積が50μL、デンプン濃度が0.1重量%となるように添加し、室温にて酵素反応を進行させた。またポジティブ・コントロールとして下表のNo.2 列のように、ブランクとして下表のNo.3 列のように、それぞれの溶液を添加し、室温にて反応を進行させた。デンプン添加から10分後にヨウ素溶液 (0.1(w/v)% ヨウ素と1(w/v)%ヨウ化カリウムを含む水溶液、いずれもナカライテスク社製) 150μL を添加した。ヨウ素添加後の試料の595nmでの吸光度 (A595) をプレートリーダーを用いて測定した。 The α-amylase inhibitory activity was measured by an iodine starch reaction method using human saliva α-amylase. Specifically, for each extraction solvent, seaweed extract, 100 nM human saliva α-amylase (α-Amylase From Saliva, manufactured by Sigma), 20 mM Tris-HCl buffer (pH 7) .2) and starch (soluble starch, manufactured by Nacalai Tesque) are added to the sample solution so that the volume of the sample solution after starch addition is 50 μL and the starch concentration is 0.1% by weight. The enzymatic reaction was allowed to proceed. Moreover, each solution was added as positive control as No. 2 row | line | column of the following table, and as blank No. 3 row | line | column of the following table as a blank, and reaction was advanced at room temperature. Ten minutes after starch addition, 150 μL of an iodine solution (an aqueous solution containing 0.1 (w / v)% iodine and 1 (w / v)% potassium iodide, both manufactured by Nacalai Tesque) was added. The absorbance at 595 nm (A 595 ) of the sample after addition of iodine was measured using a plate reader.

Figure 2012136445
Figure 2012136445

α-アミラーゼの阻害活性 (%)は以下の算式により測定した。
(α-アミラーゼの阻害活性)=(No.1のA595−No.3のA595)/(No.2のA595−No.3のA595)×100
The inhibitory activity (%) of α-amylase was measured by the following formula.
(Inhibition activity of α-amylase) = (No. 1 A 595 -No. 3 A 595 ) / (No. 2 A 595 -No. 3 A 595 ) × 100

阻害率を図2に示す。阻害活性が特に高いヤナギモク、ヨレモク、ヤツマタモク、クロメ、カジメのうち、ヤナギモク及びヨレモクについては蒸留水抽出物、85℃水抽出物及びエタノール抽出物が、ヤツマタモクについてはエタノール抽出物のみが、クロメ及びカジメについては蒸留水抽出物及び85℃水抽出物が、それぞれ、高いα-アミラーゼ阻害作用を示した。これらの海藻のうちヤツマタモク、クロメ及びカジメについては食習慣が知られている。   The inhibition rate is shown in FIG. Of Yanagimoku, Yoremoku, Yatsumata Moku, Kurome, Kajime, which have particularly high inhibitory activity, distilled water extract, 85 ° C water extract and ethanol extract for Yanagimoku and Yoremok, and only ethanol extract for Yatsumata Moku, Kurome and Kajime As for, the distilled water extract and the 85 ° C. water extract each showed high α-amylase inhibitory action. Among these seaweeds, dietary habits are known for Yatsuma Tamoku, Kurome and Kajime.

ヤナギモク、ヨレモク、ヤツマタモク、クロメ、カジメの抽出物による、ヒト唾液α-アミラーゼ活性50%阻害濃度(IC50)を求めた。50%阻害濃度は、ヒト唾液α-アミラーゼ活性を50%阻害するのに必要な抽出物の濃度を、海藻体乾燥物重量に換算した濃度(dry-mg/mL)により示す。α-アミラーゼ阻害作用が知られている月桂樹葉のエタノール抽出物と比較して、これらの海藻類のα-アミラーゼ阻害作用が顕著に高いことが確認された。 The 50% inhibitory concentration (IC 50 ) of human salivary α-amylase activity was determined using extracts of willow moku, yoremoku, yasumamamok, kurome, and kajime. The 50% inhibitory concentration indicates the concentration of the extract necessary for inhibiting human salivary α-amylase activity by 50% by the concentration (dry-mg / mL) converted to the weight of dried seaweed. It was confirmed that the α-amylase inhibitory action of these seaweeds was remarkably higher than that of the ethanol extract of bay leaves, which is known to have an inhibitory action on α-amylase.

Figure 2012136445
Figure 2012136445

実験2: ヤツマタモクからのα-アミラーゼ阻害作用成分の単離
実験2.1: 溶媒分画とHPLC精製
食習慣があり、なお且つ、α-アミラーゼ阻害作用を有することが実験1において確認されたヤツマタモクのエタノール抽出物からα-アミラーゼ阻害作用を有する有効成分を単離した。
Experiment 2: Isolation of α-amylase inhibitory component from Yasumata Moku
Experiment 2.1: Isolation of an active ingredient with α-amylase inhibitory activity from the ethanol extract of Tatsuma Tamoku, which was confirmed in Experiment 1 as having solvent fractionation and HPLC purification dietary habits, and having α-amylase inhibitory activity did.

溶媒抽出による活性成分の単離手順の概要を図3に示す。エタノール抽出液100 mL (海藻体乾燥物換算1g含有)を減圧条件で溶媒留去させ、113.3 mgの残留物を得た。該残留物に50%メタノール水溶液30mLと、n-ヘキサン50mLとを混合し、静置し、上層(n-ヘキサン層)と下層(水層)とを分離した。上層には6.1mgの固形分が含まれる。下層(水層)にクロロホルム50mLを添加混合し、静置して、上層(水層)と下層(クロロホルム層)とを分離した。下層には13.8 mgの固形分が含まれる。上層(水層)に酢酸エチル50mLを添加混合し、静置して、上層(酢酸エチル層)と下層(水層)とを分離した。上層(酢酸エチル層)には9.0mgの固形分が含まれ、下層(水層)には98.0mgの固形分が含まれる。   An outline of the isolation procedure of the active ingredient by solvent extraction is shown in FIG. 100 mL of an ethanol extract (containing 1 g in terms of dried seaweed body) was distilled off under reduced pressure to obtain 113.3 mg of residue. To the residue, 30 mL of 50% aqueous methanol solution and 50 mL of n-hexane were mixed and allowed to stand, and the upper layer (n-hexane layer) and the lower layer (aqueous layer) were separated. The upper layer contains 6.1 mg solids. To the lower layer (aqueous layer), 50 mL of chloroform was added and mixed, and allowed to stand to separate the upper layer (aqueous layer) and the lower layer (chloroform layer). The lower layer contains 13.8 mg solids. 50 mL of ethyl acetate was added to and mixed with the upper layer (aqueous layer) and allowed to stand to separate the upper layer (ethyl acetate layer) and the lower layer (aqueous layer). The upper layer (ethyl acetate layer) contains 9.0 mg of solids and the lower layer (aqueous layer) contains 98.0 mgs of solids.

n-ヘキサン層、クロロホルム層、酢酸エチル層、水層それぞれから得られた画分についてヒト唾液α-アミラーゼ活性を確認したところ、酢酸エチル層の画分のみに活性が認められた。   When human salivary α-amylase activity was confirmed for the fractions obtained from the n-hexane layer, chloroform layer, ethyl acetate layer, and aqueous layer, activity was found only in the fraction of the ethyl acetate layer.

酢酸エチル層画分を高性能液体クロマトグラフィー (条件= Intersil Ph-3カラム[ジーエルサイエンス社製]、 アセトニトリル10(v/v)%-(10分)-10(v/v)%-50(v/v)%-(15分)-50(v/v)%-100(v/v)%-(10分)-100(v/v)% (stepwise)、流速: 1 ml/min) に供して、図4に示すクロマトグラムにおいて保持時間15.5〜17.6分のピークを含む画分を取得した。この画分を以下「HPLC_01」と呼ぶ。HPLC_01 (乾燥重量) はヤツマタモクの乾燥物1.0gから2.4mg得られた。   Ethyl acetate layer fraction was subjected to high performance liquid chromatography (Condition = Intersil Ph-3 column [manufactured by GL Sciences Inc.], acetonitrile 10 (v / v)%-(10min) -10 (v / v)%-50 ( (v / v)%-(15 minutes) -50 (v / v)%-100 (v / v)%-(10 minutes) -100 (v / v)% (stepwise), flow rate: 1 ml / min) In the chromatogram shown in FIG. 4, a fraction containing a peak with a retention time of 15.5-17.6 minutes was obtained. This fraction is hereinafter referred to as “HPLC_01”. HPLC_01 (dry weight) of 2.4 mg was obtained from 1.0 g of the dried Yamamotomok.

実験2.2: 反応速度論的解析
HPLC_01のα-アミラーゼ阻害作用を反応速度的に解析した。ヒト唾液α-アミラーゼの反応初速度を、アミロペクチンを基質として生成するマルトース量をフェリシアン化カリウム法により測定した。具体的には下表に従って、1μgのHPLC_01を含む10 (v/v)% エタノール300μLに、10mM 塩化カルシウム50μLと100mMリン酸ナトリウム緩衝液(pH7.0)に溶かしたアミロペクチン(ナカライテスク社製)溶液140μLを混合して37℃で5分間保温したのち、100mMリン酸ナトリウム緩衝液(pH7.0)に溶かした1μMヒト唾液α-アミラーゼ(シグマ社製、α-Amylase From Saliva) 10μLを添加して反応を開始し、37℃にて反応を進行させた。アミロペクチン溶液は、酵素添加後の濃度が0.07、0.08、0.098、0.14、0.28、0.56、0.84、1.12(w/v)%となるように調製した。またコントロールとしてHPLC_01を含まない10 (v/v)% エタノール300μLを、サンプル・ブランクとしてヒト唾液α-アミラーゼを含まない100mMリン酸ナトリウム緩衝液(pH7.0) 10μLを、コントロール・ブランクとしてHPLC_01を含まない10 (v/v)% エタノール300μLとヒト唾液α-アミラーゼを含まない100mMリン酸ナトリウム緩衝液(pH7.0) 10μLを、それぞれの溶液の代わりに用いて、37℃にて反応を進行させた。酵素添加から5分後に50μLを分取し、フェリシアン化カリウム溶液 (10mM フェリシアン化カリウムを含む2.0(w/v)% 炭酸ナトリウム溶液、いずれもナカライテスク社製) 500μL を添加した。100℃のヒートブロックで10分間加熱したのち遠心分離し、その上清50μLを蒸留水200μLと混合し、試料の415nmでの吸光度をプレートリーダーを用いて測定した。また検量線作成のため、0, 0.83, 1.7, 2.5, 3.3, 4.2, 5.0, 5.8, 6.7, 7.5, 8.3mMのマルトース(ナカライテスク社製)溶液50μLにフェリシアン化カリウム溶液(10mM フェリシアン化カリウムを含む2.0(w/v)% 炭酸ナトリウム溶液、いずれもナカライテスク社製) 500μL を添加し、100℃のヒートブロックで10分間加熱したのち遠心分離し、その上清50μLを蒸留水200μLと混合し、試料の415nmでの吸光度をプレートリーダーを用いて測定した。マルトース検量線を用いてそれぞれの試料におけるマルトースのモル濃度([maltose])を求め、以下の式を用いて反応物生成速度を算出した。
反応物 (マルトース) 生成速度(M/min)
=(Sの[maltose]−SBの[maltose])/(Cの[maltose]−CBの[maltose])/5
Experiment 2.2: Reaction kinetic analysis
The α-amylase inhibitory action of HPLC_01 was analyzed kinetically. The initial reaction rate of human salivary α-amylase was measured by the potassium ferricyanide method for the amount of maltose produced using amylopectin as a substrate. Specifically, according to the table below, amylopectin (manufactured by Nacalai Tesque) dissolved in 300 μL of 10 (v / v)% ethanol containing 1 μg of HPLC_01, 50 μL of 10 mM calcium chloride and 100 mM sodium phosphate buffer (pH 7.0) 140 μL of the solution was mixed and incubated at 37 ° C. for 5 minutes, and then 10 μL of 1 μM human saliva α-amylase (Sigma, α-Amylase From Saliva) dissolved in 100 mM sodium phosphate buffer (pH 7.0) was added. The reaction was started and the reaction was allowed to proceed at 37 ° C. The amylopectin solution was prepared such that the concentration after enzyme addition was 0.07, 0.08, 0.098, 0.14, 0.28, 0.56, 0.84, 1.12 (w / v)%. In addition, 300 μL of 10 (v / v)% ethanol without HPLC_01 as a control, 10 μL of 100 mM sodium phosphate buffer (pH 7.0) without human salivary α-amylase as a sample blank, and HPLC_01 as a control blank 10 (v / v)% ethanol (300 μL) and human saliva α-amylase-free 100 mM sodium phosphate buffer (pH 7.0) (10 μL) were used instead of each solution, and the reaction proceeded at 37 ° C. I let you. Five minutes after the addition of the enzyme, 50 μL was collected, and 500 μL of potassium ferricyanide solution (2.0 (w / v)% sodium carbonate solution containing 10 mM potassium ferricyanide, both manufactured by Nacalai Tesque) was added. After heating for 10 minutes in a heat block at 100 ° C., the mixture was centrifuged, 50 μL of the supernatant was mixed with 200 μL of distilled water, and the absorbance of the sample at 415 nm was measured using a plate reader. To prepare a calibration curve, 0, 0.83, 1.7, 2.5, 3.3, 4.2, 5.0, 5.8, 6.7, 7.5, 8.3 mM maltose (manufactured by Nacalai Tesque) solution was added to 50 μL of potassium ferricyanide solution (2.0 containing 10 mM potassium ferricyanide). (w / v)% sodium carbonate solution (both manufactured by Nacalai Tesque) Add 500 μL, heat for 10 minutes in a heat block at 100 ° C., centrifuge, mix 50 μL of the supernatant with 200 μL of distilled water, and sample The absorbance at 415 nm was measured using a plate reader. The maltose molar concentration ([maltose]) in each sample was determined using a maltose calibration curve, and the reaction product formation rate was calculated using the following equation.
Reactant (maltose) production rate (M / min)
= ([Maltose] of S− [maltose] of SB) / ([maltose] of C− [maltose] of CB) / 5

Figure 2012136445
Figure 2012136445

基質 (アミロペクチン) 濃度([Amylopectin])と反応物 (マルトース) 生成速度(M/min)との関係を図5に示す。ミカエリス-メンテン定数(Km)及び最大速度(Vmax)は次表の通りとなった。両逆数プロット(図6)から、拮抗阻害定数(Ki)は1.8 x 10-4 (%)と算出された。α-アミラーゼの非拮抗阻害剤として知られているアカルボースの阻害定数(Ki)は1.8 x 10-3 (%)である。本発明のHPLC_01が優れたα-アミラーゼ阻害作用を有することが確認された。 FIG. 5 shows the relationship between the substrate (amylopectin) concentration ([Amylopectin]) and the reaction product (maltose) production rate (M / min). The Michaelis-Menten constant (Km) and maximum velocity (Vmax) are as shown in the following table. From the reciprocal plot (FIG. 6), the antagonistic inhibition constant (Ki) was calculated to be 1.8 × 10 −4 (%). The inhibition constant (Ki) of acarbose, known as a non-competitive inhibitor of α-amylase, is 1.8 × 10 −3 (%). It was confirmed that HPLC_01 of the present invention has an excellent α-amylase inhibitory action.

Figure 2012136445
Figure 2012136445

実験2.3: 消化遅延効果 (ヒト唾液α-アミラーゼ)
ヒト唾液α-アミラーゼ(シグマ社製)によるアミロペクチンの消化反応系にHPLC_01を種々の濃度で添加し、反応時間とアミロペクチン消化率との関係を調べた。ヒト唾液α-アミラーゼの反応初速度を、アミロペクチンを基質として生成するマルトース量をフェリシアン化カリウム法により測定した。具体的には、0、5、0.5μgのHPLC_01を含む10 (v/v)% エタノール300μLに、10mM 塩化カルシウム50μLと100mMリン酸ナトリウム緩衝液(pH7.0)に溶かしたアミロペクチン(ナカライテスク社製)溶液140μLを混合して37℃で5分間保温したのち、100mMリン酸ナトリウム緩衝液(pH7.0)に溶かした1μMヒト唾液α-アミラーゼ(α-Amylase From Saliva、シグマ社製)10μLを添加して反応を開始し、37℃にて反応を進行させた。アミロペクチン溶液は、酵素添加後の濃度が0.28 (w/v)%となるように調製した。この濃度はマルトース濃度としては8.2mMに相当する。酵素添加から2、5、10、15、20、30、40、50、60分後に50μLを分取した。サンプル・ブランクとしてヒト唾液α-アミラーゼの代わりに100mMリン酸ナトリウム緩衝液(pH7.0) 10μLを添加して同様の操作を行った。実験2.2の方法と同様にフェリシアン化カリウム法にて生成したグルコースのモル濃度([maltose])を求め、以下の式を用いてアミロペクチン消化率を算出した。
アミロペクチン消化率
=(HPLC_01の[maltose]−サンプル・ブランクの[maltose])/(8.2×10-3) × 100
結果を図7に示す。
Experiment 2.3: Digestive delay effect (human salivary α-amylase)
HPLC_01 was added at various concentrations to the digestion reaction system of amylopectin by human saliva α-amylase (manufactured by Sigma), and the relationship between reaction time and amylopectin digestibility was examined. The initial reaction rate of human salivary α-amylase was measured by the potassium ferricyanide method for the amount of maltose produced using amylopectin as a substrate. Specifically, amylopectin (Nacalai Tesque) dissolved in 300 μL of 10 (v / v)% ethanol containing 0, 5, 0.5 μg of HPLC_01, 50 μL of 10 mM calcium chloride and 100 mM sodium phosphate buffer (pH 7.0) After mixing 140 μL of solution and incubating at 37 ° C. for 5 minutes, 10 μL of 1 μM human saliva α-amylase (α-Amylase From Saliva, Sigma) dissolved in 100 mM sodium phosphate buffer (pH 7.0) was added. The reaction was started by addition, and the reaction was allowed to proceed at 37 ° C. The amylopectin solution was prepared so that the concentration after enzyme addition was 0.28 (w / v)%. This concentration corresponds to a maltose concentration of 8.2 mM. 50 μL was collected at 2, 5, 10, 15, 20, 30, 40, 50, and 60 minutes after addition of the enzyme. As a sample blank, 10 μL of 100 mM sodium phosphate buffer (pH 7.0) was added instead of human saliva α-amylase, and the same operation was performed. The molar concentration ([maltose]) of glucose produced by the potassium ferricyanide method was determined in the same manner as in Experiment 2.2, and the amylopectin digestibility was calculated using the following formula.
Amylopectin digestibility = ([maltose] of HPLC_01− [maltose] of sample blank) / (8.2 × 10 −3 ) × 100
The results are shown in FIG.

実験2.4: 消化遅延効果 (ヒト膵臓α-アミラーゼ)
ヒト膵臓α-アミラーゼ(シグマ社製)によるアミロペクチンの消化反応系にHPLC_01を種々の濃度で添加し、反応時間とアミロペクチン消化率との関係を調べた。ヒト膵臓α-アミラーゼの反応初速度を、アミロペクチンを基質として生成するマルトース量をフェリシアン化カリウム法により測定した。具体的には、0、5、0.5μgのHPLC_01を含む10 (v/v)% エタノール300μLに、10mM 塩化カルシウム50μLと100mMリン酸ナトリウム緩衝液(pH7.0)に溶かしたアミロペクチン(ナカライテスク社製)溶液140μLを混合して37℃で5分間保温したのち、100mMリン酸ナトリウム緩衝液(pH7.0) に溶かした1μMヒト膵臓α-アミラーゼ(シグマ社製、α-Amylase From Saliva) 10μLを添加して反応を開始し、37℃にて反応を進行させた。アミロペクチン溶液は、酵素添加後の濃度が0.28 (w/v)%となるように調製した。この濃度はマルトース濃度としては8.2mMに相当する。酵素添加から2、5、10、15、20、30、40、50、60分後に50μLを分取した。またサンプル・ブランクとしてヒト膵臓α-アミラーゼの代わりに100mMリン酸ナトリウム緩衝液(pH7.0) 10μLを用いて同様の操作を行った。実験2.2の方法と同様にフェリシアン化カリウム法にてそれぞれの試料におけるマルトースのモル濃度([maltose])を求め、以下の式を用いてアミロペクチン消化率を算出した。
アミロペクチン消化率
=(HPLC_01の[maltose]−サンプル・ブランクの[maltose])/(8.2×10-3) × 100
結果を図8に示す。
Experiment 2.4: Digestive delay effect (human pancreatic α-amylase)
HPLC_01 was added at various concentrations to the digestion reaction system of amylopectin by human pancreatic α-amylase (manufactured by Sigma), and the relationship between reaction time and amylopectin digestibility was examined. The initial reaction rate of human pancreatic α-amylase was measured by the potassium ferricyanide method for the amount of maltose produced using amylopectin as a substrate. Specifically, amylopectin (Nacalai Tesque) dissolved in 300 μL of 10 (v / v)% ethanol containing 0, 5, 0.5 μg of HPLC_01, 50 μL of 10 mM calcium chloride and 100 mM sodium phosphate buffer (pH 7.0) After mixing 140 μL of solution and incubating at 37 ° C. for 5 minutes, 10 μL of 1 μM human pancreatic α-amylase (Sigma, α-Amylase From Saliva) dissolved in 100 mM sodium phosphate buffer (pH 7.0) was added. The reaction was started by addition, and the reaction was allowed to proceed at 37 ° C. The amylopectin solution was prepared so that the concentration after enzyme addition was 0.28 (w / v)%. This concentration corresponds to a maltose concentration of 8.2 mM. 50 μL was collected at 2, 5, 10, 15, 20, 30, 40, 50, and 60 minutes after addition of the enzyme. The same operation was performed using 10 μL of 100 mM sodium phosphate buffer (pH 7.0) instead of human pancreatic α-amylase as a sample blank. Similar to the method of Experiment 2.2, the molar concentration of maltose ([maltose]) in each sample was determined by the potassium ferricyanide method, and the amylopectin digestibility was calculated using the following formula.
Amylopectin digestibility = ([maltose] of HPLC_01− [maltose] of sample blank) / (8.2 × 10 −3 ) × 100
The results are shown in FIG.

実験2.5:α-アミラーゼ活性50%阻害濃度
HPLC_01及び従来から知られているα-アミラーゼ阻害物質によるα-アミラーゼ活性の50%阻害濃度(IC50)を求めた。従来から知られているα-アミラーゼ阻害物質として下記構造のアカルボース(C25H43NO18、分子量645.60、LKT Laboratories, Inc.製)、クエルセタゲチン(quercetagetin、C15H10O8、分子量318.25、EXTRASYNTHESE S.A.社製)、市販の小麦由来α-アミラーゼ阻害剤(α-Amylase Inhibitor from Triticumaestivum (wheat seed)、シグマ社製、分子量約21,000のタンパク質、文献:Biochimica et Biophysica Acta, 422 (1976) 159-169)を用いた。
Experiment 2.5: α-amylase activity 50% inhibitory concentration
The 50% inhibitory concentration (IC 50 ) of α-amylase activity by HPLC_01 and conventionally known α-amylase inhibitors was determined. As a conventionally known α-amylase inhibitor, acarbose (C 25 H 43 NO 18 , molecular weight 645.60, manufactured by LKT Laboratories, Inc.), quercetagetin (quercetagetin, C 15 H 10 O 8 , molecular weight 318.25, EXTRASYNTHESE SA), commercially available wheat-derived α-amylase inhibitor (α-Amylase Inhibitor from Triticumaestivum (wheat seed), Sigma, protein with a molecular weight of about 21,000, literature: Biochimica et Biophysica Acta, 422 (1976) 159-169 ) Was used.

Figure 2012136445
Figure 2012136445

クロメ由来ポリフェノール(フロロタンニン)、月桂樹葉抽出物、グァバ葉抽出物のIC50値については、それぞれ、海藻ポリフェノール(フロロタンニン)の抗糖尿病効果の検討(2)<長瀬産業2007年11月、http://www.nagase.co.jp/assetfiles/news/20071121.pdf>、アミラーゼ阻害物質「αアミラーゼ・インヒビター」<日本製粉特許第1919036号, 第2032272号>、「グァバ葉熱水抽出物のdb/dbマウスにおける抗糖尿病効果およびヒト飲用試験による食後血糖値上昇抑制効果」<日本農芸化学会誌, Vol.72, No.8, pp923-931, 1998>より引用した。 Regarding the IC 50 values of polyphenols (phlorotannins), laurel leaves extract, and guava leaves extract, the anti-diabetic effect of seaweed polyphenols (phlorotannins) (2) <Nagase Sangyo November 2007, http http://www.nagase.co.jp/assetfiles/news/20071121.pdf>, amylase inhibitor “α-amylase inhibitor” <Nippon Flour Milling Patent Nos. 1919036, 2032272>, “Guba leaf hot water extract Cited from the anti-diabetic effect in db / db mice and the inhibitory effect on postprandial blood glucose level increase by human drinking test "<Japan Agricultural Chemical Society, Vol.72, No.8, pp923-931, 1998>.

IC50は、ヒト唾液α-アミラーゼ(シグマ社製)によるアミロペクチンの消化反応系に、種々の濃度で阻害剤を添加して、阻害剤を含まない場合(コントロール)の消化率に対して半分の消化率を与える阻害剤濃度として算出した。具体的には阻害剤溶液(溶媒は、小麦由来α−アミラーゼ阻害剤では100mMリン酸ナトリウム緩衝液(pH7.0)、その他の阻害剤では10(v/v)%エタノール)300μLに、10mM 塩化カルシウム50μLと100mMリン酸ナトリウム緩衝液(pH7.0)に溶かした1.0(w/v)%アミロペクチン(ナカライテスク社製)溶液140μLを混合して37℃で5分間保温したのち、100mMリン酸ナトリウム緩衝液(pH7.0)に溶かした1μMヒト唾液α-アミラーゼ(α-Amylase From Saliva、シグマ社製) 10μLを添加して反応を開始し、37℃にて反応を進行させた。それぞれの阻害剤濃度に対してサンプル・ブランクとして、ヒト唾液α-アミラーゼの代わりに100mMリン酸ナトリウム緩衝液(pH7.0) 10μLを添加して、同様の操作を行った。コントロールは阻害剤の代わりに阻害剤の溶媒300μLを加えて同様の反応を行った。コントロール・ブランクとしては阻害剤の代わりに阻害剤の溶媒300μLを、ヒト唾液α-アミラーゼの代わりに100mMリン酸ナトリウム緩衝液(pH7.0) 10μLを加えて、同様の操作を行った。酵素添加から5分後に50μLを分取し、実験2.2の方法と同様にフェリシアン化カリウム法にてそれぞれの試料におけるマルトースのモル濃度([maltose])を求めた。以下の式を用いて阻害率を算出し、50%の阻害率を与える阻害剤濃度をIC50とした。
阻害率={(阻害剤の[maltose]−サンプル・ブランクの[maltose])/(コントロールの[maltose]−コントロール・ブランクの[maltose])}×100
結果を表5に示す。HPLC_01は既存のα-アミラーゼ阻害物質よりも優れた阻害作用を有することが明らかになった。
IC 50 is half of the digestibility of the amylopectin digestion reaction system with human saliva α-amylase (manufactured by Sigma) compared to the digestion rate when the inhibitor is added at various concentrations and the inhibitor is not contained (control). It was calculated as the inhibitor concentration giving the digestibility. Specifically, the inhibitor solution (solvent is 100 mM sodium phosphate buffer (pH 7.0) for wheat-derived α-amylase inhibitor, 10 (v / v)% ethanol for other inhibitors) in 300 μL, 10 mM chloride 50 μL of calcium and 140 μL of 1.0 (w / v)% amylopectin (Nacalai Tesque) solution dissolved in 100 mM sodium phosphate buffer (pH 7.0) were mixed and incubated at 37 ° C. for 5 minutes, and then 100 mM sodium phosphate The reaction was started by adding 10 μL of 1 μM human saliva α-amylase (α-Amylase From Saliva, Sigma) dissolved in buffer (pH 7.0), and the reaction was allowed to proceed at 37 ° C. The same operation was performed by adding 10 μL of 100 mM sodium phosphate buffer (pH 7.0) instead of human saliva α-amylase as a sample blank for each inhibitor concentration. As a control, the same reaction was performed by adding 300 μL of the solvent of the inhibitor instead of the inhibitor. As a control blank, 300 μL of an inhibitor solvent was used instead of the inhibitor, and 10 μL of 100 mM sodium phosphate buffer (pH 7.0) was added instead of human saliva α-amylase, and the same operation was performed. Five minutes after the addition of the enzyme, 50 μL was sampled, and the maltose molar concentration ([maltose]) in each sample was determined by the potassium ferricyanide method in the same manner as in Experiment 2.2. Calculating the inhibition rate using the following equation, and the inhibitor concentration that gives inhibition of 50% and IC 50.
Inhibition rate = {(inhibitor [maltose] −sample blank [maltose]) / (control [maltose] −control blank [maltose])} × 100
The results are shown in Table 5. It was revealed that HPLC_01 has a superior inhibitory action than existing α-amylase inhibitors.

Figure 2012136445
Figure 2012136445

実験2.6:マウスにおける血糖値上昇抑制作用
10週齢のオスDDYマウス(体重35〜42g)6匹を用いた。マウスの血糖値は、尾静脈から採血して血糖値測定キットとケアファストメーター(いずれもニプロ社製)を用いて測定した。最初にコントロール実験を行った。マウスを一晩絶食(ただし水は自由採取)させてから血糖値を測定した。いずれもゾンデを用いて、生理的食塩水100μLを投与した30分後に2g/kg体重のデンプンを投与した。生理的食塩水投与の30分、60分、90分、120分、180分後における血糖値を測定した。同じマウスを1週間飼育したのち、酢酸エチル分画物投与実験を行った。一晩絶食(ただし水は自由採取)後、血糖値を測定した。酢酸エチル分画物(実験2.1参照)は、マウスの体重ごとに100mg/kg体重の投与となるように生理的食塩110μLに懸濁して投与し、その30分後に2g/kg体重のデンプンを投与した。いずれの投与にもゾンデを用いた。デンプン投与の30分、60分、90分、120分、180分後における血糖値を測定した。
Experiment 2.6: Suppressing blood glucose level in mice
Six 10-week-old male DDY mice (35-42 g body weight) were used. The blood glucose level of the mouse was measured by collecting blood from the tail vein using a blood glucose level measurement kit and a care fast meter (both manufactured by Nipro Corporation). First, a control experiment was conducted. The mice were fasted overnight (with free collection of water) and then blood glucose levels were measured. In either case, 2 g / kg body weight starch was administered 30 minutes after administration of 100 μL of physiological saline using a sonde. The blood glucose level was measured 30 minutes, 60 minutes, 90 minutes, 120 minutes, and 180 minutes after physiological saline administration. After breeding the same mice for 1 week, an ethyl acetate fraction administration experiment was conducted. After fasting overnight (free collection of water), blood glucose levels were measured. The ethyl acetate fraction (see Experiment 2.1) was suspended in 110 μL of physiological saline so that 100 mg / kg body weight was administered for each mouse body weight, and 30 g later, 2 g / kg body weight starch was administered. did. A sonde was used for both administrations. The blood glucose level was measured 30 minutes, 60 minutes, 90 minutes, 120 minutes and 180 minutes after starch administration.

結果を図9に示す。マウスへの酢酸エチル画分の単回投与により血糖値上昇が抑制されることが確認された。   The results are shown in FIG. It was confirmed that an increase in blood glucose level was suppressed by single administration of the ethyl acetate fraction to mice.

実験2.7: 機器分析によるHPLC_01の構造決定
HPLC_01について1H-NMR、13C-NMR、質量分析、元素分析を行い、以下の物性値を示すことを見出した。
1H-NMR (CD3OD): δ 5.90 (1H, bs), 5.92 (1H, bs), 5.94 (1H, bs), 6.00 (1H, bs), 6.04 (1H, bs), 6.15 (1H, bs), 6.29 (1H, bs).
13C-NMR (CD3OD): δ 95.8, 97.1 (x4), 98.8 (x2), 125.8, 126.8, 153.0 (x2), 153.2, 153.4, 154.8 (x2), 157.1 (x2), 158.9.
MS (m/z): 375.2 (MH+)
MS計算値 (C18H14O9): 374.0638 (100.0%)
元素分析: C, 57.76; H, 3.77; O, 38.47
Experiment 2.7: Determination of the structure of HPLC_01 by instrumental analysis
HPLC_01 was subjected to 1 H-NMR, 13 C-NMR, mass spectrometry, and elemental analysis and found to exhibit the following physical property values.
1 H-NMR (CD 3 OD): δ 5.90 (1H, bs), 5.92 (1H, bs), 5.94 (1H, bs), 6.00 (1H, bs), 6.04 (1H, bs), 6.15 (1H, bs), 6.29 (1H, bs).
13 C-NMR (CD 3 OD): δ 95.8, 97.1 (x4), 98.8 (x2), 125.8, 126.8, 153.0 (x2), 153.2, 153.4, 154.8 (x2), 157.1 (x2), 158.9.
MS (m / z): 375.2 (MH + )
MS calculated (C 18 H 14 O 9 ): 374.0638 (100.0%)
Elemental analysis: C, 57.76; H, 3.77; O, 38.47

これらの分析結果から、HPLC_01はC18H14O9の分子式を有し、以下の構造式:

Figure 2012136445
により表される化合物であると推定された。1H-NMR及び13C-NMRの化学シフト値は図10に示すように帰属される。当該化合物は、2-(4-(3,5-ジヒドロキシフェノキシ)-3,5-ジヒドロキシフェノキシ)ベンゼン-1,3,5-トリオールと命名されるフロロタンニン化合物である。 From these analysis results, HPLC_01 has a molecular formula of C 18 H 14 O 9 and has the following structural formula:
Figure 2012136445
It was estimated that it was a compound represented by. Chemical shift values of 1 H-NMR and 13 C-NMR are assigned as shown in FIG. The compound is a fluorotannin compound named 2- (4- (3,5-dihydroxyphenoxy) -3,5-dihydroxyphenoxy) benzene-1,3,5-triol.

実験3: 10%エタノール水溶液による抽出
実験1では、ヤツマタモク乾燥粉末からエタノールを用いて抽出を行い、得られた抽出物のα-アミラーゼ阻害活性を測定していた。
Experiment 3: In extraction experiment 1 with a 10% aqueous ethanol solution , extraction was carried out using ethanol from a dried powder of Yamamotomok, and the α-amylase inhibitory activity of the resulting extract was measured.

本実験では、エタノールの代わりに10(v/v)%エタノール水溶液を用いて実験1と同様の手順で抽出物を得て、α-アミラーゼ阻害活性を評価した。抽出液自体(原液)、抽出液2倍希釈(1/2液)、抽出液5倍希釈(1/5液)を用いて実験1と同様の手順によりα-アミラーゼの阻害率を求めた。   In this experiment, an extract was obtained in the same procedure as in Experiment 1 using a 10 (v / v)% aqueous ethanol solution instead of ethanol, and α-amylase inhibitory activity was evaluated. The inhibition rate of α-amylase was determined by the same procedure as in Experiment 1 using the extract itself (stock solution), the extract diluted 2 times (1/2 solution), and the extract 5 times diluted (1/5 solution).

結果を図11に示す。エタノール水溶液を抽出溶媒として用いた場合、純粋なエタノールを用いた場合と比較して抽出効率は低下するものの、α-アミラーゼ阻害作用を有する有効成分が抽出可能であることが確認された。   The results are shown in FIG. When an aqueous ethanol solution was used as an extraction solvent, it was confirmed that an active ingredient having an α-amylase inhibitory action could be extracted, although the extraction efficiency was lower than when pure ethanol was used.

実験4: α-グルコシダーゼ阻害作用
ラット小腸アセトンパウダー(Intestinal acetone powders from rat、シグマ社製)からα-グルコシダーゼを抽出し、マルターゼ活性およびスクラーゼ活性に対するHPLC_01の阻害作用を調べた。
Experiment 4: α-Glucosidase Inhibitory Action α-Glucosidase was extracted from rat small intestine acetone powder (Intestinal acetone powders from rat, Sigma), and the inhibitory action of HPLC_01 on maltase activity and sucrase activity was examined.

ラット小腸アセトンパウダー0.5gに100mMリン酸カリウム緩衝液(pH 6.8)10mLと蒸留水30mLを加えてホモジナイズし、遠心分離した上清をα-グルコシダーゼ抽出液として用いた。基質としてマルトースとスクロース(いずれもナカライテスク社製)を用いた。HPLC_01はエタノール溶液を用いた。各溶液を下表に従って混合し、37℃で30分間酵素反応を進行させた。100℃のヒートブロックで3分間加熱したのち遠心分離してその上清50μLを分取した。グルコースを定量するために、グルコースC-IIテスト(ワコー純薬工業社製)100μLを加えて5分間反応させ、分光光度計を用いて505nmの吸光度(A505)を測定した。阻害活性は、以下の式を用いてHPLC_01がない場合に生成したグルコース量に対する百分率として算出した。
マルターゼ阻害活性(%)=(MのA505−MBのA505)/(MCのA505−MCBのA505) ×100
スクラーゼ阻害活性(%)=(SのA505−SBのA505)/(SCのA505−SCBのA505) ×100
Rat small intestine acetone powder 0.5 g was added with 10 mL of 100 mM potassium phosphate buffer (pH 6.8) and 30 mL of distilled water, homogenized, and the centrifuged supernatant was used as an α-glucosidase extract. Maltose and sucrose (both manufactured by Nacalai Tesque) were used as substrates. HPLC_01 used an ethanol solution. Each solution was mixed according to the following table, and the enzyme reaction was allowed to proceed at 37 ° C. for 30 minutes. After heating in a 100 ° C. heat block for 3 minutes, the mixture was centrifuged and 50 μL of the supernatant was collected. In order to quantify glucose, 100 μL of glucose C-II test (manufactured by Wako Pure Chemical Industries, Ltd.) was added and reacted for 5 minutes, and the absorbance at 505 nm (A 505 ) was measured using a spectrophotometer. Inhibitory activity was calculated as a percentage of the amount of glucose produced in the absence of HPLC_01 using the following formula.
Maltase inhibitory activity (%) = (M A 505 −MB A 505 ) / (MC A 505 −MCB A 505 ) × 100
Sucrase inhibitory activity (%) = (S A 505 -SB A 505 ) / (SC A 505 -SCB A 505 ) × 100

Figure 2012136445
Figure 2012136445

マルターゼ阻害活性は61.6%、スクラーゼ阻害活性は94.7%であった。   The maltase inhibitory activity was 61.6%, and the sucrase inhibitory activity was 94.7%.

実験5: α-グルコシダーゼ50%阻害濃度
HPLC_01のα-グルコシダーゼに対する50%阻害濃度(IC50)を、マルターゼ活性とスクラーゼ活性について求めた。HPLC_01を種々の濃度で用いて、実験4と同様の方法で阻害活性を求め、50%の阻害率を与える阻害剤濃度をIC50とした。
Experiment 5: α-Glucosidase 50% inhibitory concentration
The 50% inhibitory concentration (IC 50 ) for α-glucosidase of HPLC_01 was determined for maltase activity and sucrase activity. HPLC_01 using at various concentrations to obtain the inhibitory activity in the same manner as in Experiment 4 was the inhibitor concentration that gives inhibition of 50% and IC 50.

マルターゼ阻害のIC50は114μg/mL、スクラーゼ阻害のIC50は25.4μg/mLであった。従ってHPLC_01は、α‐グルコシダーゼに対する阻害効果を有することが示された。 The IC 50 for maltase inhibition was 114 μg / mL and the IC 50 for sucrase inhibition was 25.4 μg / mL. Therefore, HPLC_01 was shown to have an inhibitory effect on α-glucosidase.

Claims (7)

式I’:
Figure 2012136445
[式中、R1、R2、R3、R4、R5、R6及びR7は、それぞれ独立に、水素、又は -C(=O)-R’で表されるアシル基であり、該アシル基中、-R’は直鎖状又は分岐鎖状の飽和又は不飽和の炭化水素基であり、該炭化水素基中の水素は1つ以上の置換基により置換されていてもよく、-R’全体の炭素数は1〜20である]
で表される化合物又は該化合物の塩。
Formula I ':
Figure 2012136445
[Wherein R 1 , R 2 , R 3 , R 4 , R 5 , R 6 and R 7 are each independently hydrogen or an acyl group represented by —C (═O) —R ′. In the acyl group, —R ′ is a linear or branched saturated or unsaturated hydrocarbon group, and the hydrogen in the hydrocarbon group may be substituted with one or more substituents , -R ′ has 1 to 20 carbon atoms in total]
Or a salt of the compound.
式I’:
Figure 2012136445
[式中、R1、R2、R3、R4、R5、R6及びR7は、それぞれ独立に、水素、又は -C(=O)-R’で表されるアシル基であり、該アシル基中、-R’は直鎖状又は分岐鎖状の飽和又は不飽和の炭化水素基であり、該炭化水素基中の水素は1つ以上の置換基により置換されていてもよく、-R’全体の炭素数は1〜20である]
で表される化合物又は該化合物の塩を、固形分あたり0.3重量%以上の濃度で含有する組成物。
Formula I ':
Figure 2012136445
[Wherein R 1 , R 2 , R 3 , R 4 , R 5 , R 6 and R 7 are each independently hydrogen or an acyl group represented by —C (═O) —R ′. In the acyl group, —R ′ is a linear or branched saturated or unsaturated hydrocarbon group, and the hydrogen in the hydrocarbon group may be substituted with one or more substituents , -R ′ has 1 to 20 carbon atoms in total]
Or a salt of the compound at a concentration of 0.3% by weight or more per solid content.
経口摂取用組成物である、請求項2の組成物。   3. The composition of claim 2, which is a composition for oral consumption. エタノール又はエタノール含有溶液によるヤツマタモクの抽出物。   Extract of Yatsuma Tamoku with ethanol or ethanol-containing solution. 請求項1の化合物又は塩を有効成分として含む糖分解酵素の阻害剤。   An inhibitor of a glycolytic enzyme comprising the compound or salt of claim 1 as an active ingredient. 糖分解酵素がα-アミラーゼ又はα-グルコシダーゼである、請求項5の阻害剤。   6. The inhibitor according to claim 5, wherein the glycolytic enzyme is α-amylase or α-glucosidase. 請求項1の化合物又は塩を有効成分として含む血糖値上昇抑制剤。   2. A blood sugar level increase inhibitor comprising the compound or salt of claim 1 as an active ingredient.
JP2010288002A 2010-12-24 2010-12-24 Novel compound derived from sargassum patens and its use as glycolytic enzyme inhibitor Pending JP2012136445A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010288002A JP2012136445A (en) 2010-12-24 2010-12-24 Novel compound derived from sargassum patens and its use as glycolytic enzyme inhibitor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010288002A JP2012136445A (en) 2010-12-24 2010-12-24 Novel compound derived from sargassum patens and its use as glycolytic enzyme inhibitor

Publications (1)

Publication Number Publication Date
JP2012136445A true JP2012136445A (en) 2012-07-19

Family

ID=46674190

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010288002A Pending JP2012136445A (en) 2010-12-24 2010-12-24 Novel compound derived from sargassum patens and its use as glycolytic enzyme inhibitor

Country Status (1)

Country Link
JP (1) JP2012136445A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112075633A (en) * 2020-09-18 2020-12-15 杭州衡美食品科技有限公司 Natural extract and dietary fiber compounded weight-losing composition

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6490118A (en) * 1987-09-30 1989-04-06 Lion Corp Deodorizing composition
JPH02245087A (en) * 1989-03-18 1990-09-28 Taiyo Fishery Co Ltd Antioxidant derived from brown algae
JP2002212095A (en) * 2001-01-16 2002-07-31 Hokkaido alpha-GLUCOSIDASE INHIBITOR
JP2006104100A (en) * 2004-10-04 2006-04-20 Shirako:Kk alpha-GLUCOSIDASE INHIBITOR COMPRISING LOW MOLECULAR DECOMPOSITION PRODUCT OF PORPHYRAN
JP2010180133A (en) * 2009-02-03 2010-08-19 Aomori Univ Of Health & Welfare alpha-GLUCOSIDASE INHIBITOR

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6490118A (en) * 1987-09-30 1989-04-06 Lion Corp Deodorizing composition
JPH02245087A (en) * 1989-03-18 1990-09-28 Taiyo Fishery Co Ltd Antioxidant derived from brown algae
JP2002212095A (en) * 2001-01-16 2002-07-31 Hokkaido alpha-GLUCOSIDASE INHIBITOR
JP2006104100A (en) * 2004-10-04 2006-04-20 Shirako:Kk alpha-GLUCOSIDASE INHIBITOR COMPRISING LOW MOLECULAR DECOMPOSITION PRODUCT OF PORPHYRAN
JP2010180133A (en) * 2009-02-03 2010-08-19 Aomori Univ Of Health & Welfare alpha-GLUCOSIDASE INHIBITOR

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
JPN6014047682; Natural Toxins 5(2), 1997, p.58-63 *
JPN6014047684; Planta Medica 55(2), 1989, p.171-175 *
JPN6014047685; Phytochemistry 23(11), 1984, p.2633-2637 *
JPN6014047686; Australiane Journal of Chemistry 35(3), 1982, p.649-657 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112075633A (en) * 2020-09-18 2020-12-15 杭州衡美食品科技有限公司 Natural extract and dietary fiber compounded weight-losing composition

Similar Documents

Publication Publication Date Title
US20080280994A1 (en) Ascophyllum Compositions and Methods
JP2008137925A (en) alpha-GLUCOSIDASE INHIBITOR
JP2017200918A (en) Composition containing cashew apple extract
JP2014087364A (en) Edible apios blossom, food raw material, substance having blood glucose level elevation-inhibiting effect, blood glucose level elevation inhibiting-substance, and method for using the apios blossom
JP6599592B2 (en) α-Glucosidase activity inhibitor
US20070037870A1 (en) Novel substance having alpha-glucosidase inhibiting activity and food containing the same
WO2015188609A1 (en) New use of a benzopyran derivative in preparation of medicament for treating hyperuricemia
KR20060130518A (en) Immunostimulating polysaccharides isolated from curcuma xanthorrhiza and manufacturing method thereof
JP2011037800A (en) Blood glucose level elevation inhibitor and food material for preventing diabetes by using apios blossom
JP2012136445A (en) Novel compound derived from sargassum patens and its use as glycolytic enzyme inhibitor
KR101676297B1 (en) Composition for supressing of blood sugar level
JP6151003B2 (en) Anti-diabetic agent, human or veterinary medicine and functional food obtained from Kankaniku Juyo
JP2006241054A (en) Component contained in echevaria glauca and use thereof
JP5439671B2 (en) Anti-cancer agent
JP5186084B2 (en) Robofruit-containing saponin and its use
KR101084733B1 (en) Liver cytoprotective composition comprising an extract from the stem barks of alnus hirsuta and compounds isolated therefrom
WO2014173957A2 (en) Compound
KR101369445B1 (en) Extraction method of Artemisia capillaris Thumb for increasing anti-inflammation activity
KR100648617B1 (en) Composition comprising buddlejasaponin ? isolated from Pleurospermum kamtschaticum for the prevention and treatment of inflammatory disease
CN107840814A (en) Monocyclic diterpene compound cassipourol and preparation method thereof and the purposes in pharmacy
JP7089715B2 (en) Hyaluronic acid synthesis inhibitors, and therapeutic or prophylactic agents for diseases or conditions involving hyaluronic acid
KR101059308B1 (en) Composition for the prevention and treatment of inflammatory or allergic diseases containing starfish extract fraction as an active ingredient
CN106957324A (en) Sequiterpene spiro lactone compounds and its production and use
JP4500951B1 (en) DNA synthase inhibitors
WO2010116834A1 (en) Process for production of orally ingestible composition containing arabinosyl vitexin, and use of the composition

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20131029

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20141030

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20141111

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20150331