JP2012131199A - Cooling mechanism for injection mold - Google Patents

Cooling mechanism for injection mold Download PDF

Info

Publication number
JP2012131199A
JP2012131199A JP2010287277A JP2010287277A JP2012131199A JP 2012131199 A JP2012131199 A JP 2012131199A JP 2010287277 A JP2010287277 A JP 2010287277A JP 2010287277 A JP2010287277 A JP 2010287277A JP 2012131199 A JP2012131199 A JP 2012131199A
Authority
JP
Japan
Prior art keywords
cooling
molds
mold
pair
cooling mechanism
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2010287277A
Other languages
Japanese (ja)
Inventor
Yuichi Kishi
祐一 岸
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sekisui Chemical Co Ltd
Original Assignee
Sekisui Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sekisui Chemical Co Ltd filed Critical Sekisui Chemical Co Ltd
Priority to JP2010287277A priority Critical patent/JP2012131199A/en
Publication of JP2012131199A publication Critical patent/JP2012131199A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Moulds For Moulding Plastics Or The Like (AREA)
  • Injection Moulding Of Plastics Or The Like (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a cooling mechanism for an injection mold which enables a pair of molds to be cooled equally in a specified time.SOLUTION: The cooling mechanism includes cooling passages 12 and 13, which are formed in each molds 1 and 2 so as to close a pair of molds 1 and 2 thereby making them communicate with each other by abutting the mating faces 1b and 2b of the molds 1 and 2 on each other, and a cooling water supply control means 14, which detects the drive of a mold advance and retreat driving mechanism 11 for opening and closing the pair of molds 1 and 2 by advancing and retreating the molds 1 and 2 and supplies and circulates cooling water W to the cooling passages 12 and 13 for a specified time after the pair of molds 1 and 2 are closed.

Description

本発明は、射出成形用金型の冷却機構に関する。   The present invention relates to a cooling mechanism for an injection mold.

例えば継手などを射出成形によって製造する際には、図4及び図5に示すように、略円柱状の一対のコア金型(内型、一対の金型1、2)を型閉し、外型(キャビティ金型)3との間に形成したキャビティH内に溶融樹脂を射出充填する。そして、このとき、冷却機構4によってコア金型1、2を冷却し、射出充填した溶融樹脂の硬化を促進させることによって生産性を上げるようにしている。   For example, when a joint or the like is manufactured by injection molding, as shown in FIGS. 4 and 5, a pair of substantially cylindrical core molds (an inner mold, a pair of molds 1 and 2) are closed and the outer A molten resin is injected and filled into a cavity H formed between the mold (cavity mold) 3. At this time, the core molds 1 and 2 are cooled by the cooling mechanism 4, and the hardening of the injection-filled molten resin is promoted to increase the productivity.

また、冷却機構4としては、一対のコア金型1、2の後端1a、2a側から金型合せ面1b、2bに向けて延び、さらに合せ面1b、2b近傍から金型1、2の後端1a、2a側まで延びる冷却流路5、6を一対のコア金型1、2のそれぞれに設けて構成したものが多用されている(例えば、特許文献1参照)。そして、この冷却機構4では、金型後端1a、2a側の入口から冷却水Wを供給して循環させ、冷却流路5、6内を流通する冷却水Wとコア金型1、2との間で熱交換を生じさせて金型1、2を冷却する。   The cooling mechanism 4 extends from the rear ends 1a and 2a of the pair of core molds 1 and 2 toward the mold mating surfaces 1b and 2b, and further from the vicinity of the mating surfaces 1b and 2b. A configuration in which cooling channels 5 and 6 extending to the rear ends 1a and 2a are provided in each of a pair of core molds 1 and 2 is widely used (for example, see Patent Document 1). In the cooling mechanism 4, the cooling water W is supplied from the inlets on the mold rear ends 1a, 2a side and circulated, and the cooling water W flowing through the cooling flow paths 5, 6 and the core molds 1, 2 The molds 1 and 2 are cooled by causing heat exchange between them.

特開2010−99964号公報JP 2010-99964 A

しかしながら、上記従来の射出成形用金型(冷却機構4)においては、一対のコア金型1、2のそれぞれに冷却流路5、6が形成され、各金型1、2の後端1a、2a側から合せ面1b、2b側、合せ面1b、2b側から後端1a、2a側に冷却水Wを流通させて金型1、2を冷却するように構成されている。このため、金型1、2の合せ面1b、2b側が冷却されにくく、この部分の冷却が不十分になる場合があった。そして、このように合せ面1b、2b側の冷却が不十分になると、キャビティHに充填した溶融樹脂(成形品)の温度が不均一になり、成形品に熱変形や歪みが生じるという問題があった。   However, in the conventional injection mold (cooling mechanism 4), cooling channels 5 and 6 are formed in each of the pair of core molds 1 and 2, and the rear ends 1a of the molds 1 and 2 are formed. Cooling water W is circulated from the 2a side to the mating surfaces 1b and 2b and from the mating surfaces 1b and 2b to the rear ends 1a and 2a to cool the dies 1 and 2. For this reason, the mating surfaces 1b and 2b side of the molds 1 and 2 are difficult to be cooled, and cooling of this portion may be insufficient. If the mating surfaces 1b and 2b are not sufficiently cooled as described above, the temperature of the molten resin (molded product) filled in the cavity H becomes non-uniform, and the molded product is subject to thermal deformation and distortion. there were.

請求項1記載の射出成形用金型の冷却機構は、金型の合せ面を当接させて一対の金型を型閉するとともに連通するように、各金型に形成された冷却流路と、金型を進退させて一対の金型を型開閉させる金型進退駆動手段の駆動を検出し、一対の金型が型閉してから所定の時間、前記冷却流路に冷却水を供給して流通させる冷却水供給制御手段とを備えていることを特徴とする。   The cooling mechanism of the injection mold according to claim 1 includes a cooling flow path formed in each mold so as to close and communicate with the pair of molds by bringing the mating surfaces of the molds into contact with each other. Detecting the drive of the mold advancing / retracting driving means for opening and closing the pair of molds by moving the mold back and forth, and supplying cooling water to the cooling flow path for a predetermined time after the pair of molds are closed. And a cooling water supply control means for circulating.

請求項2記載の射出成形用金型の冷却機構は、請求項1記載の射出成形用金型の冷却機構において、前記所定の時間が経過した後に、前記冷却流路に圧縮空気を供給して流通させる圧縮空気供給制御手段を備えていることを特徴とする。   The injection mold cooling mechanism according to claim 2 is the injection mold cooling mechanism according to claim 1, wherein after the predetermined time has elapsed, compressed air is supplied to the cooling flow path. Compressed air supply control means for circulation is provided.

請求項1記載の射出成形用金型の冷却機構においては、冷却流路が各金型に形成され、一対の金型を型閉するとともに各金型の冷却流路同士が連通する。そして、冷却水供給制御手段によって、一対の金型が型閉してから所定の時間、冷却流路に冷却水が供給されて流通する。これにより、冷却水が合せ面を通過して一方の金型から他方の金型に流通することになるため、従来の冷却機構のように金型の合せ面側が冷却されにくく、部分的に冷却が不十分になることがない。すなわち、所定の時間、均一に金型を冷却することが可能になる。よって、キャビティに充填した溶融樹脂(成形品)の温度を確実に均一化することができ、熱変形や歪みが生じることなく、好適に成形品を製造することが可能になる。   In the cooling mechanism of the injection mold according to the first aspect, a cooling flow path is formed in each mold, the pair of molds are closed, and the cooling flow paths of the respective molds communicate with each other. Then, the cooling water is supplied and circulated through the cooling flow path for a predetermined time after the pair of molds are closed by the cooling water supply control means. As a result, the cooling water passes through the mating surface and circulates from one mold to the other. Therefore, unlike the conventional cooling mechanism, the mold mating surface side is difficult to be cooled and partially cooled. Will not be insufficient. That is, the mold can be cooled uniformly for a predetermined time. Therefore, the temperature of the molten resin (molded product) filled in the cavity can be reliably made uniform, and the molded product can be suitably manufactured without causing thermal deformation or distortion.

請求項2記載の射出成形用金型の冷却機構においては、冷却流路に冷却水を供給して所定の時間が経過した後、これを圧縮空気供給制御手段が検知して冷却流路に圧縮空気を供給して流通させる。これにより、金型を均一に冷却し終えるとともに、冷却流路から冷却水を除去することができ、効率的に成形品を製造することが可能になる。   3. The cooling mechanism for an injection mold according to claim 2, wherein after a predetermined time has passed after supplying the cooling water to the cooling flow path, the compressed air supply control means detects this and compresses it into the cooling flow path. Supply and distribute air. As a result, the mold can be uniformly cooled, and the cooling water can be removed from the cooling flow path, so that a molded product can be manufactured efficiently.

本発明の一実施形態に係る射出成形用金型の冷却機構を示す図である。It is a figure which shows the cooling mechanism of the injection mold which concerns on one Embodiment of this invention. 本発明の一実施形態に係る射出成形用金型の冷却機構を示す図である。It is a figure which shows the cooling mechanism of the injection mold which concerns on one Embodiment of this invention. 本発明の一実施形態に係る射出成形用金型の冷却機構の変形例を示す図である。It is a figure which shows the modification of the cooling mechanism of the injection mold which concerns on one Embodiment of this invention. 従来の射出成形用金型の冷却機構を示す図である。It is a figure which shows the cooling mechanism of the conventional injection mold. 図4のX1−X1線矢視図である。It is a X1-X1 line arrow directional view of FIG.

以下、図1及び図2を参照し、本発明の一実施形態に係る射出成形用金型の冷却機構について説明する。ここで、本実施形態では、冷却機構によって、例えば継手などを射出成形によって製造する際に用いる略円柱状の一対のコア金型を冷却するものとして説明を行う。   Hereinafter, with reference to FIG.1 and FIG.2, the cooling mechanism of the injection mold which concerns on one Embodiment of this invention is demonstrated. Here, in this embodiment, it demonstrates as what cools a pair of substantially cylindrical core metal mold | die used when manufacturing a coupling etc. by injection molding, for example by a cooling mechanism.

本実施形態の射出成形用金型の冷却機構Aは、図1及び図2に示すように、一対のコア金型(金型)1、2をそれぞれ進退させて型開閉させるための空圧シリンダー(金型進退駆動手段)10、11と、各コア金型1、2の合せ面1b、2b同士を当接させて一対のコア金型1、2を型閉すると同時に連通するように、各コア金型1、2に形成された冷却流路12、13と、冷却流路12、13に冷却水Wを供給して流通させる冷却水供給制御手段14とを備えて構成されている。   As shown in FIGS. 1 and 2, the cooling mechanism A for the injection mold according to this embodiment is a pneumatic cylinder for moving the pair of core molds (molds) 1 and 2 forward and backward to open and close the mold. (Mold Advancing / Retracting Driving Units) 10 and 11 and the mating surfaces 1b and 2b of the core molds 1 and 2 are brought into contact with each other so that the pair of core molds 1 and 2 are closed at the same time. The cooling channels 12 and 13 are formed in the core molds 1 and 2, and the cooling water supply control means 14 that supplies and circulates the cooling water W to the cooling channels 12 and 13 is configured.

一対のコア金型1、2のそれぞれに形成された冷却流路12、13は、各コア金型1、2の後端1a、2a側から合せ面1b、2bまで延出して形成されている。また、一方のコア金型1の冷却流路12は、合せ面1bから軸線O1方向後端1a側に向けて凹む通水部係合孔15に連通して形成されている。さらに、他方のコア金型2には合せ面2bから軸線O1方向外側(前方側)側に突出する通水部16が設けられており、この他方のコア金型2の冷却流路13は、後端2a側から軸線O1方向に延びて通水部16の先端に開口するように形成されている。また、通水部16には、その外周にOリングなどのシール部材17が取り付けられている。   The cooling channels 12 and 13 formed in the pair of core molds 1 and 2 are formed to extend from the rear ends 1a and 2a of the core molds 1 and 2 to the mating surfaces 1b and 2b. . Moreover, the cooling flow path 12 of one core metal mold | die 1 is formed in communication with the water flow part engaging hole 15 dented toward the rear end 1a side of the axis O1 direction from the mating surface 1b. Furthermore, the other core mold 2 is provided with a water passage portion 16 that protrudes from the mating surface 2b toward the outer side (front side) in the axis O1 direction. The cooling channel 13 of the other core mold 2 is It is formed so as to extend from the rear end 2 a side in the direction of the axis O <b> 1 and open at the tip of the water flow portion 16. Further, a seal member 17 such as an O-ring is attached to the outer periphery of the water passing portion 16.

さらに、一方のコア金型1には、合せ面1bから軸線O1方向後端1a側に凹むガイド孔18が形成され、他方のコア金型2には、合せ面2bから軸線O1方向外側に突出するガイドピン19が一体形成されている。   Further, one core mold 1 is formed with a guide hole 18 that is recessed from the mating surface 1b toward the rear end 1a in the axis O1 direction, and the other core mold 2 projects outward from the mating surface 2b in the axis O1 direction. A guide pin 19 is integrally formed.

一方、冷却流路13(14)に冷却水Wを供給して流通させる冷却水供給制御手段14は、空圧シリンダー11の伸縮駆動を検出するセンサー20と、センサー20の信号を受けて作動するタイマー21と、タイマー作動中のみ開き、冷却流路13(14)に冷却水Wを供給して流通させる電磁弁(第1電磁弁)22とを備えて構成されている。なお、冷却流路13には、ポンプなどの冷却水供給手段に繋がる配管23が接続され、電磁弁22は、この配管23に取り付けられている。   On the other hand, the cooling water supply control means 14 for supplying and circulating the cooling water W to the cooling flow path 13 (14) operates by receiving the sensor 20 for detecting the expansion and contraction drive of the pneumatic cylinder 11 and the signal of the sensor 20. A timer 21 and an electromagnetic valve (first electromagnetic valve) 22 that opens only during the timer operation and supplies the cooling water W to the cooling flow path 13 (14) to flow therethrough are configured. A pipe 23 connected to a cooling water supply means such as a pump is connected to the cooling flow path 13, and the electromagnetic valve 22 is attached to the pipe 23.

そして、本実施形態では、図1及び図2に示すように、空圧シリンダー10、11を駆動してコア金型1、2を進出させると、一方のコア金型1のガイド孔18に他方のコア金型2のガイドピン19が挿入され、これらガイド孔18とガイドピン19が互いに案内し合って、一対のコア金型1、2がそれぞれ所定位置に位置決めされてゆく。なお、このとき、ガイドピン19が干渉するとインターロックがかかって、一対のコア金型1、2の型閉動作が停止するように制御されている。   In this embodiment, as shown in FIGS. 1 and 2, when the pneumatic cylinders 10 and 11 are driven to advance the core molds 1 and 2, the other is inserted into the guide hole 18 of one core mold 1. The guide pins 19 of the core mold 2 are inserted, the guide holes 18 and the guide pins 19 are guided to each other, and the pair of core molds 1 and 2 are respectively positioned at predetermined positions. At this time, when the guide pin 19 interferes, the interlock is applied, and the mold closing operation of the pair of core molds 1 and 2 is controlled to stop.

また、ガイド孔18とガイドピン19が互いに案内し合ってコア金型1、2がさらに進出すると、一方のコア金型1の通水部係合孔15に他方のコア金型2の通水部16が係合し、これら一対のコア金型1、2の合せ面1b、2b同士が当接して型閉される。このように一対のコア金型1、2が型閉した状態で、一方のコア金型1の冷却流路12と他方のコア金型2の冷却流路13が通水部16と通水部係合孔15の係合によって連通する。また、通水部16の外周にシール部材17が設けられていることにより、水密性を確保した状態で一対のコア金型1、2の冷却流路12、13同士が連通する。なお、ガイド孔18とガイドピン19が互いに案内し合いながら通水部係合孔15に通水部16が係合することで、通水部16を通水部係合孔15に正確に挿入(係合)することができ、通水部16に破損が生じることを防止できる。   Further, when the guide hole 18 and the guide pin 19 guide each other and the core molds 1 and 2 further advance, the water flow of the other core mold 2 enters the water passage engaging hole 15 of one core mold 1. The part 16 is engaged, and the mating surfaces 1b and 2b of the pair of core molds 1 and 2 come into contact with each other to close the mold. In this way, with the pair of core molds 1 and 2 closed, the cooling flow path 12 of one core mold 1 and the cooling flow path 13 of the other core mold 2 are the water flow section 16 and the water flow section. Communication is established by engagement of the engagement holes 15. In addition, since the seal member 17 is provided on the outer periphery of the water flow portion 16, the cooling flow paths 12 and 13 of the pair of core molds 1 and 2 communicate with each other in a state where water tightness is ensured. The water passage 16 is accurately inserted into the water passage engaging hole 15 by engaging the water passage 16 with the water passage engaging hole 15 while the guide hole 18 and the guide pin 19 guide each other. (Engagement), and it is possible to prevent the water passage 16 from being damaged.

そして、図2に示すように、一対のコア金型1、2の型閉が完了し、外型3を設置した段階で、これら射出成形用金型1、2、3のキャビティH内に溶融樹脂24を射出充填し、冷却機構Aによって金型1、2を冷却することによって、射出充填した溶融樹脂24の硬化を促進させる。   Then, as shown in FIG. 2, when the mold closing of the pair of core molds 1 and 2 is completed and the outer mold 3 is installed, the core molds 1 and 2 are melted in the cavities H of the injection molds 1, 2 and 3. The resin 24 is injected and filled, and the molds 1 and 2 are cooled by the cooling mechanism A, whereby the injection-filled molten resin 24 is cured.

また、本実施形態の冷却機構Aによって射出成形用金型1、2を冷却する際には(本実施形態の冷却機構Aによる射出成形用金型1、2の冷却方法では)、一対のコア金型1、2の型閉時に、冷却水供給制御手段14のセンサー20が空圧シリンダー11の駆動を検知する。そして、センサー20から空圧シリンダー20の前進限の検知信号がタイマー21に送られてタイマー21が作動する。このタイマー21の作動と同時に、電磁弁22が開いて冷却水Wの通水が開始され、連通した一対のコア金型1、2の冷却流路12、13に冷却水Wが流通することで、各コア金型1、2が均一に冷却されてゆく。   Further, when cooling the injection molds 1 and 2 by the cooling mechanism A of the present embodiment (in the cooling method of the injection molds 1 and 2 by the cooling mechanism A of the present embodiment), a pair of cores When the molds 1 and 2 are closed, the sensor 20 of the cooling water supply control means 14 detects the driving of the pneumatic cylinder 11. Then, a forward limit detection signal of the pneumatic cylinder 20 is sent from the sensor 20 to the timer 21 and the timer 21 is activated. Simultaneously with the operation of the timer 21, the electromagnetic valve 22 is opened to start the flow of the cooling water W, and the cooling water W flows through the cooling channels 12 and 13 of the paired core molds 1 and 2. The core molds 1 and 2 are uniformly cooled.

また、所定の時間が経過し、これを計測しているタイマー20の作動が停止するとともに、電磁弁22が閉じて冷却水Wの通水が停止する。このとき、予め所定の時間を設定しておくことで、所定の時間、各コア金型1、2が均一に冷却され、これにより、キャビティHに充填した溶融樹脂24(成形品)の温度が確実に均一化する。そして、所定の成形時間を経過するとともに空圧シリンダー10、11を後退駆動して一対のコア金型1、2を型開することで成形品を取り出す。このとき、本実施形態の冷却機構Aによって、キャビティHに充填した溶融樹脂24の温度を均一化しているため、成形品は熱変形や歪みのない好適な状態で製造されることになる。   In addition, the predetermined time has elapsed, the operation of the timer 20 measuring this is stopped, the electromagnetic valve 22 is closed, and the flow of the cooling water W is stopped. At this time, by setting a predetermined time in advance, the core molds 1 and 2 are uniformly cooled for a predetermined time, whereby the temperature of the molten resin 24 (molded product) filled in the cavity H is increased. Ensure uniformization. Then, while a predetermined molding time elapses, the pneumatic cylinders 10 and 11 are driven backward to open the pair of core molds 1 and 2 to take out the molded product. At this time, since the temperature of the molten resin 24 filled in the cavity H is made uniform by the cooling mechanism A of the present embodiment, the molded product is manufactured in a suitable state free from thermal deformation and distortion.

したがって、本実施形態の射出成形用金型の冷却機構Aにおいては、冷却流路12、13が各金型1、2に形成され、一対の金型1、2を型閉するとともに各金型1、2の冷却流路12、13同士が連通する。そして、冷却水供給制御手段14によって、一対の金型1、2が型閉してから所定の時間、冷却流路12、13に冷却水Wが供給されて流通する。これにより、冷却水Wが合せ面1b、2bを通過して一方の金型2から他方の金型1に流通することになるため、従来の冷却機構のように金型1、2の合せ面1b、2b側が冷却されにくく、部分的に冷却が不十分になるようなことがない。すなわち、所定の時間、均一に金型1、2を冷却することが可能になる。よって、キャビティHに充填した溶融樹脂24の温度を確実に均一化することができ、熱変形や歪みが生じることなく、好適に成形品を製造することが可能になる。   Therefore, in the cooling mechanism A for the injection mold according to the present embodiment, the cooling channels 12 and 13 are formed in the respective molds 1 and 2, the pair of molds 1 and 2 are closed, and each mold is closed. The cooling channels 12 and 13 communicate with each other. The cooling water supply control means 14 supplies the cooling water W to the cooling flow paths 12 and 13 for a predetermined time after the pair of molds 1 and 2 are closed. As a result, the cooling water W passes through the mating surfaces 1b and 2b and flows from one mold 2 to the other mold 1, so that the mating surfaces of the molds 1 and 2 as in the conventional cooling mechanism. The 1b and 2b sides are not easily cooled, and there is no case where the cooling is partially insufficient. That is, the molds 1 and 2 can be uniformly cooled for a predetermined time. Therefore, the temperature of the molten resin 24 filled in the cavity H can be surely made uniform, and a molded product can be suitably manufactured without causing thermal deformation or distortion.

以上、本発明に係る射出成形用金型の冷却機構の一実施形態について説明したが、本発明は上記の一実施形態に限定されるものではなく、その趣旨を逸脱しない範囲で適宜変更可能である。   As mentioned above, although one embodiment of the cooling mechanism of the injection mold according to the present invention has been described, the present invention is not limited to the above-mentioned one embodiment, and can be appropriately changed without departing from the gist thereof. is there.

例えば図3に示すように、型閉してから所定の時間が経過した後に、冷却流路12、13に圧縮空気Sを供給して流通させる圧縮空気供給制御手段25を備えて冷却機構Aを構成してもよい。すなわち、冷却機構Aを、空圧シリンダー10、11の駆動を検知するためのセンサー20、26と、冷却水Wを冷却流路12、13に供給するための第1電磁弁22と、冷却水Wを冷却流路12、13から排出するための第2電磁弁27と、圧縮空気Sを冷却流路12、13に供給するための第3電磁弁28(25)と、圧縮空気Sを冷却流路12、13から排出するための第4電磁弁29(25)と、第1電磁弁22と第2電磁弁27の開閉を制御するための第1タイマー21と、第3電磁弁28と第4電磁弁29の開閉を制御するための第2タイマー30(25)とを備えて構成すればよい。   For example, as shown in FIG. 3, after a predetermined time has passed since the mold was closed, the cooling mechanism A is provided with a compressed air supply control means 25 for supplying the compressed air S to the cooling flow passages 12 and 13 for circulation. It may be configured. That is, the cooling mechanism A includes sensors 20, 26 for detecting the driving of the pneumatic cylinders 10, 11, a first electromagnetic valve 22 for supplying the cooling water W to the cooling flow paths 12, 13, and the cooling water. A second electromagnetic valve 27 for discharging W from the cooling flow paths 12 and 13, a third electromagnetic valve 28 (25) for supplying compressed air S to the cooling flow paths 12 and 13, and cooling the compressed air S A fourth solenoid valve 29 (25) for discharging from the flow paths 12, 13, a first timer 21 for controlling the opening and closing of the first solenoid valve 22 and the second solenoid valve 27, and a third solenoid valve 28; A second timer 30 (25) for controlling the opening and closing of the fourth electromagnetic valve 29 may be provided.

この場合には、一対のコア金型1、2の型閉時に、冷却水供給制御手段14のセンサー20、26が空圧シリンダー10、11の駆動を検知する。そして、センサー20、26から空圧シリンダー10、11の前進限の検知信号が第1タイマー21に送られ、第1タイマー21が作動すると同時に、第1電磁弁22及び第2電磁弁27が開いて冷却水Wの通水が開始される。これにより、各コア金型1、2が均一に冷却されてゆく。   In this case, when the pair of core molds 1 and 2 are closed, the sensors 20 and 26 of the coolant supply control means 14 detect the driving of the pneumatic cylinders 10 and 11. A forward limit detection signal of the pneumatic cylinders 10 and 11 is sent from the sensors 20 and 26 to the first timer 21, and at the same time the first timer 21 is activated, the first electromagnetic valve 22 and the second electromagnetic valve 27 are opened. Then, the cooling water W starts to flow. Thereby, each core metal mold | die 1 and 2 is cooled uniformly.

次に、所定の時間が経過し、これを計測している第1タイマー21の作動が停止するとともに、第1電磁弁22及び第2電磁弁27が閉じて冷却水Wの通水が停止する。また、この第1タイマー21が停止するとともに第2タイマー30が作動して時間をカウントし始める。そして、第2タイマー30のカウントが開始されるとともに、第3電磁弁28と第4電磁弁29が開いて圧縮空気Sが冷却流路12、13に流通し、冷却流路12、13内の水分が除去される。また、所定の時間が経過した段階で、第3電磁弁28と第4電磁弁29が閉じ、型開動作が開始される。   Next, a predetermined time elapses, the operation of the first timer 21 measuring this stops, and the first electromagnetic valve 22 and the second electromagnetic valve 27 are closed to stop the flow of the cooling water W. . Further, the first timer 21 is stopped and the second timer 30 is activated to start counting time. As the second timer 30 starts counting, the third solenoid valve 28 and the fourth solenoid valve 29 are opened to allow the compressed air S to flow through the cooling passages 12 and 13. Moisture is removed. Further, when the predetermined time has elapsed, the third electromagnetic valve 28 and the fourth electromagnetic valve 29 are closed, and the mold opening operation is started.

よって、このように、冷却流路12、13に冷却水Wを供給して所定の時間が経過した後、圧縮空気供給制御手段25が検知して冷却流路12、13に圧縮空気Sを流通させることで、金型1、2を均一に冷却し終えるとともに、冷却流路12、13から冷却水Wを除去することができ、効率的に成形品を製造することが可能になる。   Therefore, after the cooling water W is supplied to the cooling flow paths 12 and 13 and a predetermined time has elapsed in this way, the compressed air supply control means 25 detects and distributes the compressed air S to the cooling flow paths 12 and 13. By doing so, the molds 1 and 2 can be uniformly cooled, and the cooling water W can be removed from the cooling flow paths 12 and 13, thereby making it possible to manufacture a molded product efficiently.

1 金型(コア金型)
1a 後端
1b 合せ面
2 金型(コア金型)
2a 後端
2b 合せ面
3 外型(キャビティ金型)
4 従来の冷却機構
5 冷却流路
6 冷却流路
10 空圧シリンダー(金型進退駆動手段)
11 空圧シリンダー(金型進退駆動手段)
12 冷却流路
13 冷却流路
14 冷却水供給制御手段
15 通水部係合孔
16 通水部
17 シール部材
18 ガイド孔
19 ガイドピン
20 センサー
21 タイマー(第1タイマー)
22 電磁弁(第1電磁弁)
23 配管
24 溶融樹脂
25 圧縮空気供給制御手段
26 センサー
27 電磁弁(第2電磁弁)
28 電磁弁(第3電磁弁)
29 電磁弁(第4電磁弁)
30 タイマー(第2タイマー)
A 射出成形用金型の冷却機構
H キャビティ
O1 軸線
S 圧縮空気
W 冷却水
1 Mold (core mold)
1a Rear end 1b Mating surface 2 Mold (core mold)
2a Rear end 2b Mating surface 3 Outer mold (cavity mold)
4 Conventional cooling mechanism 5 Cooling flow path 6 Cooling flow path 10 Pneumatic cylinder (Die advance / retreat drive means)
11 Pneumatic cylinder (Mold advance / retreat drive)
12 Cooling channel 13 Cooling channel 14 Cooling water supply control means 15 Water passage engaging hole 16 Water passing portion 17 Seal member 18 Guide hole 19 Guide pin 20 Sensor 21 Timer (first timer)
22 Solenoid valve (first solenoid valve)
23 Piping 24 Molten resin 25 Compressed air supply control means 26 Sensor 27 Solenoid valve (second solenoid valve)
28 Solenoid valve (third solenoid valve)
29 Solenoid valve (4th solenoid valve)
30 timer (second timer)
A Cooling mechanism of injection mold H Cavity O1 Axis S Compressed air W Cooling water

Claims (2)

金型の合せ面を当接させて一対の金型を型閉するとともに連通するように、各金型に形成された冷却流路と、
金型を進退させて一対の金型を型開閉させる金型進退駆動手段の駆動を検出し、一対の金型が型閉してから所定の時間、前記冷却流路に冷却水を供給して流通させる冷却水供給制御手段とを備えていることを特徴とする射出成形用金型の冷却機構。
Cooling channels formed in each mold so that the mating surfaces of the molds are brought into contact with each other to close and communicate with the pair of molds;
Detecting the drive of the mold advancing / retracting driving means for opening and closing the pair of molds by moving the mold back and forth, and supplying cooling water to the cooling channel for a predetermined time after the pair of molds are closed. A cooling mechanism for an injection mold, comprising: a cooling water supply control means for circulation.
請求項1記載の射出成形用金型の冷却機構において、
前記所定の時間が経過した後に、前記冷却流路に圧縮空気を供給して流通させる圧縮空気供給制御手段を備えていることを特徴とする射出成形用金型の冷却機構。
In the cooling mechanism of the injection mold according to claim 1,
A cooling mechanism for an injection mold, comprising compressed air supply control means for supplying compressed air to the cooling flow path after the predetermined time has passed.
JP2010287277A 2010-12-24 2010-12-24 Cooling mechanism for injection mold Pending JP2012131199A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010287277A JP2012131199A (en) 2010-12-24 2010-12-24 Cooling mechanism for injection mold

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010287277A JP2012131199A (en) 2010-12-24 2010-12-24 Cooling mechanism for injection mold

Publications (1)

Publication Number Publication Date
JP2012131199A true JP2012131199A (en) 2012-07-12

Family

ID=46647362

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010287277A Pending JP2012131199A (en) 2010-12-24 2010-12-24 Cooling mechanism for injection mold

Country Status (1)

Country Link
JP (1) JP2012131199A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110524825A (en) * 2019-08-30 2019-12-03 杭州嘉通机械有限公司 A kind of injection mold and its heat dissipating method of high-efficiency water cooling heat dissipation
CN117086284A (en) * 2023-10-19 2023-11-21 江苏华兴特钢铸造有限公司 Pump body casting die capable of being cooled rapidly

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4623506A (en) * 1982-07-30 1986-11-18 Midwest Plastic Fabricators Process for forming plastic pipe couplings
JPH0546416U (en) * 1991-11-29 1993-06-22 日光化成株式会社 Molding die
JPH10166386A (en) * 1996-12-11 1998-06-23 Sekisui Chem Co Ltd Manufacture of electric fusion joint
JP2010076236A (en) * 2008-09-25 2010-04-08 Citizen Electronics Co Ltd Mold for injection molding device
JP2010094998A (en) * 2008-10-15 2010-04-30 Raygen Co Ltd Mold device and method of controlling the same

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4623506A (en) * 1982-07-30 1986-11-18 Midwest Plastic Fabricators Process for forming plastic pipe couplings
JPH0546416U (en) * 1991-11-29 1993-06-22 日光化成株式会社 Molding die
JPH10166386A (en) * 1996-12-11 1998-06-23 Sekisui Chem Co Ltd Manufacture of electric fusion joint
JP2010076236A (en) * 2008-09-25 2010-04-08 Citizen Electronics Co Ltd Mold for injection molding device
JP2010094998A (en) * 2008-10-15 2010-04-30 Raygen Co Ltd Mold device and method of controlling the same

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110524825A (en) * 2019-08-30 2019-12-03 杭州嘉通机械有限公司 A kind of injection mold and its heat dissipating method of high-efficiency water cooling heat dissipation
CN110524825B (en) * 2019-08-30 2021-09-07 江门市蓬江区富盛塑料五金有限公司 Injection mold with efficient water-cooling heat dissipation function and heat dissipation method thereof
CN117086284A (en) * 2023-10-19 2023-11-21 江苏华兴特钢铸造有限公司 Pump body casting die capable of being cooled rapidly
CN117086284B (en) * 2023-10-19 2023-12-26 江苏华兴特钢铸造有限公司 Pump body casting die capable of being cooled rapidly

Similar Documents

Publication Publication Date Title
US10442125B2 (en) Injection mold, molding tool comprising the mold and methods of use thereof
CA2453170A1 (en) Lateral gating injection molding apparatus
JP2009137075A (en) Injection molding method and mold temperature adjustment device
JP7395665B2 (en) Injection molding systems and resin supply components
JP5024175B2 (en) Mold cooling system
JP2012131199A (en) Cooling mechanism for injection mold
US11292167B2 (en) Cassette type mold apparatus
EP1927456A1 (en) Mold device for forming blow molded product and method for forming blow molded product
CN110843175A (en) Hot runner device
KR20100008869A (en) Hot runner system and injection molding method using the same
JP2010105363A (en) Temperature controller for molding die device, and molding die system
US7841854B2 (en) Temperature adjustment mechanism for injection molding machine
KR101113223B1 (en) Band cable mold
JP2003136561A (en) Injection mold for annular molded product and method for molding annular molded product
US11613056B2 (en) Mold, method of manufacturing article, and valve
JP5584455B2 (en) Injection mold and injection molding apparatus
JP2003011197A (en) Mold device for molding
KR20170028122A (en) Injection molding device for lens
JP2010214765A (en) Injection molding mold and method of manufacturing molding
JP2010125689A (en) Resin molding apparatus
JP2008149578A (en) Molding method molding mold device
JP2004142366A (en) Mold for multiple molding
JP2019155774A (en) Manufacturing method of long plate-like member, and mold
CN113561415A (en) Injection mold
JPS6096427A (en) Injection molding method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130807

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140620

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140701

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20141104