JP2012132840A - Strength evaluation method for layer structure - Google Patents

Strength evaluation method for layer structure Download PDF

Info

Publication number
JP2012132840A
JP2012132840A JP2010286507A JP2010286507A JP2012132840A JP 2012132840 A JP2012132840 A JP 2012132840A JP 2010286507 A JP2010286507 A JP 2010286507A JP 2010286507 A JP2010286507 A JP 2010286507A JP 2012132840 A JP2012132840 A JP 2012132840A
Authority
JP
Japan
Prior art keywords
specimen
laminated structure
interlayer
curvature
strength
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2010286507A
Other languages
Japanese (ja)
Inventor
Masahiro Kashiwagi
聖紘 柏木
Yoshinori Nonaka
吉紀 野中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP2010286507A priority Critical patent/JP2012132840A/en
Publication of JP2012132840A publication Critical patent/JP2012132840A/en
Withdrawn legal-status Critical Current

Links

Images

Landscapes

  • Investigating Strength Of Materials By Application Of Mechanical Stress (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a strength evaluation method for a layer structure capable of easily and accurately evaluating interlayer strength in a layer structure having a curvature.SOLUTION: This strength evaluation method for a layer structure measures interlayer strength of a layer structure having a curvature. In this method: a test piece 12 having the curvature is cut out from the layer structure; the test piece is supported at support points 12a and 12b in between which the part having the curvature is held; and an interlayer stress of the test piece 12 is measured by applying a load (arrows A, B) between the two support points 12a, 12b of the test piece 12, acting in such a direction that makes the curvature smaller.

Description

本発明は、円筒形状や球殻形状等の曲率を有する積層構造体の強度評価方法に関する。   The present invention relates to a method for evaluating the strength of a laminated structure having a cylindrical shape or a spherical shell shape.

一般に、積層構造体は、複数の薄板部材が積層されてこれらの間が接着部材で接着された構成を有するが、薄板部材間に異物や空気が混入したり、薄板部材間に接着部材溜りや接着部材抜けが存在すると、層間の密着度が低下して構造体の強度を低下させてしまう。そこで、積層構造体の強度評価に際して、構造体全体の引張応力や曲げ応力等の強度測定に加えて、層間引張応力や層間せん断応力等の層間応力の測定が行われている。   In general, a laminated structure has a configuration in which a plurality of thin plate members are laminated and bonded between them with an adhesive member. However, foreign matter or air is mixed between the thin plate members, or an adhesive member pool or the like between the thin plate members. If there is any missing adhesive member, the degree of adhesion between the layers will be reduced, reducing the strength of the structure. Therefore, when evaluating the strength of the laminated structure, in addition to measuring the strength of the entire structure such as tensile stress and bending stress, measurement of interlayer stress such as interlayer tensile stress and interlayer shear stress is performed.

例えば特許文献1(米国特許第6,314,819号公報)には、樹脂材料の接着強度測定方法が開示されている。この方法は、層間に異なる2つの荷重を作用させることにより層間せん断応力を測定する構成としている。
また、特許文献2(特許第2733134号公報)には積層体のせん断接着強度の測定方法が開示されている。この方法は、積層体を回転ロールに巻き付けて曲げ変形を与えてせん断応力を発生させ、せん断接着強度を測定する構成としている。
For example, Patent Document 1 (US Pat. No. 6,314,819) discloses a method for measuring the adhesive strength of a resin material. This method is configured to measure interlayer shear stress by applying two different loads between layers.
Patent Document 2 (Japanese Patent No. 2733134) discloses a method for measuring the shear bond strength of a laminate. In this method, the laminate is wound around a rotating roll to give a bending deformation to generate a shear stress, and the shear bond strength is measured.

一方、従来から積層構造体として曲率を有する構造体が広く用いられている。例えば、円筒形状や球殻形状の積層構造体は、フィラメントワインディング(FW)成形法により形成される。FW成形法は、樹脂を含浸させた複合材テープを、回転するマンドレルに対して張力を掛けながら巻き付け、樹脂硬化後に脱型する成形法である。   On the other hand, a structure having a curvature has been widely used as a laminated structure. For example, a laminated structure having a cylindrical shape or a spherical shell shape is formed by a filament winding (FW) molding method. The FW molding method is a molding method in which a composite tape impregnated with a resin is wound while applying tension to a rotating mandrel, and is demolded after the resin is cured.

しかし、FW成形法では、複合材テープの張力と型材の回転速度によっては、テープのうねりや上下テープ間の隙間等が生じる可能性がある。隙間については、上記したように層間の樹脂溜り、樹脂抜け、あるいはボイド等の発生原因となる。これらは製造欠陥であり、製品強度低下の要因となる。また、隙間に関しては、製造欠陥とまではならなくても、層間の密着度を低下させる要因となり、特に層間強度に影響を与えることが考えられる。
そこで、FW成形品においても層間強度を評価することが行われていた。この強度評価に際しては、平板状の供試体を作製し、この供試体の層間応力を測定することによりFW成形品の層間応力を推定していた。
However, in the FW molding method, depending on the tension of the composite material tape and the rotational speed of the mold material, undulation of the tape or a gap between the upper and lower tapes may occur. As described above, the gap causes generation of a resin pool between the layers, a resin dropout, a void, or the like. These are manufacturing defects and cause a reduction in product strength. Further, regarding the gap, even if it does not become a manufacturing defect, it can be a factor that lowers the degree of adhesion between the layers, and in particular, may affect the interlayer strength.
Therefore, evaluation of interlayer strength has been performed also in FW molded products. In this strength evaluation, a flat specimen was prepared, and the interlayer stress of the FW molded product was estimated by measuring the interlayer stress of the specimen.

米国特許第6,314,819号公報US Pat. No. 6,314,819 特許第2733134号公報Japanese Patent No. 2733134

しかしながら、平板状の積層構造体と、FW成形品のような曲率を有する積層構造体とでは、層間方向の密着性が異なることによる強度の差が生じるものと考えられる。特に、曲率を有する積層構造体は、平板状の積層構造体に比べて荷重が加わったときの層間強度への影響が大きいが、層間破壊が発生すると面内剛性が低下するため、面内強度に対する影響も考慮しなければならない。
また、曲率を有する積層構造体においては、平板状の供試体を作製して、例えば特許文献1や特許文献2等の方法を用いて層間強度を測定し、この測定結果に対して許容値を設定して実構造部材の強度評価結果としているが、許容値の設定が困難であり、評価精度に不安が残る。
However, it is considered that there is a difference in strength between the flat laminated structure and the laminated structure having a curvature like the FW molded product due to the difference in adhesion in the interlayer direction. In particular, a laminated structure with a curvature has a greater effect on the interlayer strength when a load is applied than a flat laminated structure, but the in-plane rigidity is reduced when an interlaminar fracture occurs. The impact on the must also be considered.
In addition, in a laminated structure having a curvature, a flat specimen is prepared, and the interlayer strength is measured using, for example, a method such as Patent Document 1 or Patent Document 2, and an allowable value is set for this measurement result. Although it is set and used as the strength evaluation result of the actual structural member, it is difficult to set the allowable value, and anxiety remains in the evaluation accuracy.

したがって、本発明はかかる従来技術の問題に鑑み、曲率を有する積層構造体において、簡単に且つ精度よく層間強度を評価することができる積層構造体の強度評価方法を提供することを目的とする。   SUMMARY OF THE INVENTION Accordingly, an object of the present invention is to provide a strength evaluation method for a multilayer structure that can easily and accurately evaluate interlayer strength in a multilayer structure having a curvature.

上記の課題を解決するために、本発明に係る積層構造体の強度評価方法は、曲率を有する積層構造体の層間強度を測定する積層構造体の強度評価方法であって、前記積層構造体から前記曲率を含む供試体を切り出し、前記曲率が存在する部位を間に挟んだ2つの支持点にて前記供試体を支持し、該供試体の前記2つの支持点間に、前記曲率が小さくなる方向に作用する荷重を加えて前記供試体の層間応力を測定することを特徴とする。   In order to solve the above-described problems, a strength evaluation method for a multilayer structure according to the present invention is a strength evaluation method for a multilayer structure that measures the interlayer strength of a multilayer structure having a curvature. A specimen including the curvature is cut out, the specimen is supported at two support points sandwiching a portion where the curvature exists, and the curvature decreases between the two support points of the specimen. It is characterized in that an interlayer load of the specimen is measured by applying a load acting in the direction.

本発明によれば、強度評価対象である積層構造体から曲率を含む供試体を切り出して層間応力を直接測定する構成としているため、新たに平板状の供試体を作製して測定する場合に比べて、簡単に且つ精度の高い強度評価を行うことが可能である。
また、供試体の前記2つの支持点間に、曲率が小さくなる方向に作用する荷重を加える構成としているため、層間応力以外の他の応力に影響されにくく最も効果的に層間応力を発生させることができ、確実に層間強度を評価することが可能となる。
According to the present invention, the specimen including the curvature is cut out from the laminated structure that is the object of strength evaluation, and the interlaminar stress is directly measured. Therefore, compared to the case of newly producing and measuring a flat specimen. Thus, it is possible to perform strength evaluation easily and with high accuracy.
In addition, since the load is applied between the two support points of the specimen in a direction in which the curvature decreases, it is less affected by stresses other than the interlayer stress and generates the interlayer stress most effectively. Thus, the interlayer strength can be reliably evaluated.

また、前記積層構造体が一定の曲率を有しており、前記供試体の前記2つの支持点がそれぞれ回動自在な支持部材で支持され、該支持部材により前記2つの支持点間に、両支持点を通る直線上に作用する引張荷重を加えて、前記供試体の層間引張応力又は層間せん断応力を測定することが好ましい。   Further, the laminated structure has a certain curvature, and the two support points of the specimen are each supported by a rotatable support member, and both the support points are supported by the support member between the two support points. It is preferable to measure the interlaminar tensile stress or interlaminar shear stress of the specimen by applying a tensile load acting on a straight line passing through the support point.

本構成においては、供試体の2つの支持点間に曲率が存在するため、2つの支持点間に引張荷重を加えることにより層間応力を発生させることができる。したがって、2つの支持点間に引張荷重をかけるのみで簡単に層間引張応力又は層間せん断を測定することが可能となる。さらにこのとき、引張荷重をかけると、曲がっている供試体が延びて支持点が回転するが、本構成では2つの支持点がそれぞれ回動自在な支持部材で支持されているため、支持点が回転しても両支持点を通る直線上に引張荷重を加えることができる。
なお、本構成において、一定の曲率を有する積層構造体は、例えば円筒形状や球殻形状等の構造体である。
In this configuration, since there is a curvature between two support points of the specimen, an interlayer stress can be generated by applying a tensile load between the two support points. Therefore, it is possible to easily measure the interlaminar tensile stress or interlaminar shear simply by applying a tensile load between the two support points. Further, when a tensile load is applied at this time, the bent specimen is extended and the support point is rotated. However, in this configuration, the two support points are supported by the rotatable support members, respectively. Even if it rotates, a tensile load can be applied on a straight line passing through both support points.
In this configuration, the laminated structure having a certain curvature is a structure having a cylindrical shape or a spherical shell shape, for example.

さらに、前記供試体の曲率中心に対する前記2つの支持点間の角度範囲が90°以上180°以下であることが好ましい。
このように両支持点間の角度範囲を設定することにより、2つの支持点間に効果的に層間応力を発生させることができる。ここで、2つの支持点間の角度範囲が90°未満の場合、層間応力よりも供試体自体の引張応力が支配的となり、層間応力に関する有効な測定結果が得られにくい。一方、2つの支持点間の角度範囲が180°超過の場合、層間応力以外に曲げ応力等の他の応力が複雑に発生してしまい、やはり層間応力に関する有効な測定結果が得られにくい。
Furthermore, it is preferable that the angle range between the two support points with respect to the center of curvature of the specimen is 90 ° or more and 180 ° or less.
By setting the angle range between the two support points as described above, an interlayer stress can be effectively generated between the two support points. Here, when the angle range between the two support points is less than 90 °, the tensile stress of the specimen itself is more dominant than the interlayer stress, and it is difficult to obtain an effective measurement result regarding the interlayer stress. On the other hand, if the angle range between the two support points exceeds 180 °, other stresses such as bending stresses are generated in addition to the interlayer stress, and it is difficult to obtain an effective measurement result regarding the interlayer stress.

また、前記積層構造体が一定の曲率を有しており、水平方向に離間して配置される2つの支持部材上に前記供試体が上に凸の状態で載置され、前記2つの支持部材で支持される前記2つの支持点の間に、2つの作用点から垂直下方に曲げ荷重を加えて、前記供試体の層間引張応力を測定することが好ましい。
本構成は、4点曲げ法を援用したものであり、上に凸の状態で供試体を2つの支持部材上に載置し、供試体の支持点間に2つの作用点により垂直下方の荷重を加えている。このように、支持部材上の2つの支持点間に曲げ荷重を加えることにより層間応力を発生させることができ、簡単に層間引張応力を測定することが可能となる。
なお、一定の曲率を有する積層構造体は、例えば円筒形状や球殻形状等の構造体である。
Further, the laminated structure has a certain curvature, and the specimen is placed in a convex state on two support members that are spaced apart in the horizontal direction, and the two support members It is preferable to measure the interlaminar tensile stress of the specimen by applying a bending load vertically downward from the two operating points between the two supporting points supported by the above.
This configuration uses a four-point bending method. The specimen is placed on two support members in a convex state, and the load in the vertical direction is lowered by two action points between the support points of the specimen. Is added. Thus, an interlayer stress can be generated by applying a bending load between two support points on the support member, and the interlayer tensile stress can be easily measured.
The laminated structure having a certain curvature is, for example, a cylindrical or spherical shell structure.

また、前記積層構造体は、マトリックス樹脂中に強化繊維が分散された複合材を用いてフィラメントワインディング成形により形成された円筒形状若しくは球殻形状の構造体であることが好ましい。
これにより、平板状の供試体を作製して強度評価していた従来の方法に比べて、簡単に且つ精度の高い強度評価を行うことが可能である。
The laminated structure is preferably a cylindrical or spherical shell-shaped structure formed by filament winding using a composite material in which reinforcing fibers are dispersed in a matrix resin.
Thereby, compared with the conventional method which produced the flat specimen and evaluated strength, it is possible to perform strength evaluation easily and with high precision.

さらにまた、前記供試体は、人工欠陥が層間に挿入されている前記積層構造体から該人工欠陥を含む部位を切り出して作製されることが好ましい。
このように、積層構造体の積層時に層間に人工欠陥を挿入しておき、この人工欠陥を含む供試体に対して強度評価を行うことによって、積層構造体製造時に発生する可能性の高い欠陥混入による強度低下に対しても積層構造体の健全性を評価することが可能となるとともに、構造体における許容欠陥の評価・確認を行うことも可能となる。
なお、人工欠陥としては、例えばテフロンフィルム(テフロン:登録商標)が用いられる。
Furthermore, it is preferable that the specimen is manufactured by cutting out a portion including the artificial defect from the laminated structure in which the artificial defect is inserted between layers.
In this way, by inserting an artificial defect between the layers at the time of stacking the laminated structure and performing a strength evaluation on the specimen including the artificial defect, it is likely that defects will occur during the production of the laminated structure. It is possible to evaluate the soundness of the laminated structure even when the strength is reduced due to the above, and it is also possible to evaluate and confirm allowable defects in the structure.
For example, a Teflon film (Teflon: registered trademark) is used as the artificial defect.

以上記載のように本発明によれば、強度評価対象である積層構造体から曲率を含む供試体を切り出して層間応力を直接測定する構成としているため、新たに平板状の供試体を作製して測定する場合に比べて、簡単に且つ精度の高い強度評価を行うことが可能である。
また、供試体の前記2つの支持点間に、曲率が小さくなる方向に作用する荷重を加える構成としているため、層間応力以外の他の応力に影響されにくく最も効果的に層間応力を発生させることができ、確実に層間強度を評価することが可能となる。
As described above, according to the present invention, the specimen including the curvature is cut out from the laminated structure that is the object of strength evaluation, and the interlayer stress is directly measured. Therefore, a new flat specimen is prepared. Compared to the case of measurement, it is possible to perform strength evaluation easily and with high accuracy.
In addition, since the load is applied between the two support points of the specimen in a direction in which the curvature decreases, it is less affected by stresses other than the interlayer stress and generates the interlayer stress most effectively. Thus, the interlayer strength can be reliably evaluated.

本発明の実施形態における測定対象の一例を示す図であり、(A)は円筒形状の積層構造体を示す斜視図で、(B)は供試体を示す斜視図である。It is a figure which shows an example of the measuring object in embodiment of this invention, (A) is a perspective view which shows a cylindrical laminated structure, (B) is a perspective view which shows a test body. 本発明の実施形態における測定対象の他の一例を示す図であり、(A)は球殻形状の積層構造体を示す斜視図で、(B)は供試体を示す斜視図である。It is a figure which shows another example of the measuring object in embodiment of this invention, (A) is a perspective view which shows a spherical shell-shaped laminated structure, (B) is a perspective view which shows a test body. 本発明の第1実施形態に係る強度評価方法を説明する図である。It is a figure explaining the strength evaluation method concerning a 1st embodiment of the present invention. 本発明の第1実施形態における層間応力を説明する図であり、(A)は層間引張応力を示す図で、(B)は層間せん断応力を示す図である。It is a figure explaining the interlayer stress in 1st Embodiment of this invention, (A) is a figure which shows interlayer tensile stress, (B) is a figure which shows interlayer shear stress. 強度評価試験結果を示すグラフであり、(A)は板厚方向における層間引張応力を示すグラフで、(B)は周方向における層間引張応力を示すグラフである。It is a graph which shows an intensity | strength evaluation test result, (A) is a graph which shows the interlayer tensile stress in a plate | board thickness direction, (B) is a graph which shows the interlayer tensile stress in the circumferential direction. 強度評価試験結果を示すグラフであり、(A)は板厚方向に対する層間せん断応力を示すグラフで、(B)は周方向に対する層間せん断応力を示すグラフである。It is a graph which shows an intensity | strength evaluation test result, (A) is a graph which shows the interlayer shear stress with respect to a sheet thickness direction, (B) is a graph which shows the interlayer shear stress with respect to the circumferential direction. 強度評価試験における供試体の各寸法を説明する図である。It is a figure explaining each dimension of the test body in a strength evaluation test. 本発明の第1実施形態に係る強度評価方法の変形例を示す図である。It is a figure which shows the modification of the intensity | strength evaluation method which concerns on 1st Embodiment of this invention. 本発明の第2実施形態に係る強度評価方法を説明する図である。It is a figure explaining the strength evaluation method concerning a 2nd embodiment of the present invention. 本発明の第2実施形態における層間引張応力を説明する図である。It is a figure explaining the interlayer tensile stress in 2nd Embodiment of this invention. 強度評価試験結果を示すグラフであり、(A)は板厚方向における層間引張応力を示すグラフで、(B)は周方向における層間引張応力を示すグラフである。It is a graph which shows an intensity | strength evaluation test result, (A) is a graph which shows the interlayer tensile stress in a plate | board thickness direction, (B) is a graph which shows the interlayer tensile stress in the circumferential direction.

以下、図面を参照して本発明の好適な実施形態を例示的に詳しく説明する。但しこの実施形態に記載されている構成部品の寸法、材質、形状、その相対的配置等は特に特定的な記載がない限りは、この発明の範囲をそれに限定する趣旨ではなく、単なる説明例に過ぎない。
本発明の実施形態における測定対象は、曲率を有する積層構造体である。積層構造体としては、例えば、FRP(繊維強化プラスチック)等が用いられる。測定対象は、曲率が一定であってもよいし、一定でなくてもよい。
Hereinafter, exemplary embodiments of the present invention will be described in detail with reference to the drawings. However, the dimensions, materials, shapes, relative arrangements, and the like of the components described in this embodiment are not intended to limit the scope of the present invention unless otherwise specified, but are merely illustrative examples. Not too much.
The measurement object in the embodiment of the present invention is a laminated structure having a curvature. For example, FRP (fiber reinforced plastic) is used as the laminated structure. The object to be measured may or may not have a constant curvature.

本発明の実施形態に係る積層構造体の強度評価方法においては、まず最初に、積層構造体から曲率を含む供試体を切り出す。
図1は本発明の実施形態における測定対象の一例を示す図であり、(A)は円筒形状の積層構造体10を示す斜視図で、(B)は供試体11、12を示す斜視図である。図1(A)に示すような円筒状の積層構造体10からその一部を環状に切り出し、図1(B)に示すように環状の供試体11としてもよいし、環状の積層構造体をさらに円弧状に切り出し、円弧状の供試体12としてもよい。
また、図2は本発明の実施形態における測定対象の他の一例を示す図であり、(A)は球殻形状の積層構造体20を示す斜視図で、(B)は供試体21を示す斜視図である。図2(A)に示すような球殻状の積層構造体20から一部を切り出し、図2(B)に示すように円弧状の供試体21としてもよい。
In the strength evaluation method for a laminated structure according to an embodiment of the present invention, first, a specimen including a curvature is cut out from the laminated structure.
FIG. 1 is a diagram showing an example of a measurement object in an embodiment of the present invention, (A) is a perspective view showing a cylindrical laminated structure 10, and (B) is a perspective view showing specimens 11 and 12. is there. A part of the cylindrical laminated structure 10 as shown in FIG. 1 (A) is cut out in a ring shape, and as shown in FIG. 1 (B), an annular specimen 11 may be used. Furthermore, it is good also as a circular-arc shaped specimen 12 cut out in circular arc shape.
FIG. 2 is a view showing another example of the measurement target in the embodiment of the present invention, (A) is a perspective view showing a spherical shell-shaped laminated structure 20, and (B) shows a specimen 21. It is a perspective view. A part may be cut out from the spherical shell-shaped laminated structure 20 as shown in FIG. 2 (A) to form an arc-shaped specimen 21 as shown in FIG. 2 (B).

次いで、曲率が存在する部位を間に挟んだ2つの支持点にて、支持部材により供試体を支持する。そして、供試体の2つの支持点間に、曲率が小さくなる方向に作用する荷重を加えて供試体の層間応力を測定する。ここで、層間応力とは、層間引張応力又は層間せん断応力を含む。
具体的には、供試体の2つの支持点間に曲率が小さくなる方向に作用する荷重を加えて、層間応力により層間剥離が生じたときの荷重を測定する。そして、この荷重を用いて、予め求めておいた荷重と応力との関係に基づいて、層間応力を求める。荷重と応力との関係は、例えば特許文献1等に開示される理論式によって求めてもよいし、シミュレーションによって求めてもよい。
Next, the specimen is supported by the support member at two support points sandwiching the portion where the curvature exists. And the load which acts in the direction where a curvature becomes small is added between the two support points of a specimen, and the interlayer stress of a specimen is measured. Here, interlayer stress includes interlayer tensile stress or interlayer shear stress.
Specifically, a load acting in a direction in which the curvature decreases between the two support points of the specimen is added, and the load when delamination occurs due to interlayer stress is measured. Then, using this load, the interlayer stress is obtained based on the relationship between the load and the stress obtained in advance. The relationship between the load and the stress may be obtained, for example, by a theoretical formula disclosed in Patent Document 1 or the like, or may be obtained by simulation.

本実施形態によれば、強度評価対象である積層構造体から曲率を含む供試体を切り出して層間応力を直接測定する構成としているため、新たに平板状の供試体を作製して測定する場合に比べて、簡単に且つ精度の高い強度評価を行うことが可能である。
また、供試体の前記2つの支持点間に、曲率が小さくなる方向に作用する荷重を加える構成としているため、層間応力以外の他の応力に影響されにくく最も効果的に層間応力を発生させることができ、確実に層間強度を評価することが可能となる。
According to the present embodiment, the specimen including the curvature is cut out from the laminated structure that is the object of strength evaluation, and the interlayer stress is directly measured. Therefore, when a flat specimen is newly measured and measured. Compared to this, it is possible to easily and accurately perform strength evaluation.
In addition, since the load is applied between the two support points of the specimen in a direction in which the curvature decreases, it is less affected by stresses other than the interlayer stress and generates the interlayer stress most effectively. Thus, the interlayer strength can be reliably evaluated.

また、本実施形態において、供試体は、人工欠陥が層間に挿入されている積層構造体から該人工欠陥を含む部位を切り出して作製されるようにしてもよい。
このように、積層構造体の積層時に層間に人工欠陥を挿入しておき、この人工欠陥を含む供試体に対して強度評価を行うことによって、積層構造体製造時に発生する可能性の高い欠陥混入による強度低下に対しても積層構造体の健全性を評価することが可能となるとともに、構造体における許容欠陥の評価・確認を行うことも可能となる。なお、人工欠陥としては、例えばテフロンフィルム(テフロン:登録商標)が用いられる。
以下に、本実施形態の具体的な態様について説明する。
In the present embodiment, the specimen may be manufactured by cutting out a part including the artificial defect from the laminated structure in which the artificial defect is inserted between the layers.
In this way, by inserting an artificial defect between the layers at the time of stacking the laminated structure and performing a strength evaluation on the specimen including the artificial defect, it is likely that defects will occur during the production of the laminated structure. It is possible to evaluate the soundness of the laminated structure even when the strength is reduced due to the above, and it is also possible to evaluate and confirm allowable defects in the structure. For example, a Teflon film (Teflon: registered trademark) is used as the artificial defect.
Below, the specific aspect of this embodiment is demonstrated.

(第1実施形態)
図3は本発明の第1実施形態に係る強度評価方法を説明する図である。
本第1実施形態の測定対象は、一定の曲率を有する積層構造体であり、図1又は図2に示す供試体が好適に用いられる。ここでは一例として、図1(B)に示す円弧状の供試体12を用いて説明する。この供試体12は、曲率中心に対する2つの支持点間の角度が180°となっている。
(First embodiment)
FIG. 3 is a diagram for explaining the strength evaluation method according to the first embodiment of the present invention.
The measurement object of the first embodiment is a laminated structure having a certain curvature, and the specimen shown in FIG. 1 or 2 is preferably used. Here, as an example, a description will be given using an arc-shaped specimen 12 shown in FIG. In this specimen 12, the angle between two support points with respect to the center of curvature is 180 °.

第1実施形態に係る強度評価方法においては、積層構造体10から切り出した供試体12の両端部に支持点12a、12bを設定し、この支持点12a、12bを支持部材5、5でそれぞれ支持する。支持部材4、5は、それぞれ回動自在に構成されている。このとき、支持部材4、5は、供試体12の支持点12a、12b、及びこれら支持点間の中央部12cの3点を通る面に垂直な回動軸4a、5aを中心として回動することが好ましい。支持部材4、5による支持方法は特に限定されないが、支持点12a、12bを接着させて支持してもよいし、支持点12a、12bを把持してもよい。   In the strength evaluation method according to the first embodiment, support points 12a and 12b are set at both ends of the specimen 12 cut out from the laminated structure 10, and the support points 12a and 12b are supported by the support members 5 and 5, respectively. To do. Each of the support members 4 and 5 is configured to be rotatable. At this time, the support members 4 and 5 rotate around the rotation axes 4a and 5a perpendicular to the plane passing through the three points of the support points 12a and 12b of the specimen 12 and the central portion 12c between the support points. It is preferable. Although the support method by the support members 4 and 5 is not particularly limited, the support points 12a and 12b may be bonded and supported, or the support points 12a and 12b may be gripped.

供試体12を支持部材4、5で支持した状態で、支持部材4、5により2つの支持点12a、12b間に、両支持点を通る直線L上に作用する引張荷重を加える。具体的には、支持部材4、5により支持点12aと支持点12bとを矢印A、B方向にそれぞれ引っ張ってもよいし、いずれか一方の支持点12a又は12bを保持したまま、他方の支持点12b又は12aを矢印B方向又は矢印A方向に引っ張ってもよい。   With the specimen 12 supported by the support members 4 and 5, a tensile load acting on the straight line L passing through the two support points is applied between the two support points 12a and 12b by the support members 4 and 5. Specifically, the support point 12a and the support point 12b may be pulled in the directions of arrows A and B by the support members 4 and 5, respectively, or the other support may be performed while holding either one of the support points 12a or 12b. The point 12b or 12a may be pulled in the arrow B direction or the arrow A direction.

引張荷重を加えたとき、供試体12には層間引張応力及び層間せん断応力が発生する。図4に示すように、層間引張応力は、主に両支持点12a、12b間の中央部に発生し、図中矢印のように層間を引き離す方向に応力が生じる。図5に示すように、層間せん断応力は、主に両支持点12a、12bの近傍に発生し、図中矢印のように層間をずらす方向に応力が生じる。いずれか一方の応力が供試体の層間強度を上回ったときに、層間剥離が生じる。層間剥離が生じた位置又は状態に基づいて、層間引張応力であるか又は層間せん断応力であるかを判断するとともに、そのときの荷重を測定する。   When a tensile load is applied, an interlayer tensile stress and an interlayer shear stress are generated in the specimen 12. As shown in FIG. 4, the interlaminar tensile stress is mainly generated at the center between the two support points 12a and 12b, and the stress is generated in the direction of separating the layers as indicated by arrows in the figure. As shown in FIG. 5, the interlaminar shear stress is mainly generated in the vicinity of both support points 12a and 12b, and the stress is generated in the direction in which the interlamellar is shifted as indicated by arrows in the figure. Delamination occurs when either one of the stresses exceeds the interlaminar strength of the specimen. Based on the position or state where the delamination occurs, it is determined whether it is an interlaminar tensile stress or an interlaminar shear stress, and the load at that time is measured.

そして、測定した荷重を用いて、予め求めておいた荷重と応力との関係に基づいて、層間応力を求める。このとき、層間応力の種類(層間引張応力又は層間せん断応力)に応じて荷重と応力との関係を選定し、層間応力を求めるようにする。   Then, using the measured load, the interlayer stress is obtained based on the relationship between the load and the stress obtained in advance. At this time, the relationship between the load and the stress is selected according to the type of interlayer stress (interlayer tensile stress or interlayer shear stress), and the interlayer stress is obtained.

ここで、図5及び図6に強度評価試験結果を示す。図5は強度評価試験結果を示すグラフであり、(A)は板厚方向における層間引張応力を示すグラフで、(B)は周方向における層間引張応力を示すグラフである。図6は強度評価試験結果を示すグラフであり、(A)は板厚方向に対する層間せん断応力を示すグラフで、(B)は周方向に対する層間せん断応力を示すグラフである。なお、図7は強度評価試験における供試体の各寸法を説明する図である。ここでは、供試体12の外周面の曲率半径をr0、内周面の曲率半径をri、板厚内の任意の点における曲率半径をr、板厚をtとしている。   Here, FIG. 5 and FIG. 6 show the strength evaluation test results. FIG. 5 is a graph showing the strength evaluation test results, (A) is a graph showing the interlayer tensile stress in the sheet thickness direction, and (B) is a graph showing the interlayer tensile stress in the circumferential direction. FIG. 6 is a graph showing the strength evaluation test results, (A) is a graph showing the interlaminar shear stress in the thickness direction, and (B) is a graph showing the interlaminar shear stress in the circumferential direction. In addition, FIG. 7 is a figure explaining each dimension of the test body in a strength evaluation test. Here, the radius of curvature of the outer peripheral surface of the specimen 12 is r0, the radius of curvature of the inner peripheral surface is ri, the radius of curvature at an arbitrary point in the plate thickness is r, and the plate thickness is t.

図5(A)、(B)に示すように、層間引張応力は、板厚方向において中央部が最も高く、周方向においても中央部が最も高くなる。また、図6(A)、(B)に示すように、層間せん断応力は、板厚方向において中央部が最も高く、周方向において端部が最も高くなる。したがって、層間応力の種類を層間剥離位置から特定する際には、供試体12の中央部に層間剥離が生じた場合には層間引張応力と判断し、供試体12の端部に層間剥離が生じた場合には層間せん断応力と判断することが好ましい。   As shown in FIGS. 5A and 5B, the interlayer tensile stress is highest in the central portion in the plate thickness direction and highest in the circumferential direction. As shown in FIGS. 6A and 6B, the interlaminar shear stress is highest at the center in the thickness direction and highest at the end in the circumferential direction. Therefore, when the type of interlayer stress is specified from the delamination position, if delamination occurs at the center of the specimen 12, it is determined as interlayer tensile stress, and delamination occurs at the end of the specimen 12. In such a case, it is preferable to determine the interlaminar shear stress.

本第1実施形態においては、供試体の2つの支持点間に曲率が存在するため、2つの支持点間に引張荷重を加えることにより層間応力を発生させることができる。したがって、2つの支持点間に引張荷重をかけるのみで簡単に層間引張応力又は層間せん断を測定することが可能となる。さらにこのとき、引張荷重をかけると曲がっている供試体が延びて支持点が回転するが、本第1実施形態では2つの支持点がそれぞれ回動自在な支持部材で支持されているため、支持点が回転しても両支持点を通る直線上に引張荷重を加えることができる。   In the first embodiment, since a curvature exists between two support points of the specimen, an interlayer stress can be generated by applying a tensile load between the two support points. Therefore, it is possible to easily measure the interlaminar tensile stress or interlaminar shear simply by applying a tensile load between the two support points. Further, at this time, when a tensile load is applied, the bent specimen extends and the support point rotates, but in the first embodiment, the two support points are supported by the rotatable support members. Even if the point rotates, a tensile load can be applied on a straight line passing through both support points.

また、本第1実施形態において、供試体の曲率中心に対する2つの支持点間の角度範囲が90°以上180°以下であることが好ましい。
このように両支持点間の角度範囲を設定することにより、2つの支持点間に効果的に層間応力を発生させることができる。ここで、2つの支持点間の角度範囲が90°未満の場合、層間応力よりも供試体自体の引張応力が支配的となり、層間応力に関する有効な測定結果が得られにくい。一方、2つの支持点間の角度範囲が180°超過の場合、層間応力以外に曲げ応力等の他の応力が複雑に発生してしまい、やはり層間応力に関する有効な測定結果が得られにくい。
In the first embodiment, the angle range between the two support points with respect to the center of curvature of the specimen is preferably 90 ° or more and 180 ° or less.
By setting the angle range between the two support points as described above, an interlayer stress can be effectively generated between the two support points. Here, when the angle range between the two support points is less than 90 °, the tensile stress of the specimen itself is more dominant than the interlayer stress, and it is difficult to obtain an effective measurement result regarding the interlayer stress. On the other hand, if the angle range between the two support points exceeds 180 °, other stresses such as bending stresses are generated in addition to the interlayer stress, and it is difficult to obtain an effective measurement result regarding the interlayer stress.

図8は本発明の第1実施形態に係る強度評価方法の変形例を示す図である。
この方法においては、図1(B)の環状の供試体11を用いている。供試体11の内周面に支持部材4’、5’を当接し、図中矢印A、B方向に引っ張ることにより引張荷重を加えている。
環状の供試体11においては、上記方法を用いることにより、供試体11に対して簡単に層間引張荷重を加えることが可能となる。
FIG. 8 is a diagram showing a modification of the strength evaluation method according to the first embodiment of the present invention.
In this method, the annular specimen 11 shown in FIG. 1B is used. The supporting members 4 ′ and 5 ′ are brought into contact with the inner peripheral surface of the specimen 11, and a tensile load is applied by pulling in the directions of arrows A and B in the drawing.
In the annular specimen 11, an interlayer tensile load can be easily applied to the specimen 11 by using the above method.

(第2実施形態)
図9は本発明の第2実施形態に係る強度評価方法を説明する図である。
本第2実施形態の測定対象は、第1実施形態と同様に、一定の曲率を有する積層構造体である。
(Second Embodiment)
FIG. 9 is a diagram for explaining a strength evaluation method according to the second embodiment of the present invention.
The measurement object of the second embodiment is a laminated structure having a certain curvature, as in the first embodiment.

第2実施形態に係る強度評価方法においては、水平方向に離間して配置される2つの支持部材6、7上に、供試体12を上に凸の状態で載置する。ここで、供試体12の2つの支持部材6、7で支持される部位が、供試体12の2つの支持点12c、12dとなる。このとき、供試体12の支持点12c、12dが回動自在なように、支持部材6、7に供試体12を固定してもよい。これにより供試体12の位置ずれを防止できる。
この2つの支持部材6、7で支持される2つの支持点12c、12dの間に、2つの作用点8、9から図中矢印Cのように垂直下方に曲げ荷重を加える。2つの作用点8、9から与える荷重は同一である。
In the strength evaluation method according to the second embodiment, the specimen 12 is placed in a convex state on the two support members 6 and 7 that are spaced apart in the horizontal direction. Here, the portions supported by the two support members 6 and 7 of the specimen 12 become the two support points 12 c and 12 d of the specimen 12. At this time, the specimen 12 may be fixed to the support members 6 and 7 so that the support points 12c and 12d of the specimen 12 are rotatable. Thereby, the position shift of the specimen 12 can be prevented.
Between the two support points 12c and 12d supported by the two support members 6 and 7, a bending load is applied vertically downward from the two action points 8 and 9 as indicated by an arrow C in the figure. The load applied from the two action points 8 and 9 is the same.

曲げ荷重を加えたとき、供試体12には層間引張応力が発生する。図10に示すように、層間引張応力は、主に両支持点12c、12d間の中央部に発生し、図中矢印のように層間を引き離す方向に応力が生じる。この層間引張応力が層間強度を上回ったときに、層間剥離が生じる。このときの荷重を測定し、この荷重を用いて、予め求めておいた荷重と応力との関係に基づいて、層間応力を求める。   When a bending load is applied, an interlayer tensile stress is generated in the specimen 12. As shown in FIG. 10, the interlayer tensile stress is mainly generated at the center between the two support points 12c and 12d, and the stress is generated in the direction of separating the layers as indicated by arrows in the figure. Delamination occurs when the interlayer tensile stress exceeds the interlayer strength. The load at this time is measured, and using this load, the interlaminar stress is obtained based on the relationship between the load and the stress obtained in advance.

ここで、図11に強度評価試験結果を示す。図11は強度評価試験結果を示すグラフであり、(A)は板厚方向における層間引張応力を示すグラフで、(B)は周方向における層間引張応力を示すグラフである。なお、強度評価試験における供試体の各寸法は、上記の図7に示した通りである。
図11(A)、(B)に示すように、層間引張応力は、板厚方向において中央部が最も高く、周方向においては一定となる。したがって、周方向のいずれの位置においても、層間剥離が生じた場合には、層間引張応力と判断する。
Here, the strength evaluation test results are shown in FIG. FIG. 11 is a graph showing the strength evaluation test results, (A) is a graph showing the interlayer tensile stress in the sheet thickness direction, and (B) is a graph showing the interlayer tensile stress in the circumferential direction. The dimensions of the specimen in the strength evaluation test are as shown in FIG.
As shown in FIGS. 11A and 11B, the interlayer tensile stress is highest in the central portion in the plate thickness direction and constant in the circumferential direction. Therefore, if delamination occurs at any position in the circumferential direction, it is determined as an interlayer tensile stress.

本第2実施形態は、4点曲げ法を援用したものであり、上に凸の状態で供試体を2つの支持部材上に載置し、供試体の支持点間に2つの作用点により垂直下方の荷重を加えている。このように、支持部材上の2つの支持点間に曲げ荷重を加えることにより層間応力を発生させることができ、簡単に層間引張応力を測定することが可能となる。   In the second embodiment, a four-point bending method is used, and a specimen is placed on two support members in a state of being convex upward, and is perpendicular to the support points of the specimen by two action points. A downward load is applied. Thus, an interlayer stress can be generated by applying a bending load between two support points on the support member, and the interlayer tensile stress can be easily measured.

また、上記の第1実施形態又は第2実施形態において、積層構造体は、マトリックス樹脂中に強化繊維が分散された複合材を用いてフィラメントワインディング成形により形成された円筒形状若しくは球殻形状の構造体であることが好ましい。
これにより、平板状の供試体を作製して強度評価していた従来の方法に比べて、簡単に且つ精度の高い強度評価を行うことが可能である。
In the first embodiment or the second embodiment, the laminated structure is a cylindrical or spherical shell-shaped structure formed by filament winding using a composite material in which reinforcing fibers are dispersed in a matrix resin. It is preferable that it is a body.
Thereby, compared with the conventional method which produced the flat specimen and evaluated strength, it is possible to perform strength evaluation easily and with high precision.

4〜7 支持部材
8、9 作用点
10 積層構造体(円筒形状)
11、12 供試体
12a〜12d 支持点
20 積層構造体(球殻形状)
21 供試体
4-7 Support members 8, 9 Action point 10 Laminated structure (cylindrical shape)
11, 12 Specimens 12a to 12d Support point 20 Laminated structure (spherical shell shape)
21 Specimen

Claims (6)

曲率を有する積層構造体の層間強度を測定する積層構造体の強度評価方法であって、
前記積層構造体から前記曲率を含む供試体を切り出し、
前記曲率が存在する部位を間に挟んだ2つの支持点にて前記供試体を支持し、該供試体の前記2つの支持点間に、前記曲率が小さくなる方向に作用する荷重を加えて前記供試体の層間応力を測定することを特徴とする積層構造体の強度評価方法。
A strength evaluation method for a laminated structure for measuring an interlayer strength of a laminated structure having a curvature,
Cut out the specimen containing the curvature from the laminated structure,
The specimen is supported at two supporting points sandwiching a portion where the curvature exists, and a load acting in a direction in which the curvature decreases is applied between the two supporting points of the specimen. A method for evaluating the strength of a laminated structure, comprising measuring an interlaminar stress of a specimen.
前記積層構造体が一定の曲率を有しており、
前記供試体の前記2つの支持点がそれぞれ回動自在な支持部材で支持され、該支持部材により前記2つの支持点間に、両支持点を通る直線上に作用する引張荷重を加えて、前記供試体の層間引張応力又は層間せん断応力を測定することを特徴とする請求項1に記載の積層構造体の強度評価方法。
The laminated structure has a certain curvature,
The two support points of the specimen are each supported by a rotatable support member, and a tensile load acting on a straight line passing through both support points is applied between the two support points by the support member, The method for evaluating the strength of a laminated structure according to claim 1, wherein an interlayer tensile stress or an interlayer shear stress of the specimen is measured.
前記供試体の曲率中心に対する前記2つの支持点間の角度範囲が90°以上180°以下であることを特徴とする請求項2に記載の積層構造体の強度評価方法。   The method for evaluating the strength of a laminated structure according to claim 2, wherein an angle range between the two support points with respect to the center of curvature of the specimen is 90 ° or more and 180 ° or less. 前記積層構造体が一定の曲率を有しており、
水平方向に離間して配置される2つの支持部材上に前記供試体が上に凸の状態で載置され、前記2つの支持部材で支持される前記2つの支持点の間に、2つの作用点から垂直下方に曲げ荷重を加えて、前記供試体の層間引張応力を測定することを特徴とする請求項1に記載の積層構造体の強度評価方法。
The laminated structure has a certain curvature,
The test specimen is placed in a convex state on two support members that are spaced apart in the horizontal direction, and has two actions between the two support points supported by the two support members. 2. The method for evaluating the strength of a laminated structure according to claim 1, wherein a bending load is applied vertically downward from the point, and the interlayer tensile stress of the specimen is measured.
前記積層構造体は、マトリックス樹脂中に強化繊維が分散された複合材を用いてフィラメントワインディング成形により形成された円筒形状若しくは球殻形状の構造体であることを特徴とする1乃至4のいずれか一項の記載の積層構造体の強度評価方法。   The laminated structure is a cylindrical or spherical shell-shaped structure formed by filament winding using a composite material in which reinforcing fibers are dispersed in a matrix resin. The strength evaluation method for a laminated structure according to one item. 前記供試体は、人工欠陥が層間に挿入されている前記積層構造体から該人工欠陥を含む部位を切り出して作製されることを特徴とする請求項1乃至5のいずれか一項に記載の積層構造体の強度評価方法。   The laminate according to any one of claims 1 to 5, wherein the specimen is manufactured by cutting out a portion including the artificial defect from the laminated structure in which the artificial defect is inserted between layers. Structural strength evaluation method.
JP2010286507A 2010-12-22 2010-12-22 Strength evaluation method for layer structure Withdrawn JP2012132840A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010286507A JP2012132840A (en) 2010-12-22 2010-12-22 Strength evaluation method for layer structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010286507A JP2012132840A (en) 2010-12-22 2010-12-22 Strength evaluation method for layer structure

Publications (1)

Publication Number Publication Date
JP2012132840A true JP2012132840A (en) 2012-07-12

Family

ID=46648591

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010286507A Withdrawn JP2012132840A (en) 2010-12-22 2010-12-22 Strength evaluation method for layer structure

Country Status (1)

Country Link
JP (1) JP2012132840A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103940678A (en) * 2014-04-02 2014-07-23 同济大学 Measurement device and measurement method for radial bending elastic modulus of ring
CN104713825A (en) * 2015-03-31 2015-06-17 山东大学 Method and device for testing interlayer fracture energy of asphalt pavement structure

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103940678A (en) * 2014-04-02 2014-07-23 同济大学 Measurement device and measurement method for radial bending elastic modulus of ring
CN104713825A (en) * 2015-03-31 2015-06-17 山东大学 Method and device for testing interlayer fracture energy of asphalt pavement structure

Similar Documents

Publication Publication Date Title
Zimmermann et al. Buckling and postbuckling of stringer stiffened fibre composite curved panels–tests and computations
Trask et al. Influence of process induced defects on the failure of composite T-joint specimens
EP2390074B1 (en) Apparatus and closed-loop method for the manufacture of prepregs and/or laminates comprising the same
Kaynak et al. Use of split-disk tests for the process parameters of filament wound epoxy composite tubes
US9354421B2 (en) Method of manufacturing advanced grid structure, advanced grid structure, and space telescope using advanced grid structure
US11440276B2 (en) Methods of making a specimen with a predetermined wrinkle defect
Uddin et al. Adhesiveless honeycomb sandwich structures of prepreg carbon fiber composites for primary structural applications
US20200340894A1 (en) Methods of making a tubular specimen with a predetermined wrinkle defect
US8894787B2 (en) Composite panel with fixed void content and methods of making same
Tabatabaeian et al. The impact of MWCNT modification on the structural performance of polymeric composite profiles
JP2012132840A (en) Strength evaluation method for layer structure
JP2013159723A (en) Prepreg and method for producing the same
Deng et al. Rule of mixtures model to determine elastic modulus and tensile strength of 3D printed carbon fiber reinforced nylon
Rekbi et al. Experimental and numerical analysis of mode-I interlaminar fracture of composite pipes
Diniță et al. Advancements in fiber-reinforced polymer composites: a comprehensive analysis
Min et al. Experimental study on the behaviour of hybrid fibre reinforced polymer–timber thin-walled Cee section columns
Liu et al. Out-of-plane Properties and Failure Mechanism of Composite Laminates Reinforced With Carbon Z-pins
CN111220481B (en) Method for testing elastic modulus of three-layer composite paper in each layer surface
Khakimova et al. Design and manufacture of conical shell structures using prepreg laminates
Chen et al. Process evaluation, tensile properties and fatigue resistance of chopped and continuous fiber reinforced thermoplastic composites by 3D printing
Lee et al. Compressive strength stabilizing manufacturing method of anisogrid composite structure ribs without an outer skin
Chryssanthopoulos et al. Compression tests on anti-symmetric two-ply GFRP cylinders
Khechai et al. Strength improvement and stress analysis of E-glass laminated plates with circular notches using digital image correlation
CA2983956A1 (en) Methods of making a tubular specimen with a predetermined wrinkle defect
Panbarasu et al. A Study on Flexure Behavior of AS4/914 Grade Carbon Fiber Reinforced Plastic Laminates under Static and Fatigue Loads

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20140304