JP2012132033A - Melted salt electrolytic cell and refining method of low melting point metal - Google Patents

Melted salt electrolytic cell and refining method of low melting point metal Download PDF

Info

Publication number
JP2012132033A
JP2012132033A JP2010282385A JP2010282385A JP2012132033A JP 2012132033 A JP2012132033 A JP 2012132033A JP 2010282385 A JP2010282385 A JP 2010282385A JP 2010282385 A JP2010282385 A JP 2010282385A JP 2012132033 A JP2012132033 A JP 2012132033A
Authority
JP
Japan
Prior art keywords
molten salt
point metal
melting point
metal
anode chamber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2010282385A
Other languages
Japanese (ja)
Other versions
JP5707925B2 (en
Inventor
Kengo Okajima
健吾 岡嶌
Takahiro Matsunaga
敬浩 松永
Kiyotaka Shigehiro
清隆 重弘
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tosoh Corp
Original Assignee
Tosoh Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tosoh Corp filed Critical Tosoh Corp
Priority to JP2010282385A priority Critical patent/JP5707925B2/en
Publication of JP2012132033A publication Critical patent/JP2012132033A/en
Application granted granted Critical
Publication of JP5707925B2 publication Critical patent/JP5707925B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Electrolytic Production Of Metals (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a melted salt electrolytic refining device by which operation is easy, feeding and pulling of an alloy containing a low melting point metal are easy, deterioration in a melted salt can be suppressed for a long time and purity of the useful low melting point metal can be heightened and to provide a refining method of the low melting point metal.SOLUTION: The melted salt electrolytic cell refining and recovering the low melting point metal includes at least an anode chamber 1, a space storing a liquid material of the alloy containing the low melting point metal, an inner cylinder 2 disposed so as to come in contact with a bottom part of the anode chamber, a cathode chamber 8 disposed in the inner part of the inner cylinder and a DC power source generator 13 externally attached to the anode chamber. The useful low melting point metal can be obtained by electrolytic refining using the melted salt electrolytic cell.

Description

本発明は、低融点金属であるインジウム、スズ、ガリウムなどを含む合金から、有用な低融点金属を精製回収する溶融塩電解槽及び低融点金属の精製方法に関する。   The present invention relates to a molten salt electrolytic cell for purifying and recovering a useful low melting point metal from an alloy containing indium, tin, gallium and the like, which are low melting point metals, and a method for purifying the low melting point metal.

溶融塩電解法は、通常の水溶液電解では電解析出が難しいナトリウム、マグネシウム、アルミニウムなどの卑な金属の精製方法として古くから研究され、多くの実用例がある。又、比較的融点が低い金属を含む合金を溶融陽極とし、陰極に精製した溶融金属を電解析出させる方法についても多くの研究がなされその成果が開示されている。これら溶融塩電解法に共通する課題は、溶融塩は吸湿性が顕著なため、運転操作中に大気との接触を回避できる電解槽構造とすることである。   The molten salt electrolysis method has long been studied as a method for purifying base metals such as sodium, magnesium, and aluminum, which are difficult to be electrolytically deposited by ordinary aqueous electrolysis, and has many practical examples. Further, many studies have been made on the method of electrolytically depositing a refined molten metal on a cathode using an alloy containing a metal having a relatively low melting point, and the results have been disclosed. A problem common to these molten salt electrolysis methods is to provide an electrolytic cell structure capable of avoiding contact with the atmosphere during operation because the molten salt has a remarkable hygroscopic property.

例えば、低融点金属の一種である金属インジウムは、金属インジウムを含む合金から溶融塩を電解質とした電解精製にて回収でき、その電解槽構造及びその精製方法が開示されている(例えば、特許文献1参照)。その電解槽の構造は、陰極室の中央部に陽極室である坩堝を配し、坩堝内には金属インジウムを含む合金を保持させ、精製した金属インジウムを坩堝の外周部に電解析出させるものである。確かに、この電解槽により金属インジウムを回収できるが、中央に配した陽極室内では、電解が進行するにしたがってスズをはじめとする不純物成分が濃縮されるため、坩堝の取り出し作業が必須となる。これは運転を停止し、溶融塩が固化しない高温状態で作業するため、溶融塩が大気と接触し、水分を吸収し劣化し、長期間の安定運転ができなかった。   For example, metal indium, which is a kind of low melting point metal, can be recovered from an alloy containing metal indium by electrolytic purification using a molten salt as an electrolyte, and its electrolytic cell structure and purification method are disclosed (for example, Patent Documents). 1). The electrolytic cell has a structure in which a crucible which is an anode chamber is arranged in the center of the cathode chamber, an alloy containing metal indium is held in the crucible, and the purified metal indium is electrolytically deposited on the outer periphery of the crucible. It is. Certainly, metal indium can be recovered by this electrolytic cell. However, in the anode chamber disposed in the center, impurity components such as tin are concentrated as the electrolysis progresses, so that the operation of taking out the crucible is essential. This stopped the operation and worked in a high temperature state where the molten salt did not solidify, so that the molten salt contacted the atmosphere, absorbed moisture and deteriorated, and stable operation for a long period of time was not possible.

別の電解槽として、底部に陰極を配し、該陰極上に溶融塩浴の層を保持し、その上に多孔質体からなる容器中に陽極を保持した電解槽が開示されている(例えば、特許文献2参照)。確かに、この電解槽により合金から金属インジウムなどの有用成分を電解析出できる。しかしながら、通常の電解槽には用いない特殊な多孔質体が必要なため設備コストが高く、運転操作においても多孔質体の破損トラブルがないよう細心の留意が必要であった。又、多孔質体からなる容器中に保持している陽極は多孔質体の孔から漏出し、陽極と陰極が短絡し、運転を停止せざるを得なくなることがあった。更に、多孔質体の強度に関係するが、スケールアップが難しいという問題点があった。   As another electrolytic cell, an electrolytic cell is disclosed in which a cathode is disposed at the bottom, a layer of a molten salt bath is retained on the cathode, and an anode is retained in a porous container on the cathode (for example, , See Patent Document 2). Certainly, this electrolytic cell enables electrolytic deposition of useful components such as metal indium from the alloy. However, since a special porous body that is not used in an ordinary electrolytic cell is required, the equipment cost is high, and it was necessary to pay close attention so that the porous body was not damaged even during operation. In addition, the anode held in the container made of the porous body may leak from the pores of the porous body, the anode and the cathode may be short-circuited, and the operation may have to be stopped. Furthermore, although related to the strength of the porous body, there is a problem that it is difficult to scale up.

WO2006−046800号公報WO2006-046800 特開昭57−207185号公報JP-A-57-207185

本発明の課題は、前記従来法の問題点を解決できる効果的、効率的な溶融塩電解槽、即ち低融点金属を含む合金の供給および抜き出しを含めた運転操作が容易であり、溶融塩と大気との接触を回避することで、長期間に亘って溶融塩の劣化を抑制でき、また特殊な多孔質体などを使用することなく、有用な低融点金属の純度を高められる溶融塩電解槽および低融点金属の精製方法を提供することにある。   An object of the present invention is to provide an effective and efficient molten salt electrolytic cell that can solve the problems of the conventional method, that is, an operation including supply and extraction of an alloy containing a low-melting-point metal is easy. By avoiding contact with the atmosphere, the molten salt electrolytic cell can suppress the deterioration of the molten salt over a long period of time and can increase the purity of useful low-melting point metals without using a special porous material. Another object of the present invention is to provide a method for purifying a low melting point metal.

本発明者らは、低融点金属を含む合金から、有用な低融点金属を陰極に電解析出させ、精製回収する技術について鋭意検討した結果、溶融塩電解精製に用いる電解槽構造を適正化することで、運転操作が容易であり、低融点金属を含む合金の供給および抜き出しが容易であり、有用な低融点金属の純度を高め、長期間に亘って溶融塩の劣化を抑制できることを見出し、本発明を完成するに至った。   As a result of intensive studies on a technique for electrolytically depositing a useful low-melting-point metal on the cathode from an alloy containing a low-melting-point metal and purifying and recovering it, the electrolytic cell structure used for molten salt electrolytic purification is optimized. Thus, it is found that the operation is easy, the supply and extraction of the alloy containing the low melting point metal is easy, the purity of the useful low melting point metal is increased, and the deterioration of the molten salt can be suppressed over a long period of time, The present invention has been completed.

すなわち本発明は、低融点金属を精製回収する溶融塩電解槽であって、
前記低融点金属を含む合金の液状物を収容し、陽極用導線を挿入可能な開口を有する陽極室と、
収容された前記液状物上に前記低融点金属のハロゲン化物の溶融塩層を保持し、当該溶融塩層を外部に流出させずに前記陽極室内で前記液状物を連通させるための内筒と、
精製後の前記低融点金属の導入口及び導出口を有し、当該導入口が前記溶融塩層内に位置するように配置されており、陰極用導線を挿入可能で内部が前記低融点金属で充填された陰極室と、を備える溶融塩電解槽及び前記溶融塩電解槽を用いた低融点金属の精製方法である。
That is, the present invention is a molten salt electrolytic cell for purifying and recovering a low melting point metal,
An anode chamber containing an alloy liquid containing the low-melting-point metal and having an opening into which an anode conductor can be inserted;
An inner cylinder for holding the molten salt layer of the low-melting-point metal halide on the contained liquid material, and allowing the liquid material to communicate in the anode chamber without causing the molten salt layer to flow outside;
It has an inlet and an outlet for the low-melting-point metal after purification, and is arranged so that the inlet is located in the molten salt layer. A cathode conductor can be inserted, and the inside is the low-melting-point metal. A molten salt electrolysis cell comprising a filled cathode chamber, and a method for purifying a low melting point metal using the molten salt electrolysis cell.

以下、本発明の溶融塩電解槽の一例について、図1及び2に基づいて説明するが、下記で説明する溶融塩電解槽はあくまで本発明の態様の一つであり、当然ながら本発明は下記の内容に限定されるものではない。   Hereinafter, an example of the molten salt electrolytic cell of the present invention will be described with reference to FIGS. 1 and 2, but the molten salt electrolytic cell described below is only one aspect of the present invention. It is not limited to the contents of.

図1に示すように、本発明における溶融塩電解槽100は陽極室1、内筒2及び陰極室8から構成される。陽極室1は、低融点金属を含む合金の液状物(陽極液9)を収容するための開放された容器である。内筒2は、この容器内に、開口を有する端面が、陽極室1内部の底面と対向するように配置されている。そして、内筒2の壁面及び上記開口を有する端面の反対側の面が、陽極室1に収容された低融点金属を含む合金の液状物(陽極液9)の一部を覆っている。陰極室8は、低融点金属を導入する導入口3及び当該低融点金属を導出する導出口7を有し、導入口3が内筒2の内部に配置されており、低融点金属を導出する導出口7が内筒2の外部に配置されている。また、陰極室8の内部は低融点金属(陰極液11)で充填されている。溶融塩電解槽は、ヒーター12上に配置され、陽極室1の下部よりヒーター12にて加熱しながら電解を実施してもよい。   As shown in FIG. 1, a molten salt electrolytic cell 100 according to the present invention includes an anode chamber 1, an inner cylinder 2, and a cathode chamber 8. The anode chamber 1 is an open container for containing a liquid material (anolyte 9) of an alloy containing a low melting point metal. The inner cylinder 2 is disposed in the container so that an end surface having an opening faces the bottom surface inside the anode chamber 1. The wall surface of the inner cylinder 2 and the surface opposite to the end surface having the opening cover part of the liquid alloy material (anolyte 9) containing the low melting point metal housed in the anode chamber 1. The cathode chamber 8 has an inlet 3 for introducing a low-melting point metal and an outlet 7 for leading out the low-melting point metal. The inlet 3 is arranged inside the inner cylinder 2 and leads out the low-melting point metal. The outlet 7 is disposed outside the inner cylinder 2. The interior of the cathode chamber 8 is filled with a low melting point metal (catholyte 11). The molten salt electrolyzer may be disposed on the heater 12 and may be electrolyzed while being heated by the heater 12 from the lower part of the anode chamber 1.

陽極室1は低融点金属を含む合金の液状物(陽極液9)を保持するための容器であり、陽極室1と内筒2により形成される空間には、陽極液9の投入や陽極用導線14の挿入が可能である。電解の運転操作を長時間継続すると、合金を構成する電解されなかった成分が陽極室1中にて濃縮されるので、陽極液9の組成を一定に保つために、当該開口から精製後の合金、すなわち、使用した陽極液9を導出することもできる。精製後の合金を導出するために、陽極室1には、別途導出口が設けられていてもよい。当該導出口は、陽極室1と内筒2の間の隙間に配置されていてもよい。導出口には、抜き出しノズル4が形成されていてもよく、精製後の合金を間欠的あるいは連続的に抜き出すことがより好ましい。なお、陽極液9に含まれる低融点金属の含有量が30重量%以下、好ましくは50重量%以下となった時点で抜き出しノズル4を開けると、低融点金属の純度がより高いものを得ることができる。陽極液9の供給も連続であっても間欠的であっても良く、合金の供給場所は陽極室1と内筒2との間の隙間からでも、あるいは別途供給部を設けても構わない。   The anode chamber 1 is a container for holding a liquid material (anolyte 9) of an alloy containing a low-melting-point metal. In the space formed by the anode chamber 1 and the inner cylinder 2, the anolyte 9 is charged and used for the anode. The conducting wire 14 can be inserted. If the electrolysis operation is continued for a long time, the unelectrolyzed components constituting the alloy are concentrated in the anode chamber 1, so that the alloy after purification from the opening is kept in order to keep the composition of the anolyte 9 constant. That is, the used anolyte 9 can be derived. In order to derive the refined alloy, the anode chamber 1 may be provided with a separate outlet. The lead-out port may be disposed in a gap between the anode chamber 1 and the inner cylinder 2. An extraction nozzle 4 may be formed at the outlet, and it is more preferable to extract the refined alloy intermittently or continuously. When the extraction nozzle 4 is opened when the content of the low melting point metal contained in the anolyte 9 is 30% by weight or less, and preferably 50% by weight or less, the purity of the low melting point metal is obtained. Can do. The supply of the anolyte 9 may be continuous or intermittent, and the supply location of the alloy may be from the gap between the anode chamber 1 and the inner cylinder 2 or a separate supply unit may be provided.

陽極室1の材質は保持している合金と反応しないものであれば特に限定されない。好ましくは、破損のおそれがほとんどない、黒鉛や金属材料であり、具体的にはステンレス、ニッケル基合金、鉄、鉄基合金、チタン、チタン基合金である。中でも、ステンレス、鉄、チタン及び黒鉛から選ばれた1種以上から構成された材料が好ましく、耐食性、経済性の面からステンレスがより好ましい。   The material of the anode chamber 1 is not particularly limited as long as it does not react with the held alloy. Preferable are graphite and metal materials that are hardly damaged, and specifically, stainless steel, nickel-base alloy, iron, iron-base alloy, titanium, and titanium-base alloy. Especially, the material comprised from 1 or more types chosen from stainless steel, iron, titanium, and graphite is preferable, and stainless steel is more preferable from the surface of corrosion resistance and economical efficiency.

陽極室1の形状は、円筒型、角型、多角形型など特に限定されない。好ましくは、製作が容易で、機械的強度が高い円筒型、角型である。   The shape of the anode chamber 1 is not particularly limited, such as a cylindrical shape, a square shape, or a polygonal shape. Preferably, it is a cylindrical type or a square type that is easy to manufacture and has high mechanical strength.

内筒2は、下部が開口し、例えば、上部に開閉可能な不活性ガス導入口5及び排ガス排出口6を有している。内筒2の上部が閉じられていることにより、溶融塩10表面と外気との接触が遮断できるため、溶融塩10の劣化原因である大気中の水分の混入を防止でき、長期間の安定運転が可能となる。溶融塩10と接触している気相部に導入する不活性ガスとしては、窒素ガスやアルゴンガスなどが挙げられる。   The inner cylinder 2 is open at the bottom, and has, for example, an inert gas inlet 5 and an exhaust gas outlet 6 that can be opened and closed at the top. Since the upper part of the inner cylinder 2 is closed, the contact between the surface of the molten salt 10 and the outside air can be cut off, so that the mixing of moisture in the atmosphere, which is a cause of deterioration of the molten salt 10, can be prevented, and stable operation for a long time Is possible. Examples of the inert gas introduced into the gas phase portion in contact with the molten salt 10 include nitrogen gas and argon gas.

内筒2には、その内側に低融点金属を含む合金の液状物(陽極液9)が収容され、当該液状物上に低融点金属のハロゲン化物の溶融塩層10が保持されている。陽極液9の上部に浮遊状態で溶融塩層10を形成させるには、具体的には、内筒2の底部に陽極液9を貯え、不活性ガス導入口5及び排ガス排出口6から溶融塩を注ぎ込む、又は、内筒の中に粉末状の金属塩を入れておき、陽極液9の上で内筒2をひっくり返し、加熱を行って前記金属塩を溶融させる方法などが挙げられる。   The inner cylinder 2 accommodates a liquid material (anolyte 9) containing an alloy containing a low-melting point metal, and a molten salt layer 10 of a low-melting point metal halide is held on the liquid material. In order to form the molten salt layer 10 in a floating state on the top of the anolyte 9, specifically, the anolyte 9 is stored at the bottom of the inner cylinder 2, and the molten salt is supplied from the inert gas inlet 5 and the exhaust gas outlet 6. Or a powdered metal salt is put in the inner cylinder, the inner cylinder 2 is turned over on the anolyte 9, and the metal salt is melted by heating.

また、当該溶融塩層10を外部に流出させること無く、内筒2の内側と外側とで陽極液9を移動可能にするため、例えば、内筒2の下方部側面の一部がスリット状に切り欠かれている。これにより、陽極液9が内筒2の内部と外部とで行き来でき、陽極液9の組成が均一化できる。   Further, in order to allow the anolyte 9 to move between the inner and outer sides of the inner cylinder 2 without causing the molten salt layer 10 to flow outside, for example, a part of the lower side surface of the inner cylinder 2 has a slit shape. It is cut out. Thereby, the anolyte 9 can go back and forth between the inside and the outside of the inner cylinder 2, and the composition of the anolyte 9 can be made uniform.

内筒2の材質は、内部に保持されている溶融塩、低融点金属を含む合金と反応しないものであれば、特に限定されない。価格、製作の容易さから好ましくはガラス、セラミックス、フッ素樹脂から選ばれた1種以上から構成され、より好ましくは石英ガラス、セラミックスである。   The material of the inner cylinder 2 is not particularly limited as long as it does not react with an alloy containing a molten salt and a low melting point metal held inside. From the viewpoint of price and ease of production, it is preferably composed of one or more selected from glass, ceramics and fluororesin, more preferably quartz glass and ceramics.

陰極室8は、内部が低融点金属11で充填されるものであり、内筒2の外部に配置された部分には、陰極用導線15を挿入することができる。電析を行う前に陰極室8に予め充填される低融点金属11の純度は、低融点金属の含有量が90重量%以上であることが好ましい。   The cathode chamber 8 is filled with a low melting point metal 11, and a cathode lead wire 15 can be inserted into a portion arranged outside the inner cylinder 2. The purity of the low melting point metal 11 preliminarily filled in the cathode chamber 8 before electrodeposition is preferably such that the content of the low melting point metal is 90% by weight or more.

陰極室8における導入口3は設備の大きさによって、1個又は複数個の容器から構成される。導入口3が、複数の容器から構成される場合、導入口3の表面で電解析出した精製低融点金属の液状物(陰極液11)は、連結された配管によって集合され、導出口7から連続的に、または間欠的に排出され、回収される。また、導入口3の配置は特に限定されないが、図2に示すように、溶融塩層10中、導入口3を均等に分散させるほど陽極の合金から低融点金属の酸化溶解が均一となり、即ち電流密度が小さくできるので好ましい。導入口3の断面積、即ち陰極液11と溶融塩10との界面の面積が大きいほど電解析出できる面積が大きくなり、電気抵抗が小さくなるので好ましいが、大きすぎると結果として溶融塩10の断面積(図2の溶融塩10の面積)が小さくなり、そのため溶融塩10の電気抵抗が増すことになる。好ましくは導入口3の断面積が内筒断面積の30〜70%、より好ましくは40〜60%とすることである。   The inlet 3 in the cathode chamber 8 is composed of one or a plurality of containers depending on the size of the equipment. When the inlet 3 is composed of a plurality of containers, the purified low-melting-point metal liquid (catholyte 11) that is electrolytically deposited on the surface of the inlet 3 is gathered by the connected pipes, and from the outlet 7. Discharged and collected continuously or intermittently. Further, the arrangement of the introduction port 3 is not particularly limited, but as shown in FIG. 2, the oxidative dissolution of the low melting point metal from the anode alloy becomes more uniform as the introduction port 3 is uniformly dispersed in the molten salt layer 10, that is, This is preferable because the current density can be reduced. The larger the cross-sectional area of the inlet 3, that is, the area of the interface between the catholyte 11 and the molten salt 10, the larger the area that can be electrolytically deposited and the lower the electrical resistance. The cross-sectional area (the area of the molten salt 10 in FIG. 2) is reduced, so that the electrical resistance of the molten salt 10 is increased. Preferably, the cross-sectional area of the inlet 3 is 30 to 70%, more preferably 40 to 60% of the inner cylinder cross-sectional area.

また、陰極室8は絶縁体から形成されることを必須とする。絶縁体のなかでも、好ましくは溶融塩や低融点金属に対し耐食性が高いガラス、セラミックス、フッ素樹脂であり、より好ましくは製作が容易で、耐熱性が高く、安価なガラスであり、更には石英ガラスが好ましい。   Further, it is essential that the cathode chamber 8 be formed of an insulator. Among insulators, glass, ceramics, and fluororesins that are highly corrosion resistant to molten salts and low-melting metals are preferable, and glass that is easy to manufacture, has high heat resistance, is inexpensive, and is also quartz. Glass is preferred.

陰極室8の形状は、低融点金属が電解析出できる形状であれば特に限定されない。好ましくは立方体、直方体、円柱である。   The shape of the cathode chamber 8 is not particularly limited as long as the low melting point metal can be electrolytically deposited. A cube, a rectangular parallelepiped, and a cylinder are preferable.

続いて、本実施形態に係る低融点金属の精製方法について説明する。当該低融点金属の精製方法では、上記の溶融塩電解槽100において、陽極室1にインジウム、スズ及びガリウムから選ばれる1種以上の金属を含む合金を収容し、内筒2内の当該合金の液状物上に、上記金属に対応する金属ハロゲン化物の溶融塩を保持させる。そして、陽極用導線14及び陰極用導線15を挿入した状態で電圧を印加することにより、溶融塩電解させ、陰極室8の導出口7から、精製されたインジウム、スズ及びガリウムから選ばれる1種以上の金属を導出させる。   Then, the purification method of the low melting metal which concerns on this embodiment is demonstrated. In the method for purifying a low melting point metal, in the molten salt electrolyzer 100, an anode chamber 1 contains an alloy containing one or more metals selected from indium, tin and gallium, and the alloy in the inner cylinder 2 A molten metal halide corresponding to the metal is held on the liquid. Then, by applying a voltage with the anode lead wire 14 and the cathode lead wire 15 inserted, molten salt electrolysis is performed, and one kind selected from purified indium, tin and gallium from the outlet 7 of the cathode chamber 8. The above metals are derived.

上記精製方法により、インジウム、スズ及びガリウムから選ばれた1種以上の金属を含む合金を精製することができる。中でも、インジウムを含む合金は、融点が比較的低く、溶融塩電解精製での生産効率が良いため、本実施形態に係る精製方法によって好適に精製される。なお、合金とは金属元素及び/又は非金属元素からなる金属様の物質をいい、その結合状態などについては特に限定しない。低融点金属の含有量についても特に限定しない。すなわち、低融点金属が主成分であっても、微量含まれるものであっても好適に用いることができる。低融点金属の精製度合い、回収率、生産性から、合金中の低融点金属の含有量は好ましくは100wtppmから99.999wt%、より好ましくは1wt%から99.99wt%、更に好ましくは60wt%から99.9wt%である。   By the above purification method, an alloy containing one or more metals selected from indium, tin and gallium can be purified. Among them, an alloy containing indium is suitably purified by the purification method according to this embodiment because it has a relatively low melting point and high production efficiency in molten salt electrolytic purification. The alloy refers to a metal-like substance composed of a metal element and / or a non-metal element, and the bonding state thereof is not particularly limited. The content of the low melting point metal is not particularly limited. That is, even if the low melting point metal is a main component or a trace amount is contained, it can be suitably used. From the degree of purification, recovery rate, and productivity of the low melting point metal, the content of the low melting point metal in the alloy is preferably 100 wtppm to 99.999 wt%, more preferably 1 wt% to 99.99 wt%, and even more preferably 60 wt%. 99.9 wt%.

合金中の低融点金属以外の金属の種類は特に限定しないが、例を挙げるとLi,Na,Mg,Al,Si,K,Ca,Sc,Ti,V,Cr,Mn,Fe,Co,Ni,Cu,Zn,Ge,As,Se,Sr,Y,Zr,Nb,Mo,Ru,Rh,Pd,Ag,Cd,Sb,Te,Cs,Ba,Ta,W,Re,Os,Ir,Pt,Au,Tl,Pb,Biから選ばれた1種以上である。   The type of metal other than the low melting point metal in the alloy is not particularly limited. For example, Li, Na, Mg, Al, Si, K, Ca, Sc, Ti, V, Cr, Mn, Fe, Co, Ni , Cu, Zn, Ge, As, Se, Sr, Y, Zr, Nb, Mo, Ru, Rh, Pd, Ag, Cd, Sb, Te, Cs, Ba, Ta, W, Re, Os, Ir, Pt , Au, Tl, Pb, Bi.

これらの中で溶融塩電解における低融点金属との分離精製が良好な金属は、Li,Na,Mg,Al,Si,K,Ca,Sc,Ti,V,Cr,Mn,Fe,Co,Ni,Cu,Zn,Ge,Sr,Y,Zr,Nb,Mo,Ru,Rh,Pd,Ag,Cd,Cs,Ba,Ta,W,Re,Os,Ir,Pt,Au,Tl,Pb,Biであり、特にCu,Fe,Niは、分離精製が容易であり好ましい。   Among these, metals having good separation and purification from low melting point metals in molten salt electrolysis are Li, Na, Mg, Al, Si, K, Ca, Sc, Ti, V, Cr, Mn, Fe, Co, Ni. , Cu, Zn, Ge, Sr, Y, Zr, Nb, Mo, Ru, Rh, Pd, Ag, Cd, Cs, Ba, Ta, W, Re, Os, Ir, Pt, Au, Tl, Pb, Bi In particular, Cu, Fe, and Ni are preferable because separation and purification are easy.

内筒2に保持される溶融塩10は、精製対象となる金属に対応する金属ハロゲン化物を含み、かつ、陽極室1に保持されている低融点金属を含む合金よりも比重が小さく、溶融塩電解の操作が可能な溶融塩電解質であれば特に限定されない。例えば、精製対象となる金属に対応する金属ハロゲン化物とハロゲン化亜鉛との混合溶融塩、精製対象となる金属に対応する金属ハロゲン化物とハロゲン化アルミニウムとの混合溶融塩が挙げられる。より具体的には、精製対象がインジウムを含む合金である場合には、塩化亜鉛と一塩化インジウムの混合溶融塩や、臭化アルミニウムと一臭化インジウムの混合溶融塩などを好適に用いることができる。   The molten salt 10 held in the inner cylinder 2 contains a metal halide corresponding to the metal to be refined, and has a specific gravity smaller than that of an alloy containing a low melting point metal held in the anode chamber 1. There is no particular limitation as long as it is a molten salt electrolyte that can be electrolyzed. For example, a mixed molten salt of a metal halide and a zinc halide corresponding to the metal to be purified, and a mixed molten salt of a metal halide and an aluminum halide corresponding to the metal to be purified can be mentioned. More specifically, when the object to be refined is an alloy containing indium, it is preferable to use a mixed molten salt of zinc chloride and indium monochloride, a mixed molten salt of aluminum bromide and indium monobromide, or the like. it can.

なお、精製される金属の純度の視点から、精製対象となる金属に対応する金属ハロゲン化物は、混合溶融塩全量を基準にして、50重量%より多くすることが好ましく、65重量%以上とすることが好ましく、75重量%以上とすることがより好ましい。また、溶融塩中の水分含有量は、0.7重量%以下であることが好ましく、0.5重量%以下であることがより好ましく、0.4重量%以下であることがさらに好ましい。   In addition, from the viewpoint of the purity of the metal to be purified, the metal halide corresponding to the metal to be purified is preferably more than 50% by weight based on the total amount of the mixed molten salt, and more than 65% by weight. It is preferable that the content be 75% by weight or more. Further, the water content in the molten salt is preferably 0.7% by weight or less, more preferably 0.5% by weight or less, and further preferably 0.4% by weight or less.

上記溶融塩電解槽を用いることにより、本実施形態に係る精製方法においては、高い電流密度にて電解することができる。電流密度は1〜200A/dmが好ましい。1A/dm未満で運転すると、単位電極面積当たりの生産速度が低下することがある。生産性の面からは電流密度は高いほど良いが、200A/dmを超える電流密度では陰極に有用な低融点金属が電解析出する際、不純物を取り込み、純度が低下することがある。電流密度として、より好ましくは2〜150A/dm、更には3〜100A/dmである。 By using the molten salt electrolyzer, electrolysis can be performed at a high current density in the purification method according to the present embodiment. Current density is preferably 1~200A / dm 2. When operating at less than 1 A / dm 2 , the production rate per unit electrode area may decrease. From the viewpoint of productivity, the higher the current density, the better. However, at a current density exceeding 200 A / dm 2 , when a low melting point metal useful for the cathode is electrolytically deposited, impurities may be incorporated and the purity may be lowered. The current density is more preferably 2 to 150 A / dm 2 , and further 3 to 100 A / dm 2 .

また、溶融塩電解の操作温度は、電解質浴、低融点金属を含む合金および低融点金属の全てが溶融状態であれば特に限定しない。装置材質の腐食、溶融塩電解の運転操作面から溶融塩の温度は50℃〜400℃が好ましく、90℃〜350℃であることがより好ましい。   The operating temperature of the molten salt electrolysis is not particularly limited as long as the electrolyte bath, the alloy containing the low melting point metal, and the low melting point metal are all in a molten state. The temperature of the molten salt is preferably 50 ° C. to 400 ° C., more preferably 90 ° C. to 350 ° C., from the viewpoint of corrosion of the apparatus material and operation of molten salt electrolysis.

本発明において、陽極には低融点金属を含む合金を用いる。本発明における低融点金属とは、インジウム、スズ、ガリウムのうち一種以上を含むものを指す。   In the present invention, an alloy containing a low melting point metal is used for the anode. The low melting point metal in the present invention refers to one containing at least one of indium, tin, and gallium.

以上述べた適正な運転条件にて電解することで、陰極に高純度な低融点金属を電解析出することができるが、該低融点金属が目標とする純度にまで達成していない場合は、同様の操作で溶融塩電解を更に1回以上実施して目標とする純度に達するまで精製しても良い。   By electrolysis under the proper operating conditions described above, a high-purity low-melting point metal can be electrolytically deposited on the cathode, but when the low-melting point metal has not achieved the target purity, The molten salt electrolysis may be further performed once or more by the same operation, and refined until the target purity is reached.

本発明の溶融塩電解槽によれば、陰極室に電解析出した有用な低融点金属を連続的に回収でき、陽極室への合金の供給および抜き出しも電解操作を停止することなく実施できる。又、溶融塩の劣化原因である水分や酸素ガスの混入も防止できる。更に、電流密度の偏りを防止できるので、精製した金属の純度を高くできる。   According to the molten salt electrolytic cell of the present invention, useful low-melting-point metal electrolytically deposited in the cathode chamber can be continuously recovered, and the supply and extraction of the alloy to the anode chamber can be performed without stopping the electrolysis operation. Further, it is possible to prevent moisture and oxygen gas from being mixed, which is a cause of deterioration of the molten salt. Furthermore, since the uneven current density can be prevented, the purity of the refined metal can be increased.

本発明に係る溶融塩電解槽の一実施形態を示す縦断面図である。It is a longitudinal section showing one embodiment of a molten salt electrolysis tank concerning the present invention. 図1のI−I線に沿って切断した断面図である。It is sectional drawing cut | disconnected along the II line | wire of FIG.

以下、本発明を実施例により説明するが、本発明はこれらの実施例にのみ限定されるものではない。   EXAMPLES Hereinafter, although an Example demonstrates this invention, this invention is not limited only to these Examples.

なお、本発明における溶融塩中の水分含量の測定方法は、溶融塩を脱水メタノール溶媒に溶解し、一部をサンプリングし、カールフィッシャー試薬(シグマアルドリッチ社製、商品名「ハイドラナールコンポジット5」)にて滴定して算出した。   The method for measuring the water content in the molten salt according to the present invention is such that the molten salt is dissolved in a dehydrated methanol solvent, a part thereof is sampled, and the Karl Fischer reagent (trade name “Hydranal Composite 5” manufactured by Sigma-Aldrich) is used. The titration was performed with

実施例1
図1に示した溶融塩電解精製装置を用いて、以下の装置構成および溶融塩組成にて、金属インジウムを含む合金を陽極室に供給し、陰極室に精製した金属インジウムを電解析出させた。
Example 1
Using the molten salt electrolytic purification apparatus shown in FIG. 1, an alloy containing metal indium was supplied to the anode chamber with the following apparatus configuration and molten salt composition, and the purified metal indium was electrolytically deposited in the cathode chamber. .

1.装置構成
1)陽極室
大きさ:縦280mm×横350mm×深さ140mm、厚み5mm
材質:ステンレス鋼(SUS304)
形状:角槽(陽極液抜き出しノズル付き)
2)内筒
大きさ:縦250mm×横250mm×高さ250mm、厚み3mm
材質:石英ガラス
形状:角槽(底部:開口、側面下部:30mm×30mmのスリット各面2ヶ所、
上部:ノズル2ヶ所付)
3)陰極室
大きさ:縦30mm×横200mm×深さ30mm、厚み3mm、5個
材質:石英ガラス
形状:角槽5個
2.溶融塩浴
組成:一塩化インジウム:塩化亜鉛=78:22(モル%)
塩化インジウム 80重量% 水分含量 0.4wt%
電解温度:300℃
陽極室1に供給した金属インジウム含有合金(陽極液9)の組成は、金属インジウム90.3wt%、金属スズ9.7wt%であり、電解運転開始時に80.1kgを仕込んだ。直流電源発生装置13(菊水電子工業(株)製、商品名「PAS10−105」)にて100Aを通電、陽極の電流密度は16A/dm、陰極の電流密度は33A/dmにて連続運転を実施した。陰極室8に電解析出した金属インジウムは1日当り平均10.2kgで、導出口7から連続的に回収できた。陽極室1には前記組成の合金を1日当り10.2kgずつ供給した。運転開始14日目に、陽極室1に保持しているインジウム含有合金のスズ含量がやや高くなってきたため、電解運転を継続したまま、抜き出しノズル4から陽極液9を40.2kgを抜き出し、代わりに前記組成の合金40.2kgを溶融状態で供給し、電解を継続した。この陽極液交換の際、溶融塩10は大気と接触することなく操作でき、溶融塩10の変色や固化などの劣化は全く見られなかった。
1. Apparatus configuration 1) Anode chamber Size: 280 mm long x 350 mm wide x 140 mm deep, 5 mm thick
Material: Stainless steel (SUS304)
Shape: Square tank (with anolyte extraction nozzle)
2) Inner cylinder Size: Length 250mm x width 250mm x height 250mm, thickness 3mm
Material: Quartz glass Shape: Square tank (Bottom: Opening, Lower side: 30 mm x 30 mm slits on each side, 2 locations,
Upper part: with 2 nozzles)
3) Cathode chamber Size: Length 30 mm × Width 200 mm × Depth 30 mm, Thickness 3 mm, 5 Material: Quartz glass Shape: Square tank 5 Molten salt bath Composition: Indium monochloride: Zinc chloride = 78:22 (mol%)
Indium chloride 80% by weight Water content 0.4wt%
Electrolysis temperature: 300 ° C
The composition of the metal indium-containing alloy (anolyte 9) supplied to the anode chamber 1 was metal indium 90.3 wt% and metal tin 9.7 wt%, and 80.1 kg was charged at the start of the electrolysis operation. 100 A is energized with a DC power generator 13 (Kikusui Electronics Co., Ltd., trade name “PAS10-105”), the anode current density is 16 A / dm 2 , and the cathode current density is 33 A / dm 2 continuously. Driving was carried out. The metal indium electrolytically deposited in the cathode chamber 8 averaged 10.2 kg per day and could be continuously recovered from the outlet 7. The anode chamber 1 was supplied with 10.2 kg of the alloy having the above composition per day. On the 14th day from the start of operation, since the tin content of the indium-containing alloy held in the anode chamber 1 has become slightly higher, 40.2 kg of the anolyte 9 is extracted from the extraction nozzle 4 while the electrolytic operation is continued. 40.2 kg of the alloy having the above composition was supplied in a molten state, and electrolysis was continued. At the time of this anolyte exchange, the molten salt 10 can be operated without coming into contact with the atmosphere, and no deterioration such as discoloration or solidification of the molten salt 10 was observed.

この14日間の溶融塩電解精製によって陰極に電解析出した金属インジウム中のスズ含量は580wtppm、抜き出しノズル4から抜き出した陽極液中のスズ含量は25.6wt%であった。又、溶融塩中の水分含量は0.3wt%であった。   The tin content in the metal indium electrodeposited on the cathode by the 14-day molten salt electrolytic purification was 580 wtppm, and the tin content in the anolyte extracted from the extraction nozzle 4 was 25.6 wt%. The water content in the molten salt was 0.3 wt%.

比較例1
特許文献1記載の溶融塩電解槽を製作し、実施例1と同じ生産速度での金属インジウムの電解精製を実施した。装置構成および溶融塩浴組成は以下の通りとした。
Comparative Example 1
A molten salt electrolytic cell described in Patent Document 1 was manufactured, and electrolytic refining of metal indium was performed at the same production rate as in Example 1. The apparatus configuration and molten salt bath composition were as follows.

1.装置構成
1)本体(陰極室)
大きさ:内径400mmφ×深さ300mm、内容積37.7L、厚み5mm
材質:ステンレス(SUS316)
形状:円筒、陰極液抜き出しノズル付き、上部は原料供給ノズルを備えた蓋。
1. Device configuration 1) Main body (cathode chamber)
Size: Inner diameter 400mmφ x Depth 300mm, Internal volume 37.7L, Thickness 5mm
Material: Stainless steel (SUS316)
Shape: Cylindrical, with catholyte extraction nozzle, top with lid with raw material supply nozzle.

2)陽極室
大きさ:内径260mmφ×深さ140mm、内容積7.4L、厚み5mm
材質:アルミナ
形状:円筒ルツボ
3)本体内側の絶縁カバー(上部)
大きさ:内径380mmφ×深さ250mm、厚み5mm
材質:石英ガラス
形状:円筒
2.溶融塩浴
組成:一塩化インジウム:塩化亜鉛=78:22(モル%)、水分含量0.6wt%
電解温度:300℃
まず、陽極室に実施例1に用いた金属インジウム含有合金(金属インジウム90.3wt%、金属スズ9.7wt%)を45.2kg仕込み、電解槽の中央部に置いた。引き続き、本体内側の絶縁カバーと陽極室の間に金属インジウム40.3kg仕込み、上記組成の溶融塩32.9kgを入れ、通電棒をセットし、直流電源発生装置13(菊水電子工業(株)製、商品名「PAS10−105」)にて100Aを通電した。陽極の電流密度は19A/dm、陰極の電流密度は18A/dmで、連続運転を実施した。陰極室に電解析出した金属インジウムは1日当り平均10.2kgで、連続的に回収できた。陽極室には前記組成の合金を1日当り10.2kgずつ供給するため、電解槽上部の蓋に設置した原料供給ノズルを開放し、溶融状態で流し込んだ。このように、短時間ではあるが、電解槽の気相部には大気中の水分が混入した。運転開始6日目に、陽極室に保持している金属インジウム含有合金のスズ含量が高まったため、電解運転を停止し、温度が280℃と高いうちに陽極室(坩堝)を取り出した。陽極液34.8kgを抜き出し、代わりに前記組成の合金を45.2kgを溶融状態で仕込み、電解槽の中央部に戻し、電解を再開した。この陽極液交換の際、溶融塩は大気と接触したため、溶融塩の上層部が一部固化し、溶融塩の劣化が認められた。この一連の操作を実施例1と同様、14日間継続した。
2) Anode chamber Size: inner diameter 260 mmφ × depth 140 mm, internal volume 7.4 L, thickness 5 mm
Material: Alumina Shape: Cylindrical crucible 3) Insulation cover inside the body (upper part)
Size: Internal diameter 380mmφ x Depth 250mm, thickness 5mm
Material: Quartz glass Shape: Cylindrical Molten salt bath Composition: indium monochloride: zinc chloride = 78: 22 (mol%), water content 0.6 wt%
Electrolysis temperature: 300 ° C
First, 45.2 kg of the metal indium-containing alloy (metal indium 90.3 wt%, metal tin 9.7 wt%) used in Example 1 was placed in the anode chamber and placed in the center of the electrolytic cell. Subsequently, 40.3 kg of metal indium was charged between the insulating cover on the inside of the main body and the anode chamber, 32.9 kg of molten salt having the above composition was added, a current bar was set, and a DC power source generator 13 (manufactured by Kikusui Electronics Corporation) , 100A was energized under the trade name “PAS10-105”). The current density of the anode was 19 A / dm 2 and the current density of the cathode was 18 A / dm 2 , and continuous operation was performed. The metal indium electrolytically deposited in the cathode chamber averaged 10.2 kg per day and could be recovered continuously. In order to supply 10.2 kg of the alloy having the above composition to the anode chamber per day, the raw material supply nozzle installed on the lid on the upper part of the electrolytic cell was opened and poured in a molten state. Thus, although it was a short time, the water | moisture content in air | atmosphere mixed in the gaseous-phase part of an electrolytic cell. On the sixth day from the start of operation, since the tin content of the metal indium-containing alloy held in the anode chamber increased, the electrolysis operation was stopped, and the anode chamber (crucible) was taken out while the temperature was as high as 280 ° C. 34.8 kg of the anolyte was extracted, and instead 45.2 kg of the alloy having the above composition was charged in a molten state, returned to the center of the electrolytic cell, and electrolysis was resumed. At the time of this anolyte exchange, the molten salt was in contact with the atmosphere, so that the upper part of the molten salt was partially solidified, and deterioration of the molten salt was observed. This series of operations was continued for 14 days as in Example 1.

この14日間の溶融塩電解精製によって陰極に電解析出した金属インジウム中のスズ含量は平均1530wtppm、陽極室から抜き出した陽極液中のスズ含量は平均26.7wt%で、実施例1に比べ陰極に電解析出した金属インジウム中のスズ含量が約3倍と高く、品質面で不十分であった。また、14日間経過した溶融塩の上層には淡黄色の固形物が浮遊しており、溶融塩中の水分含量0.9wt%で劣化が顕著であった。   The tin content in the metal indium electrodeposited on the cathode by this 14-day molten salt electrolytic refining averaged 1530 wtppm, and the tin content in the anolyte extracted from the anode chamber averaged 26.7 wt%. The content of tin in the metal indium electrolytically deposited was as high as about 3 times, and the quality was insufficient. Further, a pale yellow solid was floating on the upper layer of the molten salt after 14 days, and the deterioration was remarkable when the water content in the molten salt was 0.9 wt%.

比較例2
特許文献2記載の溶融塩電解槽を製作し電解精製を実施した。装置構成および溶融塩浴組成は以下の通りとした。
Comparative Example 2
A molten salt electrolytic cell described in Patent Document 2 was manufactured and subjected to electrolytic purification. The apparatus configuration and molten salt bath composition were as follows.

1.装置構成
1)本体
大きさ:内径300mmφ×深さ300mm、厚み5mm
材質:ステンレス(SUS316)
形状:円筒、陰極液抜き出しノズル付き
2)本体内側のカバー
大きさ:内径280mmφ×深さ280mm、厚み5mm
材質:石英ガラス
形状:円筒
3)陽極室
大きさ:内径250mmφ×深さ180mm、内容積8.8L、厚み10mm
材質:多孔質アルミナ
形状:円筒ルツボ
2.溶融塩浴
組成:一塩化インジウム:塩化亜鉛=78:22(モル%)
電解温度:300℃
陽極室に実施例1に用いた金属インジウム含有合金(金属インジウム90.3wt%、金属スズ9.7wt%)を50.9kg仕込み、電解槽の本体にセットした。引き続き、本体内側の絶縁カバーと陽極室の間から金属インジウム22.5kg仕込み、上記組成の溶融塩16.6kg仕込み、温度300℃とした。通電棒をセットし、直流電源発生装置13(菊水電子工業(株)製、商品名「PAS10−105」)にて100Aを通電した。陽極の電流密度は20A/dm、陰極の電流密度は16A/dmで、運転をスタートした。運転開始8時間経過した頃から電解槽電圧が急激にアップしたため、電解運転を停止し電解槽をチェックした。その結果、陽極室の多孔質アルミナの側壁にも溶融塩が浸透し、陽極と陰極の間の溶融塩保持量が減少し、陽極室の底面の一部が電解液と接触していない状態となったため、電気抵抗がアップしたと判明した。
1. Device configuration 1) Body Size: Inner diameter 300mmφ x Depth 300mm, thickness 5mm
Material: Stainless steel (SUS316)
Shape: Cylinder, with catholyte extraction nozzle 2) Cover inside the body Size: Inner diameter 280 mmφ x Depth 280 mm, Thickness 5 mm
Material: Quartz glass Shape: Cylinder 3) Anode chamber Size: Inner diameter 250 mmφ x Depth 180 mm, Internal volume 8.8 L, Thickness 10 mm
Material: Porous alumina Shape: Cylindrical crucible Molten salt bath Composition: Indium monochloride: Zinc chloride = 78:22 (mol%)
Electrolysis temperature: 300 ° C
50.9 kg of the metal indium-containing alloy (metal indium 90.3 wt%, metal tin 9.7 wt%) used in Example 1 was placed in the anode chamber and set in the main body of the electrolytic cell. Subsequently, 22.5 kg of metal indium was charged between the insulating cover inside the main body and the anode chamber, 16.6 kg of molten salt having the above composition was charged, and the temperature was 300 ° C. An energizing rod was set, and 100 A was energized with a DC power generator 13 (manufactured by Kikusui Electronics Co., Ltd., trade name “PAS10-105”). The operation was started with an anode current density of 20 A / dm 2 and a cathode current density of 16 A / dm 2 . Since the electrolytic cell voltage suddenly increased from about 8 hours after the start of operation, the electrolytic operation was stopped and the electrolytic cell was checked. As a result, the molten salt permeates the porous alumina side wall of the anode chamber, the amount of molten salt retained between the anode and the cathode is reduced, and a part of the bottom surface of the anode chamber is not in contact with the electrolyte. It became clear that the electrical resistance was increased.

実施例2
実施例1に示した装置構成にて、金属スズを含む合金(陽極液9)を陽極室1に供給し、陰極室8に精製した金属スズを電解析出させた。なお、溶融塩10の組成は、塩化スズ76wt%、塩化亜鉛24wt%の混合溶融塩とし、電解温度は350℃とした。
Example 2
In the apparatus configuration shown in Example 1, an alloy containing metal tin (anolyte 9) was supplied to the anode chamber 1, and purified metal tin was electrolytically deposited in the cathode chamber 8. The composition of the molten salt 10 was a mixed molten salt of 76 wt% tin chloride and 24 wt% zinc chloride, and the electrolysis temperature was 350 ° C.

陽極室1に供給した金属スズ含有合金の組成は、金属スズ95.3wt%、金属鉛4.7wt%であり、電解運転開始時に80.3kgを仕込んだ。直流電源発生装置13(菊水電子工業(株)製、商品名「PAS10−105」)にて100A通電し連続運転を実施した。陰極室8に電解析出した金属スズは1日当り平均5.3kgで、導出口7から連続的に回収できた。陽極室1には前記組成の合金を1日当り5.3kgずつ供給した。運転開始14日目に、陽極室1に保持しているスズ含有合金の鉛含量が高まってきたため、電解運転を継続したまま、抜き出しノズル4から陽極液9を41.2kg抜き出し、前記組成の合金を41.2kg供給し、電解を継続した。   The composition of the metal tin-containing alloy supplied to the anode chamber 1 was metal tin 95.3 wt% and metal lead 4.7 wt%, and 80.3 kg was charged at the start of the electrolysis operation. The DC power generator 13 (manufactured by Kikusui Electronics Co., Ltd., trade name “PAS10-105”) was energized with 100 A and continuously operated. Metal tin electrolytically deposited in the cathode chamber 8 averaged 5.3 kg per day and could be continuously recovered from the outlet 7. The anode chamber 1 was supplied with 5.3 kg of the alloy having the above composition per day. On the 14th day from the start of operation, since the lead content of the tin-containing alloy held in the anode chamber 1 increased, 41.2 kg of the anolyte 9 was extracted from the extraction nozzle 4 while the electrolysis operation was continued. 41.2 kg was supplied and electrolysis was continued.

この14日間の溶融塩電解精製によって、陰極に電解析出した金属スズ中の鉛含量は12wtppm、抜き出しノズル4から抜き出した陽極液中の鉛含量は8.7wt%であった。   As a result of the 14-day molten salt electrorefining, the lead content in the metal tin electrodeposited on the cathode was 12 wtppm, and the lead content in the anolyte extracted from the extraction nozzle 4 was 8.7 wt%.

本発明の課題は、有用な低融点金属の純度を高め、長期間に亘って溶融塩の劣化を抑制でき、そして低融点金属を含む合金の供給および抜き出しが容易であって、長期間に亘って溶融塩の劣化を抑制でき、有用な低融点金属の純度を高められる溶融塩電解精製装置および低融点金属の精製方法に関するものである。   An object of the present invention is to increase the purity of a useful low melting point metal, to suppress the deterioration of molten salt over a long period of time, and to easily supply and withdraw an alloy containing a low melting point metal. The present invention relates to a molten salt electrorefining apparatus and a method for purifying a low melting point metal that can suppress deterioration of the molten salt and increase the purity of a useful low melting point metal.

1:陽極室
2:内筒
3:導入口
4:抜き出しノズル
5:不活性ガス導入口
6:排ガス排出口
7:導出口
8:陰極室
9:陽極液
10:溶融塩
11:陰極液
12:ヒーター
13:直流電源発生装置
14:陽極用導線
15:陰極用導線
1: anode chamber 2: inner cylinder 3: inlet port 4: extraction nozzle 5: inert gas inlet port 6: exhaust gas outlet port 7: outlet port 8: cathode chamber 9: anolyte 10: molten salt 11: catholyte 12: Heater 13: DC power generator 14: Anode lead 15: Cathode lead

Claims (12)

低融点金属を精製する溶融塩電解槽であって、
前記低融点金属を含む合金の液状物を収容し、陽極用導線を挿入可能な開口を有する陽極室と、
収容された前記液状物上に前記低融点金属のハロゲン化物の溶融塩層を保持し、当該溶融塩層を外部に流出させずに前記陽極室内で前記液状物を連通させるための内筒と、
精製後の前記低融点金属の導入口及び導出口を有し、当該導入口が前記溶融塩層内に位置するように配置されており、陰極用導線を挿入可能で内部が前記低融点金属で充填された陰極室と、を備える溶融塩電解槽。
A molten salt electrolytic cell for purifying a low melting point metal,
An anode chamber containing an alloy liquid containing the low-melting-point metal and having an opening into which an anode conductor can be inserted;
An inner cylinder for holding the molten salt layer of the low-melting-point metal halide on the contained liquid material, and allowing the liquid material to communicate in the anode chamber without causing the molten salt layer to flow outside;
It has an inlet and an outlet for the low-melting-point metal after purification, and is arranged so that the inlet is located in the molten salt layer. A cathode conductor can be inserted, and the inside is the low-melting-point metal. A molten salt electrolysis cell comprising a filled cathode chamber.
前記内筒がガラス、セラミックス及びフッ素樹脂から選ばれた1種以上から構成されることを特徴とする請求項1記載の溶融塩電解槽。 The molten salt electrolyzer according to claim 1, wherein the inner cylinder is composed of one or more selected from glass, ceramics, and fluororesin. 前記内筒に不活性ガス導入口及び排ガス排出口を備えていることを特徴とする請求項1又は2に記載の溶融塩電解槽。 The molten salt electrolyzer according to claim 1 or 2, wherein the inner cylinder is provided with an inert gas inlet and an exhaust gas outlet. 前記陰極室がガラスで構成されていることを特徴とする請求項1〜3のいずれかに記載の溶融塩電解槽。 The molten salt electrolytic cell according to claim 1, wherein the cathode chamber is made of glass. 前記陰極室が前記導入口を複数有することを特徴とする請求項1〜4のいずれかに記載の溶融塩電解槽。 The molten salt electrolyzer according to claim 1, wherein the cathode chamber has a plurality of the inlets. 前記陽極室がステンレス、鉄、チタン及び黒鉛から選ばれた1種以上から構成されていることを特徴とする請求項1〜5のいずれかに記載の溶融塩電解槽。 The molten salt electrolytic cell according to any one of claims 1 to 5, wherein the anode chamber is composed of one or more selected from stainless steel, iron, titanium, and graphite. 前記陽極室がステンレスから構成されていることを特徴とする請求項1〜6のいずれかに記載の溶融塩電解槽。 The molten salt electrolyzer according to claim 1, wherein the anode chamber is made of stainless steel. 前記陽極室が、精製後の前記低融点金属を含む合金を導出するための導出口をさらに有することを特徴とする請求項1〜7のいずれかに記載の溶融塩電解槽。 The molten salt electrolyzer according to claim 1, wherein the anode chamber further has a lead-out port for leading out the refined alloy containing the low melting point metal. 前記陽極室における、前記導出口にノズルが形成されていることを特徴とする請求項8記載の溶融塩電解槽。 The molten salt electrolytic cell according to claim 8, wherein a nozzle is formed at the outlet in the anode chamber. 請求項1〜9のいずれかに記載の溶融塩電解槽において、
前記陽極室にインジウム、スズ及びガリウムから選ばれる1種以上の金属を含む合金を収容し、前記内筒内の当該合金の液状物上に、前記金属に対応する金属ハロゲン化物の溶融塩を保持させ、陽極用導線及び陰極用導線を挿入した状態で電圧を印加することにより、溶融塩電解させ、前記陰極室の導出口から、精製されたインジウム、スズ及びガリウムから選ばれる1種以上の金属を導出させることを特徴とする低融点金属の精製方法。
In the molten salt electrolyzer according to any one of claims 1 to 9,
An alloy containing one or more metals selected from indium, tin and gallium is accommodated in the anode chamber, and a molten metal halide corresponding to the metal is held on the liquid material of the alloy in the inner cylinder. One or more metals selected from purified indium, tin, and gallium from the outlet of the cathode chamber by applying a voltage with the anode conductor and cathode conductor inserted, and performing molten salt electrolysis A method for purifying a low melting point metal, characterized in that
溶融塩電解する際の操作温度が50℃〜400℃であることを特徴とする請求項10記載の低融点金属の精製方法。 The method for purifying a low-melting-point metal according to claim 10, wherein the operating temperature for molten salt electrolysis is 50 ° C. to 400 ° C. 溶融塩電解する際の電流密度が1〜200A/dmであることを特徴とする請求項10または11に記載の低融点金属の精製方法。 Method for purifying a low-melting metal according to claim 10 or 11 current density at the time of the molten salt electrolysis is characterized in that it is a 1~200A / dm 2.
JP2010282385A 2010-12-17 2010-12-17 Molten salt electrolytic cell and method for purifying low melting point metal Active JP5707925B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010282385A JP5707925B2 (en) 2010-12-17 2010-12-17 Molten salt electrolytic cell and method for purifying low melting point metal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010282385A JP5707925B2 (en) 2010-12-17 2010-12-17 Molten salt electrolytic cell and method for purifying low melting point metal

Publications (2)

Publication Number Publication Date
JP2012132033A true JP2012132033A (en) 2012-07-12
JP5707925B2 JP5707925B2 (en) 2015-04-30

Family

ID=46647958

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010282385A Active JP5707925B2 (en) 2010-12-17 2010-12-17 Molten salt electrolytic cell and method for purifying low melting point metal

Country Status (1)

Country Link
JP (1) JP5707925B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112725843A (en) * 2020-12-25 2021-04-30 武汉大学 Molten salt electrochemical preparation method of carbon-coated low-melting-point metal nano material

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010248597A (en) * 2009-04-20 2010-11-04 Tosoh Corp Method of manufacturing metal indium

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010248597A (en) * 2009-04-20 2010-11-04 Tosoh Corp Method of manufacturing metal indium

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112725843A (en) * 2020-12-25 2021-04-30 武汉大学 Molten salt electrochemical preparation method of carbon-coated low-melting-point metal nano material
CN112725843B (en) * 2020-12-25 2022-06-03 武汉大学 Molten salt electrochemical preparation method of carbon-coated low-melting-point metal nano material

Also Published As

Publication number Publication date
JP5707925B2 (en) 2015-04-30

Similar Documents

Publication Publication Date Title
WO2011071151A1 (en) Method for producing indium metal, molten salt electrolytic cell, and method for purifying low melting point metal
EP0958409B1 (en) Process for the electrolytic production of metals
KR101684813B1 (en) Electrolysis tank used for aluminum electrolysis and electrolysis process using the electrolyzer
US4853094A (en) Process for the electrolytic production of metals from a fused salt melt with a liquid cathode
CN107532317B (en) Method for producing an aluminium-scandium alloy and reactor for carrying out said method
US3114685A (en) Electrolytic production of titanium metal
CN104047034B (en) Systems and methods of protecting electrolysis cells
JPH093682A (en) Method for electrolytically producing magnesium or its alloy
US5118396A (en) Electrolytic process for producing neodymium metal or neodymium metal alloys
JPS6353275B2 (en)
Takenaka et al. The new concept for electrowinning process of liquid titanium metal in molten salt
JP2003306725A (en) Method for producing titanium, method for producing pure metal and apparatus for producing pure metal
JP5707925B2 (en) Molten salt electrolytic cell and method for purifying low melting point metal
US2848395A (en) Electrolytic process for production of titanium
JPH0684551B2 (en) Process for producing praseodymium or praseodymium-containing alloy
JP4838410B2 (en) Electrolyzer for producing alkali metal
US3616438A (en) Production of aluminum and aluminum alloys from aluminum chloride
US2917440A (en) Titanium metal production
JPH06146049A (en) Molten salt electrolytic sampling method for high-fusion-point active metal such as titanium
JPH06192876A (en) Method for electrolyzing gallium
JPH11512149A (en) Electrochemical production of sodium and aluminum chloride
RU2621207C1 (en) Method for producing aluminium-based alloy and device for its implementation
JP4198434B2 (en) Method for smelting titanium metal
US2939823A (en) Electrorefining metallic titanium
Kamaludeen et al. LaB 6 crystals from fused salt electrolysis

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20131121

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140430

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140624

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140801

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150203

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150216

R151 Written notification of patent or utility model registration

Ref document number: 5707925

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151