JP2012132700A - Particle measuring apparatus - Google Patents

Particle measuring apparatus Download PDF

Info

Publication number
JP2012132700A
JP2012132700A JP2010282831A JP2010282831A JP2012132700A JP 2012132700 A JP2012132700 A JP 2012132700A JP 2010282831 A JP2010282831 A JP 2010282831A JP 2010282831 A JP2010282831 A JP 2010282831A JP 2012132700 A JP2012132700 A JP 2012132700A
Authority
JP
Japan
Prior art keywords
electrode
sample gas
particle
collection
particles
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2010282831A
Other languages
Japanese (ja)
Inventor
Hiroshi Okuda
浩史 奥田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shimadzu Corp
Original Assignee
Shimadzu Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shimadzu Corp filed Critical Shimadzu Corp
Priority to JP2010282831A priority Critical patent/JP2012132700A/en
Publication of JP2012132700A publication Critical patent/JP2012132700A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Other Investigation Or Analysis Of Materials By Electrical Means (AREA)

Abstract

PROBLEM TO BE SOLVED: To measure the number of particles and particle diameters for particles contained in sample gas without using sheath gas flow.SOLUTION: A particle measuring apparatus includes: a charging mechanism 3 for charging particles contained in sample gas; a collection electrode 9 for collecting the particles charged by the charging mechanism 3; sample gas introduction mechanisms 1, 7, 15, 17, 19 for flowing the sample gas passed through the charging mechanism 3 to the surface of an insulator of the collection electrode 9; a collection electrode potential switching mechanism 21 for switching collection voltage to emission voltage to be applied to the collection electrode 9; a counter electrode 11 arranged opposite to the collection electrode 9 at a predetermined interval with the collection electrode 9; a current detector 23 which detects the particles by detecting current flowing to the counter electrode 11 resulting from adhesion of the charged particles emitted from the collection electrode 9; and flight time measuring parts 27, 29 which calculate particle flight time from the collection electrode 9 to the counter electrode 11 for every particle to be detected by the current detector 23.

Description

本発明は、環境ガスに含まれる粒子数を測定する装置、例えば自動車排ガスに含まれる粒子数をリアルタイムに測定する粒子測定装置に関する。   The present invention relates to an apparatus for measuring the number of particles contained in environmental gas, for example, a particle measuring apparatus for measuring the number of particles contained in automobile exhaust gas in real time.

自動車排ガス等の環境ガスに含まれる粒子数を測定する装置として微分型又は積分型の電気移動度測定装置が知られている(例えば特許文献1を参照。)。この電気移動度測定装置はnm(ナノメートル)オーダーの粒子径分級機能を持つことが知られている。   As an apparatus for measuring the number of particles contained in environmental gas such as automobile exhaust gas, a differential type or integral type electric mobility measuring apparatus is known (for example, see Patent Document 1). This electric mobility measuring device is known to have a particle size classification function of the order of nm (nanometer).

図6は、従来の微分型電気移動度測定装置(DMA:Differential mobility analyzer)に用いられる分級機構を説明するための概略図である。
シースガス導入口101から導入されて整流機構103によって整流されたシースガスが流れる空間105が設けられている。空間105の側面に試料ガスを導入するための試料ガス供給口107が設けられている。試料ガス供給口107に対向して対向電極109が設けられている。対向電極109の下方にガス吸出し口111が設けられている。
FIG. 6 is a schematic diagram for explaining a classification mechanism used in a conventional differential mobility analyzer (DMA).
A space 105 through which the sheath gas introduced from the sheath gas introduction port 101 and rectified by the rectification mechanism 103 flows is provided. A sample gas supply port 107 for introducing the sample gas is provided on the side surface of the space 105. A counter electrode 109 is provided facing the sample gas supply port 107. A gas suction port 111 is provided below the counter electrode 109.

荷電装置によって帯電した粒子を含む試料ガスが試料ガス供給口107から空間105に導入される。空間105に導入された粒子はシースガスとともに下流側へ移動する。このとき、粒子は対向電極109による電場の影響を受け、個々の粒子の電気移動度に応じた速度で対向電極109側へ引き寄せられる。そして、所定の軌跡を描いてガス吸出し口111に到達した所望の粒径範囲の粒子のみが取り出される。   A sample gas containing particles charged by the charging device is introduced into the space 105 from the sample gas supply port 107. The particles introduced into the space 105 move downstream with the sheath gas. At this time, the particles are affected by the electric field generated by the counter electrode 109 and are attracted toward the counter electrode 109 at a speed corresponding to the electric mobility of each particle. Then, only particles in a desired particle size range that reach the gas suction port 111 in a predetermined locus are taken out.

また、微分型電気移動度測定装置では分級できない大きな粒径の粒子の測定には、粒子に特定波長の光を照射し、粒径に対応した角度に散乱する光のパルス数を計測する方式が用いられてきた。   In addition, for measuring particles with a large particle size that cannot be classified with a differential electric mobility measuring device, there is a method in which the particle is irradiated with light of a specific wavelength and the number of pulses of light scattered at an angle corresponding to the particle size is measured. Has been used.

特許第3435015号公報Japanese Patent No. 3435015

微分型電気移動度測定装置における粒子の分級において、上述のように、粒子はシースガス流に対して垂直方向に電界が印加されて生じる静電吸引力によってシースガス流を横断して対向電極側へ移動する。その移動過程において、粒子は粒径によって決定される抵抗をシースガス流から受けるので、粒子を分級することができる。   In the classification of particles in the differential electric mobility measuring device, as described above, the particles move to the opposite electrode side across the sheath gas flow by the electrostatic attraction generated by applying an electric field in the direction perpendicular to the sheath gas flow. To do. In the movement process, the particles are subjected to a resistance determined by the particle size from the sheath gas flow, so that the particles can be classified.

しかし、このような分級は、シースガス流を必要とするので、装置の構成や制御が複雑になり、装置が高価になるという問題があった。
さらに、その粒径分解能はシースガス流量と試料流量の商によって決まるため、信号量を増加させるために試料流量を増加させるには限界があった。
However, since such classification requires a sheath gas flow, there is a problem that the configuration and control of the apparatus are complicated and the apparatus is expensive.
Furthermore, since the particle size resolution is determined by the quotient of the sheath gas flow rate and the sample flow rate, there is a limit to increasing the sample flow rate in order to increase the signal amount.

また、微分型電気移動度測定装置の粒子数計数器として用いられるファラデーカップ電流計は、安価であるが、帯電した捕集粒子から得られる電流値が数十fA(フェムトアンペア、10-15A)以上となる粒子濃度でなければ信頼性のある計測はできないという問題があった。低粒子濃度の計測には核凝縮パーティクルカウンターを使用することもできるが、核凝縮パーティクルカウンターは高価であるという問題があった。
また、光学式パーティクルカウンターは、微分型電気移動度測定装置に比べて安価ではあるが、300nm以下の粒径の粒子を計測することができないという問題があった。
さらに、核凝縮パーティクルカウンターや光学式パーティクルカウンターは粒子数濃度しか検知し得ず、粒子の粒径を測定できなかった。
A Faraday cup ammeter used as a particle number counter of a differential electric mobility measuring device is inexpensive, but the current value obtained from charged collected particles is several tens of fA (femtoampere, 10 -15 A). ) There is a problem that reliable measurement is not possible unless the particle concentration is above. A nuclear condensation particle counter can be used to measure a low particle concentration, but the nuclear condensation particle counter is expensive.
In addition, the optical particle counter is less expensive than the differential electric mobility measuring device, but has a problem that it cannot measure particles having a particle size of 300 nm or less.
Furthermore, the nuclear condensation particle counter and the optical particle counter could only detect the particle number concentration, and the particle size of the particles could not be measured.

本発明は、シースガス流を用いることなく、粒子数と粒径を測定することができる粒子測定装置を提供することを目的とする。   An object of this invention is to provide the particle | grain measuring apparatus which can measure a particle number and a particle size, without using a sheath gas flow.

本発明に係る粒子測定装置は、試料ガスに含まれる粒子を帯電させるための荷電機構と、少なくとも試料ガスと接する部分が絶縁体で覆われ、上記荷電機構で帯電した粒子を上記絶縁体表面に捕集するための捕集用電極と、上記荷電機構を通過した試料ガスを上記捕集用電極の上記絶縁体表面に流すための試料ガス導入機構と、上記捕集用電極に捕集用電圧と放出用電圧を切り替えて印加するための捕集用電極電位切替え機構と、上記捕集用電極とは所定の間隔をもって上記捕集用電極に対向して配置された対向電極と、上記捕集用電極から放出された帯電粒子の付着に起因して上記対向電極に流れる電流を検出することによって粒子を検出する電流検出器と、上記電流検出器によって検出される粒子ごとに、上記捕集用電極から上記対向電極までの粒子飛行時間を求める飛行時間測定部と、を備えている。   The particle measuring apparatus according to the present invention includes a charging mechanism for charging particles contained in a sample gas, and at least a portion in contact with the sample gas is covered with an insulator, and particles charged by the charging mechanism are placed on the surface of the insulator. A collecting electrode for collecting, a sample gas introducing mechanism for flowing the sample gas that has passed through the charging mechanism to the insulator surface of the collecting electrode, and a collecting voltage on the collecting electrode And a collecting electrode potential switching mechanism for switching and applying a discharge voltage, the collecting electrode facing the collecting electrode at a predetermined interval, and the collecting electrode A current detector for detecting particles by detecting a current flowing through the counter electrode due to adhesion of charged particles emitted from the electrode for the collection, and for each particle detected by the current detector From the electrode to the counter And a, and flight time measurement unit for obtaining the particle flight time to.

本発明の粒子測定装置で、荷電機構で試料ガスに含まれる粒子は荷電機構で帯電される。荷電機構を通過した試料ガスは、捕集用電極電位切替え機構により捕集用電極に捕集用電圧が印加された状態で、試料ガス導入機構より捕集用電極の絶縁体表面に流される。帯電粒子は捕集用電極の絶縁体表面に捕集される。所定時間だけ試料ガスが捕集用電極の絶縁体表面に流された後、捕集用電極と対向電極の間の空間を無風状態にした上で、捕集用電極電位切替え機構により捕集用電極に印加される電圧が捕集用電圧から放出用電圧に切り替えられ、捕集用電極の電位が反転される。捕集された帯電粒子は、クーロン力によって対向電極に吸引される。この時、放出された帯電粒子は、電極間に存在する気体に起因して、粒子速度に比例し、かつ粒径に依存する抗力を受ける。最終的には、クーロン力と抗力が均衡する一定速度にて、帯電粒子は対向電極に向かって飛行する。対向電極に到達した帯電粒子は対向電極上でその電荷を放出する。電流検出器は、帯電粒子の電荷の放出に起因して対向電極に流れる電流を検出して粒子を検出する。対向電極に電流が流れる回数を求めることにより、粒子数を求めることができる。飛行時間測定部は、電流検出器によって検出される粒子ごとに、捕集用電極から対向電極までの粒子飛行時間を求める。帯電粒子の飛行時間は粒子の電荷数と粒径によって決定される。つまり、この飛行時間から粒径を算出し得る。   In the particle measuring apparatus of the present invention, particles contained in the sample gas are charged by the charging mechanism by the charging mechanism. The sample gas that has passed through the charging mechanism is caused to flow from the sample gas introduction mechanism to the insulator surface of the collecting electrode in a state where a collecting voltage is applied to the collecting electrode by the collecting electrode potential switching mechanism. The charged particles are collected on the insulator surface of the collecting electrode. After the sample gas is allowed to flow over the insulator surface of the collecting electrode for a predetermined time, the space between the collecting electrode and the counter electrode is made in a windless state, and then collected by the collecting electrode potential switching mechanism. The voltage applied to the electrode is switched from the collecting voltage to the discharging voltage, and the potential of the collecting electrode is inverted. The collected charged particles are attracted to the counter electrode by Coulomb force. At this time, the discharged charged particles are subjected to a drag that is proportional to the particle velocity and depends on the particle size due to the gas existing between the electrodes. Eventually, the charged particles fly toward the counter electrode at a constant speed at which the Coulomb force and the drag force are balanced. The charged particles that have reached the counter electrode release their charge on the counter electrode. The current detector detects particles by detecting a current flowing through the counter electrode due to the discharge of the charge of the charged particles. The number of particles can be determined by determining the number of times the current flows through the counter electrode. The time-of-flight measurement unit obtains the particle flight time from the collection electrode to the counter electrode for each particle detected by the current detector. The flight time of charged particles is determined by the number of charges and the particle size of the particles. That is, the particle size can be calculated from this flight time.

本発明の粒子測定装置において、上記試料ガス導入機構は、上記捕集用電極と上記対向電極の間の距離よりも小さい寸法をもち、かつ上記対向電極よりも上記捕集用電極の近くに配置された試料ガス供給口から試料ガスを上記捕集用電極の上記絶縁体表面に流す例を挙げることができる。   In the particle measuring apparatus of the present invention, the sample gas introduction mechanism has a size smaller than the distance between the collection electrode and the counter electrode, and is disposed closer to the collection electrode than the counter electrode. An example can be given in which the sample gas is flowed from the sample gas supply port formed to the surface of the insulator of the collecting electrode.

また、上記試料ガス導入機構は、試料ガスを上記捕集用電極の上記絶縁体表面の長手方向に沿って流す例を挙げることができる。
また、上記試料ガス導入機構は、試料ガスが上記捕集用電極の上記絶縁体表面に向かうように、上記絶縁体表面に対して角度をもって試料ガスを流す例を挙げることができる。
Moreover, the sample gas introduction mechanism can be exemplified by flowing the sample gas along the longitudinal direction of the insulator surface of the collecting electrode.
In addition, the sample gas introduction mechanism may include an example in which the sample gas is flowed at an angle with respect to the insulator surface so that the sample gas is directed toward the insulator surface of the collecting electrode.

ところで、捕集用電極に捕集された帯電粒子の粒径によっては、クーロン力に対して粒子と捕集用電極間に働くファンデルワールス力のほうが大きくなり、捕集用電極の電位を反転させるだけでは帯電粒子が放出されない可能性がある。
そこで、本発明の粒子測定装置において、捕集用電極に付着した粒子の脱離を促す機構、例えば捕集用電極を加熱する加熱機構、捕集用電極を振動させる振動機構、又は捕集用電極に捕集された帯電粒子にエネルギーを付与する光励起機構をさらに備えているようにしてもよい。
By the way, depending on the particle size of the charged particles collected on the collection electrode, the van der Waals force acting between the particles and the collection electrode is larger than the Coulomb force, and the potential of the collection electrode is inverted. There is a possibility that the charged particles are not released only by this.
Therefore, in the particle measuring apparatus of the present invention, a mechanism that promotes the detachment of particles attached to the collection electrode, for example, a heating mechanism that heats the collection electrode, a vibration mechanism that vibrates the collection electrode, or for collection You may make it further provide the photoexcitation mechanism which provides energy to the charged particle collected by the electrode.

加熱機構は、例えば電気エネルギーで発熱するヒーターや、光源を用いて光照射により加熱するものなど、捕集用電極を加熱できる機能を備えているものであればどのようなものであってもよい。
振動機構は、例えばピエゾ素子を用いた振動子など、捕集用電極を振動させる機能を備えているものであればどのようなものであってもよい。
Any heating mechanism may be used as long as it has a function capable of heating the collection electrode, such as a heater that generates heat by electric energy or a light source that is heated by light irradiation. .
Any vibration mechanism may be used as long as it has a function of vibrating the collection electrode, such as a vibrator using a piezoelectric element.

光励起機構は、捕集用電極に捕集された帯電粒子にエネルギーを付与できる波長の光を含む光を照射できる機能を備えていれば、どのような光源及び光学系を備えているものでもよい。例えば、光励起機構は、特定波長の光を照射するためのランプ、レーザー又はバンドパスフィルターを備えているようにしてもよい。これにより、特定波長の光に対して吸収を示す特定の化学構造をもつ粒子のみを選択的に励起及び振動させて対向電極に向かって飛行させることができ、励起される粒子に含まれる化学構造を特定することができる。   The light excitation mechanism may be provided with any light source and optical system as long as it has a function capable of irradiating light including light having a wavelength capable of imparting energy to the charged particles collected by the collection electrode. . For example, the light excitation mechanism may include a lamp, a laser, or a bandpass filter for irradiating light of a specific wavelength. As a result, only particles having a specific chemical structure that absorbs light of a specific wavelength can be selectively excited and vibrated to fly toward the counter electrode, and the chemical structure contained in the excited particles Can be specified.

本発明の粒子測定装置は、荷電機構で試料ガスに含まれる粒子を帯電させ、捕集用電極電位切替え機構により捕集用電極に捕集用電圧を印加した状態で、試料ガス導入機構より荷電機構を通過した試料ガスを捕集用電極の絶縁体表面に流して帯電粒子を捕集用電極の絶縁体表面に捕集し、所定時間だけ帯電粒子を捕集した後、捕集用電極と対向電極の間の空間を無風状態にした上で、捕集用電極電位切替え機構により捕集用電極に放出用電圧を印加して捕集用電極の電位を反転させて、捕集した帯電粒子を対向電極側へ飛行させ、電流検出器により対向電極に流れる電流を検出して粒子を検出し、飛行時間測定部により、電流検出器によって検出される粒子ごとに、捕集用電極から対向電極までの粒子飛行時間を求めるようにしたので、シースガス流を用いることなく、試料ガスに含まれる粒子について粒子数と粒径を測定することができる。   The particle measuring apparatus of the present invention charges particles contained in a sample gas by a charging mechanism and charges the sample gas from the sample gas introduction mechanism in a state where a collection voltage is applied to the collection electrode by the collection electrode potential switching mechanism. The sample gas that has passed through the mechanism is made to flow on the insulator surface of the collecting electrode to collect charged particles on the insulator surface of the collecting electrode, and after collecting the charged particles for a predetermined time, the collecting electrode and Charged particles collected by applying a discharge voltage to the collection electrode by the collection electrode potential switching mechanism and reversing the potential of the collection electrode after leaving the space between the counter electrodes in a windless state. To the counter electrode side, the current flowing through the counter electrode is detected by the current detector to detect the particles, and the time-of-flight measuring unit detects each particle detected by the current detector from the collecting electrode to the counter electrode. The particle flight time up to Without using a gas stream, it is possible to measure the particle number and particle size for particles contained in the sample gas.

本発明の粒子測定装置において、試料ガス導入機構は、捕集用電極と対向電極の間の距離よりも小さい寸法をもち、かつ対向電極よりも捕集用電極の近くに配置された試料ガス供給口から試料ガスを捕集用電極の絶縁体表面に流すようにすれば、試料ガス供給口の寸法が捕集用電極と対向電極の間の距離と同等かそれよりも大きい場合や、試料ガス供給口が捕集用電極よりも対向電極の近くに配置されている場合に比べて、帯電粒子を捕集用電極の絶縁体表面に短時間で捕集できる。さらに、帯電粒子を短い距離で捕集できるので、装置の小型化を実現できる。   In the particle measuring apparatus of the present invention, the sample gas introduction mechanism has a size smaller than the distance between the collection electrode and the counter electrode, and is a sample gas supply arranged closer to the collection electrode than the counter electrode If the sample gas is allowed to flow from the mouth to the insulator surface of the collection electrode, the sample gas supply port size is equal to or greater than the distance between the collection electrode and the counter electrode. Compared with the case where the supply port is arranged closer to the counter electrode than the collection electrode, the charged particles can be collected on the insulator surface of the collection electrode in a short time. Furthermore, since charged particles can be collected at a short distance, the apparatus can be downsized.

また、試料ガス導入機構は、試料ガスを捕集用電極の長手方向に沿って流すようにすれば、試料ガスを捕集用電極の短手方向に沿って流す場合に比べて、試料ガスが捕集用電極の絶縁体表面近傍を通過する時間を長くすることができ、帯電粒子の捕集を確実に行なうことができる。   In addition, the sample gas introduction mechanism allows the sample gas to flow along the longitudinal direction of the collecting electrode, compared to the case where the sample gas flows along the short direction of the collecting electrode. The time for passing through the vicinity of the insulator surface of the collecting electrode can be lengthened, and the charged particles can be reliably collected.

また、上記試料ガス導入機構は、試料ガスが捕集用電極の絶縁体表面に向かうように、絶縁体表面に対して角度をもって試料ガスを流すようにすれば、試料ガスが捕集用電極の絶縁体表面に平行に流される場合に比べて、帯電粒子の捕集を確実にかつ短時間で行なうことができる。   Further, the sample gas introduction mechanism allows the sample gas to flow through the collector electrode by flowing the sample gas at an angle with respect to the insulator surface so that the sample gas is directed toward the insulator surface of the collector electrode. Charged particles can be collected reliably and in a short time compared to the case of flowing in parallel with the insulator surface.

本発明の粒子測定装置において、捕集用電極に付着した粒子の脱離を促す機構、例えば捕集用電極を加熱する加熱機構、捕集用電極を振動させる振動機構、又は捕集用電極に捕集された帯電粒子にエネルギーを付与する光励起機構をさらに備えているようにすれば、捕集用電極に捕集された帯電粒子を捕集用電極から離れやすくすることができる。   In the particle measuring apparatus of the present invention, a mechanism that promotes detachment of particles attached to the collecting electrode, for example, a heating mechanism that heats the collecting electrode, a vibration mechanism that vibrates the collecting electrode, or a collecting electrode If a photoexcitation mechanism for applying energy to the collected charged particles is further provided, the charged particles collected on the collecting electrode can be easily separated from the collecting electrode.

さらに、光励起機構は、特定波長の光を照射するためのランプ、レーザー又はそれらにバンドパスフィルターを備えているようにすれば、特定波長の光に対して吸収を示す特定の化学構造をもつ粒子のみを選択的に励起及び振動させて対向電極に向かって飛行させることができ、励起される粒子に含まれる化学構造を特定することができる。   Furthermore, if the photoexcitation mechanism is equipped with a lamp, laser or bandpass filter for irradiating light of a specific wavelength, particles having a specific chemical structure that absorbs light of a specific wavelength. Can be selectively excited and vibrated to fly toward the counter electrode, and the chemical structure contained in the excited particles can be identified.

一実施例を説明するための概略的な構成図である。It is a schematic block diagram for demonstrating one Example. 同実施例で帯電粒子が捕集された状態を説明するための概略的な構成図である。It is a schematic block diagram for demonstrating the state by which the charged particle was collected in the Example. 同実施例で帯電粒子が飛行する状態を説明するための概略的な構成図である。It is a schematic block diagram for demonstrating the state to which a charged particle flies in the Example. 他の実施例を説明するための概略的な構成図である。It is a schematic block diagram for demonstrating another Example. さらに他の実施例を説明するための概略的な構成図である。It is a schematic block diagram for demonstrating other Example. 従来の微分型電気移動度測定装置に用いられる分級機構を説明するための概略図である。It is the schematic for demonstrating the classification mechanism used for the conventional differential electric mobility measuring apparatus.

図1は、一実施例を説明するための概略的な構成図である。
試料ガスが試料導入口1aから取り込まれて内部に試料ガスが流されるサンプリングライン1に荷電機構3が設けられている。荷電機構3は試料ガスに含まれる粒子を帯電させるためのものである。サンプリングライン1の試料排出口1bは密閉可能な筐体5の内部に導かれている。
FIG. 1 is a schematic configuration diagram for explaining an embodiment.
A charging mechanism 3 is provided in the sampling line 1 in which the sample gas is taken in from the sample introduction port 1a and the sample gas flows inside. The charging mechanism 3 is for charging particles contained in the sample gas. The sample discharge port 1b of the sampling line 1 is led into the sealable housing 5.

筐体5の内部に、流路制限板7と、捕集用電極9と、対向電極11が設けられている。
流路制限板7は、捕集用電極9と対向電極11の間の空間と、サンプリングライン1の排出口1bとの間に配置されている。流路制限板7は、対向電極11よりも捕集用電極9の近くに試料ガス供給口13を形成している。試料ガス供給口13は、捕集用電極9と対向電極11の間の距離よりも小さい寸法で形成されている。
捕集用電極9は、少なくとも筐体5内に導入された試料ガスと接する部分が絶縁体(図示は省略)で覆われている。捕集用電極9は、紙面垂直方向に幅をもって形成されており、捕集用電極9の長手方向は試料ガスの流れに沿った方向に配置されている。
対向電極11は、捕集用電極9とは所定の間隔をもって捕集用電極9に対向して配置されている。
A flow path limiting plate 7, a collection electrode 9, and a counter electrode 11 are provided inside the housing 5.
The flow path restriction plate 7 is disposed between the space between the collection electrode 9 and the counter electrode 11 and the discharge port 1 b of the sampling line 1. The flow path restriction plate 7 forms a sample gas supply port 13 near the collection electrode 9 rather than the counter electrode 11. The sample gas supply port 13 is formed with a size smaller than the distance between the collecting electrode 9 and the counter electrode 11.
The collecting electrode 9 is covered with an insulator (not shown) at least at a portion in contact with the sample gas introduced into the housing 5. The collection electrode 9 is formed with a width in the direction perpendicular to the paper surface, and the longitudinal direction of the collection electrode 9 is arranged in a direction along the flow of the sample gas.
The counter electrode 11 is arranged to face the collecting electrode 9 with a predetermined distance from the collecting electrode 9.

筐体5に排気ライン15が接続されている。排気ライン15の導入口15aは、筐体5内部の、捕集用電極9と対向電極11の間の空間に対して流路制限板7とは反対側の位置に配置されている。排気ライン15の試料排出口15bは筐体5外部に配置されている。排気ライン15に流量調節バルブ17と排気ポンプ19が設けられている。
この実施例で、サンプリングライン1、流量制限板7、排気ライン15、流量調節バルブ17及び排気ポンプ19は、本発明の粒子測定装置の試料ガス導入機構を構成する。
An exhaust line 15 is connected to the housing 5. The introduction port 15 a of the exhaust line 15 is arranged at a position opposite to the flow path restriction plate 7 with respect to the space between the collection electrode 9 and the counter electrode 11 inside the housing 5. The sample discharge port 15 b of the exhaust line 15 is disposed outside the housing 5. A flow rate adjusting valve 17 and an exhaust pump 19 are provided in the exhaust line 15.
In this embodiment, the sampling line 1, the flow restriction plate 7, the exhaust line 15, the flow control valve 17 and the exhaust pump 19 constitute a sample gas introduction mechanism of the particle measuring apparatus of the present invention.

捕集用電極9に捕集用電圧と放出用電圧を切り替えて印加するための捕集用電極電位切替え機構21が設けられている。捕集用電極電位切替え機構21は、例えば、捕集用電圧として正電圧を、放出用電圧として負電圧を捕集用電極9に切替え可能に印加する。
対向電極11に流れる電流を検出する電流検出器23が設けられている。電流検出器23は、捕集用電極9から放出された帯電粒子の付着に起因して対向電極11に流れる電流を検出するためのものである。
A collecting electrode potential switching mechanism 21 for switching and applying a collecting voltage and a discharging voltage to the collecting electrode 9 is provided. The collection electrode potential switching mechanism 21 applies, for example, a positive voltage as the collection voltage and a negative voltage as the emission voltage to the collection electrode 9 in a switchable manner.
A current detector 23 for detecting a current flowing through the counter electrode 11 is provided. The current detector 23 is for detecting a current that flows through the counter electrode 11 due to adhesion of charged particles emitted from the collecting electrode 9.

制御部25が設けられている。制御部25は、中央演算処理装置(CPU)27と、タイマー(Timer)29と、デジタル信号出力部(D/O)31と、アナログ信号入力部(A/I)33を備えている。
中央演算処理装置27及びタイマー29は、電流検出器23によって検出される粒子ごとに、捕集用電極9から対向電極11までの粒子飛行時間を求める、本発明の粒子測定装置における飛行時間測定部を構成する。
デジタル信号出力部31は、排気ポンプ19及び捕集用電極電位切替え機構21に制御信号を送信するためのものである。
アナログ信号入力部33は、電流検出器23の検出信号を取り込むためのものである。
A control unit 25 is provided. The control unit 25 includes a central processing unit (CPU) 27, a timer (Timer) 29, a digital signal output unit (D / O) 31, and an analog signal input unit (A / I) 33.
The central processing unit 27 and the timer 29 obtain the particle flight time from the collection electrode 9 to the counter electrode 11 for each particle detected by the current detector 23, and the flight time measurement unit in the particle measurement device of the present invention. Configure.
The digital signal output unit 31 is for transmitting a control signal to the exhaust pump 19 and the collecting electrode potential switching mechanism 21.
The analog signal input unit 33 is for taking in the detection signal of the current detector 23.

図2は、この実施例で帯電粒子が捕集された状態を説明するための概略的な構成図である。図3は、この実施例で帯電粒子が飛行する状態を説明するための概略的な構成図である。
図1から図3を参照してこの実施例の動作を説明する。
FIG. 2 is a schematic configuration diagram for explaining a state in which charged particles are collected in this embodiment. FIG. 3 is a schematic configuration diagram for explaining a state in which charged particles fly in this embodiment.
The operation of this embodiment will be described with reference to FIGS.

制御部25の制御により、排気ポンプ19が作動されると、流量調節バルブ17で調節された流量で、試料ガスが試料導入口1aからサンプリングライン1に導入される。導入された試料ガスは荷電機構3に到達し、試料ガスに含まれる粒子は例えば負電荷に帯電する。   When the exhaust pump 19 is operated by the control of the control unit 25, the sample gas is introduced into the sampling line 1 from the sample introduction port 1a at the flow rate adjusted by the flow rate adjustment valve 17. The introduced sample gas reaches the charging mechanism 3, and the particles contained in the sample gas are charged to a negative charge, for example.

荷電機構3を通過した試料ガスは、サンプリングライン1の排出口1bを介して筐体5内に導入される。筐体5内に導入された試料ガスは、制御部25の制御により捕集用電極電位切替え機構21が捕集用電極9に正電圧の捕集用電圧を印加している状態で、流路制限板7によって形成された試料ガス供給口13を介して捕集用電極9の絶縁体表面(図示は省略)に流される。試料ガスに含まれる帯電粒子は捕集用電極9の絶縁体表面に捕集される(図2を参照。)。捕集用電極9は試料ガスと接する部分が絶縁体で覆われているので、帯電粒子から捕集用電極9への電荷の教授は行なわれない。   The sample gas that has passed through the charging mechanism 3 is introduced into the housing 5 through the outlet 1 b of the sampling line 1. The sample gas introduced into the housing 5 flows in a state where the collection electrode potential switching mechanism 21 applies a positive collection voltage to the collection electrode 9 under the control of the control unit 25. The gas flows through the sample gas supply port 13 formed by the limiting plate 7 to the insulator surface (not shown) of the collecting electrode 9. The charged particles contained in the sample gas are collected on the insulator surface of the collecting electrode 9 (see FIG. 2). Since the portion of the collection electrode 9 that is in contact with the sample gas is covered with an insulator, teaching of the charge from the charged particles to the collection electrode 9 is not performed.

試料ガス供給口13は、捕集用電極9と対向電極11の間の距離よりも小さい寸法で、対向電極11よりも捕集用電極9の近くに配置されているので、試料ガス供給口13の寸法が捕集用電極9と対向電極11の間の距離と同等かそれよりも大きい場合や、試料ガス供給口13が捕集用電極9よりも対向電極11の近くに配置されている場合に比べて、帯電粒子を捕集用電極9の絶縁体表面に短時間で捕集できる。さらに、帯電粒子を短い距離で捕集できるので、装置の小型化を実現できる。   The sample gas supply port 13 has a size smaller than the distance between the collection electrode 9 and the counter electrode 11 and is disposed closer to the collection electrode 9 than the counter electrode 11. Is equal to or larger than the distance between the collection electrode 9 and the counter electrode 11, or when the sample gas supply port 13 is disposed closer to the counter electrode 11 than the collection electrode 9. In comparison with the above, charged particles can be collected on the insulator surface of the collecting electrode 9 in a short time. Furthermore, since charged particles can be collected at a short distance, the apparatus can be downsized.

さらに、試料ガスは捕集用電極9の長手方向に沿って流されるので、試料ガスが捕集用電極9の短手方向に沿って流される場合に比べて、試料ガスが捕集用電極9の絶縁体表面近傍を通過する時間を長くすることができ、帯電粒子の捕集を確実に行なうことができる。
さらに試料ガスは、流路制限板7及び試料ガス供給口13の配置によって、捕集用電極9の絶縁体表面に向かうように捕集用電極9の絶縁体表面に対して角度をもって流されるので、試料ガスが捕集用電極9の絶縁体表面に平行に流される場合に比べて、帯電粒子の捕集を確実にかつ短時間で行なうことができる。
Furthermore, since the sample gas is caused to flow along the longitudinal direction of the collecting electrode 9, the sample gas is collected in comparison with the case where the sample gas is caused to flow along the short direction of the collecting electrode 9. It is possible to lengthen the time for passing through the vicinity of the insulator surface, and it is possible to reliably collect charged particles.
Further, the sample gas is flowed at an angle with respect to the insulator surface of the collecting electrode 9 so as to be directed to the insulator surface of the collecting electrode 9 by the arrangement of the flow path restriction plate 7 and the sample gas supply port 13. As compared with the case where the sample gas is caused to flow in parallel to the insulator surface of the collecting electrode 9, the charged particles can be collected reliably and in a short time.

所定時間だけ試料ガスが捕集用電極9の絶縁体表面に流された後、制御部25の制御により排気ポンプ19が停止される。さらに所定時間が経過して、捕集用電極9と対向電極11の間の空間が無風状態になった後、制御部25の制御によって捕集用電極電位切替え機構21が捕集用電極9に供給する電圧を正電圧の放出用電圧に切り替えられ、捕集用電極9の電位が反転される。捕集用電極9の絶縁体表面に捕集された帯電粒子は、クーロン力によって対向電極に吸引される(図3を参照。)。帯電粒子は対向電極11に向かって飛行し、対向電極11に到達した帯電粒子は対向電極11上でその電荷を放出する。ここで、帯電粒子が対向電極11に到達する時間を短縮するために、電極9,11間の電圧を、段階的に(ステップ)又は時間に比例して(ランプ)上昇させてもよい。これにより、総測定時間が短縮される。   After the sample gas is allowed to flow on the insulator surface of the collecting electrode 9 for a predetermined time, the exhaust pump 19 is stopped under the control of the control unit 25. Further, after a predetermined time has elapsed, the space between the collection electrode 9 and the counter electrode 11 becomes no-wind, and then the collection electrode potential switching mechanism 21 is moved to the collection electrode 9 by the control of the control unit 25. The supplied voltage is switched to a positive discharge voltage, and the potential of the collecting electrode 9 is inverted. The charged particles collected on the insulator surface of the collecting electrode 9 are attracted to the counter electrode by Coulomb force (see FIG. 3). The charged particles fly toward the counter electrode 11, and the charged particles that have reached the counter electrode 11 release the electric charge on the counter electrode 11. Here, in order to shorten the time for the charged particles to reach the counter electrode 11, the voltage between the electrodes 9 and 11 may be increased stepwise (step) or in proportion to time (lamp). Thereby, the total measurement time is shortened.

中央演算処理装置27は、アナログ信号入力部33を介して入力される電流検出器23からの検出信号に基づいて、対向電極9に電流が流れた回数を求めることにより、粒子数を求める。
さらに、中央演算処理装置27は、タイマー29からの時間情報に基づいて、電流検出器23によって検出された粒子ごとに、捕集用電極9から対向電極11までの粒子飛行時間を求める。帯電粒子の飛行時間は粒子の電荷数と粒径によって決定されるので、この飛行時間から粒径を算出し得る。
The central processing unit 27 obtains the number of particles by obtaining the number of times the current has flowed through the counter electrode 9 based on the detection signal from the current detector 23 input via the analog signal input unit 33.
Further, the central processing unit 27 obtains the particle flight time from the collection electrode 9 to the counter electrode 11 for each particle detected by the current detector 23 based on the time information from the timer 29. Since the flight time of the charged particles is determined by the number of charges of the particles and the particle size, the particle size can be calculated from this flight time.

粒子の飛行時間と粒径は下記式(1)〜(6)により計算できる。
式(1)〜(6)で、tは粒子飛行時間、lは電極間距離、Zpは電気移動度、Vは電極間印加電圧、Nは電荷数、eは電気素量、Ccはカニンガム補正係数、πは円周率、μは粘性係数、Dpは粒子サイズ、μrは基準粘性係数、Trμは粘性係数基準温度、Sμは粘性係数基準サザランド数、Tは温度、Knはクヌッセン数、αc、βc、γcは定数、λは平均自由工程、λγは基準平均自由工程、Pγλは平均自由工程基準圧力、Pは圧力、Tγλは平均自由工程基準温度、Sλは平均自由工程基準サザランド数である。
The flight time and particle size of the particles can be calculated by the following formulas (1) to (6).
In equations (1) to (6), t is the particle flight time, l is the distance between the electrodes, Zp is the electric mobility, V is the applied voltage between the electrodes, N is the number of charges, e is the elementary charge, and Cc is the Cunningham correction. Coefficient, π is the circumference, μ is the viscosity coefficient, Dp is the particle size, μr is the reference viscosity coefficient, Trμ is the viscosity coefficient reference temperature, Sμ is the viscosity coefficient reference Sutherland number, T is the temperature, Kn is the Knudsen number, αc, βc and γc are constants, λ is an average free process, λγ is a reference average free process, Pγλ is an average free process reference pressure, P is a pressure, Tγλ is an average free process reference temperature, and Sλ is an average free process reference Sutherland number.

Figure 2012132700
Figure 2012132700

Figure 2012132700
Figure 2012132700

Figure 2012132700
Figure 2012132700

Figure 2012132700
Figure 2012132700

Figure 2012132700
Figure 2012132700

Figure 2012132700
Figure 2012132700

例えば、電極9,11間の距離が1mm(ミリメートル)である場合、1μm(マイクロメートル)の1価の粒子は電極9,11間の電圧が1666V(ボルト)で、100nm(ナノメートル)の1価の粒子は111Vで、10nmの粒子は10/7Vで、電極9,11間の飛行時間が1秒になる。
このように、図1から図3を参照して説明した実施例は、シースガス流を用いることなく、試料ガスに含まれる粒子について粒子数と粒径を測定することができる。
For example, when the distance between the electrodes 9 and 11 is 1 mm (millimeter), a monovalent particle of 1 μm (micrometer) has a voltage between the electrodes 9 and 11 of 1666 V (volts) and 1 of 100 nm (nanometers). Valent particles are 111 V, 10 nm particles are 10/7 V, and the flight time between the electrodes 9 and 11 is 1 second.
As described above, the embodiment described with reference to FIGS. 1 to 3 can measure the number of particles and the particle size of the particles contained in the sample gas without using the sheath gas flow.

図4は、他の実施例を説明するための概略的な構成図である。図4で図1と同じ部分には同じ符号を付し、それらの部分の説明は省略する。
この実施例は、図1を参照して説明した実施例と比較して、捕集用電極9を加熱するためのヒーター(加熱機構)35をさらに備えている。ヒーター35の動作は制御部25によって制御される。
FIG. 4 is a schematic configuration diagram for explaining another embodiment. In FIG. 4, the same parts as those in FIG. 1 are denoted by the same reference numerals, and description thereof will be omitted.
This embodiment further includes a heater (heating mechanism) 35 for heating the collection electrode 9 as compared with the embodiment described with reference to FIG. The operation of the heater 35 is controlled by the control unit 25.

この実施例の動作を説明する。
図2を参照して説明した捕集動作と同様にして、試料ガスに含まれる帯電粒子を捕集用電極9に捕集する。帯電粒子の捕集時に、ヒーター35により捕集用電極9を加熱しておいてもよいし、加熱しなくてもよい。
図3を参照して説明した脱離動作と同様にして、捕集用電極9の絶縁体表面に捕集された帯電粒子を対向電極11側へ飛行させるために捕集用電極9の電位を反転させる。このとき、ヒーター35により捕集用電極9を所定温度に加熱しておく。捕集用電極9を加熱することにより、捕集用電極9の絶縁体表面に捕集された帯電粒子が振動し、帯電粒子が捕集用電極9から離れやすくなる。
その後、図1から図3を参照して説明した実施例の検出動作と同様にして、試料ガスに含まれる粒子について粒子数と粒径を測定する。
The operation of this embodiment will be described.
The charged particles contained in the sample gas are collected on the collection electrode 9 in the same manner as the collection operation described with reference to FIG. At the time of collecting the charged particles, the collecting electrode 9 may be heated by the heater 35 or may not be heated.
In the same manner as the desorption operation described with reference to FIG. 3, the potential of the collection electrode 9 is set to fly the charged particles collected on the insulator surface of the collection electrode 9 toward the counter electrode 11. Invert. At this time, the collection electrode 9 is heated to a predetermined temperature by the heater 35. By heating the collecting electrode 9, the charged particles collected on the insulator surface of the collecting electrode 9 vibrate, and the charged particles are easily separated from the collecting electrode 9.
Thereafter, in the same manner as the detection operation of the embodiment described with reference to FIGS. 1 to 3, the number of particles and the particle size of the particles contained in the sample gas are measured.

図4を参照して説明した実施例は、ヒーター35により捕集用電極9を加熱して、捕集した帯電粒子を振動させているが、ヒーター35に替えて、捕集用電極9を振動させる振動機構を用いてもよい。
例えばピエゾ素子を用いた振動子により捕集用電極9を振動させる。振動機構の動作は制御部25により制御され、帯電粒子の捕集時に、振動機構により捕集用電極9を振動させておいてもよいし、振動させなくてもよい。ただし、少なくとも、捕集用電極9に捕集された帯電粒子を対向電極11側へ飛行させるために捕集用電極9の電位を反転させる際には、振動機構によって捕集用電極9を振動させ、ひいては捕集された帯電粒子を振動させる。これにより、帯電粒子が捕集用電極9から離れやすくなる。
In the embodiment described with reference to FIG. 4, the collecting electrode 9 is heated by the heater 35 to vibrate the collected charged particles, but instead of the heater 35, the collecting electrode 9 is vibrated. A vibrating mechanism may be used.
For example, the collection electrode 9 is vibrated by a vibrator using a piezo element. The operation of the vibration mechanism is controlled by the control unit 25, and at the time of collecting charged particles, the collection electrode 9 may be vibrated by the vibration mechanism or may not be vibrated. However, at least when the potential of the collection electrode 9 is reversed in order to fly the charged particles collected by the collection electrode 9 to the counter electrode 11 side, the collection electrode 9 is vibrated by a vibration mechanism. As a result, the collected charged particles are vibrated. Thereby, the charged particles are easily separated from the collecting electrode 9.

図5は、さらに他の実施例を説明するための概略的な構成図である。図5で図1と同じ部分には同じ符号を付し、それらの部分の説明は省略する。
この実施例は、図1を参照して説明した実施例と比較して、捕集用電極9に捕集された帯電粒子にエネルギーを付与できる波長の光を含む光を捕集用電極9に照射するための光励起機構37をさらに備えている。光励起機構37の動作は制御部25によって制御される。
FIG. 5 is a schematic configuration diagram for explaining still another embodiment. In FIG. 5, the same parts as those in FIG. 1 are denoted by the same reference numerals, and description thereof will be omitted.
In this embodiment, compared with the embodiment described with reference to FIG. 1, light containing light having a wavelength capable of imparting energy to the charged particles collected by the collecting electrode 9 is supplied to the collecting electrode 9. A light excitation mechanism 37 for irradiating is further provided. The operation of the light excitation mechanism 37 is controlled by the control unit 25.

光励起機構37は、例えば、特定波長の光を照射するためのランプ、レーザー又はそれらにバンドパスフィルターを備えている。
帯電粒子の捕集時に、光励起機構37により特定波長の光を捕集用電極9の絶縁体表面に照射しておいてもよいし、照射しなくてもよい。ただし、少なくとも、捕集用電極9に捕集された帯電粒子を対向電極11側へ飛行させるために捕集用電極9の電位を反転させる際には、光励起機構37によって特定波長の光を捕集用電極9に捕集された帯電粒子に照射し、特定波長の光に対して吸収を示す特定の化学構造をもつ帯電粒子のみを選択的に励起及び振動させる。これにより、特定の化学構造をもつ帯電粒子が捕集用電極9から離れやすくなり、特定の化学構造をもつ帯電粒子のみを対向電極11に向かって飛行させることができ、励起される帯電粒子に含まれる化学構造を特定することができる。
The light excitation mechanism 37 includes, for example, a lamp, a laser, or a bandpass filter for irradiating light of a specific wavelength.
At the time of collecting charged particles, the light excitation mechanism 37 may or may not irradiate the insulator surface of the collecting electrode 9 with light of a specific wavelength. However, at least when the electric potential of the collecting electrode 9 is reversed so that the charged particles collected by the collecting electrode 9 fly to the counter electrode 11 side, the light excitation mechanism 37 captures light of a specific wavelength. The charged particles collected by the collecting electrode 9 are irradiated to selectively excite and vibrate only charged particles having a specific chemical structure that absorbs light of a specific wavelength. As a result, the charged particles having a specific chemical structure can be easily separated from the collecting electrode 9, and only the charged particles having the specific chemical structure can fly toward the counter electrode 11. The chemical structure involved can be identified.

図5を参照して説明した実施例は、光励起機構37として、特定波長の光を照射するものを用いているが、光励起機構37は捕集用電極に捕集された帯電粒子にエネルギーを付与できる波長の光を含む光を照射できる機能を備えていれば、どのような光源及び光学系を備えているものでもよい。この場合、捕集用電極9に捕集された全ての帯電粒子が励起及び振動され、捕集用電極9から離れやすくなる。   In the embodiment described with reference to FIG. 5, the light excitation mechanism 37 that emits light of a specific wavelength is used. The light excitation mechanism 37 imparts energy to the charged particles collected by the collection electrode. Any light source and optical system may be used as long as it has a function capable of irradiating light including light having a wavelength that can be generated. In this case, all the charged particles collected by the collection electrode 9 are excited and vibrated, and are easily separated from the collection electrode 9.

また、捕集用電極に捕集された帯電粒子にエネルギーを付与するための光励起機構に替えて、光照射によって捕集用電極9を加熱するための光ヒーターを用いてもよい。光ヒーターの動作は制御部25により制御され、帯電粒子の捕集時に、光ヒーターにより捕集用電極9を加熱しておいてもよいし、加熱しなくてもよい。ただし、少なくとも、捕集用電極9に捕集された帯電粒子を対向電極11側へ飛行させるために捕集用電極9の電位を反転させる際には、光ヒーターによって捕集用電極9を加熱し、ひいては捕集された帯電粒子を振動させる。これにより、帯電粒子が捕集用電極9から離れやすくなる。   Moreover, you may use the optical heater for heating the collection electrode 9 by light irradiation instead of the photoexcitation mechanism for providing energy to the charged particle collected by the collection electrode. The operation of the light heater is controlled by the control unit 25, and when collecting charged particles, the collection electrode 9 may be heated by the light heater or may not be heated. However, at least when the potential of the collecting electrode 9 is reversed so that the charged particles collected by the collecting electrode 9 fly to the counter electrode 11 side, the collecting electrode 9 is heated by a light heater. As a result, the collected charged particles are vibrated. Thereby, the charged particles are easily separated from the collecting electrode 9.

以上、本発明の実施例を説明したが、本発明は上記実施例に限定されるものではなく、寸法、形状、配置などは一例であり、特許請求の範囲に記載された本発明の範囲内で種々の変更が可能である。   The embodiments of the present invention have been described above. However, the present invention is not limited to the above-described embodiments, and the dimensions, shapes, arrangements, and the like are examples, and are within the scope of the present invention described in the claims. Various changes can be made.

1 サンプリングライン
3 荷電装置
7 流路制限板
9 捕集用電極
11 対向電極
13 試料ガス供給口
15 排気ライン
17 流量調節バルブ
19 排気ポンプ
21 捕集用電極電位切替え機構
23 電流検出器
25 制御部
27 中央演算処理装置
29 タイマー
35 ヒーター(加熱機構)
37 光励起機構
DESCRIPTION OF SYMBOLS 1 Sampling line 3 Charging apparatus 7 Flow-path restriction board 9 Collection electrode 11 Counter electrode 13 Sample gas supply port 15 Exhaust line 17 Flow control valve 19 Exhaust pump 21 Collection electrode electric potential switching mechanism 23 Current detector 25 Control part 27 Central processing unit 29 Timer 35 Heater (heating mechanism)
37 Photoexcitation mechanism

Claims (12)

試料ガスに含まれる粒子を帯電させるための荷電機構と、
少なくとも試料ガスと接する部分が絶縁体で覆われ、前記荷電機構で帯電した粒子を前記絶縁体表面に捕集するための捕集用電極と、
前記荷電機構を通過した試料ガスを前記捕集用電極の前記絶縁体表面に流すための試料ガス導入機構と、
前記捕集用電極に捕集用電圧と放出用電圧を切り替えて印加するための捕集用電極電位切替え機構と、
前記捕集用電極とは所定の間隔をもって前記捕集用電極に対向して配置された対向電極と、
前記捕集用電極から放出された帯電粒子の付着に起因して前記対向電極に流れる電流を検出することによって粒子を検出する電流検出器と、
前記電流検出器によって検出される粒子ごとに、前記捕集用電極から前記対向電極までの粒子飛行時間を求める飛行時間測定部と、を備えた粒子測定装置。
A charging mechanism for charging particles contained in the sample gas;
At least a portion in contact with the sample gas is covered with an insulator, and a collection electrode for collecting particles charged by the charging mechanism on the insulator surface;
A sample gas introduction mechanism for flowing the sample gas that has passed through the charging mechanism to the insulator surface of the collecting electrode;
A collecting electrode potential switching mechanism for switching and applying a collecting voltage and a discharging voltage to the collecting electrode;
The collection electrode is a counter electrode arranged to face the collection electrode at a predetermined interval;
A current detector for detecting particles by detecting a current flowing through the counter electrode due to adhesion of charged particles emitted from the collecting electrode;
A time-of-flight measuring unit that obtains a time of flight of particles from the collection electrode to the counter electrode for each particle detected by the current detector.
前記試料ガス導入機構は、前記捕集用電極と前記対向電極の間の距離よりも小さい寸法をもち、かつ前記対向電極よりも前記捕集用電極の近くに配置された試料ガス供給口から試料ガスを前記捕集用電極の前記絶縁体表面に流す請求項1に記載の粒子測定装置。   The sample gas introduction mechanism has a size smaller than the distance between the collection electrode and the counter electrode, and a sample is supplied from a sample gas supply port disposed near the collection electrode rather than the counter electrode. The particle measuring apparatus according to claim 1, wherein a gas is allowed to flow on the insulator surface of the collecting electrode. 前記試料ガス導入機構は、試料ガスを前記捕集用電極の前記絶縁体表面の長手方向に沿って流す請求項1又は2に記載の粒子測定装置。   The particle measuring apparatus according to claim 1, wherein the sample gas introduction mechanism causes the sample gas to flow along the longitudinal direction of the insulator surface of the collecting electrode. 前記試料ガス導入機構は、前記捕集用電極の前記絶縁体表面に向かうように前記絶縁体表面に対して角度をもって試料ガスを流す請求項1、2又は3のいずれか一項に記載の粒子測定装置。   4. The particle according to claim 1, wherein the sample gas introduction mechanism causes the sample gas to flow at an angle with respect to the insulator surface so as to face the insulator surface of the collection electrode. measuring device. 前記試料ガス導入機構は、前記捕集用電極と前記対向電極の間の距離よりも小さい寸法をもち、かつ前記対向電極よりも前記捕集用電極の近くに配置された試料ガス供給口から試料ガスを前記捕集用電極の前記絶縁体表面に流す請求項1に記載の粒子測定装置。   The sample gas introduction mechanism has a size smaller than the distance between the collection electrode and the counter electrode, and a sample is supplied from a sample gas supply port disposed near the collection electrode rather than the counter electrode. The particle measuring apparatus according to claim 1, wherein a gas is allowed to flow on the insulator surface of the collecting electrode. 前記試料ガス導入機構は、試料ガスを前記捕集用電極の前記絶縁体表面の長手方向に沿って流す請求項1又は2に記載の粒子測定装置。   The particle measuring apparatus according to claim 1, wherein the sample gas introduction mechanism causes the sample gas to flow along the longitudinal direction of the insulator surface of the collecting electrode. 前記試料ガス導入機構は、前記捕集用電極の前記絶縁体表面に向かうように前記絶縁体表面に対して角度をもって試料ガスを流す請求項1、2又は3のいずれか一項に記載の粒子測定装置。   4. The particle according to claim 1, wherein the sample gas introduction mechanism causes the sample gas to flow at an angle with respect to the insulator surface so as to face the insulator surface of the collection electrode. measuring device. 前記捕集用電極を加熱する加熱機構をさらに備えた請求項1から7のいずれか一項に記載の粒子測定装置。   The particle | grain measuring apparatus as described in any one of Claim 1 to 7 further equipped with the heating mechanism which heats the said electrode for collection. 前記捕集用電極を振動させる振動機構をさらに備えた請求項1から7のいずれか一項に記載の粒子測定装置。   The particle | grain measuring apparatus as described in any one of Claim 1 to 7 further equipped with the vibration mechanism which vibrates the said electrode for collection. 前記捕集用電極に捕集された帯電粒子にエネルギーを付与する光励起機構をさらに備えた請求項1から7のいずれか一項に記載の粒子測定装置。   The particle measuring apparatus according to any one of claims 1 to 7, further comprising a photoexcitation mechanism for imparting energy to the charged particles collected by the collecting electrode. 前記光励起機構は、特定波長の光を照射するためのランプ、レーザー又はそれらにバンドパスフィルターを備えている請求項10に記載の粒子測定装置。   The particle measurement apparatus according to claim 10, wherein the light excitation mechanism includes a lamp, a laser, or a bandpass filter for irradiating light of a specific wavelength. 前記光励起機構から照射される波長に基づいて、励起される粒子に含まれる化学構造を特定する請求項11に記載の粒子測定装置。   The particle | grain measuring apparatus of Claim 11 which specifies the chemical structure contained in the particle | grains excited based on the wavelength irradiated from the said optical excitation mechanism.
JP2010282831A 2010-12-20 2010-12-20 Particle measuring apparatus Pending JP2012132700A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010282831A JP2012132700A (en) 2010-12-20 2010-12-20 Particle measuring apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010282831A JP2012132700A (en) 2010-12-20 2010-12-20 Particle measuring apparatus

Publications (1)

Publication Number Publication Date
JP2012132700A true JP2012132700A (en) 2012-07-12

Family

ID=46648476

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010282831A Pending JP2012132700A (en) 2010-12-20 2010-12-20 Particle measuring apparatus

Country Status (1)

Country Link
JP (1) JP2012132700A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018512582A (en) * 2015-03-12 2018-05-17 プロフタガレン アクチエボラグProvtagaren Ab Method for passive or active sampling of particles and gas phase components in a fluid flow
CN109991133A (en) * 2019-05-17 2019-07-09 中国科学院化学研究所 A kind of nanoparticles chemical constituent detection system and detection method
CN114324080A (en) * 2021-12-29 2022-04-12 甘肃银光化学工业集团有限公司 Device for on-line detection of energetic material particle morphology and particle size distribution

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018512582A (en) * 2015-03-12 2018-05-17 プロフタガレン アクチエボラグProvtagaren Ab Method for passive or active sampling of particles and gas phase components in a fluid flow
CN109991133A (en) * 2019-05-17 2019-07-09 中国科学院化学研究所 A kind of nanoparticles chemical constituent detection system and detection method
CN114324080A (en) * 2021-12-29 2022-04-12 甘肃银光化学工业集团有限公司 Device for on-line detection of energetic material particle morphology and particle size distribution
CN114324080B (en) * 2021-12-29 2023-10-13 甘肃银光化学工业集团有限公司 Device for online detection of morphology and particle size distribution of energetic material particles

Similar Documents

Publication Publication Date Title
JP6030253B2 (en) Sensor for detecting suspended particles
JP2020076786A (en) Droplet sorting device, droplet sorting method and program
US9541488B2 (en) Particle sampling and measurement in the ambient air
US8666679B2 (en) Micro-fabricated double condenser method and apparatus for the measurement of number-size distribution of airborne nano-particles
JP2017009615A (en) Device for creating sample whose particle concentration distribution is uniform, and device for forming nanoparticle film
JP2003337087A (en) Apparatus for collecting suspended particle
KR20160091142A (en) System for measuring fine particulate and gas particulate
JP4304634B2 (en) Label detection apparatus and label detection method
JP2014020918A (en) Microparticle measuring instrument and microparticle analysis method
Poenar Microfluidic and micromachined/MEMS devices for separation, discrimination and detection of airborne particles for pollution monitoring
KR101559765B1 (en) Particles Collecting Apparatus Using Bipolar Discharge for Increasing Filtration Efficiency, and Particles Collecting System Having the Same
JP2012132700A (en) Particle measuring apparatus
JPH06241977A (en) Fine particle measuring instrument
JP3758577B2 (en) Device for collecting suspended particulate matter in the atmosphere and measuring method for collected suspended particulate matter
US20210123849A1 (en) Methods and devices for mems based particulate matter sensors
US10656067B2 (en) Measuring arrangement and method of directing and detecting particles
JP3260550B2 (en) Particle analyzer
TW201819904A (en) Biological detection apparatus
JP2011043450A (en) Bioassay
JP2013096722A (en) Suspended particle substance measuring device and method
TWM538154U (en) Biological detection apparatus
SU993100A1 (en) Material destruction determination device
JP2003337086A (en) Apparatus for collecting suspended particulate matter in atmosphere
US20090078064A1 (en) Instrument for simultaneous analysis of multiple samples using multiple differential mobility analyzers
JP2004340897A (en) Mass density measuring method of airborne particle in atmospheric air