JP2012130874A - Fresh water generator, and fresh water generation system - Google Patents

Fresh water generator, and fresh water generation system Download PDF

Info

Publication number
JP2012130874A
JP2012130874A JP2010285796A JP2010285796A JP2012130874A JP 2012130874 A JP2012130874 A JP 2012130874A JP 2010285796 A JP2010285796 A JP 2010285796A JP 2010285796 A JP2010285796 A JP 2010285796A JP 2012130874 A JP2012130874 A JP 2012130874A
Authority
JP
Japan
Prior art keywords
water
evaporation
fresh water
condensation
gas phase
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2010285796A
Other languages
Japanese (ja)
Inventor
Shinichi Kanazawa
進一 金澤
Ryusuke Nakai
龍資 中井
Kazuhiro Okabe
和弘 岡部
Toshifumi Hosoya
俊史 細谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP2010285796A priority Critical patent/JP2012130874A/en
Publication of JP2012130874A publication Critical patent/JP2012130874A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/30Wastewater or sewage treatment systems using renewable energies
    • Y02W10/37Wastewater or sewage treatment systems using renewable energies using solar energy

Abstract

PROBLEM TO BE SOLVED: To provide a fresh water generator by membrane distillation constituted of a vaporization part in which a hydrophobic porous membrane is arranged and a condensation part including a cooling surface, wherein leaked treated water is not mixed with condensation water even though the leakage of the treated water in the vaporization part occurs, and there is no need to arrange the leakage detecting means.SOLUTION: The fresh water generator has a liquid phase part in which the treated water flows, a gas phase part 1, the vaporization part constituted of the hydrophobic porous membrane, the condensation part including the cooling surface and a gas phase part 2 contacting the cooling surface, and a liquid sending means for sending the treated water to the liquid phase part. The gas phase part 1 and the gas phase part 2 are coupled so as to be able to ventilate with each other, the fresh water in the liquid is taken out as vapor from the vaporization surface where the hydrophobic porous membrane contacts the gas phase part 1, and is recovered as water by being cooled and condensed by the cooling surface. The fresh water generator is characterized in that the vaporization part and the condensation part are arranged in independent areas.

Description

本発明は、海水や汚水等、飲用等の利用に適さない処理水から膜蒸留により淡水を取り出す造水装置、及びこの造水装置を用いた造水システムに関する。   The present invention relates to a fresh water generator that extracts fresh water by membrane distillation from treated water that is not suitable for drinking, such as seawater and sewage, and a fresh water generation system using the fresh water generator.

近年、生活に必要な水資源を確保する必要性から、海水、使用済みの生活排水、ヒ素などの人体に毒性のある成分を含む井戸水等から、利用可能な状態の水(淡水)を分離回収するための造水技術が検討されている。   In recent years, water (fresh water) that can be used is separated and recovered from seawater, used domestic wastewater, well water containing toxic components such as arsenic, etc. due to the necessity of securing water resources necessary for daily life. Water production technology is being studied.

海水等から塩分や有毒成分等を含まない淡水を分離回収する造水技術は、水から発生させた水蒸気を冷却し凝結して回収する蒸発法と、水を通すが塩分等を通さない逆浸透膜に浸透圧以上の高圧をかけて濾過して水を分離回収する逆浸透法に大きく分類される。蒸発法としては、フラッシュ法、効用缶法等とともに、海水等を加熱して、塩分は透過しないが水蒸気は透過する疎水性多孔質膜の一方の面に接触させ、膜を透過してくる水蒸気を他方の面から回収する膜蒸留法が知られている。   Freshwater technology that separates and recovers fresh water that does not contain salt or toxic components from seawater, etc., is an evaporation method that cools and condenses and recovers water vapor generated from water, and reverse osmosis that passes water but does not pass salt The membrane is largely classified into a reverse osmosis method in which water is separated and recovered by applying a high pressure higher than the osmotic pressure to the membrane. As the evaporation method, in addition to the flash method, the effect can method, etc., the seawater is heated and brought into contact with one surface of a hydrophobic porous membrane that does not permeate salt but permeates water vapor, and permeates the membrane. A membrane distillation method is known in which is recovered from the other surface.

逆浸透法は、熱が不要であり大面積の膜を収納したモジュールの利用で比較的小さな設備規模で済む利点がある。しかし、高圧ポンプの設置費用とそれを運転する電力および膜の洗浄などのメンテナンス費用が問題点として指摘されている。一方、蒸発法では蒸気を発生させるための大容量の設備と熱源が必要である点が問題として指摘されている。   The reverse osmosis method has an advantage that a relatively small facility scale can be obtained by using a module that does not require heat and accommodates a membrane having a large area. However, the installation costs of the high-pressure pump and the maintenance costs such as the power to operate it and the cleaning of the membrane have been pointed out as problems. On the other hand, it has been pointed out as a problem that the evaporation method requires a large capacity facility and a heat source for generating steam.

膜蒸留法は、逆浸透法と同様、疎水性多孔質膜をモジュール化することでコンパクトにすることが可能であり、蒸発法の問題として指摘されている設備の大型化の問題は緩和されている。さらに、他の蒸発法に比して比較的低温の水、例えば80℃以下の水を処理できるので、熱源の問題もクリアしやすく、太陽光の利用による運転コストの低減も容易である。   Like the reverse osmosis method, the membrane distillation method can be made compact by modularizing the hydrophobic porous membrane, and the problem of increasing the size of the facility, which has been pointed out as a problem of the evaporation method, has been alleviated. Yes. Furthermore, since relatively low-temperature water, for example, water at 80 ° C. or lower, can be treated as compared with other evaporation methods, it is easy to clear the problem of the heat source and it is easy to reduce the operating cost by using sunlight.

そこで、その検討が盛んに行われており、例えば、特許文献1では、「特に海水または黒みを帯びた水または工程水から脱塩水を生じさせる目的である液体を膜蒸留で浄化する方法」が記載されている。又、特許文献2では、熱源として太陽光を利用した膜蒸留による海水淡水化装置が記載されている。   Then, the examination is performed actively, for example, in patent document 1, "The method of purifying the liquid which is the objective which produces desalinated water from seawater or blackish water or process water especially by membrane distillation" is. Are listed. Moreover, in patent document 2, the seawater desalination apparatus by the membrane distillation using sunlight as a heat source is described.

これらの先行技術文献に記載の造水装置は、疎水性濾過膜を含む蒸発部と、冷却手段を有する凝結部が、気相部を介して設けられている。そして、疎水性濾過膜の一表面に接している処理水(海水等の水を含む液体)中の水が膜を透過し、他の表面(蒸発面)から水蒸気として気相部に放出され、この水蒸気が凝結部の冷却手段により冷却されて凝結し淡水として回収される。   In the fresh water generators described in these prior art documents, an evaporation section including a hydrophobic filtration membrane and a condensation section having a cooling means are provided via a gas phase section. And the water in the treated water (liquid containing water such as seawater) in contact with one surface of the hydrophobic filtration membrane permeates the membrane and is released from the other surface (evaporation surface) to the gas phase as water vapor, This water vapor is cooled by the cooling means of the condensing part, condenses and collected as fresh water.

特表2003−519001号公報(請求項1)JP 2003-51001 A (Claim 1) 特開平9−1143号公報(請求項1、図1)Japanese Patent Laid-Open No. 9-1143 (Claim 1, FIG. 1)

蒸発部の疎水性濾過膜は、理想的には水蒸気のみを透過し、処理水中の塩類等は透過しない。しかし、現実には、処理水が膜より漏出する場合もあり得る。特に、処理水である海水や排水には洗剤等が含まれている場合、その界面活性効果により膜の疎水性が低下し、処理水が膜を透過して凝結水への混入が生じることがある。処理水が混入した凝結水は淡水として使用できなくなるので、たとえば特許3223231号に記載のセンサーを設けて処理水の漏出を検出し、漏出した場合は凝結水の回収を中断する等の対策が必要であった。   The hydrophobic filtration membrane in the evaporation section ideally transmits only water vapor and does not transmit salts and the like in the treated water. However, in reality, the treated water may leak from the membrane. In particular, when seawater or wastewater, which is treated water, contains detergents, the hydrophobicity of the membrane decreases due to its surface active effect, and the treated water may permeate the membrane and enter the condensed water. is there. Since condensed water mixed with treated water can no longer be used as fresh water, for example, a sensor described in Japanese Patent No. 3223231 is provided to detect leakage of treated water, and if it leaks, measures such as interrupting the collection of condensed water are required. Met.

本発明は、疎水性多孔質膜が設けられている蒸発部及び冷却手段を含む凝結部からなる膜蒸留による造水装置であって、蒸発部における処理水の漏出が生じても、漏出した処理水が凝結水へ混入することがなく、従って、前記センサーのような漏出検出手段を設ける必要がない造水装置を提供することを課題とする。   The present invention is a fresh water generation apparatus by membrane distillation comprising a condensing part including an evaporation part provided with a hydrophobic porous membrane and a cooling means, and even if leakage of treated water occurs in the evaporation part, the leaked treatment It is an object of the present invention to provide a fresh water generating device in which water is not mixed into condensed water, and therefore it is not necessary to provide leakage detection means such as the sensor.

本発明者は、蒸発部と凝結部を、独立した領域に設けることにより、凝結されて回収される水と前記蒸発部より漏出する液の混合を防ぐことができることを見出し本発明に至った。すなわち、前記の課題は以下に述べる構成により達成される。   The present inventor has found that by providing the evaporating part and the condensing part in independent regions, mixing of the condensed and recovered water and the liquid leaking from the evaporating part can be prevented, and the present invention has been achieved. That is, the above-described problem is achieved by the configuration described below.

請求項1に記載の発明は、
処理水が流れる液相部と、気相部1と、前記液相部及び気相部1を隔てる疎水性多孔質膜とからなる蒸発部、
冷却面及び前記冷却面と接する気相部2を含む凝結部、及び、
前記液相部に処理水を送液する送液手段を有し、
前記気相部1と気相部2は、互いに通気可能に連結されており、
前記処理水中の水は、前記疎水性多孔質膜が気相部1と接する蒸発面より水蒸気として放出され、前記冷却面により冷却、凝結されて水として回収される造水装置であって、
凝結されて回収される水と前記蒸発部より漏出する液が混合しないように、蒸発部と凝結部が、独立した領域に設けられていることを特徴とする造水装置である。
The invention described in claim 1
An evaporation part comprising a liquid phase part through which treated water flows, a gas phase part 1 and a hydrophobic porous membrane separating the liquid phase part and the gas phase part 1;
A condensing part including a cooling surface and a gas phase part 2 in contact with the cooling surface; and
Having liquid feeding means for feeding treated water to the liquid phase part;
The gas phase part 1 and the gas phase part 2 are connected to each other so as to be able to vent.
The water in the treated water is a fresh water generating device in which the hydrophobic porous membrane is discharged as water vapor from an evaporation surface in contact with the gas phase portion 1, cooled by the cooling surface, condensed, and recovered as water,
The water producing apparatus is characterized in that the evaporating part and the condensing part are provided in independent regions so that the water condensed and recovered and the liquid leaking from the evaporating part are not mixed.

この造水装置では、蒸発部と凝結部が独立した領域に設けられているので、蒸発部より処理水が漏出した場合でも、回収される凝結水と混合することはない。従って、処理水の漏出を検出するセンサー等の手段を設ける必要はなく、処理水の漏出により、凝結水の回収が中断されることもなく、より安定した操業をすることができる。   In this fresh water generator, since the evaporating part and the condensing part are provided in an independent region, even if treated water leaks from the evaporating part, it does not mix with the recovered condensed water. Therefore, there is no need to provide means such as a sensor for detecting leakage of treated water, and the recovery of condensed water is not interrupted by the leakage of treated water, and more stable operation can be performed.

さらに、凝結部が蒸発部と独立しているために、凝結部、蒸発部に対する洗浄等の操作をそれぞれ独立して行うことが容易である。例えば、蒸発部からの処理水の漏出が生じた場合でも、蒸発部をアルコールなどで容易に洗浄・乾燥することが可能であり、この洗浄により容易に疎水性多孔質膜の疎水性を回復して水漏れの無い当初の状態に回復させることができる。   Furthermore, since the condensation part is independent of the evaporation part, it is easy to perform operations such as washing on the condensation part and the evaporation part independently. For example, even if leakage of treated water from the evaporation section occurs, the evaporation section can be easily washed and dried with alcohol, etc., and this washing easily restores the hydrophobicity of the hydrophobic porous membrane. Can be restored to the original state without water leakage.

請求項2に記載の発明は、前記蒸発部が、中空糸状に形成された疎水性多孔質膜を束ねて収納し、中空糸内部(内腔)に処理水が通り、中空糸表面が蒸発面であることを特徴とする請求項1に記載の造水装置である。   According to a second aspect of the present invention, the evaporating part bundles and stores a hydrophobic porous membrane formed in a hollow fiber shape, the treated water passes through the hollow fiber (inner lumen), and the surface of the hollow fiber is the evaporation surface. The fresh water generator according to claim 1, wherein

本発明の造水装置の蒸発部を、シート状の疎水性多孔質膜により構成することは可能である。この場合は、シート上の疎水性多孔質膜を重ねるとともにその蒸発面に対向して凝結部の冷却面を設ける構成であるが、この構成では、凝結部と蒸発部を独立させることが構造上困難となりやすい。一方、中空糸状に形成された疎水性多孔質膜を束ねて収納したモジュールにより蒸発部を構成する場合は、凝結部と蒸発部を独立させやすい。又、この場合は、同じ体積に高い膜充填率でモジュール化が可能であり、同じ面積の蒸発面に対する装置の設置面積をより小さくしやすいので好ましい。   It is possible to constitute the evaporation part of the fresh water generator of the present invention by a sheet-like hydrophobic porous membrane. In this case, the hydrophobic porous film on the sheet is overlaid and the cooling surface of the condensation part is provided opposite to the evaporation surface. In this structure, however, the condensation part and the evaporation part are structurally independent. It tends to be difficult. On the other hand, when the evaporation part is constituted by a module in which a hydrophobic porous membrane formed in a hollow fiber shape is bundled and stored, it is easy to make the condensation part and the evaporation part independent. In this case, it is possible to modularize the same volume with a high film filling rate, and it is preferable because the installation area of the apparatus with respect to the evaporation surface of the same area can be easily reduced.

さらに、後述のように、蒸発面に対する冷却面の面積の比は、大きいことが好ましいが、蒸発面に対向して凝結部の冷却面を設ける構成では、蒸発面に対する冷却面の面積の比は約1であり、これを大きくすることは難しい。これに対して中空糸状に形成された疎水性多孔質膜を束ねて蒸発部を構成し、さらに中空糸状の管を束ねて凝結部を構成すると、前記の面積比やレイアウトを自由に設計することが可能であるので好ましい。   Further, as described later, the ratio of the area of the cooling surface to the evaporation surface is preferably large, but in the configuration in which the cooling surface of the condensing part is provided facing the evaporation surface, the ratio of the area of the cooling surface to the evaporation surface is It is about 1, and it is difficult to increase this. On the other hand, when the evaporation porous part is formed by bundling a hydrophobic porous membrane formed in a hollow fiber shape, and the condensation part is formed by bundling a hollow fiber tube, the above-mentioned area ratio and layout can be freely designed. Is preferable.

請求項3に記載の発明は、前記冷却面の面積が、前記蒸発面の面積の1.2〜6倍であることを特徴とする請求項1又は請求項2に記載の造水装置である。   The invention described in claim 3 is the fresh water generator according to claim 1 or 2, wherein the area of the cooling surface is 1.2 to 6 times the area of the evaporation surface. .

前記のような蒸発部と凝結部を有する膜蒸留装置は、初期投資が少ない優れた造水方法である。特に処理水の加熱手段として太陽光を用いた場合は、運転コストも低いとも言われているが、淡水の生成速度の指標である単位面積、単位時間当たりの透過流束(kg/m・hr、単位面積、単位時間当たりの透過量)が十分とは言えず、造水にかかるコスト面では十分とは言えないとの指摘もあった。 A membrane distillation apparatus having an evaporation part and a condensation part as described above is an excellent water production method with little initial investment. In particular, when sunlight is used as a heating means for the treated water, it is said that the operating cost is low, but the permeation flux per unit time (kg / m 2 ···), which is an indicator of the rate of fresh water generation. (hr, unit area, permeation amount per unit time) was not sufficient, and it was pointed out that it was not sufficient in terms of cost for fresh water.

しかし、単位面積、単位時間当たりの透過流束は、凝結部において水蒸気を冷却して凝結させる冷却面(凝結面)の面積の蒸発面の面積に対する比に影響され、凝結面の面積が蒸発面の面積に対して有意に大きい場合、単位面積、単位時間当たりの透過流束が向上する。特に、冷却面の面積が、前記蒸発面の面積の1.2〜6倍である場合優れた透過流束が得られるとともに設備の大型化も抑制でき好ましい。   However, the permeation flux per unit area and unit time is affected by the ratio of the area of the cooling surface (condensation surface) that cools and condenses water vapor in the condensation part to the area of the evaporation surface, and the area of the condensation surface is the evaporation surface. When the area is significantly larger than the area, the permeation flux per unit area and unit time is improved. In particular, when the area of the cooling surface is 1.2 to 6 times the area of the evaporation surface, it is preferable because an excellent permeation flux can be obtained and the enlargement of the facility can be suppressed.

前記のように、蒸発部と凝結部が独立した領域に設けられており、蒸発部が中空糸状に形成された疎水性多孔質膜を束ねて構成され、凝結部が中空糸状の管を束ねて構成されている場合、凝結面積と蒸発面積の比率を調整することが容易であり、高性能でかつコンパクトな造水装置を製造しやすいので好ましい。   As described above, the evaporation part and the condensation part are provided in independent regions, the evaporation part is configured by bundling a hydrophobic porous membrane formed in a hollow fiber shape, and the condensation part is formed by bundling a hollow fiber tube. When comprised, it is easy to adjust the ratio between the condensation area and the evaporation area, and it is preferable because it is easy to produce a high-performance and compact fresh water generator.

請求項4に記載の発明は、前記疎水性多孔質膜が、ポリテトラフルオロエチレンの延伸多孔質膜であることを特徴とする請求項1ないし請求項3のいずれか1項に記載の造水装置である。   Invention of Claim 4 WHEREIN: The said hydrophobic porous membrane is the extending | stretching porous membrane of polytetrafluoroethylene, The fresh water generation of any one of Claim 1 thru | or 3 characterized by the above-mentioned. Device.

疎水性多孔質膜は、水をはじく疎水性の材質からなり、水蒸気を透過させるための微細な貫通孔(気孔)を有する膜である。疎水性の材質の種類及び気孔の孔径は、気体である水蒸気を透過し、液体である処理水(水を含んだ液体)を透過しないように選択される。すなわち、水蒸気の透過しやすさの点からは孔径は大きい方が好ましいが、孔径が大きいと処理水の透過(漏出)が生じやすくなるので、両者を考慮して最適な孔径が選択される。   The hydrophobic porous membrane is a membrane made of a hydrophobic material that repels water and has fine through holes (pores) for allowing water vapor to permeate. The type of the hydrophobic material and the pore diameter of the pores are selected so as to transmit water vapor that is a gas but not treated water that is a liquid (a liquid containing water). That is, from the viewpoint of easy water vapor transmission, it is preferable that the pore diameter is large. However, if the pore diameter is large, permeation (leakage) of the treated water is likely to occur. Therefore, the optimum pore diameter is selected in consideration of both.

又、水蒸気の透過しやすさの点からは膜の体積に占める気孔の体積の割合、すなわち気孔率は高い方が好ましく又膜が薄い方が好ましい。しかし、膜には、操業中に処理水から受ける圧力に十分耐える機械的強度が求められるので、両者を考慮して最適な気孔率や膜の厚みが選択される。   Further, from the viewpoint of easy permeation of water vapor, the ratio of the volume of pores to the volume of the membrane, that is, the porosity is preferably high, and the membrane is preferably thin. However, since the membrane is required to have sufficient mechanical strength to withstand the pressure received from the treated water during operation, the optimum porosity and thickness of the membrane are selected in consideration of both.

疎水性多孔質膜の材質としては、ポリテトラフルオロエチレン(四フッ化エチレン樹脂、以降PTFEと記す)、テトラフルオロエチレン・パーフルオロアルキルビニルエーテル共重合体(PFA)、テトラフルオロエチレン・ヘキサフルオロプロピレン共重合体(FEP)、テトラフルオロエチレン・エチレン共重合体(ETFE)、ポリフッ化ビニリデン(PVDF)、ポリクロロトリフルオロエチレン(PCTFE)、クロロトリフルオエチレン・エチレン共重合体(ECTFE)等、及びその混合物あるいは変性樹脂等の疎水性の樹脂を挙げることができる。本発明においては、容易に多孔質膜を得られる点で、PTFE(延伸法)、PVDF(溶媒相転移法)が主材料としては適しており、中でもPTFEは、疎水性、機械的強度、化学的耐久性(耐薬品性)に優れるとともに、PTFE微粒子の融着体を延伸する方法(延伸法)により、容易に均一孔径を有するPTFEの延伸多孔質膜を製造することができるので好適である。   The material of the hydrophobic porous membrane is polytetrafluoroethylene (tetrafluoroethylene resin, hereinafter referred to as PTFE), tetrafluoroethylene / perfluoroalkyl vinyl ether copolymer (PFA), tetrafluoroethylene / hexafluoropropylene copolymer. Polymer (FEP), tetrafluoroethylene / ethylene copolymer (ETFE), polyvinylidene fluoride (PVDF), polychlorotrifluoroethylene (PCTFE), chlorotrifluoroethylene / ethylene copolymer (ECTFE), etc., and mixtures thereof Or hydrophobic resin, such as modified resin, can be mentioned. In the present invention, PTFE (stretching method) and PVDF (solvent phase transition method) are suitable as main materials in that a porous film can be easily obtained. Among them, PTFE is hydrophobic, mechanical strength, chemical It is suitable because it can easily produce a stretched porous membrane of PTFE having a uniform pore diameter by a method (stretching method) of stretching a fusion product of PTFE fine particles while being excellent in mechanical durability (chemical resistance). .

請求項5に記載の発明は、前記送液手段が、処理水を、凝結部で生じた水蒸気の凝結熱により加熱する手段を有することを特徴とする請求項1ないし請求項4のいずれか1項に記載の造水装置である。   The invention according to claim 5 is characterized in that the liquid feeding means has means for heating the treated water by the condensation heat of water vapor generated in the condensation part. The fresh water generator described in the item.

淡水の生成速度、すなわち単位面積、単位時間当たりの透過流束を上げるためには、処理水を、蒸発部に供給される前に加熱することが好ましいので、前記送液手段には通常処理水の加熱手段が設けられる。一方、凝結部では、水蒸気の凝結熱が発生するので、この凝結熱を処理水の加熱手段として利用することにより熱(エネルギー)の有効な利用につながり、他の加熱手段(例えば、太陽熱加熱装置)の負荷を低減できるので好ましい。水蒸気の凝結熱により加熱する方法としては、凝結部において凝結面を冷やす冷媒として処理前の処理水を使用する方法を挙げることができる。この方法によれば、凝結面において熱交換が行われ、凝結面が低温の処理水により冷却されるとともに、処理水が凝結熱により加熱される。   In order to increase the production rate of fresh water, that is, the permeation flux per unit area and unit time, it is preferable to heat the treated water before being supplied to the evaporation section. The heating means is provided. On the other hand, in the condensation part, condensation heat of water vapor is generated. By using this condensation heat as a heating means for treated water, it leads to effective use of heat (energy), and other heating means (for example, a solar heating device) ) Is preferable. As a method of heating by condensation heat of water vapor, a method of using treated water before treatment as a refrigerant for cooling the condensation surface in the condensation part can be mentioned. According to this method, heat exchange is performed on the condensation surface, the condensation surface is cooled by the low-temperature treated water, and the treated water is heated by the condensation heat.

請求項6に記載の発明は、請求項1ないし請求項4のいずれか1項に記載の造水装置、及び、前記送液手段へ送液する処理水を太陽光による熱で加熱する太陽光加熱装置を有することを特徴とする造水システムである。   Invention of Claim 6 is sunlight which heats the water preparation apparatus of any one of Claim 1 thru | or 4, and the treated water sent to the said liquid feeding means with the heat | fever by sunlight It is a desalination system characterized by having a heating device.

この造水システムは、前記の本発明の造水装置における、処理水の加熱手段(前記の送液手段に設けられる加熱手段)として、太陽光加熱装置を用いることを特徴とする。このシステムでは太陽光加熱装置に関わる若干の設置コストの増加が見込まれるが、造水時の加熱のためのコストを下げる効果が大きく、運転コストの低減を可能にし、全体としての処理コストの低減となる場合が多いので好ましい。   This fresh water generation system is characterized in that a solar heating device is used as a heating means (heating means provided in the liquid feeding means) of the treated water in the fresh water generator of the present invention. This system is expected to slightly increase the installation cost related to the solar heating device, but it has a significant effect on lowering the cost for heating at the time of fresh water generation, enabling a reduction in operating cost and reducing the overall processing cost. It is preferable because

本発明の造水装置は、疎水性多孔質膜が設けられている蒸発部及び冷却面を含む凝結部からなる膜蒸留による造水装置であるが、蒸発部における処理水の漏出が生じても、漏出した処理水が凝結水へ混入することがない。従って、漏出検出手段を設ける必要がなく、漏出による操業停止も生じない。この造水装置と太陽光加熱装置を組み合わせた本発明の造水システムは、前記の特徴とともに、運転コストを低減できるものである。   The fresh water generator of the present invention is a fresh water generator by membrane distillation consisting of an evaporation part provided with a hydrophobic porous membrane and a condensation part including a cooling surface, but even if leakage of treated water occurs in the evaporation part The leaked treated water is not mixed into the condensed water. Therefore, it is not necessary to provide a leakage detection means, and operation stoppage due to leakage does not occur. The fresh water generation system of the present invention that combines the fresh water generator and the solar heating device can reduce the operating cost together with the above-described features.

本発明の造水装置の一例を模式的に示す一部切り欠き断面図である。It is a partially cutaway sectional view showing typically an example of the fresh water generator of the present invention. 本発明の造水装置の他の例を模式的に示す横断面図である。It is a cross-sectional view which shows the other example of the fresh water generator of this invention typically. 本発明の造水装置の他の例を模式的に示す図である。It is a figure which shows typically the other example of the fresh water generator of this invention. 本発明の造水装置の他の例を模式的に示す図である。It is a figure which shows typically the other example of the fresh water generator of this invention. 参考例1により得られた透過流束と、凝結面積/蒸発面積との関係を示すグラフである。It is a graph which shows the permeation | transmission flux obtained by the reference example 1, and the relationship of a condensation area / evaporation area. 実施例で使用した造水装置のモジュールを模式的に示す図である。It is a figure which shows typically the module of the fresh water generator used in the Example. 実施例で膜蒸留を行った際の蒸発部および凝結部から回収した水の塩分濃度変化を示すグラフである。It is a graph which shows the salinity change of the water collect | recovered from the evaporation part and the condensation part at the time of performing film | membrane distillation in an Example.

次に、本発明を実施するための形態を具体的に説明する。なお、本発明はこの形態に限定されるものではなく、本発明の趣旨を損なわない限り、他の形態へ変更することができる。   Next, the form for implementing this invention is demonstrated concretely. Note that the present invention is not limited to this form, and can be changed to other forms as long as the gist of the present invention is not impaired.

本発明の造水装置により処理される処理水としては、摂取あるいは使用の限界以上のミネラル分や塩分、ヒ素等の重金属、藻類や大腸菌等のバクテリア、ウィルス等の人体に不要および有害な成分を含み飲用や生活用水に適さないような、井戸や河川、海からの取水、又は生活排水等を挙げることができる。例えば、本発明の造水装置は、海水淡水化や、バングラディッシュにおけるヒ素汚染井戸水やエジプトの沙漠における塩分を含む井戸水の浄化・飲用水化等に適用できる。処理水を液相部に供給する送液手段としては、従来の膜蒸留における送液手段と同様な手段、例えば、ポンプが使用できる。送液手段に通常設けられる加熱手段としても、従来の膜蒸留における加熱手段と同様な手段を用いることができるが、前記のように太陽光加熱装置を組み合わせることが好ましい。   The treated water to be treated by the fresh water generator of the present invention includes minerals and salts that exceed the limit of intake or use, heavy metals such as arsenic, bacteria such as algae and Escherichia coli, viruses and other harmful and harmful components to the human body. Examples include wells, rivers, water intake from the sea, domestic wastewater, etc. that are not suitable for drinking and domestic water. For example, the fresh water generator of the present invention can be applied to seawater desalination, purification of arsenic-contaminated well water in Bangladesh, well water containing salt in Egyptian deserts, drinking water, and the like. As the liquid feeding means for supplying the treated water to the liquid phase part, the same means as the liquid feeding means in the conventional membrane distillation, for example, a pump can be used. As the heating means usually provided in the liquid feeding means, the same means as the heating means in the conventional membrane distillation can be used, but it is preferable to combine the solar heating device as described above.

本発明に供される疎水性多孔質膜として好適に用いられるPTFEからなる延伸多孔質体は、例えば次のようにして得ることができる。   The stretched porous body made of PTFE suitably used as the hydrophobic porous membrane used in the present invention can be obtained, for example, as follows.

PTFEファインパウダーに灯油を20〜30重量部助剤として加え、容器を回転させる等をしてなるべく剪断力を加えないように混合し、ラム押出によってシート状あるいは中空糸状など所望の形状に成形する。この押出時の加圧、変形の際に加わる剪断力によってファインパウダーの粒子の表面で分子の絡みによる結合が生まれる。   Add 20-30 parts by weight of kerosene as an auxiliary agent to PTFE fine powder, mix it so that shearing force is not applied as much as possible by rotating the container, and shape it into a desired shape such as sheet or hollow fiber by ram extrusion. . Due to the pressure applied during the extrusion and the shearing force applied during the deformation, bonds due to molecular entanglement are generated on the surface of the fine powder particles.

次に該押出品を60〜80℃の熱風循環炉などで助剤が除去されるまで乾燥させ、その後加熱しながら延伸する。このとき押出で生じたPTFE微粒子間の結合が、延伸方向に張力を受けて、PTFE微粒子の結晶から繊維が引き出される。延伸後のPTFE成形品はこの引き出された繊維とその隙間の空間からなる多孔質構造となる。その後、PTFEの融点以上に加熱することで繊維の一部が融けて、延伸と垂直方向に接着して塊状となった結節という構造が生まれ、これが冷えて固定されることで、繊維と結節から構成され全体として力学的強度を持ったPTFE多孔質体となる。   Next, the extrudate is dried in a hot air circulating furnace at 60 to 80 ° C. until the auxiliary agent is removed, and then stretched while being heated. At this time, the bond between the PTFE fine particles generated by extrusion receives a tension in the drawing direction, and the fibers are drawn from the crystals of the PTFE fine particles. The PTFE molded product after stretching has a porous structure composed of the drawn fibers and the space between the drawn fibers. After that, heating to a temperature higher than the melting point of PTFE melts a part of the fiber, and a structure called a nodule is formed by adhering in the vertical direction to the stretch, and this is cooled and fixed. It becomes a PTFE porous body which is constructed and has mechanical strength as a whole.

従来の膜蒸留による造水装置は、例えば、複数本のPTFE多孔質体中空糸と複数本の金属管などの不透過管を束ねて外筒に収納し、中空糸の端部において、該中空糸同士の隙間および該中空糸束と外筒の隙間を樹脂等で充填して密閉し、蒸発部、凝結部が形成される。さらにPTFE多孔質体中空糸の内腔と不透過管の内腔は別の部屋で開口し隔離されており、処理水と冷却水が混合しないようにされている。   A conventional desalination apparatus using membrane distillation, for example, bundles a plurality of porous PTFE hollow fibers and a plurality of impervious pipes such as metal pipes, and stores them in an outer cylinder. The gap between the yarns and the gap between the hollow fiber bundle and the outer cylinder are filled and sealed with resin or the like to form an evaporation portion and a condensation portion. Furthermore, the lumen of the porous PTFE hollow fiber and the lumen of the impervious tube are opened and isolated in separate rooms so that the treated water and the cooling water are not mixed.

あるいは構造を簡単にするために、外筒内にはPTFE多孔質体中空糸のみを入れ、不透過管を入れない代わりに外筒を二重構造にして、その内側と外側の隙間に冷却水を流す方式も採用されている。しかし、この方式は、構造は簡単であるが、蒸発面積に対して凝結面積を大きくしにくい問題がある。そこで、外筒の内側の冷却面をひだ状として冷却面を増大させる方法等が考えられる。   Alternatively, in order to simplify the structure, only the porous PTFE hollow fiber is put in the outer cylinder, and the outer cylinder is made into a double structure instead of the impervious tube, and cooling water is placed in the gap between the inside and the outside. The method of flowing is also adopted. However, this method has a simple structure, but has a problem that it is difficult to increase the condensation area with respect to the evaporation area. Accordingly, a method of increasing the cooling surface by using a cooling surface inside the outer cylinder as a pleat is conceivable.

本発明の造水装置も、上記のような従来の膜蒸留による造水装置と同様な構造を採用できるが、凝結されて回収される水と蒸発部より漏出する液が混合しないように、蒸発部と凝結部を独立した領域に設けるために、好ましくは、PTFE多孔質体中空糸等の束と金属管などの不透過管の束は、分離されて設けられる。凝結されて回収される水と蒸発部より漏出する液が混合しないようにするためには、蒸発部が、前記疎水性多孔質膜より漏出する液を回収する漏出液回収部を有し、凝結部が、凝結された水を回収する凝結水回収部を有し、漏出液回収部と凝結水回収部が分離されていることがより好ましい。このような構造とすることにより、PTFE多孔質体の防水性が低下し処理水の漏れが発生しても、処理前の水が処理後の水に混入することを回避しやすくなる。   The fresh water generator of the present invention can also adopt the same structure as the conventional fresh water generator by membrane distillation as described above, but evaporates so that the water condensed and recovered and the liquid leaking from the evaporation section do not mix. Preferably, the bundle of PTFE porous body hollow fibers and the like and the bundle of impervious tubes such as metal tubes are provided separately in order to provide the part and the condensing part in independent regions. In order to prevent the water collected by condensation and the liquid leaking from the evaporation part from mixing, the evaporation part has a leakage liquid recovery part for recovering the liquid leaking from the hydrophobic porous membrane, and the condensation is performed. More preferably, the part has a condensed water recovery part for recovering the condensed water, and the leaked liquid recovery part and the condensed water recovery part are separated. By adopting such a structure, even if the waterproof property of the PTFE porous body is lowered and leakage of treated water occurs, it is easy to avoid mixing water before treatment into the treated water.

本発明の造水装置に用いられるシートモジュールの一例として、処理水の流路、PTFE多孔質体シート、凝結水が生成する間隙、金属板など不透過シート、冷却水の流路からなり、これらが前記の順で層状に重なり、この層が何層も積み重ねられた構造を挙げることができる。しかし、シートモジュールの場合は、蒸発部と凝結部を独立した領域に設ける構造を製造しにくい問題がある。   As an example of the sheet module used in the fresh water generator of the present invention, it consists of a flow path of treated water, a porous PTFE sheet, a gap where condensed water is generated, a metal plate, an impermeable sheet, and a flow path of cooling water. Can be mentioned in the above-mentioned order in the form of a layer, and this layer can be stacked several times. However, in the case of a sheet module, there is a problem that it is difficult to manufacture a structure in which the evaporation portion and the condensation portion are provided in independent regions.

図1は、本発明の造水装置の一例を模式的に示す一部切り欠き断面図である。この造水装置は、疎水性多孔質膜からなる中空糸が複数本束ねられて形成されている蒸発部1と、金属性のパイプが複数本束ねられた束を複数有する凝結部2が、蒸発部1を中心にして、凝結部2がその外側になるように、外筒21の中に設けられている。すなわち、蒸発部及び凝結部は、独立した領域に配置されている。外筒21内の空間3は、蒸発部1と凝結部2が共に接する空間であるので請求項1における気相部1に該当するとともに気相部2にも該当する。   FIG. 1 is a partially cutaway cross-sectional view schematically showing an example of the fresh water generator of the present invention. This fresh water generator has an evaporation section 1 formed by bundling a plurality of hollow fibers made of a hydrophobic porous membrane, and a condensing section 2 having a plurality of bundles formed by bundling a plurality of metallic pipes. Centering on the part 1, it is provided in the outer cylinder 21 so that the condensing part 2 may become the outer side. That is, the evaporation part and the condensing part are arrange | positioned in the independent area | region. The space 3 in the outer cylinder 21 corresponds to the gas phase portion 1 and also to the gas phase portion 2 in claim 1 since it is a space where the evaporation portion 1 and the condensation portion 2 are in contact with each other.

蒸発部1(中空糸)の両端は、処理水室5及び6にそれぞれ連結されており、処理水室5には配管4、処理水室6には配管7が設けられている。処理水は加熱されて配管4、処理水室5を通り蒸発部1(中空糸)に通液されている。蒸発部1を形成する中空糸内腔は処理水が流れるので、請求項1における液相部に該当する。蒸発部1(中空糸)に通液された処理水中の水は水蒸気として疎水性多孔質膜を透過し、空間3(気相部1)内に放出される。中空糸内腔を通過した処理水は、処理水室6、配管7を通り排出される。   Both ends of the evaporation unit 1 (hollow fiber) are connected to the treated water chambers 5 and 6, respectively. The treated water chamber 5 is provided with a pipe 4 and the treated water chamber 6 is provided with a pipe 7. The treated water is heated and passed through the pipe 4 and the treated water chamber 5 and passed through the evaporation section 1 (hollow fiber). Since the treated water flows in the hollow fiber lumen forming the evaporation part 1, it corresponds to the liquid phase part in claim 1. The water in the treated water passed through the evaporation part 1 (hollow fiber) permeates through the hydrophobic porous membrane as water vapor and is released into the space 3 (gas phase part 1). The treated water that has passed through the hollow fiber lumen is discharged through the treated water chamber 6 and the pipe 7.

凝結部2を構成する金属性のパイプの束は、処理水室5内及び処理水室6内を通過するように設けられている。この金属性のパイプ内には冷却水が、図中の矢印に示す方向で流されており、空間3(気相部1)内に放出された水蒸気は、冷却水が通るパイプ表面(冷却面)により冷却され凝結する。   A bundle of metallic pipes constituting the condensing part 2 is provided so as to pass through the treated water chamber 5 and the treated water chamber 6. In this metallic pipe, cooling water flows in the direction indicated by the arrow in the figure, and the water vapor released into the space 3 (gas phase portion 1) passes through the pipe surface (cooling surface) through which the cooling water passes. ) To cool and condense.

この図の造水装置は、処理水室5が上で、処理水室6が下になるように鉛直に設けられている。従って、パイプ表面に凝結された凝結水は下に移動し、空間3の下部に設けられた凝結水回収部10に貯留する。凝結水回収部10には、配管11が設けられており、貯留された凝結水(淡水)は、適時、配管11から回収され、淡水として利用される。   The fresh water generator of this figure is provided vertically so that the treated water chamber 5 is on the top and the treated water chamber 6 is on the bottom. Accordingly, the condensed water condensed on the pipe surface moves downward and is stored in the condensed water recovery unit 10 provided in the lower portion of the space 3. The condensed water recovery unit 10 is provided with a pipe 11, and the stored condensed water (fresh water) is recovered from the pipe 11 at appropriate times and used as fresh water.

この図の造水装置は、蒸発部1の下部、処理水室6上に、漏出液回収部8が設けられている。漏出液回収部8は漏出液を貯留するための容器であり、蒸発部1から処理水の漏出があっても漏出液は、中空糸を伝わって漏出液回収部8内に落下するので、凝結水回収部10に貯留している凝結水と混合することはない。漏出液回収部8に貯留された漏出液(処理水)は、漏出液排出管9により排出される。   In the fresh water generator shown in this figure, a leaked liquid recovery unit 8 is provided below the evaporation unit 1 and on the treated water chamber 6. The leaked liquid recovery unit 8 is a container for storing the leaked liquid, and even if the treated water leaks from the evaporation unit 1, the leaked liquid travels through the hollow fiber and falls into the leaked liquid recovery unit 8. It does not mix with the condensed water stored in the water recovery unit 10. The leaked liquid (treated water) stored in the leaked liquid recovery unit 8 is discharged through the leaked liquid discharge pipe 9.

液相部1に送られた処理水中の水は、水蒸気として空間3中に放出されるが、放出された水蒸気は空間3と接する凝結部の冷却面で冷却されて凝結する。冷却面としては、水蒸気を凝結させるため十分な冷却がされているものであれば、特に限定されず、冷媒に一端が接触し、その一端からの熱伝動により冷却されている板でもよい。しかし、冷却効率を高めるためには、熱伝導率のよい金属等の板や管の一表面を冷却面とし、他の面に冷媒や冷却水等を流して冷却する方法が好ましく挙げられる。前記のように冷媒や冷却水としては、加熱前の処理水が好ましく用いられる。気相部2中の水蒸気は、冷却面により冷却、凝結されて水として回収される   The water in the treated water sent to the liquid phase part 1 is released into the space 3 as water vapor, but the released water vapor is cooled and condensed on the cooling surface of the condensation part in contact with the space 3. The cooling surface is not particularly limited as long as it is sufficiently cooled to condense water vapor, and may be a plate that is in contact with the refrigerant at one end and cooled by heat transmission from the one end. However, in order to increase the cooling efficiency, a method of cooling by making one surface of a metal plate or tube with good thermal conductivity or the surface of the tube a cooling surface and flowing a coolant or cooling water to the other surface is preferable. As described above, treated water before heating is preferably used as the refrigerant and the cooling water. The water vapor in the gas phase part 2 is cooled and condensed by the cooling surface and recovered as water.

図2は、本発明の造水装置の他の例を模式的に示す横断面図である。この例も図1の例と同様に、円筒形の外筒の中に、蒸発部及び凝結部を設け、蒸発部を中心部に、凝結部を蒸発部の周囲に配置している。すなわち、蒸発部及び凝結部は、独立した領域に配置されている。又、図1の例と同様に、蒸発部は、疎水性多孔質膜からなる中空糸の複数により、凝結部は、金属性のパイプ(冷却管)の複数により形成されている。金属性のパイプ内には冷却水が流れ、中空糸内には処理水が流れて、処理水中の水が水蒸気となり中空糸の外表面から気相部1内に放出され、気相部2内の水蒸気が金属性のパイプ(冷却管)により冷却されて凝結する。   FIG. 2 is a cross-sectional view schematically showing another example of the fresh water generator of the present invention. In this example, as in the example of FIG. 1, an evaporation part and a condensation part are provided in a cylindrical outer cylinder, and the evaporation part is arranged at the center and the condensation part is arranged around the evaporation part. That is, the evaporation part and the condensing part are arrange | positioned in the independent area | region. As in the example of FIG. 1, the evaporation part is formed by a plurality of hollow fibers made of a hydrophobic porous membrane, and the condensation part is formed by a plurality of metal pipes (cooling pipes). Cooling water flows in the metallic pipe, treated water flows in the hollow fiber, and the water in the treated water becomes steam and is discharged from the outer surface of the hollow fiber into the gas phase portion 1, and in the gas phase portion 2. The water vapor is cooled and condensed by a metallic pipe (cooling pipe).

この例の造水装置も、中空糸及び冷却管が鉛直になるように設けられている。そして図示されていないが、気相部1の真下には気相部1の横断面と同じ横断面の漏出液回収部が、そして気相部2の真下には気相部2の横断面と同じ横断面の凝結水回収部が、蒸発部(中空糸)からの漏出液が凝結水と混合しないように分離して設けられている。又、図より明らかなように、蒸発部の蒸発面積より凝結部の凝結面積が大きく、大きな透過流束が得られるようにされている。   The fresh water generator of this example is also provided so that the hollow fiber and the cooling pipe are vertical. Although not shown in the figure, a leaked liquid recovery section having the same cross section as that of the gas phase section 1 is provided immediately below the gas phase section 1, and a cross section of the gas phase section 2 is provided immediately below the gas phase section 2. The condensed water recovery part having the same cross section is provided separately so that the leaked liquid from the evaporation part (hollow fiber) does not mix with the condensed water. Further, as is apparent from the figure, the condensation area of the condensation part is larger than the evaporation area of the evaporation part, and a large permeation flux is obtained.

図3は、本発明の造水装置の他の例を模式的に示す図である。この造水装置は、中空糸の束からなる蒸発部と金属のパイプの束からなる凝結部が、並列して設けられている例である。図3(a)は、一つの筒内に蒸発部と凝結部を並列して設けた例であり、図3(b)は、互いに側面で通気可能に連結した2つの円筒内のそれぞれに蒸発部と凝結部を並列して設けた例である。すなわち、蒸発部と凝結部は独立して領域に設けられている。   FIG. 3 is a diagram schematically showing another example of the fresh water generator of the present invention. This fresh water generator is an example in which an evaporation section made up of a bundle of hollow fibers and a condensation section made up of a bundle of metal pipes are provided in parallel. FIG. 3 (a) is an example in which an evaporation part and a condensation part are provided in parallel in one cylinder, and FIG. 3 (b) is an evaporation in each of two cylinders connected to each other so as to allow ventilation. It is the example which provided the part and the condensing part in parallel. That is, the evaporation part and the condensation part are provided independently in the region.

中空糸の内腔を処理水が通り、金属のパイプの内腔を冷却水が通ることは、図1、2の例の場合と同じである。又、この例の造水装置も、中空糸及び冷却管が鉛直になるように設けられている。蒸発部で気相1に放出された水蒸気は、図中の矢印が示すように気相2に移動して、金属のパイプの表面で冷却され凝結し、金属のパイプの表面を伝って凝結部の下部に設けられた凝結水回収部に貯留し、凝結水回収部に設置された配管1により回収され淡水として利用される。   The treatment water passes through the hollow of the hollow fiber and the cooling water passes through the lumen of the metal pipe, as in the example of FIGS. The fresh water generator of this example is also provided so that the hollow fiber and the cooling pipe are vertical. The water vapor released to the gas phase 1 in the evaporation part moves to the gas phase 2 as indicated by the arrow in the figure, and is cooled and condensed on the surface of the metal pipe, and then condenses on the surface of the metal pipe. Is stored in a condensed water recovery unit provided in the lower part of the water, and is recovered by the pipe 1 installed in the condensed water recovery unit and used as fresh water.

蒸発部の下部には漏出液回収部が設けられている。中空糸等から処理水が漏出した場合、漏出液は中空糸等を伝って漏出液回収部に貯留し、漏出液回収部に設置された配管2により排出される。   A leaked liquid recovery unit is provided below the evaporation unit. When treated water leaks from a hollow fiber or the like, the leaked liquid travels through the hollow fiber or the like and is stored in the leaked liquid recovery unit, and is discharged through the pipe 2 installed in the leaked liquid recovery unit.

図3(c)は、図3(a)の例の、漏出液回収部、凝結水回収部及びその近傍の断面図である。この図から明らかなように、凝結水回収部と漏出液回収部は分離されており、凝結水に漏出液が混合しない構造となっている。   FIG.3 (c) is sectional drawing of the leaking liquid collection | recovery part, condensed water collection | recovery part, and its vicinity of the example of Fig.3 (a). As is apparent from this figure, the condensed water recovery part and the leaked liquid recovery part are separated, and the leaked liquid is not mixed with the condensed water.

図4は、本発明の造水装置の他の例を模式的に示す図である。この例では、中空糸の束からなる蒸発部と金属のパイプの束からなる凝結部が、異なる外筒内に設けられている例である。蒸発部が設けられている外筒と凝結部が設けられている外筒は、通気管で通気可能に連結されている。すなわち、蒸発部と凝結部は独立して領域に設けられている。   FIG. 4 is a diagram schematically showing another example of the fresh water generator of the present invention. In this example, an evaporating part composed of a bundle of hollow fibers and a condensing part composed of a bundle of metal pipes are provided in different outer cylinders. The outer cylinder in which the evaporation part is provided and the outer cylinder in which the condensation part is provided are connected by a ventilation pipe so as to allow ventilation. That is, the evaporation part and the condensation part are provided independently in the region.

中空糸の内腔を処理水が通り、金属のパイプの内腔を冷却水が通ることは、前記の例の場合と同じである。図中の矢印(1)は処理水の流れを、矢印(2)は冷却水の流れを示す。蒸発部で気相1に放出された水蒸気は、通気管を通り気相2に移動して、金属のパイプの表面で冷却され凝結する。   The treatment water passes through the hollow of the hollow fiber and the cooling water passes through the lumen of the metal pipe as in the above example. Arrow (1) in the figure indicates the flow of treated water, and arrow (2) indicates the flow of cooling water. The water vapor released to the gas phase 1 in the evaporation section moves to the gas phase 2 through the vent pipe, and is cooled and condensed on the surface of the metal pipe.

図4(a)は、この例の造水装置の平面図であり、図4(b)は、側面図である。図4(b)に示されるように、蒸発部及び凝結部はいずれも下方への傾斜部分を有しており、その底部(最下部)には、凝結水回収管又は漏出液排出管を有している。凝結部で生じた凝結水は、傾斜により底部に移動し、凝結水回収管から回収され淡水として利用される。又、中空糸等から処理水が漏出した場合、漏出液は傾斜により底部に移動し、漏出液排出管から排出される。従って、凝結水に漏出液が混合しない構造となっている。   Fig.4 (a) is a top view of the fresh water generator of this example, and FIG.4 (b) is a side view. As shown in FIG. 4 (b), both the evaporating part and the condensing part have a downward inclined part, and the bottom part (lowermost part) has a condensed water recovery pipe or a leakage liquid discharge pipe. is doing. Condensed water generated in the condensing part moves to the bottom due to the inclination, and is recovered from the condensed water recovery pipe and used as fresh water. Further, when the treated water leaks from the hollow fiber or the like, the leaked liquid moves to the bottom due to the inclination and is discharged from the leaked liquid discharge pipe. Therefore, the leakage liquid is not mixed with the condensed water.

参考例1
孔径2.0μm、開孔率79%の延伸PTFEの多孔質体(住友電工製PTFE多孔質体中空糸ポアフロンTB−2311−200)からなり、外径2.3mm、内径1.1mmである中空糸を、疎水性多孔質体として用いた。この中空糸の内腔に初期温度(中空糸の入口の温度)75℃の海水を流して、中空糸の外表面から気相部に放出される水蒸気を、氷水で冷やしたステンレス容器の内面で凝結させて回収した。回収した水の重量を、疎水性多孔質中空糸の内表面積および単位時間当たりに換算した値を透過流束とした。
Reference example 1
It is made of expanded PTFE porous material (PTFE porous material hollow fiber poreflon TB-2311-200 manufactured by Sumitomo Electric Industries) having a pore size of 2.0 μm and an open area ratio of 79%, and has an outer diameter of 2.3 mm and an inner diameter of 1.1 mm. The yarn was used as a hydrophobic porous body. By flowing seawater with an initial temperature (temperature of the hollow fiber inlet) of 75 ° C. through the lumen of the hollow fiber, water vapor released from the outer surface of the hollow fiber to the gas phase part is cooled on the inner surface of the stainless steel container cooled with ice water. It was condensed and collected. A value obtained by converting the weight of the collected water into the inner surface area and unit time of the hydrophobic porous hollow fiber was defined as a permeation flux.

疎水性多孔質中空糸の内表面積(蒸発面積)と、ステンレス容器の内面の面積(凝結面積)の比率(凝結面積/蒸発面積)を様々に変えてその透過流束を測定した。図5は、この実験により得られた透過流束と、凝結面積/蒸発面積との関係を示すグラフである。   The permeation flux was measured by varying the ratio (condensation area / evaporation area) of the inner surface area (evaporation area) of the hydrophobic porous hollow fiber to the inner surface area (condensation area) of the stainless steel container. FIG. 5 is a graph showing the relationship between the permeation flux obtained by this experiment and the condensation area / evaporation area.

図5をみると、凝結面積/蒸発面積に対する透過流束の変化には、その変化の傾きから、大きく凝結面積/蒸発面積が1.2未満の領域A、6を超える領域C、その間の領域Bの3つの領域に分けることができ、1.2未満の領域A及び6を超える領域Cでは傾きが小さい。領域Aでは蒸発面積に対する凝結面積の比が小さいためにせっかく蒸発しても凝結が律速になり淡水の回収が進みにくく、領域Cでは凝結能力は十分であるが蒸発がそれに追いつかず蒸発速度が律速になり淡水の回収が進みにくくなると考えられる。   Referring to FIG. 5, the change in the permeation flux with respect to the condensation area / evaporation area is based on the slope of the change, and the area A where the condensation area / evaporation area is less than 1.2, the area C exceeding 6, and the area in between The region A can be divided into three regions B, and the region A less than 1.2 and the region C exceeding 6 have a small inclination. In the region A, the ratio of the condensation area to the evaporation area is small, so even if it evaporates, the condensation is rate-determined and the recovery of fresh water is difficult to proceed. In the region C, the condensation ability is sufficient, but the evaporation cannot catch up with it and It is thought that the recovery of fresh water is difficult to proceed.

図5の結果から、高い透過流束を得るためには、凝結面積/蒸発面積は1.2以上が好ましいことが示されている。一方、凝結面積を大きくすると設備が大型化する。凝結面積/蒸発面積が6を超える領域Cでは、設備が大型化する割には、透過流束の向上は小さくさらに凝結面積/蒸発面積を大きくしても透過流束の値は飽和する傾向がある。従って、全体の効率を考えると、凝結面積/蒸発面積は6以下が好ましい。   The result of FIG. 5 shows that the condensation area / evaporation area is preferably 1.2 or more in order to obtain a high permeation flux. On the other hand, if the condensation area is increased, the equipment becomes larger. In the region C where the condensation area / evaporation area exceeds 6, the permeation flux value tends to saturate even if the condensation area / evaporation area is increased, although the improvement in the permeation flux is small, although the size of the facility increases. is there. Therefore, considering the overall efficiency, the condensation area / evaporation area is preferably 6 or less.

なお、凝結効率が蒸発効率より数倍低い原因は次のように考えられる。蒸発が起こる疎水性多孔質膜内面の気液界面では水蒸気が発生する際の気化熱が奪われ局所的に水温が下がっても温海水の流れによって新しい温水が供給されて温度は常時回復される。一方、凝結面では逆に水蒸気が水になる際に気化熱を放出するため、凝結面の温度は上昇するが金属面の裏側の冷却水に熱が逃げるまでには、金属壁の熱伝導を介する上に、凝結面上に生成した水は通常自重で水滴として流れていくまでそこに停滞することになり、常時更新される蒸発面に比べて効率が悪いためと考えられる。   The reason why the condensation efficiency is several times lower than the evaporation efficiency is considered as follows. At the gas-liquid interface on the inner surface of the hydrophobic porous membrane where evaporation occurs, even if the heat of vaporization is lost and water temperature drops locally, new warm water is supplied by the flow of warm seawater and the temperature is constantly recovered . On the other hand, on the condensing surface, vaporization heat is released when water vapor becomes water, so the temperature of the condensing surface rises, but before the heat escapes to the cooling water on the back side of the metal surface, the heat conduction of the metal wall is reduced. In addition, the water generated on the condensation surface usually stays there until it flows as water droplets under its own weight, which is considered to be less efficient than the constantly updated evaporation surface.

参考例と同じ中空糸状多孔質膜(TB−2311−200)30本を束ねて内径20mmの塩化ビニル管に収納した蒸発モジュール(蒸発部)と、内径1mm、外径2mmのステンレス管121本を束ねて内径40mmの塩化ビニル管に収納した凝結モジュール(凝結部)を作製し、図6に示すように配置した。蒸発部と凝結部を分ける原理としては図4の場合と同様である。なお、図6(a)は、縦断面を模式的に表す図であり、図6(b)は、横断面を模式的に表す図である。   An evaporation module (evaporation part) in which 30 hollow fiber-like porous membranes (TB-2311-200) same as those in the reference example are bundled and accommodated in a vinyl chloride tube having an inner diameter of 20 mm, and 121 stainless tubes having an inner diameter of 1 mm and an outer diameter of 2 mm. A condensing module (condensation part) bundled and accommodated in a vinyl chloride tube having an inner diameter of 40 mm was produced and arranged as shown in FIG. The principle of separating the evaporation part and the condensation part is the same as in FIG. FIG. 6A is a diagram schematically showing a longitudinal section, and FIG. 6B is a diagram schematically showing a transverse section.

該蒸発モジュールの中空糸状多孔質膜の内腔に、75℃の3.5%塩化ナトリウム水溶液(人工海水)を流束0.2m/sの速度で流し、凝結モジュールのステンレス管の内腔には5℃の冷却水を0.05m/sの流束で流して冷却し、実験開始から30分後に各モジュールに溜まる水を採取した。その後、人工海水に家庭用洗剤(主成分アリキルエーテル硫酸エステルナトリウム)100ppmを添加した以外は前記と同様な実験を行い、30分毎に各モジュールに溜まる水を採取、各モジュールに溜まる水の電気伝導度から塩分濃度を測定した。   A 3.5% sodium chloride aqueous solution (artificial seawater) at 75 ° C. is flowed into the lumen of the hollow fiber-like porous membrane of the evaporation module at a rate of 0.2 m / s, and into the stainless tube lumen of the condensation module. Was cooled by flowing 5 ° C. cooling water at a flux of 0.05 m / s, and water collected in each module was collected 30 minutes after the start of the experiment. Thereafter, an experiment similar to the above was performed except that 100 ppm of household detergent (main component allylether ether sulfate sodium salt) was added to the artificial seawater. Water collected in each module was collected every 30 minutes, and the electricity stored in each module was collected. The salinity was measured from the conductivity.

運転開始から120分後(家庭用洗剤の添加から90分後)、蒸発モジュールを実験系から外して、2−プロパノールに5分浸漬後、水道水に5分浸漬し、水を交換して30分さらに放置した後に、60℃恒温槽で一晩乾燥させた。蒸発モジュールを再度実験系にとりつけ人工海水(家庭用洗剤無し)による上記実験を再度行った。以上の実験における塩分濃度の変化を図7に示す。すなわち、図7は、膜蒸留を行った際に、人工海水に界面活性剤を混ぜて意図的に海水漏れを発生させたとき、その後にモジュールの洗浄によって漏れの回復処理を行ったとき、の前後における蒸発部および凝結部から回収した水の塩分濃度変化を示すグラフである。   120 minutes after the start of operation (90 minutes after the addition of household detergent), the evaporation module is removed from the experimental system, immersed in 2-propanol for 5 minutes, then immersed in tap water for 5 minutes, and the water is changed. The mixture was further left to stand for 60 minutes and then dried overnight in a constant temperature bath at 60 ° C. The above experiment using artificial seawater (no household detergent) was performed again by attaching the evaporation module to the experimental system. The change in salinity concentration in the above experiment is shown in FIG. That is, FIG. 7 shows that when membrane distillation was performed, a surfactant was mixed into artificial seawater to intentionally generate seawater leakage, and then leakage recovery processing was performed by washing the module. It is a graph which shows the salinity concentration change of the water collect | recovered from the evaporation part and condensation part before and behind.

人工海水のみを流している間は、蒸発モジュール内の水から塩分が検出されなかったが、家庭用洗剤を人工海水に入れた後は徐々に塩分が検出されるようになり、人工海水が疎水性多孔質膜の外に漏出したことが示されている。その後、アルコールと水で蒸発モジュールを洗浄すると、蒸発モジュール内に溜まった水からの塩分検出は無くなる。この結果より、簡単な洗浄で蒸発モジュール内の中空糸状疎水性多孔質は容易に保水性を回復していることが示されている。一方、凝結モジュール内の水は実験を通じて塩分を検出しておらず、図6に示す造水装置では蒸発部と凝結部が、独立した領域に設けられているので、蒸発部で塩分(人工海水、処理水)が漏れても生成水(凝結水)とは混合しないことが示されている。   While only artificial seawater was flowing, salt was not detected from the water in the evaporation module. However, salt was gradually detected after putting household detergent into artificial seawater, and artificial seawater became hydrophobic. It was shown that it leaked out of the porous porous membrane. Thereafter, when the evaporation module is washed with alcohol and water, salt detection from the water accumulated in the evaporation module is lost. From this result, it is shown that the hollow fiber-like hydrophobic porous material in the evaporation module easily recovers the water retention by simple cleaning. On the other hand, the water in the condensation module has not detected salinity through experiments, and in the desalination apparatus shown in FIG. 6, the evaporation unit and the condensation unit are provided in independent regions. It is shown that even if the treated water) leaks, it does not mix with the produced water (condensed water).

1. 蒸発部
2. 凝結部
3. 空間
4.7. 配管
5.6. 処理水室
8. 漏出液回収部
9. 漏出液排出管
10. 凝結水回収部
21. 外筒
1. Evaporator 2 2. Condensation part Space 4.7. Piping 5.6. Treated water chamber 8. Leakage liquid recovery unit9. Leakage liquid discharge pipe 10. Condensed water recovery unit 21. Outer cylinder

Claims (6)

処理水が流れる液相部と、気相部1と、前記液相部及び気相部1を隔てる疎水性多孔質膜とからなる蒸発部、
冷却面及び前記冷却面と接する気相部2を含む凝結部、及び、
前記液相部に処理水を送液する送液手段を有し、
前記気相部1と気相部2は、互いに通気可能に連結されており、
前記処理水中の水は、前記疎水性多孔質膜が気相部1と接する蒸発面より水蒸気として放出され、前記冷却面により冷却、凝結されて水として回収される造水装置であって、
凝結されて回収される水と前記蒸発部より漏出する液が混合しないように、蒸発部と凝結部が、独立した領域に設けられていることを特徴とする造水装置。
An evaporation part comprising a liquid phase part through which treated water flows, a gas phase part 1 and a hydrophobic porous membrane separating the liquid phase part and the gas phase part 1;
A condensing part including a cooling surface and a gas phase part 2 in contact with the cooling surface; and
Having liquid feeding means for feeding treated water to the liquid phase part;
The gas phase part 1 and the gas phase part 2 are connected to each other so as to be able to vent.
The water in the treated water is a fresh water generating device in which the hydrophobic porous membrane is discharged as water vapor from an evaporation surface in contact with the gas phase portion 1, cooled by the cooling surface, condensed, and recovered as water,
A fresh water generator characterized in that an evaporating part and a condensing part are provided in an independent region so that water condensed and recovered and liquid leaking from the evaporating part are not mixed.
前記蒸発部が、中空糸状に形成された疎水性多孔質膜を束ねて収納し、中空糸内腔に処理水が通り、中空糸表面が蒸発面であることを特徴とする請求項1に記載の造水装置。   The said evaporation part bundles and stores the hydrophobic porous membrane formed in the shape of a hollow fiber, treated water passes through the hollow fiber lumen, and the hollow fiber surface is an evaporation surface. Fresh water generator. 前記冷却面の面積が、前記蒸発面の面積の1.2〜6倍であることを特徴とする請求項1又は請求項2に記載の造水装置。   The fresh water generating apparatus according to claim 1 or 2, wherein an area of the cooling surface is 1.2 to 6 times an area of the evaporation surface. 前記疎水性多孔質膜が、ポリテトラフルオロエチレンの延伸多孔質膜であることを特徴とする請求項1ないし請求項3のいずれか1項に記載の造水装置。   The fresh water generating device according to any one of claims 1 to 3, wherein the hydrophobic porous membrane is a stretched porous membrane of polytetrafluoroethylene. 前記送液手段が、処理水を、凝結部で生じた水蒸気の凝結熱により加熱する手段を有することを特徴とする請求項1ないし請求項4のいずれか1項に記載の造水装置。   The fresh water generator according to any one of claims 1 to 4, wherein the liquid feeding means includes means for heating the treated water by the condensation heat of water vapor generated in the condensation part. 請求項1ないし請求項4のいずれか1項に記載の造水装置、及び、前記送液手段へ送液する処理水を太陽光による熱で加熱する太陽光加熱装置を有することを特徴とする造水システム。   5. A water freshening device according to claim 1, and a solar heating device that heats treated water to be fed to the liquid feeding means with heat from sunlight. Fresh water system.
JP2010285796A 2010-12-22 2010-12-22 Fresh water generator, and fresh water generation system Pending JP2012130874A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010285796A JP2012130874A (en) 2010-12-22 2010-12-22 Fresh water generator, and fresh water generation system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010285796A JP2012130874A (en) 2010-12-22 2010-12-22 Fresh water generator, and fresh water generation system

Publications (1)

Publication Number Publication Date
JP2012130874A true JP2012130874A (en) 2012-07-12

Family

ID=46647117

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010285796A Pending JP2012130874A (en) 2010-12-22 2010-12-22 Fresh water generator, and fresh water generation system

Country Status (1)

Country Link
JP (1) JP2012130874A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102013220199A1 (en) * 2013-10-07 2015-04-09 Wolfgang Heinzl Membrane distillation apparatus and method for membrane distillation
WO2017080478A1 (en) * 2015-11-11 2017-05-18 重庆润泽医药有限公司 Polytetrafluoroethylene fiber membrane
CN107043144A (en) * 2017-03-24 2017-08-15 曹志平 A kind of method and device desalinized seawater
WO2021015162A1 (en) * 2019-07-25 2021-01-28 株式会社ササクラ Membrane distillation type distillation apparatus

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102013220199A1 (en) * 2013-10-07 2015-04-09 Wolfgang Heinzl Membrane distillation apparatus and method for membrane distillation
DE102013220199B4 (en) * 2013-10-07 2015-08-13 Wolfgang Heinzl Membrane distillation apparatus and method for membrane distillation
WO2017080478A1 (en) * 2015-11-11 2017-05-18 重庆润泽医药有限公司 Polytetrafluoroethylene fiber membrane
CN107043144A (en) * 2017-03-24 2017-08-15 曹志平 A kind of method and device desalinized seawater
WO2021015162A1 (en) * 2019-07-25 2021-01-28 株式会社ササクラ Membrane distillation type distillation apparatus

Similar Documents

Publication Publication Date Title
JP6303009B2 (en) Vacuum membrane distillation fresh water generator for ships
Hussain et al. Membrane distillation: recent technological developments and advancements in membrane materials
KR101936159B1 (en) Seawater desalination system using air gap membrane distillation (agmd) module of hollow fiber type, and method for the same
Rahimpour et al. Water treatment by renewable energy-driven membrane distillation
PT2094376E (en) Membrane distillation method for the purification of a liquid
JP2011167628A (en) Hollow fiber membrane module, membrane distillation type fresh water generator, and membrane distillation type desalination apparatus
KR101459702B1 (en) Membrane distillation apparatus by Using waste heat recovery
US20170361277A1 (en) Vacuumed gap membrane distillation (vagmed) module, multi-stage vagmed systems, and vagmed processes
JP2012130874A (en) Fresh water generator, and fresh water generation system
CN103221118A (en) Osmotically driven membrane processes and systems and methods for draw solute recovery
JP2013066881A (en) Membrane distillation solar water production system
KR20170045383A (en) Method and device for obtaining purified water
CN207537175U (en) A kind of salting liquid desalter
US10202292B2 (en) System and method of water purification utilizing an ionomer membrane
JP2012130881A (en) Water making apparatus
JP2014034022A (en) Fresh water generator
CN202638284U (en) Tubular membrane distillator capable of enabling liquid not to contact with membrane
JP2012130882A (en) Water making system
JP7159344B2 (en) Membrane distillation module and membrane distillation apparatus
JP2013034927A (en) Fresh water generator, and fresh water producing method
CN220345485U (en) Membrane distillation device and membrane distillation system with same
RU2612701C1 (en) Membrane distillation module and method of mineralized water desalination
US20230234861A1 (en) Membrane wastewater treatment system and method thereof
US20240058759A1 (en) Multi-stage air gap membrane distillation system and process
US20240058761A1 (en) Multi-stage permeate gap membrane distillation system and process