JP2012130886A - Method for moving and/or reacting liquid phase - Google Patents

Method for moving and/or reacting liquid phase Download PDF

Info

Publication number
JP2012130886A
JP2012130886A JP2010286995A JP2010286995A JP2012130886A JP 2012130886 A JP2012130886 A JP 2012130886A JP 2010286995 A JP2010286995 A JP 2010286995A JP 2010286995 A JP2010286995 A JP 2010286995A JP 2012130886 A JP2012130886 A JP 2012130886A
Authority
JP
Japan
Prior art keywords
solid particles
liquid
hydrophilic liquid
liquid phase
hydrophilic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2010286995A
Other languages
Japanese (ja)
Inventor
Atsushi Haruta
淳 春田
Masayuki Nishio
正幸 西尾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ube Corp
Original Assignee
Ube Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ube Industries Ltd filed Critical Ube Industries Ltd
Priority to JP2010286995A priority Critical patent/JP2012130886A/en
Publication of JP2012130886A publication Critical patent/JP2012130886A/en
Pending legal-status Critical Current

Links

Landscapes

  • Devices And Processes Conducted In The Presence Of Fluids And Solid Particles (AREA)
  • Catalysts (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method for suppressing the biased flow of liquid phase without using a device such as a liquid distributer or a porous material in a packed column-type chemical device.SOLUTION: In the method for moving and/or reacting the liquid phase having a step 1 for surface-treating solid particle and a step 2 in which the liquid phase comes in contact with the surface-treated particle in the packed column after the step 1, the content ratio of the particle having particle size of 0.09 mm or less is 0 to 33 mass% and the content ratio of the particle having particle size larger than 16 mm is 0 to 33 mass% in the particle size distribution of the solid particle. The liquid phase is hydrophilic liquid 1, and the surface-treatment includes a step of bringing the surface of the solid particle into contact with the hydrophilic liquid 2 and a step of drying the hydrophilic liquid 2. In the surface treatment, a spread area increasing ratio is 10 to 10,000% calculated by a standard examination.

Description

本発明は、充填塔を使用した化学装置における液相の移動及び/又は反応方法に関する。   The present invention relates to a liquid phase transfer and / or reaction method in a chemical apparatus using a packed tower.

化学工業プロセスにおいて、気−液、液−液など異相間の物質移動、及び/又は固体粒子の触媒作用又は吸着作用を能率よく行うために塔内に固体粒子状の充填物を詰めた充填塔が使用される。例えば、気−液反応や液へのガス吸収の化学装置として使用されるトリクル反応器や吸収塔が用いられている。
トリクル反応器を用いたトリクル反応は、液相成分が灌液流と言われる流動状態において実施される。この灌液流は、液相成分と気相成分が特定の流量範囲にあるとき発生すると言われており、流量範囲については種々報告されている(非特許文献1)。
他方、吸収塔におけるガス吸収操作は、トリクル反応と同様に灌液流の流動状態で実施されることもあるが、灌液流に限らず様々な流動状態で実施できる。
しかし、充填塔においては、固体粒子が充填されて形成される充填層の水平方向への液流分布にばらつき(以下偏流現象という)が発生する。
偏流現象は、液−固、気−液又は液−液の接触効率を悪化させ反応効率を著しく低下させる。さらに、固体粒子が触媒である場合、局所的な発熱を誘引し、触媒失活や充填塔内壁の劣化を招く。このため、充填塔内における偏流の改善は、液相又は異相間の物質移動、トリクル反応、ガス吸収操作等において極めて大きな課題となっている。
In chemical industry processes, packed towers packed with solid particulate packing in order to efficiently perform mass transfer between different phases such as gas-liquid, liquid-liquid, and / or catalytic action or adsorption action of solid particles Is used. For example, trickle reactors and absorption towers used as chemical devices for gas-liquid reactions and gas absorption into liquids are used.
The trickle reaction using the trickle reactor is performed in a flow state in which the liquid phase component is called perfusion flow. This perfusion flow is said to occur when the liquid phase component and the gas phase component are in a specific flow rate range, and various reports have been made on the flow rate range (Non-Patent Document 1).
On the other hand, the gas absorption operation in the absorption tower may be performed in the flow state of the perfusate flow as in the trickle reaction, but can be performed in various flow states without being limited to the perfusion flow.
However, in the packed tower, dispersion (hereinafter referred to as a drift phenomenon) occurs in the liquid flow distribution in the horizontal direction of the packed bed formed by filling the solid particles.
The drift phenomenon deteriorates the liquid-solid, gas-liquid or liquid-liquid contact efficiency, and significantly reduces the reaction efficiency. Further, when the solid particles are a catalyst, local heat generation is induced, and the catalyst is deactivated and the inner wall of the packed tower is deteriorated. For this reason, the improvement of the drift in the packed tower is a very big problem in mass transfer between liquid phases or different phases, trickle reaction, gas absorption operation and the like.

この課題を解決する方法として、液導入部分に液分配器を設置する、あるいは、触媒又は充填物等の層間に液再分配器を導入する方法が採られている。例えば、ライザー管が取り付けられたトレイにキャップを設置することによって導入液および偏流液の分散性および再分散性を高める方法(バブルキャップ方式)が挙げられる(非特許文献2)。
また、偏流現象に由来する反応効率の低下を防止することを目的に、充填塔の側壁に多孔質材料を設置し、この多孔質材料を通して気体原料を供給することで気液接触効率を高める方法が提案されている(特許文献1)。
As a method for solving this problem, a method of installing a liquid distributor in a liquid introduction portion or a method of introducing a liquid redistributor between layers of a catalyst or a packing is adopted. For example, there is a method (bubble cap method) that increases the dispersibility and redispersibility of the introduction liquid and the drift liquid by installing a cap on the tray to which the riser pipe is attached (Non-patent Document 2).
Also, a method of increasing the gas-liquid contact efficiency by installing a porous material on the side wall of the packed tower and supplying a gas raw material through this porous material for the purpose of preventing a decrease in reaction efficiency due to the drift phenomenon Has been proposed (Patent Document 1).

特開平6−277497号公報JP-A-6-277497

化学工学 第46巻 第4号p.215(1982)、AIChEJournal Vol.32,No1,p.115(1986)Chemical Engineering Vol. 46, No. 4, p. 215 (1982), AIChE Journal Vol. 32, No1, p. 115 (1986) 化学工学 第44巻 第7号p.415(1980)、化学工学 第58巻 第11号p.883(1994)Chemical Engineering Vol. 44, No. 7, p. 415 (1980), Chemical Engineering Vol. 58, No. 11, p. 883 (1994)

しかし、液分配器や再分配器を用いても、液の偏流を完全に抑制することは極めて困難である。解決策として、再分配器の増設が考えられるが、装置サイズ、装置コスト、ハンドリング等の制約があるため、設置数には限界がある。結果として、この方法における偏流改善効果は、限定的なものとなっている。
また、特許文献1に記載される方法は、反応器を大型化させ、また多孔質材料を用いることで反応器本体のコストも増大させるため、反応装置の小型化・低コスト化という観点から好ましいとはいえない。
However, even if a liquid distributor or a redistributor is used, it is extremely difficult to completely suppress the liquid drift. As a solution, an increase in the number of redistributors can be considered, but the number of installations is limited due to restrictions such as device size, device cost, and handling. As a result, the drift improvement effect in this method is limited.
Further, the method described in Patent Document 1 is preferable from the viewpoint of downsizing and cost reduction of the reactor because the reactor is enlarged and the cost of the reactor main body is increased by using a porous material. That's not true.

本発明は、充填塔形式の化学装置において、液分配器や多孔質材料等の装備を用いることなく液相の偏流を抑制する方法を提供することを課題とする。   It is an object of the present invention to provide a method for suppressing liquid phase drift without using equipment such as a liquid distributor or a porous material in a packed tower type chemical apparatus.

本発明は、固体粒子の表面処理をする工程1と、工程1の後に、
充填塔内において、液相が前記表面処理された固体粒子と接触する工程2とを有する液相の移動及び/又は反応方法であって、
前記固体粒子の粒子径分布において、
粒子径0.09mm以下の含有率が0〜33質量%であり、
粒子径16mm超の含有率が0〜33質量%であり、
前記液相が、親水性液体1であり、
前記表面処理が、前記固体粒子の表面を親水性液体2と接触させる工程と、前記親水性液体2を乾燥する工程とを含む表面処理であって、
以下の標準試験により算出される拡がり面積増加割合が10〜10000%となる表面処理である移動及び/又は反応方法である。
〔標準試験〕
(1)内壁底面を有し、前記内壁底面から前記内壁底面に対向する端部までの高さが60mmの円柱容器であって、
前記内壁底面に前記親水性液体1の排出孔を有し、前記端部が開放端である前記容器に、
(2)前記表面処理をする前の固体粒子(固体粒子B)を親水性液体1中に25±2℃1時間浸漬させた後固体粒子が通過しない最大径のふるいで濾過し、固体粒子の表面が乾燥する前に、
前記容器の開口から、前記内壁底面から50mmの高さまで最上面が略水平になるように充填し、
(3)固体粒子の表面が乾燥する前に、前記親水性液体1を、前記容器の前記端部の中央部に、前記最上面から1cmの高さから内径0.32mmの注射針を取り付けた5mlのシリンジで、1ml/分で2ml滴下し、
(4)前記滴下の終了後であって、前記充填された前記固体粒子B中の前記親水性液体1の前記排出孔からの流下が停止したときに、前記内壁底面から20mmの高さまで、前記充填された前記固体粒子Bを除去し、
(5)前記除去後の前記底面から20mmの高さに現れた前記充填された前記固体粒子Bの略水平の最上面の前記親水性液体1の拡がりを、
(6)前記内壁底面から300mmの高さから写真を撮影し、
前記固体粒子Bの最上面の前記親水性液体1の拡がり面積S(固体粒子B上の拡がり面積S)を前記写真に基づき求める。
(7)前記固体粒子B上の拡がり面積Sを求める前記手順(1)〜(6)において、前記固体粒子Bを、前記固体粒子Bを前記表面処理した後の固体粒子(固体粒子A)に置き換えたことを除き、前記手順(1)〜(6)と同じ手順で、前記固体粒子Aの最上面の前記親水性液体1の拡がり面積Sを求める。
(8)式〔(S−S)/S〕×100(%)によって前記拡がり面積増加割合を算出する。
The present invention includes a step 1 for surface treatment of solid particles, and after step 1,
In a packed tower, a liquid phase transfer and / or reaction method comprising the step 2 of contacting the liquid phase with the surface-treated solid particles,
In the particle size distribution of the solid particles,
The content of particles having a particle size of 0.09 mm or less is 0 to 33% by mass,
The content of particles having a particle diameter exceeding 16 mm is 0 to 33% by mass,
The liquid phase is hydrophilic liquid 1;
The surface treatment includes a step of bringing the surface of the solid particles into contact with the hydrophilic liquid 2 and a step of drying the hydrophilic liquid 2,
It is a movement and / or reaction method which is a surface treatment in which the percentage increase in the area of expansion calculated by the following standard test is 10 to 10,000%.
[Standard test]
(1) A cylindrical container having an inner wall bottom surface and having a height from the inner wall bottom surface to an end facing the inner wall bottom surface of 60 mm,
In the container having a discharge hole for the hydrophilic liquid 1 on the bottom surface of the inner wall and the end portion being an open end,
(2) The solid particles (solid particles B) before the surface treatment are immersed in the hydrophilic liquid 1 at 25 ± 2 ° C. for 1 hour and then filtered through a sieve having a maximum diameter that does not allow the solid particles to pass through. Before the surface dries
From the opening of the container, filling so that the top surface is substantially horizontal from the bottom of the inner wall to a height of 50 mm,
(3) Before the surface of the solid particles was dried, the hydrophilic liquid 1 was attached to the central portion of the end of the container with a syringe needle having an inner diameter of 0.32 mm from a height of 1 cm from the top surface. With a 5 ml syringe, add 2 ml at 1 ml / min,
(4) After completion of the dropping, when the flow of the hydrophilic liquid 1 in the filled solid particles B from the discharge hole stops, the bottom of the inner wall reaches a height of 20 mm, Removing the filled solid particles B;
(5) The spread of the hydrophilic liquid 1 on the substantially horizontal uppermost surface of the filled solid particles B that appears at a height of 20 mm from the bottom surface after the removal,
(6) Take a photograph from a height of 300 mm from the bottom of the inner wall,
The spreading area S b (the spreading area S b on the solid particles B) of the hydrophilic liquid 1 on the uppermost surface of the solid particles B is determined based on the photograph.
(7) In the procedure of obtaining the spread area S b on the solid particles B (1) ~ (6), the solid particles B, wherein the solid particles B of the surface-treated after solid particles (solid particles A) except that was replaced, in the above procedure (1) the same procedure as ~ (6), determining the spread area S a of the hydrophilic liquid first top surface of the solid particles a.
(8) The spread area increase rate is calculated by the formula [(S a −S b ) / S b ] × 100 (%).

本発明により、充填塔形式の化学装置において、液分配器や多孔質材料等の装備を用いることなく液相成分の偏流を抑制する方法を提供することができる。   INDUSTRIAL APPLICABILITY According to the present invention, it is possible to provide a method for suppressing the drift of liquid phase components without using equipment such as a liquid distributor or a porous material in a packed tower type chemical apparatus.

試験例4における、拡がり面積S(=106mm)を求めるための写真。In Test Example 4, photographs for determining the spread area S a (= 106mm 2).

本発明の方法は、固体粒子の表面処理をする工程1と、工程1の後に、
充填塔内において、液相が前記表面処理された固体粒子と接触する工程2とを有する液相の移動及び/又は反応方法であって、
前記固体粒子の粒子径分布において、
粒子径0.09mm以下の含有率が0〜33質量%であり、
粒子径16mm超の含有率が0〜33質量%であり、
前記液相が、親水性液体1であり
前記表面処理が、前記固体粒子の表面を親水性液体2と接触させる工程と、前記親水性液体2を乾燥する工程とを有する表面処理であって、
後述する標準試験により算出される拡がり面積増加割合が10〜10000%となる表面処理である移動及び/又は反応方法である。
The method of the present invention includes a step 1 for surface treatment of solid particles, and after step 1,
In a packed tower, a liquid phase transfer and / or reaction method comprising the step 2 of contacting the liquid phase with the surface-treated solid particles,
In the particle size distribution of the solid particles,
The content of particles having a particle size of 0.09 mm or less is 0 to 33% by mass,
The content of particles having a particle diameter exceeding 16 mm is 0 to 33% by mass,
The liquid phase is a hydrophilic liquid 1, and the surface treatment includes a step of bringing the surface of the solid particles into contact with the hydrophilic liquid 2, and a step of drying the hydrophilic liquid 2,
This is a transfer and / or reaction method that is a surface treatment in which the percentage increase in the area of expansion calculated by a standard test described later is 10 to 10,000%.

本発明において使用される充填塔は、垂直な塔内に固体粒子や特別に設計された充填物を充填し、液−固、気−液又は液−液の接触、好ましくはトリクル反応を運転目的にする灌液充填塔(以下、充填塔ともいう)である。
充填塔としては、固体粒子を充填した場合に、固体粒子表面上に液相が接触しながら鉛直下方向に流下する流動状態を形成する任意の形状のもの、好ましくは液相中に固体粒子で形成される充填層を埋没しないような流動状態を形成するものが使用できる。
反応装置の形状、長さ、直径及び材質は、原料の種類、反応のタイプ、生産量、ハンドリング性能、コスト等に応じて適宜選択すればよい。一般的には形状が管型、直径が10〜3000mm程度、長さは0.1〜30m程度、材質は例えばステンレス製で、原料等によっては内壁にガラスや樹脂等でコートされた反応器が好ましく用いられる。
また、マルチチューブ型を使用することもでき、その場合は、例えば直径が10〜300mm程度、長さは0.1〜30m程度のチューブを5〜1000本設置したものを好ましく使用できる。
The packed column used in the present invention is packed with solid particles or specially designed packing in a vertical column, and is intended to operate liquid-solid, gas-liquid or liquid-liquid contact, preferably trickle reaction. An irrigation packed tower (hereinafter also referred to as a packed tower).
The packed tower is of any shape that forms a flowing state in which the liquid phase flows down vertically while contacting the liquid particles on the surface of the solid particles, preferably solid particles in the liquid phase. What forms the fluid state which does not embed the formed packed bed can be used.
The shape, length, diameter, and material of the reaction apparatus may be appropriately selected according to the type of raw material, reaction type, production amount, handling performance, cost, and the like. In general, the shape is a tube type, the diameter is about 10 to 3000 mm, the length is about 0.1 to 30 m, the material is made of, for example, stainless steel, and a reactor whose inner wall is coated with glass or resin depending on the raw materials or the like. Preferably used.
A multi-tube type can also be used. In that case, for example, a tube having 5 to 1000 tubes having a diameter of about 10 to 300 mm and a length of about 0.1 to 30 m can be preferably used.

本発明で使用される液相(以下、液相ともいう)は、トリクル反応等の充填塔において使用される親水性液体に代表される親水性液体1(以下、親水性液体1ともいう)で構成され、本発明の効果を好適に確保する観点から、親水性液体1は、水溶性液体又は少なくとも溶媒が水溶性である溶液であり、例えば、水に難溶のカルボン酸エステルの、アルコール溶液であってもよい。
親水性液体1は、好ましくは、水、水溶性有機溶剤、
無機酸又はこれらの水溶液及び/若しくは水溶性有機溶剤溶液、
有機酸又はこれらの水溶液及び/若しくは水溶性有機溶剤溶液、
無機アルカリ又はこれらの水溶液及び/若しくは水溶性有機溶剤溶液、
及び/又は、
有機アルカリ又はこれらの水溶液及び/若しくは水溶性有機溶剤溶液、
が挙げられ、
水溶性有機溶剤としては、アルコール類、例えば、メタノール、エタノール、プロパノール、ブタノール、エチレングリコール、プロピレングリコール、ジエチレングリグリコール、アミド類、例えば、ジメチルホルミアミド、ジメチルアセトアミド、ニトリル類、例えばアセトニトリル等が挙げられ、好ましくは、メタノール、エタノール、プロパノール、ジメチルホルミアミド、ジメチルアセトアミド、より好ましくは、メタノール、エタノールであり、
無機酸としては、例えば、硝酸、りん酸、硫酸、塩酸等が挙げられ、好ましくは、硝酸、りん酸であり、
有機酸としては、例えば、ギ酸、酢酸、プロピオン酸、酪酸、吉草酸、カプロン酸、安息香酸、フタル酸、蓚酸、マロン酸、コハク酸、グルタル酸、アジピン酸、フマル酸等が挙げられ、好ましくは、ギ酸、酢酸、蓚酸、アジピン酸であり、
無機アルカリとしては、例えば、アンモニア、ヒドラジン、ヒドロキシルアミン、水酸化ナトリウム、水酸化カリウムが挙げられ、
有機アルカリとしては、例えば、ピリジン、トリエチルアミン等が挙げられる。
The liquid phase (hereinafter also referred to as liquid phase) used in the present invention is a hydrophilic liquid 1 (hereinafter also referred to as hydrophilic liquid 1) typified by a hydrophilic liquid used in packed towers such as trickle reaction. From the viewpoint of ensuring the advantageous effects of the present invention, the hydrophilic liquid 1 is a water-soluble liquid or a solution in which at least a solvent is water-soluble. It may be.
The hydrophilic liquid 1 is preferably water, a water-soluble organic solvent,
Inorganic acids or their aqueous solutions and / or water-soluble organic solvent solutions,
Organic acids or their aqueous solutions and / or water-soluble organic solvent solutions,
Inorganic alkali or an aqueous solution thereof and / or a water-soluble organic solvent solution,
And / or
An organic alkali or an aqueous solution thereof and / or a water-soluble organic solvent solution,
Are mentioned,
Examples of the water-soluble organic solvent include alcohols such as methanol, ethanol, propanol, butanol, ethylene glycol, propylene glycol, diethylene glycol glycol, amides such as dimethylformamide, dimethylacetamide, nitriles such as acetonitrile, and the like. Preferably, methanol, ethanol, propanol, dimethylformamide, dimethylacetamide, more preferably methanol, ethanol,
Examples of the inorganic acid include nitric acid, phosphoric acid, sulfuric acid, hydrochloric acid and the like, preferably nitric acid and phosphoric acid,
Examples of the organic acid include formic acid, acetic acid, propionic acid, butyric acid, valeric acid, caproic acid, benzoic acid, phthalic acid, succinic acid, malonic acid, succinic acid, glutaric acid, adipic acid, and fumaric acid. Are formic acid, acetic acid, succinic acid, adipic acid,
Examples of the inorganic alkali include ammonia, hydrazine, hydroxylamine, sodium hydroxide, potassium hydroxide,
Examples of the organic alkali include pyridine and triethylamine.

親水性液体1として、更に好ましくは、水、メタノール、エタノール又は少なくともこれらの1つを溶媒とする溶液であり、更に好ましくは水又は水溶液である。   The hydrophilic liquid 1 is more preferably water, methanol, ethanol or a solution containing at least one of these as a solvent, and more preferably water or an aqueous solution.

親水性液体1の粘性は、好ましくは充填塔を通過できる通常の液相の粘性の程度であり、オストワルド毛細管粘度計による親水性液体1の温度が25℃における粘度が、好ましくは0.01〜100cP、より好ましくは0.1〜10cP、さらに好ましくは0.1〜2cPである。オストワルド毛細管粘度計を用いて粘度を測定する場合、粘度計と試料液体が十分な温度平衡に達してから液の流下時間を測定する。   The viscosity of the hydrophilic liquid 1 is preferably the degree of the viscosity of a normal liquid phase that can pass through the packed tower, and the viscosity of the hydrophilic liquid 1 measured by an Ostwald capillary viscometer at 25 ° C. is preferably 0.01 to 100 cP, more preferably 0.1 to 10 cP, still more preferably 0.1 to 2 cP. When measuring the viscosity using an Ostwald capillary viscometer, measure the flow time of the liquid after the viscometer and the sample liquid reach a sufficient temperature equilibrium.

本発明で使用される固体粒子(以下、固体粒子ともいう)は、充填塔に通常充填され、充填塔内で液相が接触する充填物として、該液相を含む異相間物質移動に使用されるこれらの相とは不活性の粒子、充填塔内の反応に必要な触媒粒子、該液相又は該液相を含む混合相を吸着するための吸着剤粒子等が使用できる。   The solid particles used in the present invention (hereinafter also referred to as solid particles) are usually packed in a packed column and used as a packed material in contact with the liquid phase in the packed column for interphase mass transfer including the liquid phase. As these phases, inert particles, catalyst particles necessary for the reaction in the packed tower, adsorbent particles for adsorbing the liquid phase or a mixed phase containing the liquid phase, and the like can be used.

本発明における表面処理(以下、表面処理ともいう)により本発明の効果を好適に確保する観点から、固体粒子は、水酸基を含むもの、又は親水性液体2による表面処理によって、例えば固体粒子表面のSi−O−Si結合やAl−O−Al結合が加水分解を受けて水酸基を形成しうるものが好ましく、
水酸基を含む又は水酸基を形成しうる金属の酸化物、炭化物、窒化物又は水酸化物、若しくは
水酸基を含む又は水酸基を形成しうる、金属を含む或いは含まない固体有機化合物が使用できる。
水酸基を含む又は水酸基を形成しうる、金属の酸化物としては、シリカ(アモルファスシリカなど)、アルミナ(γ−アルミナなど)、ジルコニウム、チタニア等の単一金属酸化物、シリカアルミナ、シリカジルコニア、ゼオライト化合物等の複合酸化物等が挙げられる。
From the viewpoint of suitably securing the effects of the present invention by the surface treatment in the present invention (hereinafter also referred to as surface treatment), the solid particles include those containing a hydroxyl group or surface treatment with the hydrophilic liquid 2, for example, on the surface of the solid particles. A Si—O—Si bond or an Al—O—Al bond that is hydrolyzed to form a hydroxyl group is preferred,
Metal oxides, carbides, nitrides or hydroxides that contain or can form hydroxyl groups, or solid organic compounds that contain or do not contain metals, can be used.
Examples of metal oxides containing or capable of forming hydroxyl groups include silica (amorphous silica, etc.), alumina (γ-alumina, etc.), single metal oxides such as zirconium, titania, silica alumina, silica zirconia, zeolite Examples include complex oxides such as compounds.

固体粒子の粒子径は、充填塔で使用する通常の充填物粒子の程度でハンドリングや閉塞性を考慮する観点から、その粒子径分布において、
粒子径0.09mm以下の含有率が0〜33質量%、好ましくは0〜10質量%、より好ましくは0質量%であり、
粒子径16mm超の含有率が0〜33質量%、好ましくは0〜10質量%、より好ましくは0質量%である。
固体粒子の粒子径分布は、JIS Z 8815による乾式ふるい分け試験方法により得られる粒径範囲のふるい下百分率に基づき、
粒子径0.09mm以下の含有率とは粒径範囲0.09mm以下のふるい下百分率の合計を、
粒子径16mm超の含有率とは粒径範囲16mm超のふるい上百分率の合計をいう。
なお、以下では、固体粒子についてJIS Z 8815による乾式ふるい分け試験方法をした結果、ふるい下百分率の合計が0〜33質量%、好ましくは0〜10質量%、より好ましくは0質量%となる粒径範囲の上限がXmm、ふるい上百分率の合計が0〜33質量%、好ましくは0〜10質量%、より好ましくは0質量%となる粒径範囲の下限がYmmだった場合、その固体粒子の粒子径は「X〜Ymm」であるという。
In terms of the particle size distribution, the particle size of the solid particles is from the viewpoint of handling and blockage in the degree of the normal packing particles used in the packed tower,
The content of particles having a particle size of 0.09 mm or less is 0 to 33% by mass, preferably 0 to 10% by mass, more preferably 0% by mass,
The content of particles having a particle diameter exceeding 16 mm is 0 to 33% by mass, preferably 0 to 10% by mass, and more preferably 0% by mass.
The particle size distribution of the solid particles is based on the percentage under the sieve of the particle size range obtained by the dry screening test method according to JIS Z 8815.
The content of particles having a particle size of 0.09 mm or less is the sum of the percentages under the sieve having a particle size range of 0.09 mm or less,
The content of particles having a particle diameter exceeding 16 mm refers to the sum of the percentages on the sieve having a particle diameter range exceeding 16 mm.
In the following, as a result of the dry sieving test method according to JIS Z 8815 for solid particles, the total particle size under the sieve is 0 to 33% by mass, preferably 0 to 10% by mass, more preferably 0% by mass. If the upper limit of the range is X mm and the total of the percentages on the screen is 0 to 33% by mass, preferably 0 to 10% by mass, more preferably 0% by mass, the lower limit of the particle size range is Ymm. The diameter is said to be “X to Ymm”.

固体粒子の形状は、粉体、成型体等いずれでもよく、反応系や反応器、充填塔の形状に応じて適宜選択でき、例えば、成型体であれば、球状、円柱状、顆粒状等が挙げられる。   The shape of the solid particles may be any of powder, molded body, etc., and can be appropriately selected according to the shape of the reaction system, reactor, and packed tower. For example, if it is a molded body, it may be spherical, cylindrical, granular, etc. Can be mentioned.

表面処理において固体粒子と接触させる親水性液体2(以下、親水性液体2ともいう)は、固体粒子が表面処理によって、本発明における標準試験(以下、標準試験ともいう)による拡がり面積増加割合が所定の範囲になるような水溶性液体又は少なくとも溶媒が水溶性である溶液であり、
好ましくは、水、水溶性有機溶剤、
無機酸又はこれらの水溶液及び/若しくは水溶性有機溶剤溶液、
有機酸又はこれらの水溶液及び/若しくは水溶性有機溶剤溶液、
無機アルカリ又はこれらの水溶液及び/若しくは水溶性有機溶剤溶液、
及び/又は、
有機アルカリ又はこれらの水溶液及び/若しくは水溶性有機溶剤溶液、
が挙げられ、
水溶性有機溶剤としては、アルコール類、例えば、メタノール、エタノール、プロパノール、ブタノール、エチレングリコール、プロピレングリコール、ジエチレングリグリコール、アミド類、例えば、ジメチルホルミアミド、ジメチルアセトアミド、ニトリル類、例えばアセトニトリル等が挙げられる。
好ましくは、メタノール、エタノール、プロパノール、ジメチルホルミアミド、ジメチルアセトアミド、より好ましくは、メタノール、エタノール、プロパノール、ブタノールであり、
無機酸としては、例えば、硝酸、りん酸、硫酸、塩酸等が挙げられ、好ましくは、硝酸、硫酸、塩酸が挙げられ、より好ましくは、硝酸であり、
有機酸としては、例えば、ギ酸、酢酸、プロピオン酸、酪酸、吉草酸、カプロン酸、安息香酸、フタル酸、蓚酸、マロン酸、コハク酸、グルタル酸、アジピン酸、フマル酸等が挙げられ、好ましくは、酢酸、蓚酸、アジピン酸、であり、
無機アルカリとしては、例えば、アンモニア、ヒドラジン、ヒドロキシルアミン、水酸化ナトリウム、水酸化カリウムが挙げられ、
有機アルカリとしては、例えば、ピリジン、トリエチルアミン等が挙げられる。
The hydrophilic liquid 2 (hereinafter, also referred to as hydrophilic liquid 2) to be brought into contact with the solid particles in the surface treatment has a ratio of increase in the area of expansion due to the standard treatment (hereinafter also referred to as the standard test) in the present invention. A water-soluble liquid or a solution in which at least the solvent is water-soluble so as to be in a predetermined range;
Preferably, water, water-soluble organic solvent,
Inorganic acids or their aqueous solutions and / or water-soluble organic solvent solutions,
Organic acids or their aqueous solutions and / or water-soluble organic solvent solutions,
Inorganic alkali or an aqueous solution thereof and / or a water-soluble organic solvent solution,
And / or
An organic alkali or an aqueous solution thereof and / or a water-soluble organic solvent solution,
Are mentioned,
Examples of the water-soluble organic solvent include alcohols such as methanol, ethanol, propanol, butanol, ethylene glycol, propylene glycol, diethylene glycol glycol, amides such as dimethylformamide, dimethylacetamide, nitriles such as acetonitrile, and the like. Can be mentioned.
Preferably, methanol, ethanol, propanol, dimethylformamide, dimethylacetamide, more preferably methanol, ethanol, propanol, butanol,
Examples of the inorganic acid include nitric acid, phosphoric acid, sulfuric acid, hydrochloric acid, and the like, preferably nitric acid, sulfuric acid, hydrochloric acid, and more preferably nitric acid,
Examples of the organic acid include formic acid, acetic acid, propionic acid, butyric acid, valeric acid, caproic acid, benzoic acid, phthalic acid, succinic acid, malonic acid, succinic acid, glutaric acid, adipic acid, and fumaric acid. Are acetic acid, succinic acid, adipic acid,
Examples of the inorganic alkali include ammonia, hydrazine, hydroxylamine, sodium hydroxide, potassium hydroxide,
Examples of the organic alkali include pyridine and triethylamine.

親水性液体2は、前述した水酸基を含む又は水酸基を形成しうる固体粒子の表面に対して表面処理した場合に、本発明の標準試験により算出される拡がり面積増加割合が所定の範囲になるようにできるものが好ましい。
例えば、水酸基を含む又は水酸基を形成しうる金属の酸化物、炭化物、窒化物又は水酸化物、若しくは、水酸基を含む又は水酸基を形成しうる、金属を含む或いは含まない固体有機化合物、好ましくは、水酸基を含む又は水酸基を形成しうる金属の酸化物である、シリカ(アモルファスシリカなど)、アルミナ(γ−アルミナなど)、ジルコニウム、チタニア等の単一金属酸化物、シリカアルミナ、シリカジルコニア、ゼオライト化合物等の複合酸化物等に対しては、親水性液体2は、水、硝酸、硫酸、塩酸、酢酸、蓚酸、アジピン酸が好ましく、水、硝酸、蓚酸がより好ましく、水が更に好ましい。
When the hydrophilic liquid 2 is surface-treated with respect to the surface of the solid particles containing the hydroxyl group or capable of forming the hydroxyl group, the increase ratio of the spread area calculated by the standard test of the present invention falls within a predetermined range. What can be made is preferable.
For example, an oxide, carbide, nitride, or hydroxide of a metal that contains or can form a hydroxyl group, or a solid organic compound that contains or does not contain a metal that contains or can form a hydroxyl group, Single metal oxides such as silica (amorphous silica, etc.), alumina (γ-alumina, etc.), zirconium, titania, etc., silica alumina, silica zirconia, zeolite compounds, which are metal oxides containing or capable of forming hydroxyl groups For complex oxides such as these, the hydrophilic liquid 2 is preferably water, nitric acid, sulfuric acid, hydrochloric acid, acetic acid, succinic acid, or adipic acid, more preferably water, nitric acid, or succinic acid, and even more preferably water.

但し、液相が、表面処理された固体粒子に接触した際に、液相が、表面処理される前の固体粒子と接触してなされる所望の反応又は吸着等の効果が著しく低下することがないものを使用することが好ましい。   However, when the liquid phase comes into contact with the surface-treated solid particles, the effects such as desired reaction or adsorption performed when the liquid phase comes into contact with the solid particles before the surface treatment may be significantly reduced. It is preferable to use those not present.

親水性液体2の粘度は、固体粒子を親水性液体2に浸漬した際、又は、親水性液体2を還流させた際に、固体粒子と親水性液体2の接触を効率よく行える程度が好ましく、本発明における表面処理を円滑に行うために、より好ましくは0.01〜10000cP、更に好ましくは0.1〜5000cP、更に好ましくは0.1〜1000cPであり、更に必要に応じて水又は他の親水性液体2で希釈して適宜粘度を調整して使用してもよい。   The viscosity of the hydrophilic liquid 2 is preferably such that the solid particles can be efficiently contacted with the hydrophilic liquid 2 when the solid particles are immersed in the hydrophilic liquid 2 or when the hydrophilic liquid 2 is refluxed. In order to carry out the surface treatment smoothly in the present invention, it is more preferably 0.01 to 10000 cP, further preferably 0.1 to 5000 cP, further preferably 0.1 to 1000 cP, and further water or other as necessary. You may dilute with the hydrophilic liquid 2 and use it, adjusting a viscosity suitably.

表面処理は、表面処理後の固体粒子に対して行われる標準試験により、後述する拡がり面積増加割合が10〜10000%、好ましくは20〜5000%、より好ましくは30〜2000%、更に好ましくは30〜1500%となるように、親水性液体2と固体粒子とを接触させればよい。   The surface treatment is carried out by a standard test performed on the solid particles after the surface treatment, and the percentage increase in the spread area described later is 10 to 10,000%, preferably 20 to 5000%, more preferably 30 to 2000%, and still more preferably 30. What is necessary is just to make the hydrophilic liquid 2 and a solid particle contact so that it may become -1500%.

表面処理を効率よく行う観点から、親水性液体2を親水性液体2の媒質の沸点前後まで加熱して、固体粒子を親水性液体2に浸漬、好ましくはさらに親水性液体2を還流させた後、親水性液体2を濾過やデカンテーションにより除去して行うことがより好ましく、さらに好ましくはその後加熱乾燥することである。
表面処理を効率よく行う観点から、固体粒子100重量部に対して、固体粒子に接触させる親水性液体2は、好ましくは1〜10000重量部であり、より好ましくは10〜1000重量部、更に好ましくは50〜300重量部である。
From the viewpoint of efficient surface treatment, after the hydrophilic liquid 2 is heated to around the boiling point of the medium of the hydrophilic liquid 2 and the solid particles are immersed in the hydrophilic liquid 2, preferably the hydrophilic liquid 2 is further refluxed. It is more preferable to carry out by removing the hydrophilic liquid 2 by filtration or decantation, and it is more preferable to dry by heating after that.
From the viewpoint of efficiently performing the surface treatment, the hydrophilic liquid 2 to be brought into contact with the solid particles is preferably 1 to 10000 parts by weight, more preferably 10 to 1000 parts by weight, further preferably 100 parts by weight of the solid particles. Is 50 to 300 parts by weight.

親水性液体2を還流させる場合、還流時間は、好ましくは0.1〜10000時間、より好ましくは1〜100時間、更に好ましくは5〜20時間、更に好ましくは5〜10時間である。
親水性液体2を還流させる場合、例えば、リービッヒ冷却管、ジムロート冷却管などの冷却器を用いて行うことができる。
When the hydrophilic liquid 2 is refluxed, the reflux time is preferably 0.1 to 10,000 hours, more preferably 1 to 100 hours, still more preferably 5 to 20 hours, and further preferably 5 to 10 hours.
When the hydrophilic liquid 2 is refluxed, for example, it can be performed using a cooler such as a Liebig condenser or a Dimroth condenser.

親水性液体2を乾燥する工程では、空気中で、好ましくは加熱乾燥により、
好ましくは30〜300℃、より好ましくは50〜200℃、更に好ましくは80〜150℃で、
好ましくは0.1〜1000時間、より好ましくは1〜100時間、更に好ましくは5〜50時間、更に好ましくは10〜30時間行う。
なお、十分に乾燥させることと乾燥効率の観点から、高温下では相対的に短時間で、低温下では相対的に長時間の乾燥をすることが望ましく、例えば、
30〜80℃では、好ましくは10〜1000時間、より好ましくは30〜100時間乾燥させ、
80〜300℃、好ましくは80〜200℃、より好ましくは80〜150℃では、好ましくは0.1〜100時間、より好ましくは1〜50時間、更に好ましくは5〜50時間、更に好ましくは10〜30時間乾燥させる。
In the step of drying the hydrophilic liquid 2, in the air, preferably by heat drying,
Preferably at 30-300 ° C, more preferably at 50-200 ° C, still more preferably at 80-150 ° C,
Preferably it is 0.1 to 1000 hours, More preferably, it is 1 to 100 hours, More preferably, it is 5 to 50 hours, More preferably, it carries out for 10 to 30 hours.
In addition, from the viewpoint of sufficient drying and drying efficiency, it is desirable to perform drying for a relatively short time at a high temperature and for a relatively long time at a low temperature, for example,
In 30-80 degreeC, Preferably it is 10 to 1000 hours, More preferably, it is made to dry for 30 to 100 hours,
80 to 300 ° C., preferably 80 to 200 ° C., more preferably 80 to 150 ° C., preferably 0.1 to 100 hours, more preferably 1 to 50 hours, still more preferably 5 to 50 hours, still more preferably 10 Allow to dry for ~ 30 hours.

本発明における標準試験(以下、標準試験ともいう)は、以下の条件で行う。
(1)内壁底面を有し、前記内壁底面から前記内壁底面に対向する端部までの高さが60mmの円柱容器であって、
前記内壁底面に前記親水性液体1の排出孔を有し、前記端部が開放端である前記容器に、
(2)前記表面処理をする前の固体粒子(固体粒子B)を、親水性液体1中に25±2℃1時間浸漬させた後濾過し、固体粒子の表面が乾燥する前に、
前記容器の開口から、前記内壁底面から50mmの高さまで最上面が略水平になるように充填し、
(3)固体粒子の表面が乾燥する前に、前記親水性液体1を、前記容器の前記端部の中央部に、前記最上面から1cmの高さから内径0.32mmの注射針を取り付けた5mlのシリンジで、1ml/分で2ml滴下し、
(4)前記滴下の終了後であって、前記充填された前記固体粒子B中の前記親水性液体1の前記排出孔からの流下が停止したときに、前記内壁底面から20mmの高さまで、前記充填された前記固体粒子Bを除去し、
(5)前記除去後の前記底面から20mmの高さに現れた前記充填された前記固体粒子Bの略水平の最上面の前記親水性液体1の拡がりを、
(6)前記内壁底面から300mmの高さから写真を撮影し、
前記固体粒子Bの最上面の前記親水性液体1の拡がり面積S(固体粒子B上の拡がり面積S)を前記写真に基づき求める。
(7)前記固体粒子B上の拡がり面積Sを求める前記手順(1)〜(6)において、前記固体粒子Bを前記表面処理した後の固体粒子(固体粒子A)に置き換えたことを除き、前記手順(1)〜(6)と同じ手順で、前記固体粒子Aの最上面の前記親水性液体1の拡がり面積Sを求める。
(8)式〔(S−S)/S〕×100(%)によって前記拡がり面積増加割合を算出する。
標準試験は、湿度50±5%の下で行うことが好ましい。
The standard test in the present invention (hereinafter also referred to as standard test) is performed under the following conditions.
(1) A cylindrical container having an inner wall bottom surface and having a height from the inner wall bottom surface to an end facing the inner wall bottom surface of 60 mm,
In the container having a discharge hole for the hydrophilic liquid 1 on the bottom surface of the inner wall and the end portion being an open end,
(2) The solid particles before the surface treatment (solid particles B) are immersed in the hydrophilic liquid 1 at 25 ± 2 ° C. for 1 hour and then filtered, and before the surface of the solid particles is dried,
From the opening of the container, filling so that the top surface is substantially horizontal from the bottom of the inner wall to a height of 50 mm,
(3) Before the surface of the solid particles was dried, the hydrophilic liquid 1 was attached to the central portion of the end of the container with a syringe needle having an inner diameter of 0.32 mm from a height of 1 cm from the top surface. With a 5 ml syringe, add 2 ml at 1 ml / min,
(4) After completion of the dropping, when the flow of the hydrophilic liquid 1 in the filled solid particles B from the discharge hole stops, the bottom of the inner wall reaches a height of 20 mm, Removing the filled solid particles B;
(5) The spread of the hydrophilic liquid 1 on the substantially horizontal uppermost surface of the filled solid particles B that appears at a height of 20 mm from the bottom surface after the removal,
(6) Take a photograph from a height of 300 mm from the bottom of the inner wall,
The spreading area S b (the spreading area S b on the solid particles B) of the hydrophilic liquid 1 on the uppermost surface of the solid particles B is determined based on the photograph.
(7) In the above said steps (1) to determine the spread area S b of the solid particles B (6), except that the solid particles B was replaced by the surface-treated after solid particles (solid particles A) , the step (1) to the same procedure (6), determining the spread area S a of the hydrophilic liquid first top surface of the solid particles a.
(8) The spread area increase rate is calculated by the formula [(S a −S b ) / S b ] × 100 (%).
The standard test is preferably performed under a humidity of 50 ± 5%.

上記手順(2)では、前記表面処理をする前の固体粒子(固体粒子B)を、親水性液体1中に25±2℃1時間浸漬させた後濾過した後から好ましくは20分以内に、より好ましくは10分以内に、更に好ましくは5分以内に、前記容器の開口から、前記内壁底面から50mmの高さまで最上面が略水平になるように充填することが好ましく、
上記手順(3)では、前記濾過した後から好ましくは30分以内に、より好ましくは20分以内に、更に好ましくは10分以内に、前記親水性液体1を、前記容器の前記端部の中央部に、前記最上面から1cmの高さから、内径0.32mmの注射針を取り付けた5mlのシリンジで、1ml/分で2ml滴下することが好ましい。
In the above procedure (2), the solid particles before the surface treatment (solid particles B) are immersed in the hydrophilic liquid 1 at 25 ± 2 ° C. for 1 hour and then filtered, preferably within 20 minutes, More preferably within 10 minutes, even more preferably within 5 minutes, the filling is preferably performed so that the top surface is substantially horizontal from the opening of the container to a height of 50 mm from the bottom surface of the inner wall,
In the above step (3), the hydrophilic liquid 1 is placed in the center of the end of the container preferably within 30 minutes, more preferably within 20 minutes, and even more preferably within 10 minutes after the filtration. It is preferable to drop 2 ml at a rate of 1 ml / min with a 5 ml syringe attached with an injection needle having an inner diameter of 0.32 mm from a height of 1 cm from the top surface.

上記手順(3)における親水性液体1の滴下は、内径0.32mmの注射針を取り付けた5mlのシリンジを用いて最上面の固体粒子B又はAの空隙を避けて滴下することが好ましい。   The dropping of the hydrophilic liquid 1 in the above procedure (3) is preferably carried out by avoiding the void of the uppermost solid particle B or A using a 5 ml syringe equipped with an injection needle having an inner diameter of 0.32 mm.

上記手順(6)及び(7)における固体粒子Bの最上面の親水性液体1の拡がり面積S及び固体粒子Aの最上面の親水性液体1の拡がり面積Sとは、固体粒子B又は固体粒子Aの表面の親水性液体1によって濡れた部分の、写真撮影した高さでの平面視野における面積をいう。 Above procedure (6) and a spreading area S a of the hydrophilic liquid first top surface of the spread area S b and solid particles A of a hydrophilic liquid 1 uppermost surface of the solid particles B in (7), the solid particles B, or The area of the surface of the solid particle A wetted by the hydrophilic liquid 1 in the planar field of view at the height of the photograph taken.

親水性液体1によって濡れた部分が肉眼で識別できる場合は、撮影された写真において濡れた部分の輪郭で囲まれる面積を求めればよい。   In the case where the wetted portion can be identified with the naked eye by the hydrophilic liquid 1, the area surrounded by the outline of the wetted portion in the photographed image may be obtained.

親水性液体1によって濡れた部分が肉眼で識別できない場合は、肉眼で識別できるように、親水性液体1に予め親水性液体1に溶解する色素(場合によっては蛍光色素)を親水性液体1の固体粒子表面上の濡れを阻害しない程度に添加して肉眼で識別できるようにした上で写真を撮影するとよい。また、親水性液体1によって濡れた部分に色素等を散布して親水性液体1によって濡れていない部分と識別できるようにしてから写真撮影をしてもよい。色素としては、例えば、ボルドーS、ブリリアントブルーFCF等が好適に使用できる。   When the portion wetted by the hydrophilic liquid 1 cannot be identified with the naked eye, a dye (possibly fluorescent dye) dissolved in the hydrophilic liquid 1 in advance in the hydrophilic liquid 1 is added to the hydrophilic liquid 1 so that it can be identified with the naked eye. It is advisable to take a photograph after adding it to the extent that the wetting on the surface of the solid particles is not inhibited so that it can be identified with the naked eye. Alternatively, a photograph may be taken after a pigment or the like is sprayed on a portion wetted by the hydrophilic liquid 1 so that the portion can be distinguished from a portion not wetted by the hydrophilic liquid 1. As the dye, for example, Bordeaux S, Brilliant Blue FCF and the like can be suitably used.

写真は、好ましくは、後述する画像解析条件によって固体粒子の親水性液体1によって濡れた部分の面積を測定できる程度に明瞭に撮影されることが好ましく、白黒撮影でもカラー撮影でもよいが、固体粒子の親水性液体1によって濡れた部分の面積の識別がし易いとい観点から、カラー撮影の方が好ましい。   The photograph is preferably photographed so clearly that the area of the wetted portion of the solid particles by the hydrophilic liquid 1 can be measured according to the image analysis conditions described later. From the viewpoint that it is easy to identify the area of the portion wetted by the hydrophilic liquid 1, color photography is preferable.

撮影した写真について画像解析装置を使用して固体粒子Bの最上面の親水性液体1の拡がり面積S及び固体粒子Aの最上面の親水性液体1の拡がり面積Sを求めてもよい。
画像解析装置を使用する場合、例えば、画像解析ソフトImage−J(アメリカ国立衛生研究所(National Institute of Health)製フリーソフト)を使用してカラー写真を解析する場合は、画像倍率を好ましくは30〜0.05倍、より好ましくは10〜0.1倍で、更に好ましくは3〜0.5倍で、元の画像がカラー画像の場合、RGB3原色に分解し、得られたRGBの各画像の中から、着色粒子が明瞭な画像を選択して上記面積を求めることが好ましい。
May be obtained spread area S a of the hydrophilic liquid first top surface of the spread area S b and solid particles A of a hydrophilic liquid 1 uppermost surface of the solid particles B using an image analyzer for photos taken.
When using an image analysis apparatus, for example, when analyzing a color photograph using image analysis software Image-J (free software manufactured by the National Institute of Health), the image magnification is preferably 30. -0.05 times, more preferably 10-0.1 times, and even more preferably 3-0.5 times. When the original image is a color image, it is separated into RGB three primary colors, and each obtained RGB image It is preferable to obtain the area by selecting an image with clear colored particles.

標準試験において使用する容器(以下、容器ともいう)は、手順(6)及び(7)で観察される固体粒子B又はAの最上面の親水性液体1の拡がりが容器内側壁に到達しない程度に十分に広い内壁断面を有していることが好ましく、内壁断面は円形でも多角形であってもよく、好ましくは円形である。容器の内壁の材質は、容器内壁間に固体粒子を充填した際に変形しない程度の強さを有し、内壁底面に親水性液体1が到達した際に親水性液体1が内壁内に浸透せず速やかに内壁底面の排出孔から排出できる材質であれば、金属、プラスチック、ガラス等の何を使用してもよい。   The container used in the standard test (hereinafter also referred to as a container) is such that the spread of the hydrophilic liquid 1 on the uppermost surface of the solid particles B or A observed in the procedures (6) and (7) does not reach the inner wall of the container. And the inner wall cross section may be circular or polygonal, preferably circular. The material of the inner wall of the container is strong enough not to be deformed when solid particles are filled between the inner walls of the container. When the hydrophilic liquid 1 reaches the bottom surface of the inner wall, the hydrophilic liquid 1 penetrates into the inner wall. Any material such as metal, plastic or glass may be used as long as it is a material that can be quickly discharged from the discharge hole on the bottom surface of the inner wall.

容器の内壁底面には、標準試験の手順(3)で滴下した親水性液体1が、容器の内壁底面に滞留しないように排出孔が設けてある。実施例では、固体粒子を充填する前に、容器に所定の直径のガラスビーズが充填され、このガラスビーズが排出孔として機能している。このように容器の内壁底面は排出孔を設けた内壁であってもよく、親水性液体1を固体粒子から速やかに排出できる空隙を何らかの手段で設けて排出孔として機能させてもよい。   The bottom of the inner wall of the container is provided with a discharge hole so that the hydrophilic liquid 1 dripped in the standard test procedure (3) does not stay on the bottom of the inner wall of the container. In the embodiment, before filling the solid particles, glass beads having a predetermined diameter are filled in the container, and these glass beads function as discharge holes. Thus, the inner wall bottom surface of the container may be an inner wall provided with a discharge hole, or a void that can quickly discharge the hydrophilic liquid 1 from the solid particles may be provided by some means to function as a discharge hole.

〔標準試験〕
内径30mmのプラスチック製円柱容器に直径5mmのガラスビーズを高さ50mmになるまで充填した。各試験例における表面処理をしない固体粒子(固体粒子B)を水中(室温 25℃)に1時間浸漬させた後目開き1.4mmのふるいで濾過し、固体粒子の表面が乾燥しないうち(前記濾過後2分以内)にこれをガラスビーズの最上面の上に、ガラスビーズの最上面から50mmの高さになるまで充填した。
固体粒子の表面が乾燥しないうち(前記濾過後5分以内に)に、この固体粒子Bが充填された円柱容器の中央に、ブリリアントブルーFCFを濃度0.01重量%で溶解した青色に着色した水(親水性液体1)を、内径0.32mmの注射針(品名:トップ注射針、トップ社製)を取り付けた5mlシリンジ(品名:オールプラスチックディスポシリンジ、HSW社製)を使用して、1ml/分で2ml滴下した。
滴下終了後、液のガラスビーズ中への落下が停止したことを確認した後、ガラスビーズ最上面から20mmの高さまで、充填されていた固体粒子Bを円柱容器外に除去した。ガラスビーズ最上面から20mmの高さに現れた固体粒子Bの最上面を、ガラスビーズ最上面から300mmの高さから写真撮影し、画像解析ソフトImage−J(画像倍率0.75倍)を使って、固体粒子Bの最上面上の水の拡がり面積Sを求めた。
次に、上記固体粒子Bの最上面上の水の拡がり面積を求めた手順において、固体粒子Bに代えて固体粒子Aを使用した以外は同じ手順によって、固体粒子Aの最上面上の水の拡がり面積Sを求めた。
各試験例において、〔(S−S)/S〕×100(%)によって拡がり面積増加割合を算出した。
試験環境の湿度は52%で行った。
[Standard test]
A plastic cylindrical container having an inner diameter of 30 mm was filled with glass beads having a diameter of 5 mm until the height reached 50 mm. The solid particles not subjected to surface treatment in each test example (solid particles B) were immersed in water (room temperature 25 ° C.) for 1 hour and then filtered through a sieve having an aperture of 1.4 mm. Within 2 minutes after filtration) this was filled onto the top surface of the glass beads until it was 50 mm high from the top surface of the glass beads.
While the surface of the solid particles did not dry (within 5 minutes after the filtration), the center of the cylindrical container filled with the solid particles B was colored blue with brilliant blue FCF dissolved at a concentration of 0.01% by weight. 1 ml of water (hydrophilic liquid 1) using a 5 ml syringe (product name: All Plastic Disposable Syringe, manufactured by HSW) equipped with an injection needle (product name: Top Injection Needle, manufactured by Top Company) having an inner diameter of 0.32 mm 2 ml was added dropwise at a rate of 1 minute.
After the completion of the dropping, it was confirmed that the dropping of the liquid into the glass beads was stopped, and then the filled solid particles B were removed from the uppermost surface of the glass beads to a height of 20 mm to the outside of the cylindrical container. Take a picture of the top surface of the solid particles B that appeared 20 mm above the top surface of the glass beads from a height of 300 mm from the top surface of the glass beads, and use image analysis software Image-J (image magnification: 0.75 times) Te was determined the spread area S b of the water on the top surface of the solid particles B.
Next, in the procedure for obtaining the water spreading area on the uppermost surface of the solid particle B, water on the uppermost surface of the solid particle A is obtained by the same procedure except that the solid particle A is used instead of the solid particle B. I asked the spread area S a.
In each test example, the spread area increase rate was calculated by [(S a −S b ) / S b ] × 100 (%).
The humidity of the test environment was 52%.

〔試験例1〕
蒸留水(親水性液体2)140gにアモルファスシリカ(固体粒子、富士シリシア化学社製CARIACT Q−10、粒子径:1.7〜4.0mm)70gを加え、300mlガラス製フラスコとガラス製冷却管からなる還流装置を用いて8時間還流することによって表面処理を行った。次いで、アモルファスシリカを乾燥(空気中、110℃、15時間)させた。
このアモルファスシリカについてS及びSを求め、拡がり面積増加割合を算出した結果、S=382mm、S=572mm、拡がり面積増加割合は50%であった。
[Test Example 1]
70 g of amorphous silica (solid particles, CARIACT Q-10 manufactured by Fuji Silysia Chemical Ltd., particle diameter: 1.7 to 4.0 mm) is added to 140 g of distilled water (hydrophilic liquid 2), and a 300 ml glass flask and a glass cooling tube are added. Surface treatment was performed by refluxing for 8 hours using a reflux apparatus comprising: Next, the amorphous silica was dried (in air, 110 ° C., 15 hours).
The amorphous silica seek S b and S a for a result of calculating the spread area increase ratio, S b = 382mm 2, S a = 572mm 2, spread area increase ratio was 50%.

〔試験例2〕
アモルファスシリカをγ−アルミナ(固体粒子、住友化学社製KHS−46、粒子径:4.0〜6.7mm)に変えたほかは、試験例1と同様に表面処理を行った。
このγ−アルミナについてS及びSを求め、拡がり面積増加割合を算出した結果、S=14mm、S=49mm、拡がり面積増加割合は250%であった。
[Test Example 2]
Surface treatment was performed in the same manner as in Test Example 1 except that the amorphous silica was changed to γ-alumina (solid particles, KHS-46 manufactured by Sumitomo Chemical Co., Ltd., particle diameter: 4.0 to 6.7 mm).
This γ- alumina seek S b and S a, result of calculating the spread area increase ratio, S b = 14mm 2, S a = 49mm 2, spread area increase ratio was 250%.

〔試験例3〕
アモルファスシリカをチタニア(固体粒子、堺化学工業社製CS−200S−46、粒子径:4.0〜6.7mm)に変えたほかは、試験例1と同様に表面処理を行った。
このチタニアについてS及びSを求め、拡がり面積増加割合を算出した結果、S=14mm、S=99mm、拡がり面積増加割合は607%であった。
[Test Example 3]
Surface treatment was performed in the same manner as in Test Example 1 except that the amorphous silica was changed to titania (solid particles, CS-200S-46 manufactured by Sakai Chemical Industry Co., Ltd., particle diameter: 4.0 to 6.7 mm).
This obtains the S b and S a for titania, results of calculating the spread area increase ratio, S b = 14mm 2, S a = 99mm 2, spread area increase ratio was 607%.

〔試験例4〕
蒸留水を1規定硝酸(親水性液体2)に変えたほかは、試験例2と同様に表面処理を行った。
このγ−アルミナについてS及びSを求め、拡がり面積増加割合を算出した結果、S=14mm、S=106mm、拡がり面積増加割合は657%であった。
[Test Example 4]
Surface treatment was performed in the same manner as in Test Example 2 except that distilled water was changed to 1N nitric acid (hydrophilic liquid 2).
This γ- alumina seek S b and S a, result of calculating the spread area increase ratio, S b = 14mm 2, S a = 106mm 2, spread area increase ratio was 657%.

〔試験例5〕
蒸留水を1規定硝酸(親水性液体2)に変えたほかは、試験例3と同様に処理・乾燥を行った。
このチタニアについてS及びSを求め、拡がり面積増加割合を算出した結果、S=14mm、S=78mm、拡がり面積増加割合は457%であった。
[Test Example 5]
Treatment and drying were performed in the same manner as in Test Example 3 except that distilled water was changed to 1N nitric acid (hydrophilic liquid 2).
This obtains the S b and S a for titania, results of calculating the spread area increase ratio, S b = 14mm 2, S a = 78mm 2, spread area increase ratio was 457%.

〔試験例6〕
蒸留水を1規定蓚酸(親水性液体2)に変えたほかは、試験例2と同様に表面処理を行った。
このγ−アルミナについてS及びSを求め、拡がり面積増加割合を算出した結果、S=14mm、S=120mm、拡がり面積増加割合は757%であった。
[Test Example 6]
Surface treatment was performed in the same manner as in Test Example 2 except that distilled water was changed to 1N oxalic acid (hydrophilic liquid 2).
This γ- alumina seek S b and S a, result of calculating the spread area increase ratio, S b = 14mm 2, S a = 120mm 2, spread area increase ratio was 757%.

〔試験例7〕
蒸留水を1規定蓚酸(親水性液体2)に変えたほかは、試験例3と同様に処理・乾燥を行った。
このチタニアについてS及びSを求め、拡がり面積増加割合を算出した結果、S=14mm、S=155mm、拡がり面積増加割合は1007%であった。
[Test Example 7]
Treatment and drying were performed in the same manner as in Test Example 3 except that distilled water was changed to 1N oxalic acid (hydrophilic liquid 2).
This obtains the S b and S a for titania, results of calculating the spread area increase ratio, S b = 14mm 2, S a = 155mm 2, spread area increase ratio was 1007%.

〔実施例1〕
〔充填塔試験装置を用いた溶存酸素量(C)の測定〕
最下部に固体粒子支持用の金網が取り付けられた内径52mm、高さ400mmの樹脂製パイプ(充填塔)の下に、液受器として100mlの三つ口フラスコを6mm樹脂製チューブで接続した。三つ口フラスコには溶存酸素計センサーを設置した。
次に樹脂製パイプの上方から水道水を100ml/分で、窒素を1L/分で、同時に外径6mmのSUS製パイプのノズルから連続的に流通させた。
なお、水道水は、落下する際にパイプの内壁に接触しないよう、充填物支持用の金網のほぼ中央にめがけて落下させた。樹脂製パイプの上面は、上記の水道水及び窒素供給用ノズル以外は密閉されているため、水道水と窒素は樹脂製パイプ内をダウンフローで通過した。
水道水と窒素を流通している間、パイプ内を通過した水道水のうち約10mlは三つ口フラスコ内に一旦捕捉され、連続的に置換されながら、窒素に同伴して三つ口フラスコから排出された。
この捕捉された水中の溶存酸素量を、溶存酸素計を用いて常時モニターした。
溶存酸素量は、4.12(mg/L)で一定になった。そして水道水と窒素の流通を停止した。
次に、試験例1において表面処理を行ったアモルファスシリカを25℃の水道水に1時間浸漬させ、これを目開き1.4mmのふるいで濾過した後、高さ50mmになるまで上記の樹脂製パイプ内に充填した。
そして、再度水道水と窒素の流通を開始し、三つ口フラスコ内に捕捉された水道水中の溶存酸素量を常時モニターした。
結果、溶存酸素量は、3.75(mg/L)で一定になった。
さらに、水道水と窒素の流通を停止した後、充填層から自然落下してパイプから流下した水道水の量を測定することによって、充填物層内における水道水の動的ホールドアップ(充填塔内に滞留している液の全量(具体的には、水道水の供給側バルブと充填塔出口のバルブを同時に閉じ、水道水の自然落下が終了するまでしばらく(2〜5分程度)待った後、出口バルブを開いて、自然落下した液の量をメスシリンダー又は電子天秤を用いて計測する))を求めたところ、4.75mlであった。
そして、この動的ホールドアップから、充填層内での水道水の滞留時間を算出したところ、2.85秒であった。
引き続き、表面処理したアモルファスシリカを1時間水道水に浸漬させ、これを目開き1.4mmのふるいで濾過した後10分以内に高さ100mmになるよう追加充填した。
そして高さ50mmの場合と同じ方法で、水道水と窒素を流通させ、溶存酸素量測定、水道水の動的ホールドアップ測定、水道水の滞留時間の算出を行った。溶存酸素量は2.80(mg/L)で,動的ホールドアップは11.81ml、滞留時間は7.09秒であった。
この操作を、充填物高さ150mm、200mmにして同様に繰り返し行った。
充填物高さ150mmのときの溶存酸素量、動的ホールドアップ、滞留時間は、それぞれ2.08(mg/L)、20.56ml、12.34秒、200mmのときはそれぞれ1.60(mg/L)、26.19ml、15.71秒であった。
[Example 1]
[Measurement of dissolved oxygen amount (C) using packed tower test equipment]
A 100 ml three-necked flask was connected as a liquid receiver with a 6 mm resin tube under a resin pipe (packed tower) having an inner diameter of 52 mm and a height of 400 mm, to which a metal net for supporting solid particles was attached at the bottom. A dissolved oxygen meter sensor was installed in the three-necked flask.
Next, tap water was continuously supplied from above the resin pipe at a rate of 100 ml / min and nitrogen at 1 L / min from the nozzle of a SUS pipe having an outer diameter of 6 mm.
The tap water was dropped toward the center of the wire mesh for supporting the filling so as not to contact the inner wall of the pipe when falling. Since the upper surface of the resin pipe was sealed except for the tap water and the nitrogen supply nozzle, the tap water and nitrogen passed through the resin pipe in a down flow.
While circulating tap water and nitrogen, about 10 ml of the tap water that passed through the pipe was once trapped in the three-necked flask and continuously replaced with nitrogen from the three-necked flask. It was discharged.
The amount of dissolved oxygen in the trapped water was constantly monitored using a dissolved oxygen meter.
The amount of dissolved oxygen became constant at 4.12 (mg / L). And the distribution of tap water and nitrogen was stopped.
Next, the amorphous silica surface-treated in Test Example 1 was immersed in tap water at 25 ° C. for 1 hour, filtered through a sieve having an aperture of 1.4 mm, and then made of the above resin until the height reached 50 mm. The pipe was filled.
Then, the circulation of tap water and nitrogen was started again, and the amount of dissolved oxygen in the tap water trapped in the three-necked flask was constantly monitored.
As a result, the amount of dissolved oxygen became constant at 3.75 (mg / L).
In addition, after stopping the circulation of tap water and nitrogen, by measuring the amount of tap water that naturally falls from the packed bed and then flows down from the pipe, the dynamic hold-up of the tap water in the packed bed (in the packed tower) The total amount of liquid staying in (specifically, closing the tap water supply side valve and the filling tower outlet valve at the same time, waiting for a while (about 2 to 5 minutes) until the natural fall of tap water ends, The outlet valve was opened, and the amount of the liquid that naturally dropped was measured using a graduated cylinder or an electronic balance))). The result was 4.75 ml.
And it was 2.85 second when the residence time of the tap water in the packed bed was computed from this dynamic holdup.
Subsequently, the surface-treated amorphous silica was immersed in tap water for 1 hour, filtered through a sieve having an aperture of 1.4 mm, and additionally filled to a height of 100 mm within 10 minutes.
And the tap water and nitrogen were distribute | circulated by the same method as the case of 50 mm in height, the dissolved oxygen amount measurement, the dynamic holdup measurement of tap water, and the residence time of tap water were calculated. The dissolved oxygen amount was 2.80 (mg / L), the dynamic holdup was 11.81 ml, and the residence time was 7.09 seconds.
This operation was repeated in the same manner with the filler height of 150 mm and 200 mm.
The dissolved oxygen amount, dynamic hold-up, and residence time when the packing height is 150 mm are 2.08 (mg / L), 20.56 ml, 12.34 seconds, and 1.60 (mg when 200 mm, respectively. / L), 26.19 ml, 15.71 seconds.

〔気液間の物質移動容量係数(Ka)の算出〕
気液間の物質移動容量係数(Ka)を、AIChE Journal Vol.21,No4,p.706(1975)記載の方法を参考に算出した。
具体的な方法を、以下に示す。
aは、水道水中の溶存酸素が全て窒素に置換されたときの溶存酸素量(C)、流通前の水道水中の溶存酸素量(C)、充填層から通過後捕捉された水道水中の溶存酸素量(C)、充填層内での水道水の滞留時間(T)を使って以下の式で表される。
ln{(C−C)/(C−C)}=KaT
水道水中の溶存酸素量(C)を測定したところ7.22(mg/L)であった。Cは0(g/L)である。CとTは、上記の〔充填塔試験装置を用いた溶存酸素量の測定〕で既にそれぞれ求められている。
これらの値を上式に代入し、縦軸がln{(C−C)/(C−C)}、横軸がTのグラフにプロットした。
そして、最小二乗法によって描かれた一次方程式の傾きからKaを求めた。結果、Kaは0.061(1/s)となった。
[Calculation of mass transfer capacity coefficient between gas and liquid (K L a)]
The mass transfer capacity coefficient (K L a) between gas and liquid was measured using AIChE Journal Vol. 21, No. 4, p. 706 (1975).
A specific method is shown below.
K L a is the amount of dissolved oxygen (C ) when all the dissolved oxygen in tap water is replaced with nitrogen, the amount of dissolved oxygen (C 0 ) in tap water before distribution, and tap water captured after passing through the packed bed The amount of dissolved oxygen in water (C) and the residence time (T) of tap water in the packed bed are expressed by the following formula.
ln {(C ∞ -C 0) / (C ∞ -C)} = K L aT
Was the amount of oxygen dissolved in tap water (C 0) was measured to 7.22 (mg / L). C∞ is 0 (g / L). C and T have already been determined in the above [Measurement of dissolved oxygen amount using packed tower test apparatus].
These values are substituted into the above equation, the vertical axis ln {(C ∞ -C 0) / (C ∞ -C)}, the horizontal axis is plotted in the graph of T.
Then, to determine the K L a from the slope of the depicted linear equations by the least squares method. As a result, K L a was 0.061 (1 / s).

〔気液間の物質移動容量係数(Ka)の平均値の算出〕
〔充填塔試験装置を用いた溶存酸素量(C)の測定〕と〔気液間の物質移動容量係数(Ka)の算出〕を3回繰り返し行ったところ、2回目のKaは0.065(1/s)、3回目のKaは0.068(1/s)となった。これら3回のKa平均値は、0.065(1/s)となった。
[Calculation of average value of mass transfer capacity coefficient (K L a) between gas and liquid]
When [Measurement of dissolved oxygen amount (C) using packed tower test apparatus] and [Calculation of mass transfer capacity coefficient between gas and liquid (K L a)] were repeated three times, the second K L a was 0.065 (1 / s) The third K L a was 0.068 (1 / s). K L a mean value of these three became 0.065 (1 / s).

〔比較例1〕
〔充填塔試験装置を用いた溶存酸素量(C)の測定〕
表面処理および乾燥を行ったアモルファスシリカを、表面処理前のアモルファスシリカに変えたほかは実施例1と同様に行い、各充填物高さにおける溶存酸素量、動的ホールドアップ、滞留時間をそれぞれ測定および算出した。
[Comparative Example 1]
[Measurement of dissolved oxygen amount (C) using packed tower test equipment]
Performed in the same manner as in Example 1 except that the amorphous silica subjected to the surface treatment and drying was changed to the amorphous silica before the surface treatment, and the dissolved oxygen amount, dynamic holdup, and residence time at each filling height were measured. And calculated.

〔気液間の物質移動容量係数(Ka)の算出〕
上記溶存酸素量(C)の測定によって得られた溶存酸素量、滞留時間の値を使って実施例1と同様にKaの算出行った。結果、1回目は0.056(1/s)となった。
[Calculation of mass transfer capacity coefficient between gas and liquid (K L a)]
K L a was calculated in the same manner as in Example 1 using the dissolved oxygen amount and residence time values obtained by measuring the dissolved oxygen amount (C). As a result, the first time was 0.056 (1 / s).

〔気液間の物質移動容量係数(Ka)の平均値の算出〕
〔充填塔試験装置を用いた溶存酸素量(C)の測定〕と〔気液間の物質移動容量係数(Ka)の算出〕を3回繰り返し行ったところ、2回目のKaは0.060(1/s)、3回目のKaは0.057(1/s)となった。これら3回のKa平均値は、0.058(1/s)となった。
[Calculation of average value of mass transfer capacity coefficient (K L a) between gas and liquid]
When [Measurement of dissolved oxygen amount (C) using packed tower test apparatus] and [Calculation of mass transfer capacity coefficient between gas and liquid (K L a)] were repeated three times, the second K L a was 0.060 (1 / s) The third K L a was 0.057 (1 / s). K L a mean value of these three became 0.058 (1 / s).

以上の試験では、酸素が飽和量(C)溶存する水道水(液相)が、充填塔内のアモルファスシリカ(固体粒子)と接触しつつ流下し、その流下する過程で窒素(気相)と接触し、窒素(気相)が水道水(液相)に移動し水道水に溶存する酸素と置換される。この置換される程度の尺度として物質移動容量係数(Ka)の平均値を算出している。
水道水に溶存する酸素が全て窒素に置換された場合の溶存酸素量(Cは0ml/Lであるので、充填層から通過後捕捉された水道水中の溶存酸素量(C)とすると、
a=ln{(C−C)/(C−C)}/T=ln{(−C)/(−C)}/T
=ln{C/C}/T=(lnC−lnC)/T
従って、窒素(気相)が水道水(液相)に移動して溶存酸素と置換される程、溶存酸素量Cは小さくなり、Kaは大きい値となる。
上記実施例及び比較例では、気液間の物質移動容量係数Kaの平均値が、それぞれ、
本発明の表面処理を行った固体粒子を使用すると、 0.065(1/s)となり、
本発明の表面処理を行わなかった固体粒子を使用すると、0.058(1/s)となる。
この結果は、液相(水道水)が、本発明の表面処理を行った充填塔の充填物である固体粒子(アモルファスシリカ)を通過すると、表面処理を行った固体粒子間の液相の偏流が改善され、固体粒子表面で液相が濡れ拡がり、気相(窒素)との接触面積が増大した結果、気相の液相への移動が、本発明の表面処理を行わなかった固体粒子を使用した場合よりも、効率よく行われたことを示している。
また、固体粒子が触媒であれば、液相が、本発明の表面処理を行った充填塔の充填物である固体粒子(触媒)を通過すると、表面処理を行った固体粒子(触媒)間の液相の偏流が改善され、固体粒子(触媒)表面で液相が濡れ拡がり、例えば、気相又は他の液相及び触媒との接触面積が増大して、気相又は他の液相と、この液相との反応が、本発明の表面処理を行わなかった固体粒子(触媒)を使用した場合よりも、効率よく行われることになる。
In the above test, tap water (liquid phase) in which a saturated amount of oxygen (C 0 ) is dissolved flows down in contact with the amorphous silica (solid particles) in the packed tower, and in the process of flowing down, nitrogen (gas phase) , Nitrogen (gas phase) moves to tap water (liquid phase) and is replaced with oxygen dissolved in tap water. The average value of the mass transfer capacity coefficient (K L a) is calculated as a measure of the degree of substitution.
Dissolved oxygen amount when all oxygen dissolved in tap water is replaced with nitrogen (C is 0 ml / L, so if it is the dissolved oxygen amount (C) in tap water captured after passing from the packed bed,
K L a = ln {(C ∞ -C 0) / (C ∞ -C)} / T = ln {(- C 0) / (- C)} / T
= Ln {C 0 / C} / T = (lnC 0 -lnC) / T
Accordingly, as nitrogen (gas phase) moves to tap water (liquid phase) and is replaced with dissolved oxygen, the amount of dissolved oxygen C decreases and K L a increases.
In the above examples and comparative examples, the average value of the mass transfer capacity coefficient K L a between the gas and liquid is respectively
When the solid particles subjected to the surface treatment of the present invention are used, 0.065 (1 / s) is obtained.
When solid particles not subjected to the surface treatment of the present invention are used, the result is 0.058 (1 / s).
As a result, when the liquid phase (tap water) passes through the solid particles (amorphous silica) which is the packing of the packed tower subjected to the surface treatment of the present invention, the liquid phase drifts between the solid particles subjected to the surface treatment. Is improved, the liquid phase wets and spreads on the surface of the solid particles, and the contact area with the gas phase (nitrogen) is increased. It shows that it was done more efficiently than when it was used.
Further, if the solid particles are a catalyst, when the liquid phase passes through the solid particles (catalyst) which is the packing of the packed tower subjected to the surface treatment of the present invention, the solid particles (catalyst) between the surface treated The liquid phase drift is improved, the liquid phase wets and spreads on the surface of the solid particles (catalyst), for example, the contact area between the gas phase or other liquid phase and the catalyst increases, and the gas phase or other liquid phase, This reaction with the liquid phase is carried out more efficiently than when solid particles (catalyst) not subjected to the surface treatment of the present invention are used.

Claims (6)

固体粒子の表面処理をする工程1と、工程1の後に、
充填塔内において、液相が前記表面処理された固体粒子と接触する工程2とを有する液相の移動及び/又は反応方法であって、
前記固体粒子の粒子径分布において、
粒子径0.09mm以下の含有率が0〜33質量%であり、
粒子径16mm超の含有率が0〜33質量%であり、
前記液相が、親水性液体1であり、
前記表面処理が、前記固体粒子の表面を親水性液体2と接触させる工程と、前記親水性液体2を乾燥する工程とを含む表面処理であって、
以下の標準試験により算出される拡がり面積増加割合が10〜10000%となる表面処理である移動及び/又は反応方法。
〔標準試験〕
(1)内壁底面を有し、前記内壁底面から前記内壁底面に対向する端部までの高さが60mmの円柱容器であって、
前記内壁底面に前記親水性液体1の排出孔を有し、前記端部が開放端である前記容器に、
(2)前記表面処理をする前の固体粒子(固体粒子B)を親水性液体1中に25±2℃1時間浸漬させた後固体粒子が通過しない最大径のふるいで濾過し、固体粒子の表面が乾燥する前に、
前記容器の開口から、前記内壁底面から50mmの高さまで最上面が略水平になるように充填し、
(3)固体粒子の表面が乾燥する前に、前記親水性液体1を、前記容器の前記端部の中央部に、前記最上面から1cmの高さから内径0.32mmの注射針を取り付けた5mlのシリンジで、1ml/分で2ml滴下し、
(4)前記滴下の終了後であって、前記充填された前記固体粒子B中の前記親水性液体1の前記排出孔からの流下が停止したときに、前記内壁底面から20mmの高さまで、前記充填された前記固体粒子Bを除去し、
(5)前記除去後の前記底面から20mmの高さに現れた前記充填された前記固体粒子Bの略水平の最上面の前記親水性液体1の拡がりを、
(6)前記内壁底面から300mmの高さから写真を撮影し、
前記固体粒子Bの最上面の前記親水性液体1の拡がり面積S(固体粒子B上の拡がり面積S)を前記写真に基づき求める。
(7)前記固体粒子B上の拡がり面積Sを求める前記手順(1)〜(6)において、前記固体粒子Bを、前記固体粒子Bを前記表面処理した後の固体粒子(固体粒子A)に置き換えたことを除き、前記手順(1)〜(6)と同じ手順で、前記固体粒子Aの最上面の前記親水性液体1の拡がり面積Sを求める。
(8)式〔(S−S)/S〕×100(%)によって前記拡がり面積増加割合を算出する。
After step 1 for surface treatment of solid particles and after step 1,
In a packed tower, a liquid phase transfer and / or reaction method comprising the step 2 of contacting the liquid phase with the surface-treated solid particles,
In the particle size distribution of the solid particles,
The content of particles having a particle size of 0.09 mm or less is 0 to 33% by mass,
The content of particles having a particle diameter exceeding 16 mm is 0 to 33% by mass,
The liquid phase is hydrophilic liquid 1;
The surface treatment includes a step of bringing the surface of the solid particles into contact with the hydrophilic liquid 2 and a step of drying the hydrophilic liquid 2,
A migration and / or reaction method which is a surface treatment in which the percentage increase in the area of expansion calculated by the following standard test is 10 to 10,000%.
[Standard test]
(1) A cylindrical container having an inner wall bottom surface and having a height from the inner wall bottom surface to an end facing the inner wall bottom surface of 60 mm,
In the container having a discharge hole for the hydrophilic liquid 1 on the bottom surface of the inner wall and the end portion being an open end,
(2) The solid particles (solid particles B) before the surface treatment are immersed in the hydrophilic liquid 1 at 25 ± 2 ° C. for 1 hour and then filtered through a sieve having a maximum diameter that does not allow the solid particles to pass through. Before the surface dries
From the opening of the container, filling so that the top surface is substantially horizontal from the bottom of the inner wall to a height of 50 mm,
(3) Before the surface of the solid particles was dried, the hydrophilic liquid 1 was attached to the central portion of the end of the container with a syringe needle having an inner diameter of 0.32 mm from a height of 1 cm from the top surface. With a 5 ml syringe, add 2 ml at 1 ml / min,
(4) After completion of the dropping, when the flow of the hydrophilic liquid 1 in the filled solid particles B from the discharge hole stops, the bottom of the inner wall reaches a height of 20 mm, Removing the filled solid particles B;
(5) The spread of the hydrophilic liquid 1 on the substantially horizontal uppermost surface of the filled solid particles B that appears at a height of 20 mm from the bottom surface after the removal,
(6) Take a photograph from a height of 300 mm from the bottom of the inner wall,
The spreading area S b (the spreading area S b on the solid particles B) of the hydrophilic liquid 1 on the uppermost surface of the solid particles B is determined based on the photograph.
(7) In the procedure of obtaining the spread area S b on the solid particles B (1) ~ (6), the solid particles B, wherein the solid particles B of the surface-treated after solid particles (solid particles A) except that was replaced, in the above procedure (1) the same procedure as ~ (6), determining the spread area S a of the hydrophilic liquid first top surface of the solid particles a.
(8) The spread area increase rate is calculated by the formula [(S a −S b ) / S b ] × 100 (%).
前記表面処理が、前記固体粒子を前記液体に浸漬して前記親水性液体2を還流させて接触させる請求項1記載の液相の移動及び/又は反応方法。   2. The liquid phase transfer and / or reaction method according to claim 1, wherein the surface treatment is performed by immersing the solid particles in the liquid and bringing the hydrophilic liquid 2 into reflux for contact. 前記表面処理が、前記固体粒子を前記親水性液体2に接触させた後に、前記親水性液体2を、濾過、デカンテーション及び/又は乾燥して除去する請求項1又は2記載の液相の移動及び/又は反応方法。   The liquid phase transfer according to claim 1 or 2, wherein the surface treatment removes the hydrophilic liquid 2 by filtration, decantation and / or drying after contacting the solid particles with the hydrophilic liquid 2. And / or reaction method. 前記反応が、前記液相と気相との間でなされる気液反応である請求項1〜3いずれか1項記載の液相の移動及び/又は反応方法。   The liquid phase transfer and / or reaction method according to claim 1, wherein the reaction is a gas-liquid reaction performed between the liquid phase and a gas phase. 前記親水性液体1が水又は水溶液である請求項1〜4いずれか1項記載の液相の移動及び/又は反応方法。   The liquid phase transfer and / or reaction method according to claim 1, wherein the hydrophilic liquid 1 is water or an aqueous solution. 前記固体粒子が、前記反応の触媒である請求項1〜5いずれか1項記載の液相の移動及び/又は反応方法。   The liquid phase transfer and / or reaction method according to claim 1, wherein the solid particles are a catalyst for the reaction.
JP2010286995A 2010-12-24 2010-12-24 Method for moving and/or reacting liquid phase Pending JP2012130886A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010286995A JP2012130886A (en) 2010-12-24 2010-12-24 Method for moving and/or reacting liquid phase

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010286995A JP2012130886A (en) 2010-12-24 2010-12-24 Method for moving and/or reacting liquid phase

Publications (1)

Publication Number Publication Date
JP2012130886A true JP2012130886A (en) 2012-07-12

Family

ID=46647127

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010286995A Pending JP2012130886A (en) 2010-12-24 2010-12-24 Method for moving and/or reacting liquid phase

Country Status (1)

Country Link
JP (1) JP2012130886A (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010260877A (en) * 2007-08-29 2010-11-18 Jsr Corp Organic polymer particle and probe-bonded particle

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010260877A (en) * 2007-08-29 2010-11-18 Jsr Corp Organic polymer particle and probe-bonded particle

Similar Documents

Publication Publication Date Title
Patcas et al. CO oxidation over structured carriers: A comparison of ceramic foams, honeycombs and beads
CN103906708B (en) The spherical body of silicon-dioxide and affiliation carrier
Wooh et al. Synthesis of mesoporous supraparticles on superamphiphobic surfaces
Bahmanyar et al. The influence of nanoparticles on hydrodynamic characteristics and mass transfer performance in a pulsed liquid–liquid extraction column
US20040138062A1 (en) Zinc chloride-loaded support and method for producing the same
CN102137717A (en) Catalyst and method for pyrolysis of organic substances and method for manufacturing such catalyst
US20110014110A1 (en) Solid Hollow Fiber Cooling Crystallization Methods
BR112016005673B1 (en) catalyst for preparing a compound, and, processes for preparing a catalyst and a compound
RU2556208C2 (en) Apparatus and method of producing catalyst and method of producing unsaturated acid or unsaturated nitrile
JP2019535492A (en) Method for producing oxidative dehydrogenation catalyst using hydrothermal treatment and peroxide treatment
JP2016055210A (en) Catalyst for water/hydrogen exchange reaction and production method thereof, and water/hydrogen exchange reaction apparatus
TW200526321A (en) Process for producing a catalyst for gas-phase oxidations
JP5042847B2 (en) Method and apparatus for producing polymer foam beads or balloons
JP2012130886A (en) Method for moving and/or reacting liquid phase
CN101455961A (en) Spherical cerium-containing aluminum oxide and preparation method thereof
CN207659426U (en) Drop temperature cycles consersion unit
CN105536783A (en) A preparing method of an ordered mesoporous carbon-supported Ru nanometer catalyst
TW202135926A (en) Fixed bed multi-tubular reactor for producing alkenyl acetate
CN110511122A (en) The method of liquid phase adsorption separation Cresol Isomeric Compound
CN106311230A (en) Preparation method of silver catalyst used for alkene epoxidation, catalyst and application thereof
CN105203435B (en) A kind of detection method of fine powder fineness
US20110163265A1 (en) Formulation and method for preparing gels comprising hydrous aluminum oxide
CN107764958A (en) It is a kind of can in Accurate Determining water COD method
Cheng et al. Estimating radial velocity of fixed beds with low tube‐to‐particle diameter ratios
JP2012055807A (en) Adsorbent for trimethylsilanol and chemical filter carrying the adsorbent

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130927

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140213

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140311

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140407

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20140805