JP2012130583A - Intravital observation device - Google Patents
Intravital observation device Download PDFInfo
- Publication number
- JP2012130583A JP2012130583A JP2010286684A JP2010286684A JP2012130583A JP 2012130583 A JP2012130583 A JP 2012130583A JP 2010286684 A JP2010286684 A JP 2010286684A JP 2010286684 A JP2010286684 A JP 2010286684A JP 2012130583 A JP2012130583 A JP 2012130583A
- Authority
- JP
- Japan
- Prior art keywords
- light
- living body
- shielding member
- light emitting
- vivo observation
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000003384 imaging method Methods 0.000 claims abstract description 39
- 238000001727 in vivo Methods 0.000 claims description 38
- 238000009792 diffusion process Methods 0.000 claims description 11
- 230000003287 optical effect Effects 0.000 claims description 8
- 210000004204 blood vessel Anatomy 0.000 description 13
- 238000007689 inspection Methods 0.000 description 9
- 238000000034 method Methods 0.000 description 7
- 238000005192 partition Methods 0.000 description 7
- 239000000758 substrate Substances 0.000 description 7
- 238000001574 biopsy Methods 0.000 description 5
- 230000035945 sensitivity Effects 0.000 description 5
- 210000001367 artery Anatomy 0.000 description 4
- 230000000903 blocking effect Effects 0.000 description 4
- 210000003462 vein Anatomy 0.000 description 4
- 239000002872 contrast media Substances 0.000 description 3
- 230000017525 heat dissipation Effects 0.000 description 3
- 230000010365 information processing Effects 0.000 description 3
- 102000001554 Hemoglobins Human genes 0.000 description 2
- 108010054147 Hemoglobins Proteins 0.000 description 2
- 238000000149 argon plasma sintering Methods 0.000 description 2
- 230000005540 biological transmission Effects 0.000 description 2
- 239000008280 blood Substances 0.000 description 2
- 210000004369 blood Anatomy 0.000 description 2
- 230000017531 blood circulation Effects 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 238000004049 embossing Methods 0.000 description 2
- 230000005284 excitation Effects 0.000 description 2
- 238000002073 fluorescence micrograph Methods 0.000 description 2
- 230000001678 irradiating effect Effects 0.000 description 2
- 239000002245 particle Substances 0.000 description 2
- 210000001519 tissue Anatomy 0.000 description 2
- 230000009466 transformation Effects 0.000 description 2
- DHKHKXVYLBGOIT-UHFFFAOYSA-N 1,1-Diethoxyethane Chemical compound CCOC(C)OCC DHKHKXVYLBGOIT-UHFFFAOYSA-N 0.000 description 1
- 239000011354 acetal resin Substances 0.000 description 1
- 210000000988 bone and bone Anatomy 0.000 description 1
- 238000001514 detection method Methods 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 238000002594 fluoroscopy Methods 0.000 description 1
- 239000005337 ground glass Substances 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 239000011159 matrix material Substances 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 239000003973 paint Substances 0.000 description 1
- 239000012466 permeate Substances 0.000 description 1
- 229920006324 polyoxymethylene Polymers 0.000 description 1
- 239000011347 resin Substances 0.000 description 1
- 229920005989 resin Polymers 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
Landscapes
- Measurement Of The Respiration, Hearing Ability, Form, And Blood Characteristics Of Living Organisms (AREA)
Abstract
Description
本発明は、任意の場所で容易に、リアルタイムの生体透視画像を取得することができる生体内観察装置に関する。 The present invention relates to an in-vivo observation apparatus that can easily acquire a real-time bioscopic fluoroscopic image at an arbitrary place.
従来の生体内観察装置としては、特許文献1に示すように、血管造影剤が投与された被検体に対して特定の波長域の励起光と可視光とを交互に照射し、撮像手段によって前記励起光が照射された蛍光画像と通常画像とを交互に取得し、取得した蛍光画像を所定の閾値により閾値処理して血管画像を抽出し、前記取得した通常画像に前記抽出した血管画像を重畳させた合成画像を作成する技術が開示されている。 As a conventional in-vivo observation device, as shown in Patent Document 1, the subject to which an angiographic contrast agent is administered is alternately irradiated with excitation light and visible light in a specific wavelength range, and the imaging means The fluorescence image irradiated with the excitation light and the normal image are alternately acquired, and the acquired fluorescence image is thresholded with a predetermined threshold to extract a blood vessel image, and the extracted blood vessel image is superimposed on the acquired normal image A technique for creating a synthesized image is disclosed.
しかしながら、当該技術では、被検体への血管造影剤の投与が必要であり、また、複雑な画像処理が必要である。 However, in this technique, it is necessary to administer an angiographic contrast agent to a subject, and complicated image processing is required.
ここで本願発明者は、血管造影剤を用途することなく又は複雑な画像処理を行うことなく、生体透視画像を取得可能な生体内観察装置の開発を進めている。この生体内観察装置は、所定波長の光を生体に照射して、当該生体からの透過光を受光することによって生体内の例えば血管を撮像するように構成されている。ここで、例えば800〜1000nmの近赤外光は生体組織を透過するので、CCDカメラ等の撮像装置が撮像した画像は透過光を受けて白く表されるが、血管部分は血液中のヘモグロビンに近赤外光が吸収されるため、黒く表される。 Here, the inventor of the present application is developing an in-vivo observation apparatus that can acquire a bioperspective image without using an angiographic contrast agent or performing complicated image processing. This in-vivo observation device is configured to image, for example, blood vessels in the living body by irradiating the living body with light of a predetermined wavelength and receiving transmitted light from the living body. Here, for example, near-infrared light of 800 to 1000 nm is transmitted through living tissue, so an image captured by an imaging device such as a CCD camera is displayed white by receiving transmitted light, but a blood vessel portion is represented by hemoglobin in blood. Since near infrared light is absorbed, it appears black.
上記生体内観察装置を用いて生体内を観察しようとした場合には、例えば生体全体を検査する全体検査と、生体の局所領域を検査する局所検査とを行う用途が考えられる。 When an attempt is made to observe the inside of a living body using the above in-vivo observation apparatus, for example, there are conceivable uses in which an entire inspection for inspecting the entire living body and a local inspection for inspecting a local region of the living body are considered.
しかしながら、全体検査及び局所検査の両方において同一構成の装置を用いる場合には、全体検査に仕様を合わせておく必要があり、局所検査を行うに当たり、局所領域以外から透過した光量が過大となり、所望の局所領域に起因する透過光を正確に検出することができず、結果として局所検査が不正確になってしまうという問題がある。 However, when using the same configuration for both the overall inspection and the local inspection, it is necessary to match the specifications to the overall inspection, and in performing the local inspection, the amount of light transmitted from other than the local area becomes excessive, There is a problem in that transmitted light caused by the local region of the light cannot be accurately detected, and as a result, the local inspection becomes inaccurate.
そこで本発明は、上記問題点を一挙に解決すべくなされたものであって、簡単な装置構成により、手や足等の所定部位等の生体の局所領域に対して光を照射できるようにするとともに、当該生体の局所領域の生体透視画像を好適に取得できるようにすることをその主たる所期課題とするものである。 Accordingly, the present invention has been made to solve the above-mentioned problems all at once, and enables light to be irradiated to a local region of a living body such as a predetermined part such as a hand or a foot with a simple device configuration. At the same time, it is a main aim of the present invention to make it possible to suitably obtain a bioscopic image of a local region of the living body.
すなわち本発明に係る生体内観察装置は、生体配置領域を向く発光面を有し、当該生体配置領域にある生体に対して光を照射する面発光部と、前記生体配置領域に対して前記面発光部とは反対側に設けられ、前記生体配置領域にある生体を透過した光を受光して画像データを出力する撮像部と、前記面発光部に対して着脱可能に設けられ、前記発光面から出る光の一部を遮る遮光部材とを具備することを特徴とする。 That is, the in-vivo observation device according to the present invention has a light emitting surface facing the living body placement region, a surface light emitting unit that irradiates light to the living body in the living body placement region, and the surface with respect to the living body placement region. An imaging unit that is provided on the opposite side of the light emitting unit, receives light transmitted through the living body in the living body arrangement region and outputs image data, and is detachably provided to the surface light emitting unit, and the light emitting surface And a light shielding member that blocks part of the light emitted from the light source.
このようなものであれば、発光面から出る光の一部を遮る遮光部材を設けているので、生体配置領域における光照射範囲を狭めることができ、生体の局所領域に対して光を照射できる。また、生体の局所領域に対して光を照射できるので、生体の局所領域の生体透視画像を好適に取得することができる。さらに、遮光部材が面発光部に対して着脱可能であることから、用途に応じて、例えば手全体などの生体全体の生体透視画像を取得する又は指などの生体の局所領域の生体透視画像を取得することを遮光部材の取り付け及び取り外しによって簡単に切り換えることができる。その上、特別な技術や経験を必要とせずに、誰でも容易に生体内の異物や血管を観察することができる。X線を使用せずに生体内を観察することができるので、長時間光照射しても人体に無害であり、また、単に光を照射するだけであるので、血行を確認するに際し被験者に苦痛を与えることはない。加えて、本発明は容易に小型化できるので、本生体内観察装置を手術室内に持ち込んで、リアルタイムで生体内の観察を行いながら、各種手術を行うこともできる。 If it is such, since the light shielding member which shields a part of light emitted from the light emitting surface is provided, the light irradiation range in the living body arrangement region can be narrowed, and light can be irradiated to the local region of the living body. . Moreover, since light can be irradiated to the local area | region of a biological body, the biopsy image of the local area | region of a biological body can be acquired suitably. Furthermore, since the light shielding member can be attached to and detached from the surface light emitting unit, a biopsy image of the whole living body such as the whole hand is acquired or a biopsy image of a local region of the living body such as a finger is obtained depending on the use. Acquisition can be easily switched by attaching and detaching the light shielding member. In addition, anyone can easily observe foreign bodies and blood vessels in the living body without requiring special techniques or experience. Since the inside of the living body can be observed without using X-rays, it is harmless to the human body even if light irradiation is performed for a long time, and because it is merely light irradiation, it is painful to the subject when confirming blood circulation. Never give. In addition, since the present invention can be easily miniaturized, it is possible to carry out various operations while bringing the in-vivo observation apparatus into the operating room and performing in-vivo observation in real time.
前記撮像部に対して遮光部材により遮られない光を受光させるためには、前記遮光部材が、前記発光面からの光を遮る遮光部と、前記発光面からの光を生体配置領域側に透過させる開口部とを有しており、前記開口部の開口中心が前記撮像部の光軸上又はその近傍となるように、前記遮光部材が前記面光源に対して着脱可能に取り付けられるものであることが望ましい。 In order for the imaging unit to receive light that is not blocked by the light blocking member, the light blocking member transmits the light from the light emitting surface to the living body placement region side, and a light blocking unit that blocks light from the light emitting surface. And the light-shielding member is detachably attached to the surface light source so that the opening center of the opening is on or near the optical axis of the imaging unit. It is desirable.
遮光部材を面光源に対して着脱可能に構成した場合には、前記遮光部材を前記面光源に対して位置決めして固定する固定機構を有することが望ましい。これならば遮光部材を面光源に対して固定した際に位置決めされることから、撮像部に対して遮光部材が位置決めされることになり、各検査において撮像部と遮光部材の位置決めを一々行う必要が無くなる。 When the light shielding member is configured to be detachable from the surface light source, it is desirable to have a fixing mechanism that positions and fixes the light shielding member with respect to the surface light source. In this case, since the light shielding member is positioned when it is fixed to the surface light source, the light shielding member is positioned with respect to the imaging unit, and it is necessary to position the imaging unit and the light shielding member one by one in each inspection. Disappears.
また生体の局所領域の生体透視画像を取得する場合において、各検査で撮像位置が異なることを防止するためには、前記遮光部材に設けられており、前記生体を前記遮光部材に対して位置決めして、前記遮光部材に遮られない光を前記生体の所定部位に照射させる位置決め部材を有することが望ましい。 In addition, when acquiring a fluoroscopic image of a local area of a living body, in order to prevent the imaging position from being different in each examination, the light shielding member is provided, and the living body is positioned with respect to the light shielding member. It is desirable to have a positioning member that irradiates a predetermined part of the living body with light that is not blocked by the light blocking member.
面発光部の具体的な実施の態様としては、前記面発光部が、前記生体に対して800〜1000nmの波長領域に波長ピークを有する光を照射するものであることが望ましい。このように、800〜1000nmの近赤外光は生体組織を透過するので、CCDカメラ等の撮像装置が撮像した画像は透過光を受けて白く表されるが、血管部分は血液中のヘモグロビンに近赤外光が吸収されるため、黒く表される。このような近赤外光の特性を利用して静脈を撮像する技術は従来知られているが、近赤外光を利用して動脈を撮像する技術は知られていない。すなわち、例えば、指の背面から近赤外光を照射すると、指の内部で光が散乱しながら、指の腹側に抜けてくるが、指の深部にある骨や動脈は消され、皮下にある静脈だけが撮像されるとされている。 As a specific embodiment of the surface light emitting unit, it is desirable that the surface light emitting unit irradiates the living body with light having a wavelength peak in a wavelength region of 800 to 1000 nm. In this way, near-infrared light of 800 to 1000 nm is transmitted through living tissue, so an image captured by an imaging device such as a CCD camera is displayed white by receiving transmitted light, but a blood vessel portion is represented by hemoglobin in blood. Since near infrared light is absorbed, it appears black. A technique for imaging a vein using such characteristics of near-infrared light is conventionally known, but a technique for imaging an artery using near-infrared light is not known. That is, for example, when near-infrared light is irradiated from the back of the finger, the light is scattered inside the finger and comes out to the ventral side of the finger, but the bones and arteries in the deep part of the finger are erased, and subcutaneously Only a certain vein is supposed to be imaged.
これに対して、本発明者は、0.4〜10μWの光を受光した際の出力あたりの最低検出光量が0.055μW/ビット以下である特定の感度を有する撮像部を用いることにより、全く予想だにしないことに、静脈のみならず、動脈をも撮像することが可能となることを見出し、本発明を完成させた。 On the other hand, the present inventor completely uses an imaging unit having a specific sensitivity in which the minimum detected light amount per output when receiving 0.4 to 10 μW of light is 0.055 μW / bit or less. Unexpectedly, the inventors have found that not only veins but also arteries can be imaged, and the present invention has been completed.
面発光部の具体的な構造としては、前記面発光部が、複数のLEDと、当該LEDを収容する筐体と、前記筐体において前記LEDの光射出側に設けられ前記発光面を形成する透光部材とを有することが望ましい。ここで透光部材が、入射光を55°以上の角度で発散しうる拡散板を備えていることが好ましい。このようなものであれば、例えば、光源として複数個のLEDが用いられた場合に、複数個のLEDから発せられた光が拡散板で拡散されるので、輝度が均一化され照射ムラが解消された光を観察対象である生体に照射することができる。 As a specific structure of the surface light emitting unit, the surface light emitting unit includes a plurality of LEDs, a housing for housing the LEDs, and a light emitting surface provided on the light emission side of the LEDs in the housing. It is desirable to have a translucent member. Here, the translucent member preferably includes a diffusion plate that can diverge incident light at an angle of 55 ° or more. If this is the case, for example, when a plurality of LEDs are used as the light source, the light emitted from the plurality of LEDs is diffused by the diffusion plate, so that the brightness is uniformed and uneven irradiation is eliminated. It is possible to irradiate a living body as an observation target with the emitted light.
また、本発明に係る生体内観察装置は、前記拡散板と前記生体配置領域との間に設けられた偏光板を備えていることが好ましい。前記拡散板に重ねて偏光板が備わっていることにより、最適な振動方向(透過軸)の偏光を生体に照射することができるので、生体表面における光の反射を低減することができる。 The in-vivo observation device according to the present invention preferably includes a polarizing plate provided between the diffusion plate and the living body placement region. Since the polarizing plate is provided on the diffusion plate, it is possible to irradiate the living body with polarized light in the optimal vibration direction (transmission axis), and thus it is possible to reduce the reflection of light on the surface of the living body.
このような構成の本発明によれば、簡単な装置構成により、手や足等の所定部位等の生体の局所領域に対して光を照射できるようにするとともに、当該生体の局所領域の生体透視画像を好適に取得できるようにすることができる。 According to the present invention having such a configuration, it is possible to irradiate light on a local region of a living body such as a predetermined part such as a hand or a foot with a simple device configuration, and to perform a biopsy of the local region of the living body. An image can be suitably acquired.
以下に本発明の一実施形態について図面を参照して説明する。 An embodiment of the present invention will be described below with reference to the drawings.
本実施形態に係る生体内観察装置100は、例えば手や足等の生体に光を照射して、当該生体から透過する透過光を撮像して、生体内の血管や異物等を示す生体透視画像を取得するものである。 The in-vivo observation device 100 according to the present embodiment irradiates a living body such as a hand or a foot with light, images the transmitted light transmitted from the living body, and displays a biological fluoroscopic image showing blood vessels, foreign bodies, and the like in the living body. Is something to get.
具体的にこのものは、図1及び図2に示すように、生体配置領域Xを向く発光面201を有し、当該生体配置領域Xにある生体に対して光を照射する面発光部2と、生体配置領域Xに対して面発光部2とは反対側に設けられ、生体配置領域Xにある生体を透過した光を受光して画像データを出力する撮像部3とを備えている。本実施形態では、生体配置領域Xを挟んで下側に面発光部2が設けられ、上側に撮像部3が設けられた構成を示している。 Specifically, as shown in FIGS. 1 and 2, this has a light emitting surface 201 facing the living body placement region X, and a surface light emitting unit 2 that irradiates light to the living body in the living body placement region X. The imaging unit 3 is provided on the opposite side of the living body placement region X from the surface light emitting unit 2 and receives light transmitted through the living body in the living body placement region X and outputs image data. In the present embodiment, a configuration in which the surface light emitting unit 2 is provided on the lower side and the imaging unit 3 is provided on the upper side across the living body arrangement region X is shown.
面発光部2は、装置基台100A上に設けられて上方に位置する生体配置領域Xに800〜1000nmの波長領域に波長ピークを有する近赤外光を照射するものである。具体的に面発光部2は、図3〜図5に示すように、複数のLED21が搭載された概略矩形板状をなすLED搭載基板22と、当該LED搭載基板22を収容する平面視概略矩形状をなす筐体23と、この筐体23においてLED21の光射出側に設けられ前記発光面201を形成する透光部材24とを有する。 The surface light emitting unit 2 is provided on the apparatus base 100A and irradiates near-infrared light having a wavelength peak in the wavelength region of 800 to 1000 nm to the living body arrangement region X positioned above. Specifically, as illustrated in FIGS. 3 to 5, the surface light emitting unit 2 includes an LED mounting substrate 22 having a substantially rectangular plate shape on which a plurality of LEDs 21 are mounted, and a rectangular shape in plan view that accommodates the LED mounting substrate 22. The housing 23 has a shape, and a light-transmitting member 24 that is provided on the light emission side of the LED 21 in the housing 23 and forms the light emitting surface 201.
LED搭載基板22は、特に図4及び図5に示すように、装置基台100Aの上面に固定されており、電源部4(図1参照)から電力が供給される。またLED搭載基板22の上面には、複数のLED21が例えば縦横マトリックス状に搭載されている。LED21としては、例えば810nmに波長ピークを有する170mWのLEDを用いることが考えられる。 As shown in FIGS. 4 and 5 in particular, the LED mounting board 22 is fixed to the upper surface of the apparatus base 100A, and power is supplied from the power supply unit 4 (see FIG. 1). A plurality of LEDs 21 are mounted on the upper surface of the LED mounting substrate 22 in, for example, a vertical and horizontal matrix. As the LED 21, for example, it is conceivable to use a 170 mW LED having a wavelength peak at 810 nm.
筐体23は、特に図4に示すように、LED搭載基板22の周囲を囲むように装置基台100Aの上面に固定されており、一側面(本実施形態では奥側に位置する背面)にはLED放熱用の複数の貫通孔23hが形成されている。また、図示はしないが、この複数の貫通孔23h近傍には、LED放熱用の放熱ファンが設けられている。この放熱ファンにも前記電源部4から電力が供給される。 As shown in FIG. 4 in particular, the housing 23 is fixed to the upper surface of the apparatus base 100A so as to surround the LED mounting substrate 22, and is mounted on one side surface (the rear surface located on the back side in this embodiment). A plurality of through-holes 23h for LED heat dissipation are formed. Further, although not shown, a heat dissipation fan for heat dissipation of LEDs is provided in the vicinity of the plurality of through holes 23h. Power is also supplied from the power supply unit 4 to the heat radiating fan.
透光部材24は、筐体23の上部開口に取り付けられるものであり、平面視において筐体23の上部開口と略同一形状をなす概略矩形板状をなすものである。この透光部材24は、複数個のLED21から発せられた光を拡散して、筐体23の上部開口から射出される光の輝度を均一化し、照射ムラのない光を生体に照射する拡散板であり、透光部材24の上面が発光面201となる。 The translucent member 24 is attached to the upper opening of the housing 23 and has a substantially rectangular plate shape that is substantially the same shape as the upper opening of the housing 23 in plan view. The translucent member 24 diffuses light emitted from the plurality of LEDs 21, uniformizes the luminance of light emitted from the upper opening of the housing 23, and irradiates the living body with light without uneven irradiation. The upper surface of the translucent member 24 becomes the light emitting surface 201.
拡散板としては、例えば、光透過性基板の表面にエンボス加工やシボ加工等により凹凸を設け、表面をすりガラス面状に構成したものや、光透過性基板の表面に白色塗料を隙間を空けて塗布したもの、光透過性基板中に光散乱を生じさせる粒子を含有させたもの等の、光散乱を利用して光拡散性が付与された種々のものを用いることができる。このような拡散板のなかでも、アセタール樹脂からなり、入射光を55°以上の角度で発散しうるものが好適に用いられる。このような発散角度を有する拡散板を用いることにより、照射ムラを解消し、検査対象を均一に照射することができる。 As the diffusion plate, for example, the surface of the light-transmitting substrate is provided with irregularities by embossing or embossing, etc., and the surface is configured as a ground glass surface, or white paint is provided on the surface of the light-transmitting substrate with a gap. Various materials that have been imparted with light diffusibility using light scattering, such as those coated and particles containing light scattering particles in a light-transmitting substrate, can be used. Among such diffuser plates, those made of acetal resin and capable of diverging incident light at an angle of 55 ° or more are preferably used. By using a diffusion plate having such a divergence angle, it is possible to eliminate irradiation unevenness and irradiate the inspection object uniformly.
このことを確認するために、φ5mmの穴を開けた遮光板にLEDを嵌め込み、当該遮光板に載せる拡散板の厚さを変えて、LEDの真上における光強度(I)と、2個のLEDを10mmの間隔を空けて並べたときの2個のLEDの中間点の真上における光強度(Im)との比(Im/I)を求めた。当該Im/I値が1に近いほど、照度ムラが解消されることを示す。得られた結果は表1に示した。 In order to confirm this, the LED is fitted into a light shielding plate with a hole of φ5 mm, the thickness of the diffusion plate placed on the light shielding plate is changed, and the light intensity (I) directly above the LED is The ratio (Im / I) to the light intensity (Im) immediately above the midpoint of the two LEDs when the LEDs were arranged at an interval of 10 mm was determined. The closer the Im / I value is to 1, the more the illuminance unevenness is eliminated. The results obtained are shown in Table 1.
この結果、光源から発した光を55°以上の角度で発散できる拡散板を用いた場合、いずれのIm/I値も0.85以上であり、充分な照度ムラ解消効果が確認された。 As a result, when a diffuser plate that can diverge light emitted from the light source at an angle of 55 ° or more was used, all Im / I values were 0.85 or more, and a sufficient illuminance unevenness eliminating effect was confirmed.
また透光部材24の裏面には、複数のLED21から出る光を所定範囲に規定する仕切り板25が設けられている。この仕切り板25は、平面視において透光部材24と同一形状をなすものであり、中央部には前記LED21からの光を外部(上部)に射出するための開口部251が形成されている。このような構成により、前記透光部材24の上面において前記仕切り板25の開口部251に対応する部分が発光面201となる。つまり、面発光部2の発光面201は、仕切り板25の開口部251の平面視形状と同一形状となる。 A partition plate 25 is provided on the rear surface of the translucent member 24 to regulate light emitted from the plurality of LEDs 21 within a predetermined range. The partition plate 25 has the same shape as the translucent member 24 in plan view, and an opening 251 for emitting light from the LED 21 to the outside (upper part) is formed at the center. With such a configuration, a portion corresponding to the opening 251 of the partition plate 25 on the upper surface of the translucent member 24 becomes the light emitting surface 201. That is, the light emitting surface 201 of the surface light emitting unit 2 has the same shape as the planar view shape of the opening 251 of the partition plate 25.
撮像部3は、生体配置領域Xの上部に設けられており、当該生体配置領域Xにある生体を透過した光を受光して生体透視画像を示す画像データを出力するものである。本実施形態の撮像部3は、デジタルカメラであり、0.4〜10μWの光を受光した際の出力あたりの最低検出光量が0.055μW/ビット以下である特定の感度を有するものである。具体的には、CCDカメラやCOMSカメラ等を用いることができる。 The imaging unit 3 is provided in the upper part of the living body placement region X, and receives light transmitted through the living body in the living body placement region X, and outputs image data indicating a living body fluoroscopic image. The imaging unit 3 of the present embodiment is a digital camera, and has a specific sensitivity such that the minimum detected light amount per output when receiving light of 0.4 to 10 μW is 0.055 μW / bit or less. Specifically, a CCD camera, a COMS camera, or the like can be used.
また、撮像部3は、装置基台100Aに対して鉛直方向に立設されたスタンド部材5に面発光部2に対して進退移動可能に固定されている。具体的に撮像部3及びスタンド部材5の間にはスライド機構6が設けられている。このスライド機構6は撮像部3を所定範囲内で発光面201に対して鉛直方向にスライド移動させるものである。 The imaging unit 3 is fixed to a stand member 5 erected in the vertical direction with respect to the apparatus base 100 </ b> A so as to be movable back and forth with respect to the surface light emitting unit 2. Specifically, a slide mechanism 6 is provided between the imaging unit 3 and the stand member 5. The slide mechanism 6 slides the imaging unit 3 in a vertical direction with respect to the light emitting surface 201 within a predetermined range.
そして撮像部3により得られた生体透視画像は、電源部4を介してコンピュータ等の情報処理装置7に出力される(図1参照)。そして生体透視画像は、情報処理装置7の表示部画面上に表示されるとともに、情報処理装置7の画像処理機能によって画像処理される。なお、少なくとも生体透視画像を表示する表示部に関して言うと、予め生体内観察装置100に備えさせたものであっても良い。 The biological fluoroscopic image obtained by the imaging unit 3 is output to the information processing apparatus 7 such as a computer via the power supply unit 4 (see FIG. 1). The biological fluoroscopic image is displayed on the display unit screen of the information processing apparatus 7 and is subjected to image processing by the image processing function of the information processing apparatus 7. Note that at least the display unit that displays a biological fluoroscopic image may be provided in the in-vivo observation device 100 in advance.
前記撮像部3として、0.4〜10μWの光を受光した際の出力あたりの最低検出光量が0.055μW/ビット以下であるCCDカメラを備えた本生体内観察装置100を用いて、発光面201上に指を置き、指の背面から近赤外光を照射して、指の血管を観察した画像を図6(a)に示す。図6に示すように、黒く表された血管が明瞭に観察されることが確認された。なお、当該CCDカメラは、輝度に対応したデジタル出力(以下、単に輝度出力という。)が11ビットであるときの検出光量が0.33μWであり、輝度出力が197ビットであるときの検出光量が10.21μWである感度を有するものであり、この範囲において輝度出力と検出光量の間には線形の関係が認められた。一方、これより感度の低い(最低検出光量が0.055μW/ビットを超える)CCDカメラを用いた場合は、図6(b)に示すように、指の血管を観察することができなかった。なお、図6(c)は後述する遮光部材8を装着した状態で指の血管を観察した画像である。 Using the in-vivo observation device 100 provided with a CCD camera having a minimum detected light quantity per output when receiving 0.4 to 10 μW of light as the imaging unit 3, a light emitting surface FIG. 6A shows an image obtained by placing a finger on 201 and irradiating near infrared light from the back of the finger and observing the blood vessels of the finger. As shown in FIG. 6, it was confirmed that the blood vessels represented in black were clearly observed. The CCD camera has a detected light amount of 0.33 μW when the digital output corresponding to the luminance (hereinafter simply referred to as luminance output) is 11 bits, and the detected light amount when the luminance output is 197 bits. The sensitivity was 10.21 μW, and a linear relationship was recognized between the luminance output and the detected light amount in this range. On the other hand, when a CCD camera with lower sensitivity (minimum detected light intensity exceeds 0.055 μW / bit) was used, the blood vessel of the finger could not be observed as shown in FIG. FIG. 6C is an image obtained by observing a blood vessel of a finger in a state where a light shielding member 8 described later is mounted.
このように構成した本実施形態に係る生体内観察装置100によれば、特別な技術や経験を必要とせずに、誰でも容易に生体内の異物や血管を観察することができる。また、本生体内観察装置100は、0.4〜10μWの光を受光した際の出力あたりの最低検出光量が0.055μW/ビット以下である特定の感度を有する撮像部3を備えているので、静脈のみならず、動脈も撮像することができる。 According to the in-vivo observation device 100 according to the present embodiment configured as described above, anyone can easily observe a foreign substance or blood vessel in the living body without requiring any special technique or experience. Moreover, since this in-vivo observation apparatus 100 is equipped with the imaging part 3 which has the specific sensitivity whose minimum detection light quantity per output at the time of receiving the light of 0.4-10 microW is 0.055 microwatt / bit or less. It is possible to image not only veins but also arteries.
しかして本実施形態の生体内観察装置100は、図7〜図10に示すように、面発光部2に対して着脱可能に設けられ、発光面201から出る光の一部を遮る遮光部材8を備えている。なお、図7は、図2の生体内観察装置100に遮光部材8を装着した状態である。 Accordingly, the in-vivo observation device 100 according to the present embodiment is provided so as to be detachable from the surface light emitting unit 2 as shown in FIGS. 7 to 10, and blocks the light emitted from the light emitting surface 201. It has. FIG. 7 shows a state where the light shielding member 8 is attached to the in-vivo observation device 100 of FIG.
遮光部材8は、特に図9に示すように、前記面発光部2の透光部材24と平面視において概略同一形状をなす平面視矩形板状をなすものであり、発光面201からの光を遮る遮光部81と、発光面201からの光を生体配置領域X側に透過させる開口部82とを有している。この遮光部材8に設けられた開口部82は、前記仕切り板25に設けられた開口部251よりも開口サイズが小さく形成されている。具体的な開口部82の形状としては、平面視概略円形状である。 As shown in FIG. 9 in particular, the light shielding member 8 has a rectangular plate shape in plan view that is substantially the same shape as the light transmissive member 24 of the surface light emitting unit 2 in plan view, and transmits light from the light emitting surface 201. The light-shielding part 81 which shields and the opening part 82 which permeate | transmits the light from the light emission surface 201 to the biological body arrangement | positioning area | region X side are provided. The opening 82 provided in the light shielding member 8 has a smaller opening size than the opening 251 provided in the partition plate 25. A specific shape of the opening 82 is a substantially circular shape in plan view.
そして、後述する固定機構9により、開口部82の開口中心が撮像部3の光軸3C上又はその近傍となるように、遮光部材8が前記面発光部2に対して着脱可能に取り付けられる(図8参照)。なお、開口部82の開口中心と、前記仕切り板25の開口部251の開口中心とは平面視において略一致しており、撮像部3の光軸3C上に仕切り板25の開口部251の開口中心がある。 Then, the light shielding member 8 is detachably attached to the surface light emitting unit 2 by the fixing mechanism 9 described later so that the opening center of the opening 82 is on or near the optical axis 3C of the imaging unit 3 ( (See FIG. 8). Note that the opening center of the opening 82 and the opening center of the opening 251 of the partition plate 25 substantially coincide with each other in plan view, and the opening of the opening 251 of the partition plate 25 on the optical axis 3C of the imaging unit 3. There is a center.
固定機構9は、遮光部材8を面発光部2の発光面201に対して位置決めして固定するものであり、具体的には発光面201の平面方向における遮光部材8の位置を位置決めするものである。本実施形態の固定機構9は、図9に示すように、遮光部材8の4つの側辺部に設けられ、面発光部2の4つの側面2a〜2dに接触する係止片9a〜9dから形成されている。この係止片9a〜9dは、遮光部材8の4つ角に設けられている。この固定機構9により、遮光部材8の開口部82の開口中心と面発光部2の発光面201の中心とが一致するとともに、遮光部材8の開口部82の開口中心が撮像部3の光軸3C上に位置する。 The fixing mechanism 9 positions and fixes the light shielding member 8 with respect to the light emitting surface 201 of the surface light emitting unit 2, and specifically positions the light shielding member 8 in the plane direction of the light emitting surface 201. is there. As shown in FIG. 9, the fixing mechanism 9 of the present embodiment is provided on the four side portions of the light shielding member 8, and from the locking pieces 9 a to 9 d that are in contact with the four side surfaces 2 a to 2 d of the surface light emitting unit 2. Is formed. The locking pieces 9 a to 9 d are provided at the four corners of the light shielding member 8. By this fixing mechanism 9, the center of the opening 82 of the light shielding member 8 and the center of the light emitting surface 201 of the surface light emitting unit 2 coincide with each other, and the center of the opening 82 of the light shielding member 8 is the optical axis of the imaging unit 3. Located on 3C.
そして遮光部材8には、図7等に示すように、検査される生体を遮光部材8及び発光面201に対して水平方向に位置決めして、遮光部材8に遮られない光を生体の所定部位に照射させる位置決め部材10が設けられている。 As shown in FIG. 7 and the like, the light shielding member 8 positions the living body to be inspected in the horizontal direction with respect to the light shielding member 8 and the light emitting surface 201, and transmits light not blocked by the light shielding member 8 to a predetermined part of the living body. A positioning member 10 is provided for irradiation.
本実施形態の位置決め部材10は、所定の指と接触して当該所定の指を遮光部材8の開口部82に位置決めするものであり、図9及び図10に示すように、遮光部材8の開口部82と連通する貫通孔10hを有する。そして位置決め部材10は、図7及び図9に示すように、開口部82の奥側(スタンド部材側)に位置して指の先端部に接触する概略平面状の第1接触面10aと、開口部82の左右に位置して指の任意の面(例えば指の上面(指の背))に接触する概略V字状をなす第2接触面10bとを有する。そして第2接触面10bの谷線10b1が遮光部材8の開口部82の中心を通るように構成されている。第1接触面10aにより開口部82に対する奥行き方向(図9においてY方向)の指の位置が位置決めされ、第2接触面10bにより開口部82に対する左右方向(図9、図10おいてX方向)の指の位置が位置決めされる。なお、開口部82の開口中心と撮像部3の光軸3Cとがほぼ一致していることから、前記位置決め部材10により指が撮像部3の光軸3Cに対しても位置決めされることになる。 The positioning member 10 of the present embodiment contacts a predetermined finger and positions the predetermined finger in the opening 82 of the light shielding member 8. As shown in FIGS. 9 and 10, the opening of the light shielding member 8 is positioned. A through hole 10 h communicating with the portion 82 is provided. As shown in FIGS. 7 and 9, the positioning member 10 includes a first contact surface 10a having a substantially planar shape that is positioned on the back side (stand member side) of the opening 82 and contacts the tip of the finger, and an opening. And a second contact surface 10b having a substantially V-shape that is located on the left and right of the part 82 and contacts an arbitrary surface of the finger (for example, the upper surface of the finger (back of the finger)). The valley line 10 b 1 of the second contact surface 10 b is configured to pass through the center of the opening 82 of the light shielding member 8. The position of the finger in the depth direction (Y direction in FIG. 9) with respect to the opening 82 is positioned by the first contact surface 10a, and the left and right direction (X direction in FIGS. 9 and 10) with respect to the opening 82 by the second contact surface 10b. The finger position is determined. Since the opening center of the opening 82 and the optical axis 3C of the imaging unit 3 substantially coincide with each other, the positioning member 10 positions the finger also with respect to the optical axis 3C of the imaging unit 3. .
この生体内観察装置100により、遮光部材8を取り外した状態で生体の大局領域、つまり、発光面201全体の範囲内に位置する生体の透視画像(具体的には手の大部分の透視画像)を撮像する(図6(a)参照)。一方、遮光部材8を取り付けた状態で生体の局所領域、つまり遮光部材8の開口部82の範囲内に位置する生体の透視画像(具体的には指の所定部分の透視画像)を撮像する(図6(c)参照)。 With this in-vivo observation device 100, a perspective image of a living body located within the general region of the living body, that is, the entire light emitting surface 201 with the light shielding member 8 removed (specifically, a fluoroscopic image of most of the hand) (See FIG. 6A). On the other hand, a fluoroscopic image of a living body (specifically, a fluoroscopic image of a predetermined part of a finger) located in a local region of the living body, that is, within the range of the opening 82 of the light shielding member 8 with the light shielding member 8 attached is taken ( (Refer FIG.6 (c)).
<本実施形態の効果>
このように構成した本実施形態に係る生体内観察装置100によれば、発光面201から出る光の一部を遮る遮光部材8を設けているので、生体配置領域Xにおける光照射範囲を狭めることができ、生体の局所領域に対して光を照射できる。また、生体の局所領域に対して光を照射できるので、生体の局所領域の生体透視画像を好適に取得することができる。
<Effect of this embodiment>
According to the in-vivo observation device 100 according to the present embodiment configured as described above, since the light shielding member 8 that blocks part of the light emitted from the light emitting surface 201 is provided, the light irradiation range in the living body placement region X is narrowed. And can irradiate the local area of the living body with light. Moreover, since light can be irradiated to the local area | region of a biological body, the biopsy image of the local area | region of a biological body can be acquired suitably.
さらに、遮光部材8が面発光部2に対して着脱可能であることから、用途に応じて、例えば手全体などの生体全体の生体透視画像を取得する又は指などの生体の局所領域の生体透視画像を取得することを遮光部材8の取り付け及び取り外しによって簡単に切り換えることができる。また、位置決め部材10により生体が発光面201に対して位置決めされるので、生体の所定領域に光を照射することができる。また、面発光部2に対して位置決めされている撮像部3によって生体を撮像することから、撮像部3により得られた画像を比較する等の撮像後の処理を容易化することができる。 Furthermore, since the light shielding member 8 can be attached to and detached from the surface light emitting unit 2, a bioscopic image of the whole living body such as the whole hand is obtained or a biological fluoroscopy of a local region of the living body such as a finger, depending on the use. Acquisition of an image can be easily switched by attaching and detaching the light shielding member 8. Further, since the living body is positioned with respect to the light emitting surface 201 by the positioning member 10, it is possible to irradiate a predetermined region of the living body with light. Further, since the living body is imaged by the imaging unit 3 positioned with respect to the surface light emitting unit 2, processing after imaging such as comparing images obtained by the imaging unit 3 can be facilitated.
その上、本実施形態の生体内観察装置100により、特別な技術や経験を必要とせずに、誰でも容易に生体内の異物や血管を観察することができる。X線を使用せずに生体内を観察することができるので、長時間光照射しても人体に無害であり、また、単に光を照射するだけであるので、血行を確認するに際し被験者に苦痛を与えることはない。加えて、本発明は容易に小型化できるので、本生体内観察装置100を手術室内に持ち込んで、リアルタイムで生体内の観察を行いながら、各種手術を行うこともできる。 In addition, with the in-vivo observation device 100 of the present embodiment, anyone can easily observe foreign bodies and blood vessels in the living body without requiring special techniques or experience. Since the inside of the living body can be observed without using X-rays, it is harmless to the human body even if light irradiation is performed for a long time, and because it is merely light irradiation, it is painful to the subject when confirming blood circulation. Never give. In addition, since the present invention can be easily miniaturized, various operations can be performed while the in-vivo observation device 100 is brought into an operating room and in-vivo observation is performed in real time.
<その他の変形実施形態>
なお、本発明は前記実施形態に限られるものではない。例えば、固定機構9としては、図11に示すように、遮光部材8の下面に設けられた凸部91と、透光部材24の上面に設けられた凹部92とから構成しても良い。図11においては、複数の凸部91及び複数の凹部92により平面方向に位置決めするものであるが、凸部91及び凹部92の形状を工夫して面発光部2に対して遮光部材8を平面方向に位置決めするようにしても良い。なお、遮光部材の下面に凹部、透光部材の上面に凸部を設けて構成しても良い。
<Other modified embodiments>
The present invention is not limited to the above embodiment. For example, as shown in FIG. 11, the fixing mechanism 9 may include a convex portion 91 provided on the lower surface of the light shielding member 8 and a concave portion 92 provided on the upper surface of the translucent member 24. In FIG. 11, the plurality of convex portions 91 and the plurality of concave portions 92 are positioned in the plane direction. You may make it position in a direction. In addition, you may comprise by providing a recessed part in the lower surface of a light shielding member, and a convex part in the upper surface of a translucent member.
また、前記実施形態の位置決め部材10は、第1接触面10a及び第2接触面10bを有するものであったが、第1接触面10aのみ又は第2接触面10bのみを有するものであっても良い。この場合、第1接触面10aは平面状の他、図12に示すように、平面視V字形状をなすものであっても良い。この場合、第1接触面10aの折れ曲がり線が、開口部82のX方向位置を一致するように形成することが考えられる。さらに、位置決めに関して言うと、遮光部材8の上面に位置決め線又は図を描いても良い。そして位置決め線又は図にしたがって指を配置することによって指が開口部に対して位置決めされるように構成しても良い。 Moreover, although the positioning member 10 of the said embodiment has the 1st contact surface 10a and the 2nd contact surface 10b, even if it has only the 1st contact surface 10a or the 2nd contact surface 10b. good. In this case, the first contact surface 10a may have a V-shape in plan view as shown in FIG. In this case, it is conceivable that the bent line of the first contact surface 10a is formed so as to match the position of the opening 82 in the X direction. Further, regarding the positioning, a positioning line or a figure may be drawn on the upper surface of the light shielding member 8. The finger may be positioned with respect to the opening by arranging the finger according to the positioning line or the drawing.
また、前記実施形態の遮光部材8の開口部82は平面視概略円形状をなすものであったが、その他、平面視矩形状等の多角形状、平面視楕円状又は長円状、平面視部分円状など発光面の発光面積を狭めるものであれば、種々の形状とすることができる。このとき、生体透視画像を取得すべき局所領域のサイズに合わせて種々の開口部を有する遮光部材を用意しておき、用途に応じて適宜取り替えることが考えられる。 In addition, the opening 82 of the light shielding member 8 of the above embodiment has a substantially circular shape in plan view. In addition, a polygonal shape such as a rectangular shape in plan view, an elliptical shape or oval shape in plan view, and a portion in plan view. Any shape can be used as long as it reduces the light emitting area of the light emitting surface, such as a circle. At this time, it is conceivable to prepare a light-shielding member having various openings in accordance with the size of the local region from which a biological fluoroscopic image is to be obtained, and replace it appropriately depending on the application.
さらに前記実施形態の位置決め部材は遮光部材上に設けられているが、遮光部材とは別に設けたものであっても良い。 Further, although the positioning member of the embodiment is provided on the light shielding member, it may be provided separately from the light shielding member.
その上、前記実施形態では位置決め部材10は遮光部材8の開口部82に対して生体の局所領域(指の所定領域)を位置決めするものであったが、遮光部材8を装着していない面発光部2の発光面201に対して生体を位置決めするものであっても良い。 In addition, in the above embodiment, the positioning member 10 positions the local region of the living body (predetermined region of the finger) with respect to the opening 82 of the light shielding member 8. The living body may be positioned with respect to the light emitting surface 201 of the unit 2.
加えて、前記実施形態の位置決め部材10は、生体として手の指の透視画像を取得するために当該指を位置決めするものであったが、足の指の透視画像を取得するための当該足を位置決めする構成としても良い。 In addition, the positioning member 10 of the above-described embodiment is for positioning the finger to acquire a fluoroscopic image of a hand finger as a living body, but the foot for acquiring a fluoroscopic image of a toe A configuration for positioning may be used.
また生体内観察装置100の透光部材24上に偏光板及びカットフィルタを設けても良い。 Further, a polarizing plate and a cut filter may be provided on the translucent member 24 of the in-vivo observation device 100.
偏光板は、拡散板である透光部材の反光源側の表面(上面)に重ねて設けられており、拡散板で拡散されて均一化された光から直線偏光を作り出すものである。偏光板としては、例えば、樹脂からなるフィルム状のもの等が用いられる。拡散板に重ねて偏光板が設けられていることにより、最適な振動方向(透過軸)の偏光を生体に照射することができるので、生体表面における光の反射を低減することができる。なお、本実施形態では、偏光板の上に生体を載置して観察することができる。このような拡散板と偏光板とを用いて、観察対象である生体に照射する光の光質及び光量を調整することにより、コントラストが明瞭な画像を得ることができる。 The polarizing plate is provided so as to overlap the surface (upper surface) on the side opposite to the light source of the translucent member that is a diffusion plate, and produces linearly polarized light from the light diffused and uniformed by the diffusion plate. As the polarizing plate, for example, a film-like one made of resin is used. Since the polarizing plate is provided over the diffusion plate, the living body can be irradiated with polarized light in the optimum vibration direction (transmission axis), and thus reflection of light on the surface of the living body can be reduced. In this embodiment, a living body can be placed on the polarizing plate and observed. By using such a diffuser plate and a polarizing plate to adjust the light quality and the amount of light applied to the living body to be observed, an image with clear contrast can be obtained.
カットフィルタは、撮像部の光導入口に設けられており、撮像部内に太陽光等の外乱光が入り込むことを防いでいる。このようなカットフィルタを備えていることにより、外乱光(可視光線)を遮断することができるので、ノイズが低減された鮮明な画像を得ることができる。生体を透過した光は撮像部内の集光レンズにより集められ、CCDイメージセンサ等の撮像素子の受光平面に結像する。そして、適切な集光レンズを選択することにより、面発光部2の発光面201全域を撮像範囲とすることができる。例えば、発光面201が80×100mmのサイズである場合、集光レンズとしては焦点距離が6〜10mmであるものが好適に用いられる。 The cut filter is provided at the light entrance of the imaging unit and prevents disturbance light such as sunlight from entering the imaging unit. By providing such a cut filter, disturbance light (visible light) can be blocked, so that a clear image with reduced noise can be obtained. The light transmitted through the living body is collected by a condensing lens in the image pickup unit, and forms an image on a light receiving plane of an image pickup device such as a CCD image sensor. Then, by selecting an appropriate condenser lens, the entire light emitting surface 201 of the surface light emitting unit 2 can be set as the imaging range. For example, when the light emitting surface 201 has a size of 80 × 100 mm, a condensing lens having a focal length of 6 to 10 mm is preferably used.
その他、本発明は前記実施形態に限られず、その趣旨を逸脱しない範囲で種々の変形が可能であるのは言うまでもない。 In addition, it goes without saying that the present invention is not limited to the above-described embodiment, and various modifications can be made without departing from the spirit of the present invention.
100・・・生体内観察装置
X ・・・生体配置領域
2 ・・・面発光部
201・・・発光面
21 ・・・LED
23 ・・・筐体
24 ・・・透光部材
3 ・・・撮像部
3C ・・・撮像部の光軸
8 ・・・遮光部材
81 ・・・遮光部
82 ・・・開口部
9 ・・・固定機構
10 ・・・位置決め部材
DESCRIPTION OF SYMBOLS 100 ... In-vivo observation apparatus X ... Living body arrangement | positioning area | region 2 ... Surface light emission part 201 ... Light emission surface 21 ... LED
23 ... Housing 24 ... Translucent member 3 ... Imaging unit 3C ... Optical axis 8 of imaging unit ... Shading member 81 ... Shading part 82 ... Opening 9 ... Fixing mechanism 10 ... positioning member
Claims (6)
前記生体配置領域に対して前記面発光部とは反対側に設けられ、前記生体配置領域にある生体を透過した光を受光して画像データを出力する撮像部と、
前記面発光部に対して着脱可能に設けられ、前記発光面から出る光の一部を遮る遮光部材とを具備する生体内観察装置。 A light emitting surface facing the living body placement region, and a surface light emitting unit that irradiates light to the living body in the living body placement region;
An imaging unit that is provided on the opposite side of the surface emitting unit with respect to the living body placement region, receives light transmitted through the living body in the living body placement region, and outputs image data;
An in-vivo observation device comprising: a light-shielding member that is detachably attached to the surface light-emitting unit and blocks a part of light emitted from the light-emitting surface.
前記開口部の開口中心が前記撮像部の光軸上又はその近傍となるように、前記遮光部材が前記面発光部に対して着脱可能に取り付けられるものである請求項1記載の生体内観察装置。 The light-shielding member has a light-shielding portion that shields light from the light-emitting surface and an opening that transmits light from the light-emitting surface to the living body placement region side;
The in-vivo observation apparatus according to claim 1, wherein the light shielding member is detachably attached to the surface light emitting unit such that an opening center of the opening is on or near the optical axis of the imaging unit. .
前記撮像部が、0.4〜10μWの光を受光した際の出力あたりの最低検出光量が0.055μW/ビット以下のデジタルカメラである請求項1乃至4のいずれかに記載の生体内観察装置。 The surface light emitting unit irradiates the living body with light having a wavelength peak in a wavelength region of 800 to 1000 nm,
The in-vivo observation device according to any one of claims 1 to 4, wherein the imaging unit is a digital camera having a minimum detected light amount per output when receiving 0.4 to 10 µW of light, and having a 0.055 µW / bit or less. .
前記透光部材が、入射光を55°以上の角度で発散しうる拡散板である請求項1乃至5のいずれかに記載の生体内観察装置。 The surface light emitting unit includes a plurality of LEDs, a housing that houses the LEDs, and a translucent member that is provided on the light emission side of the LED in the housing and forms the light emitting surface.
The in-vivo observation device according to any one of claims 1 to 5, wherein the translucent member is a diffusion plate that can diverge incident light at an angle of 55 ° or more.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2010286684A JP5885386B2 (en) | 2010-12-22 | 2010-12-22 | In vivo observation device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2010286684A JP5885386B2 (en) | 2010-12-22 | 2010-12-22 | In vivo observation device |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2012130583A true JP2012130583A (en) | 2012-07-12 |
JP5885386B2 JP5885386B2 (en) | 2016-03-15 |
Family
ID=46646917
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2010286684A Ceased JP5885386B2 (en) | 2010-12-22 | 2010-12-22 | In vivo observation device |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP5885386B2 (en) |
Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2001256487A (en) * | 2000-03-10 | 2001-09-21 | Omron Corp | Fingerprint collating unit |
JP2002092616A (en) * | 2000-09-20 | 2002-03-29 | Hitachi Ltd | Individual authentication device |
JP2004290544A (en) * | 2003-03-28 | 2004-10-21 | Citizen Watch Co Ltd | Blood analyzer |
JP2004317745A (en) * | 2003-04-15 | 2004-11-11 | Olympus Corp | Microscope system |
JP2006305154A (en) * | 2005-04-28 | 2006-11-09 | Sony Corp | Imaging device |
JP2008510559A (en) * | 2004-08-27 | 2008-04-10 | コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ | Transmission imaging for spectroscopic analysis |
JP2009172064A (en) * | 2008-01-22 | 2009-08-06 | Panasonic Corp | Blood vessel position indicator and its method |
JP2010277597A (en) * | 2010-07-12 | 2010-12-09 | Sony Corp | Imaging device |
-
2010
- 2010-12-22 JP JP2010286684A patent/JP5885386B2/en not_active Ceased
Patent Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2001256487A (en) * | 2000-03-10 | 2001-09-21 | Omron Corp | Fingerprint collating unit |
JP2002092616A (en) * | 2000-09-20 | 2002-03-29 | Hitachi Ltd | Individual authentication device |
JP2004290544A (en) * | 2003-03-28 | 2004-10-21 | Citizen Watch Co Ltd | Blood analyzer |
JP2004317745A (en) * | 2003-04-15 | 2004-11-11 | Olympus Corp | Microscope system |
JP2008510559A (en) * | 2004-08-27 | 2008-04-10 | コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ | Transmission imaging for spectroscopic analysis |
JP2006305154A (en) * | 2005-04-28 | 2006-11-09 | Sony Corp | Imaging device |
JP2009172064A (en) * | 2008-01-22 | 2009-08-06 | Panasonic Corp | Blood vessel position indicator and its method |
JP2010277597A (en) * | 2010-07-12 | 2010-12-09 | Sony Corp | Imaging device |
Also Published As
Publication number | Publication date |
---|---|
JP5885386B2 (en) | 2016-03-15 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US10342432B2 (en) | Efficient modulated imaging | |
US20160139039A1 (en) | Imaging system and imaging method | |
KR100785279B1 (en) | Apparatus for photo-diagnosis of skin disease using uniform illumination | |
EP1994882B1 (en) | Bi-spectral peroperative optical probe | |
WO2011078266A1 (en) | Intravital observation device | |
JP2007522869A (en) | Imaging of embedded structures | |
JP6671946B2 (en) | Information acquisition device, imaging device, and information acquisition method | |
JP6700703B2 (en) | Vein visualization device | |
JP2016538095A (en) | Non-invasive detection device for a given biological structure | |
US9713426B2 (en) | Blood sampling device | |
Mo et al. | The importance of illumination in a non-contact photoplethysmography imaging system for burn wound assessment | |
KR101710902B1 (en) | An astral lamp and astral lamp system about projection for near infrared fluoresence diagnosis | |
JP2012130584A (en) | Intravital observation device | |
JP5885386B2 (en) | In vivo observation device | |
KR100869782B1 (en) | Bio-optical imaging system | |
JP6494343B2 (en) | Imaging device, imaging system, imaging method, and support member used in imaging device | |
JP6480769B2 (en) | Imaging device, imaging system, and support member used in imaging device | |
Tran et al. | Near-infrared transillumination imaging of veins using low-cost camera and scattering suppression-validation of practicality of developed system | |
Khalil et al. | Dynamic contact-free continuous-wave diffuse optical tomography system for the detection of vascular dynamics within the foot | |
KR20100104341A (en) | Apparatus for photographing image of tongue | |
KR200481528Y1 (en) | Apparatus for obtaining angiography image | |
JP2013123604A (en) | Imaging system | |
JP2022527642A (en) | Medical devices that utilize narrow-band imaging | |
Kurata et al. | Visualization of oxygen transportation in microcirculation by sidestream dark-field oximetry | |
WO2018055061A1 (en) | Hyperspectral tissue imaging |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20131108 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20140324 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20140401 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20140602 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20141127 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20150121 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20150630 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20150817 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20160204 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20160209 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 5885386 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
S531 | Written request for registration of change of domicile |
Free format text: JAPANESE INTERMEDIATE CODE: R313531 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
RVOP | Cancellation by post-grant opposition |